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Schrödinger-type operators with unbounded diffusion
and potential terms

ANNA CANALE, ABDELAZIZ RHANDI AND CRISTIAN TACELLI

Abstract. We prove that the realization Ap in L p(RN ), for 1 < p < 1, of
the Schrödinger-type operator A = (1 + |x |↵)1 � |x |� with domain D(Ap) =

{u 2 W2,p(RN ) : Au 2 L p(RN )} generates a strongly continuous analytic
semigroup provided that N > 2, ↵ > 2 and � > ↵�2. Moreover this semigroup
is consistent, irreducible, immediately compact and ultracontractive.

Mathematics Subject Classification (2010): 47D07 (primary); 47D08, 35J10,
35K20 (secondary).

1. Introduction

In this paper we study the generation of analytic semigroups in L p-spaces of Schrö-
dinger-type operators of the form

Au(x) = a(x)1u(x) � V (x)u(x), for x 2 RN , (1.1)

where a(x) = 1 + |x |↵ and V (x) = |x |� with ↵ > 2 and � > ↵ � 2. We also
investigate spectral properties of such semigroups. In the case where ↵ 2 [0, 2] and
� � 0, generation results of analytic semigroups for suitable realizations Ap of the
operator A in L p(RN ) have been proved in [4].

For � = 0 and ↵ > 2, the generation results depend upon N as it is proved
in [8]. More specifically, if N = 1, 2 no realization of A in L p(RN ) generates a
strongly continuous (resp. analytic) semigroup. The same happens if N � 3 and
p  N/(N � 2). On the other hand, if N � 3 and p > N/(N � 2), then the
maximal realization Ap of the operator A in L p(RN ) generates a positive analytic
semigroup, which is also contractive if ↵ � (p � 1)(N � 2).
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Generation results concerning the case where � = 0 and with drift terms of
the form |x |↵�2x were obtained recently in [9]. The operator with a more general
diffusion term was also investigated in [10] and [14].

We also quote the recent paper [5]. Here the authors studied the generation of
C0 and analytic semigroups in L p(RN ), for 1 < p < 1, of operators of the form
A = |x |↵1 + c|x |↵�2x · r � b|x |↵�2. They prove for ↵ 6= 2, in particular for
c = 0 and b = 1, that a suitable L p-realization of A generates a bounded analytic
semigroup in L p(RN ) if and only if N/p < (N�2)/2+

p
1+ (N � 2)2/4, see [5,

Theorem 1.2]. We note here that � = ↵ � 2 corresponds to a critical case. The
methods used in [5] are completely different from ours and lead to results which
are not comparable with our case (� > ↵ � 2).

Here we consider the case where ↵ > 2 and assume that N > 2. Let us denote
by Ap the realization of A in L p(RN ) endowed with its maximal domain

Dp,max(A) =

n
u 2 L p

⇣
RN

⌘
\ W 2,p

loc

⇣
RN

⌘
: Au 2 L p

⇣
RN

⌘o
. (1.2)

After proving a priori estimates, we deduce that Dp,max(A) coincides with

Dp(A) :=
n
u2W 2,p

⇣
RN

⌘
:Vu,

⇣
1+ |x |↵�1

⌘
|ru|,

�
1+ |x |↵

�
|D2u|2L p

⇣
RN

⌘o
.

So we show in the main result of this paper that, for any 1 < p < 1, the realization
Ap of A in L p(RN ), with domain Dp(A), generates a positive strongly continuous
and analytic semigroup (Tp(t))t�0 for any � > ↵ � 2. This semigroup is also
consistent, irreducible, immediately compact and ultracontractive.

The paper is structured as follows. In Section 2 we study the invariance of
C0(RN ) under the semigroup generated by A in Cb(RN ) and show its compactness.
In Section 3 we use reverse Hölder classes and some results in [13] to study the
solvability of the elliptic problem in L p(RN ). Finally, in Section 4 we prove the
generation results.

Notation. For any k 2 N [ {1} we denote by Ck
c (RN ) the set of all functions

f : RN
! R that are continuously differentiable in RN up to k-th order and have

compact support (denoted supp( f )). The space Cb(RN ) is the set of all bounded
and continuous functions f : RN

! R, and we denote by k f k1 its sup-norm,
i.e., k f k1 = supx2RN | f (x)|. We use also the space C0(RN ) := { f 2 Cb(RN ) :

lim|x |!1 f (x) = 0}. If f is smooth enough we set

|r f (x)|2 =

NX
i=1

|Di f (x)|2, |D2 f (x)|2 =

NX
i, j=1

|Di j f (x)|2.

For any x0 2 RN and any r > 0 we denote by B(x0, r) ⇢ RN the open ball,
centered at x0 with radius r . We simply write B(r) when x0 = 0. The function
�E denotes the characteristic function of the (measurable) set E , i.e., �E (x) = 1 if
x 2 E , �E (x) = 0 otherwise.
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For any p 2 [1,1) we denote by L p(RN ) the Banach space of all measurable
and p-integrable functions in RN with respect to the Lebesgue measure endowed
with its usual norm k · kp. Finally, by x · y we denote the Euclidean scalar product
of the vectors x, y 2 RN .

ACKNOWLEDGEMENTS. We are grateful to the referee for his many helpful re-
marks and suggestions.

2. Generation of semigroups in C0(RN )

In this section we recall some properties of the elliptic and parabolic problems as-
sociated with A in Cb(RN ). We prove the existence of a Lyapunov function for A
in the case where ↵ > 2 and � > ↵ � 2. This implies the uniqueness of the solu-
tion semigroup (T (t))t�0 to the associated parabolic problem. Using a domination
argument, we show that T (t) is compact and T (t)C0(RN ) ⇢ C0(RN ).

First, we endow A with its maximal domain in Cb(RN )

Dmax(A) =

n
u 2 Cb

⇣
RN

⌘
\ W 2,p

loc

⇣
RN

⌘
, for 1  p < 1 : Au 2 Cb

⇣
RN

⌘o
.

Then, we consider for any � > 0 and f 2 Cb(RN ) the elliptic equation

�u � Au = f. (2.1)

It is well-known that equation (2.1) admits at least one solution in Dmax(A) (see [3,
Theorem 2.1.1]). A solution is obtained as follows.

Take the unique solution to the Dirichlet problem associated with � � A into
the balls B(0, n) for n 2 N. Using Schauder interior estimates one can prove that
the sequence of solutions so obtained converges to a solution u of (2.1). It is also
known that a solution to (2.1) is in general not unique. The solution u, which we
obtained by approximation, is nonnegative whenever f � 0.

As regards the parabolic problem(
ut (t, x) = Au(t, x) for x 2 RN and t > 0
u(0, x) = f (x) for x 2 RN ,

(2.2)

where f 2 Cb(RN ), it is well-known that one can find a semigroup (T (t))t�0 of
bounded operator in Cb(RN ) such that u(t, x) = T (t) f (x) is a solution of (2.2) in
the following sense:

u 2 C
⇣
[0,+1) ⇥ RN

⌘
\ C1+

�
2 ,2+�

loc

⇣
(0,+1) ⇥ RN

⌘

and u solves (2.2) for any f 2 Cb(RN ) and some � 2 (0, 1). Uniqueness of
solutions to (2.2) in general is not guaranteed. Moreover the semigroup (T (t))t�0
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is not strongly continuous in Cb(RN ) and does not preserve in general the space
C0(RN ). We note here that the obtained solution u is the minimal solution among
all positive solutions of (2.2). For this reason the semigroup T (t) will be called the
minimal semigroup. For more details we refer to [3, Chapter 2, Section 2].

Uniqueness is obtained if there exists a positive function '(x) 2 C2(RN ),
called Lyapunov function, such that lim|x |!1 '(x) = +1 and A' � �'  0 for
some � > 0.

Proposition 2.1. Let N > 2, ↵ > 2 and � > ↵�2. Let ' = 1+|x |� where � > 2.
Then there exists a constant C > 0 such that

A'  C'.

Proof. An easy computation gives

A' = � (N + � � 2)(1+ |x |↵)|x |��2
� (1+ |x |� )|x |� .

Then, since � > ↵ � 2, there exists a C > 0 such that

� (N + � � 2)(1+ |x |↵)|x |��2
 (1+ |x |� )|x |� + C(1+ |x |� ).

Then we can assert that problem (2.2) admits a unique solution in C([0,1)⇥RN )\
C1,2((0,1) ⇥ RN ) and problem (2.1) admits a unique solution in Dmax(A).

In order to investigate the compactness of the semigroup and the invariance
of C0(RN ) we check the behaviour of T (t)1. We use the following result (see [3,
Theorem 5.1.11]):

Theorem 2.2. Let us fix t > 0. Then T (t)1 2 C0(RN ) if and only if T (t) is
compact and C0(RN ) is invariant under T (t).

Let A0 be the operator defined by A0 := a(x)1. By [6, Example 7.3] or [8,
Proposition 2.2 (iii)], we have that the minimal semigroup (S(t)) is generated by
(A0, Dmax(A0)\C0(RN )). Moreover the resolvent and the semigroup mapCb(RN )
into C0(RN ) and are compact.

Set v(t, x) = S(t) f (x) and u(t, x) = T (t) f (x) for t > 0, x 2 RN and
0  f 2 Cb(RN ). Then the function w(t, x) = v(t, x) � u(t, x) solves

(
wt (t, x) = A0w(t, x) + V (x)u(t, x) for t > 0
w(0, x) = 0 for x 2 RN .

So, applying [3, Theorem 4.1.3], we have w � 0 and hence T (t)  S(t). Thus,
T (t)1 2 C0(RN ), since S(t)1 2 C0(RN ) for any t > 0 (see [8, Proposition 2.2
(iii)]). Thus, T (t) is compact and C0(RN ) is invariant under T (t) (cf. [3, Theorem
5.1.11]). Then we have proved the following proposition:

Proposition 2.3. The semigroup (T (t)) is generated by (A, Dmax(A) \ C0(RN )),
maps Cb(RN ) into C0(RN ) and is compact.
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3. Solvability of the elliptic problem in L p(RN )

In this section we study the existence and uniqueness of solutions of the elliptic
problem �u � Apu = f for a given f 2 L p(RN ), where 1 < p < 1 and � � 0.
Let us consider first the case � = 0.

We note that the equation (1+|x |↵)1u�Vu = f is equivalent to the equation

1u �

V
1+ |x |↵

u =

f
1+ |x |↵

=: f̃ .

Therefore we focus our attention to the L p-realization Ã p of the Schrödinger oper-
ator

Ã = 1�

V
1+ |x |↵

= 1� Ṽ .

Let us denote by G the Green function (or the fundamental solution) for Ã, i.e.,

u(x) =

Z
RN

G(x, y) f̃ (y)dy. (3.1)

Thus, u(x) =

R
RN G(x, y) f (y)

1+|y|↵ dy solves Au = f for every f 2 L p(RN ). So we
have to study the operator

u(x) = L f (x) :=

Z
RN

G(x, y)
f (y)

1+ |y|↵
dy. (3.2)

To this purpose, we use the bounds of G(x, y) obtained in [13] when the potential
of Ã p belongs to the reverse Hölder class Bq for some q � N/2 .

We recall that a nonnegative locally Lq -integrable function V on RN is said
to be in Bq , for 1 < q < 1, if there exists C > 0 such that the reverse Hölder
inequality ✓

1
|B|

Z
B
V q(x)dx

◆1/q
 C

✓
1

|B|

Z
B
V (x)dx

◆

holds for every ball B in RN . A nonnegative function V 2 L1

loc(RN ) is in B1 if

kVkL1(B)  C
✓
1

|B|

Z
B
V (x)dx

◆

for any ball B in RN .
One can verify that

Ṽ 2

8>>><
>>>:

B1 if � � ↵ � 0
Bq if � � ↵ > �

N
q

B N
2

if � � ↵ > �2
BN if � � ↵ > �1

(3.3)
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for some q > 1. So, it follows from [13, Theorem 2.7] that, if � � ↵ > �2, then
for any k > 0 there is some constant Ck > 0 such that, for any x, y 2 RN ,

|G(x, y)| 

Ck
(1+ m(x)|x � y|)k

·

1
|x � y|N�2 , (3.4)

where the function m is defined by

1
m(x)

:= sup
r>0

⇢
r :

1
r N�2

Z
B(x,r)

Ṽ (y)dy  1
�

, for x 2 RN . (3.5)

Due to the importance of the auxiliary functionm, we establish for it a lower bound:

Lemma 3.1. Let ↵ � 2 < � < ↵. There exists C = C(↵,�, N ) such that

m(x) � C (1+ |x |)
��↵
2 . (3.6)

Proof. Fix x 2 RN , and set fx (r) =
1

r N�2

R
B(x,r) Ṽ (y)dy, r > 0. Since Ṽ 2 BN/2

implies V 2 Bq for some q > N
2 , by [13, Lemma 1.2], we have

lim
r!0

fx (r) = 0 and lim
r!1

fx (r) = 1.

Thus, 0 < m(x) < 1.
In order to estimate 1

m(x) we need to find r0 = r0(x) such that r 2 [r0,1[

implies fx (r) � 1. In this case we will have 1
m(x)  r0.

Since Ṽ 2 BN/2, there exists a constant C1 depending only ↵,�, N such that
✓
1

|B|

Z
B
Ṽ N/2(y)dy

◆2/N
 C1

✓
1

|B|

Z
B
Ṽ (y) dy

◆

for any ball B in RN . Then we have

fx (r) = N�1�Nr2
1

|B(x, r)|

Z
B(x,r)

Ṽ (y)dy

�

N�1�Nr2

C1

✓
1

|B(x, r)|

Z
B(x,r)

Ṽ (y)N/2dy
◆2/N

=

(N�1�N )1�2/N

C1

✓Z
B(x,r)

Ṽ (y)N/2dy
◆2/N

,

where �N is the (N � 1)-dimensional measure of @B(0, 1). Hence, if
Z
B(x,r)

Ṽ (y)N/2dy � C2 � 0 , (3.7)
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then fx (r) � 1, where C2 = C2(↵,�, N ) =

CN/2
1

(N�1�N )N/2�1 . Note that Ṽ � Ṽ ⇤ in
RN

\ B(0, 1) with Ṽ ⇤(x) =
1
2 |x |

��↵ . Hence,
Z
B(x,r)

Ṽ (y)N/2dy �

Z
B(x,r)\B(0,1)

Ṽ (y)N/2dy �

Z
B(x,r)\B(0,1)

Ṽ ⇤(y)N/2dy

=

Z
B(x,r)

Ṽ ⇤(y)N/2dy �

Z
B(x,r)\B(0,1)

Ṽ ⇤(y)N/2dy

�

Z
B(x,r)

Ṽ ⇤(y)N/2dy �

Z
B(0,1)

Ṽ ⇤(y)N/2dy

=

Z
B(x,r)

Ṽ ⇤(y)N/2dy �

21�N/2�N
N (2� ↵ + �)

� N�1�Nr N inf
B(x,r)

(Ṽ ⇤)N/2
� C3(↵,�, N ) (3.8)

= N�1�N
2�N/2r N

(|x | + r)
↵��
2 N

� C3(↵,�, N ). (3.9)

Let ⌘ =
↵��
2 < 1, let � > 0 be a parameter to be chosen later, and set

r0 = �(1+ |x |)⌘ .

By (3.8) condition (3.7) becomes

Z
B(x,r0)

Ṽ (y)N/2dy � C2 � N�1�N
2�N/2r N0

(|x | + r0)
↵��
2 N

� C2 � C3

= N�12�N/2�N
�N (1+ |x |)⌘N

(|x | + �(1+ |x |)⌘)
↵��
2 N

� C4

� N�12�N/2�N
�N (1+ |x |)⌘N

(1+ |x | + �(1+ |x |)⌘)
↵��
2 N

� C4

� N�12�N/2�N
�N (1+ |x |)⌘N

((� + 1)(1+ |x |))
↵��
2 N

� C4

= N�12�N/2�N

 
�

(1+ �)
↵��
2

!N

� C4 .

Since ↵��
2 < 1 we can choose � > 0 such that N�12�N/2�N

✓
�

(1+�)
↵��
2

◆N
�C4� 0.

So, (3.7) is satisfied for r = r0 and hence it is satisfied for any r > r0. Thus,
fx (r) � 1 for r > r0, and, hence, 1

m(x)  r0 = �(1+ |x |)⌘.
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The same lower bound holds in the case � � ↵ as the following lemma shows:

Lemma 3.2. Let � � ↵. There exists C = C(↵,�, N ) such that

m(x) � C (1+ |x |)
��↵
2 . (3.10)

Proof. From [13, Lemma 1.4 (c)], there exist C1 > 0 and 0 < ⌘0 < 1 such that, for
x, y 2 RN ,

m(x) �

C1m(y)
(1+ |x � y|m(y))⌘0

.

In particular,

m(x) �

C1m(0)
(1+ |x |m(0))⌘0

,

where 1
m(0) = supr>0 {r : f0(r)  1} with

f0(r) =

1
r N�2

Z
B(0,r)

|z|�

1+ |z|↵
dz =

�N
r N�2

Z r

0

⇢�+N�1

1+ ⇢↵
d⇢ .

We have �N
(�+N )(1+r↵)r

�+2
 f0(r) 

�N
�+N r

�+2. Since � > 0 and � � ↵ + 2 > 0
it follows that limr!0 f0(r) = 0 and limr!1 f0(r) = 1. Consequently,

0 < sup
r>0

{r : f0(r)  1} < 1

and, hence, m(0) = C2 for some constant C2 > 0. Then

m(x) �

C1C2
(1+ C2|x |)⌘0

�

C3
(1+ |x |)⌘0

(3.11)

for some constant C3 > 0.
On the other hand, since � � ↵, we obtain by (3.3) that Ṽ 2 B1. Then,

by [13, Remark 2.9], we have

m(x) � C5Ṽ 1/2(x) = C5|x |
�
2 (1+ |x |)�

↵
2 . (3.12)

The thesis follows taking into account (3.11) and (3.12).

Applying the estimate (3.4) and the previous lemma we obtain the following
upper bounds for the Green function G:

Lemma 3.3. Let G(x, y) denote the Green function of the Schrödinger operator
1�

|x |�
1+|x |↵ and assume that � > ↵ � 2. Then,

G(x, y)  Ck
1

1+ |x � y|k (1+ |y|)
��↵
2 k

1
|x � y|N�2 , for x, y 2 RN , (3.13)

for any k > 0 and some constant Ck > 0 depending on k.
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Using the above lemma we have the following estimate:

Lemma 3.4. Assume that ↵ > 2, N > 2 and � > ↵ � 2. Then there exists a
positive constant C such that for every 0  �  � and f 2 L p(RN )

k|x |� L f kp  Ck f kp, (3.14)

where L is defined in (3.2).

Proof. Let 0(x, y) =
G(x,y)
1+|y|↵ , f 2 L p(RN ) and

u(x) =

Z
RN
0(x, y) f (y)dy.

We have to show that
k|x |� ukp  Ck f kp.

Let us consider the regions E1 := {|x � y|  (1 + |y|)} and E2 := {|x � y| >
(1+ |y|)} and write

u(x) =

Z
E1
0(x, y) f (y)dy +

Z
E2
0(x, y) f (y)dy =: u1(x) + u2(x) .

In E1 we have
1+ |x |
1+ |y|



1+ |x � y| + |y|
1+ |y|

 2.

So, by Lemma 3.2

��
|x |� u1(x)

��
 |x |�

Z
E1
0(x, y)| f (y)|dy 

1+ |x |�

1+ |x |↵

Z
E1

1+ |x |↵

1+ |y|↵
G(x, y)| f (y)|dy

 C(1+ |x |)��↵

Z
RN

G(x, y)| f (y)|dy  Cm2(x)ũ(x),

where ũ(x) =

R
RN G(x, y)| f (y)|dy. By (3.3) we have Ṽ 2 BN

2
. So, applying [13,

Corollary 2.8], we obtain km2ũkp  Ck f kp and then k|x |� u1kp  Ck f kp.
In the region E2, we have, by Hölder’s inequality,

��
|x |� u2(x)

��
 |x |�

Z
E2
0(x, y)| f (y)|dy

=

Z
E2

�
|x |� 0(x, y)

� 1
p0
�
|x |� 0(x, y)

� 1
p
| f (y)|dy



✓Z
E2

|x |� 0(x, y)dy
◆ 1

p0
✓Z

E2
|x |� 0(x, y)| f (y)|pdy

◆ 1
p

.

(3.15)
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We propose to estimate first
R
E2 |x |� 0(x, y)dy. In E2 we have 1+ |x |  1+ |y| +

|x � y|  2|x � y|, then from (3.13) it follows that

|x |� 0(x, y)  |x |�G(x, y)

 C
1+ |x |�

|x � y|k (1+ |y|)k
��↵
2

1
|x � y|N�2

 C
1

|x � y|k��+N�2
1

(1+ |y|)k
��↵
2

.

For every k > � � N + 2, taking into account that 1
|x�y| < 1

1+|y| , we get

|x |� 0(x, y) 

1

(1+ |y|)k
��↵+2
2 +N�2��

.

Since � � ↵ + 2 > 0 we can choose k such that k2 (� � ↵ + 2) + N � 2� � > N ,
thenZ
E2

|x |� 0(x, y)dy

Z
E2

|x |�G(x, y)dyC
Z

RN

1

(1+ |y|)
k
2 (2+��↵)+N�2��

dy < C .

Moreover by the symmetry of G we have

|x |� 0(x, y)  |x |�G(x, y)

 C
1+ |x |�

|x � y|k (1+ |x |)k
��↵
2

1
|x � y|N�2

 C
1

|x � y|k��+N�2
1

(1+ |x |)k
��↵
2

.

Taking into account that 1
|x�y|  2 1

1+|x | , arguing as above we obtainZ
E2

|x |� 0(x, y)dx  C. (3.16)

Hence (3.15) implies
��
|x |� u2(x)

��p
 C

Z
E2

|x |� 0(x, y)| f (y)|pdy. (3.17)

Thus, by (3.17) and (3.16), we have

k|x |� u2k
p
p  C

Z
RN

Z
RN

|x |� 0(x, y)�{|x�y|>1+|y|}(x, y)| f (y)|pdydx

= C
Z

RN
| f (y)|p

✓Z
E2

|x |� 0(x, y)dx
◆
dy  Ck f kpp .
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We are now ready to show the invertibility of Ap and Dp,max(A) ⇢ D(V ):

Proposition 3.5. Assume that N > 2, ↵ > 2 and � > ↵ � 2. Then the operator
Ap is closed and invertible. Moreover there exists C > 0 such that, for every
0  �  �, we have

k | · |
� ukp  CkApukp, 8u 2 Dp,max(A) . (3.18)

Proof. Let us first prove the injectivity of Ap. Let u 2 Dp,max(A) such that Apu =

0, in particular Ã pu = 0. It follows that u 2 Dp,max( Ã) = D(1) \ D
⇣

|x |�
1+|x |↵

⌘
,

(see [11]). Then multiplying Apu by u|u|p�2 and integrating over RN we obtain,
by [7],

0 =

Z
RN

u|u|p�21u dx �

Z
RN

|x |�

1+ |x |↵
|u|pdx

= �(p � 1)
Z

RN
|u|p�2|ru|2dx �

Z
RN

|x |�

1+ |x |↵
|u|pdx,

from which we have u ⌘ 0. On the other hand, we recall that the function given by
(3.2) solves Au = f for every f 2 L p(RN ). Applying Lemma 3.4 with � = 0,
we deduce that u 2 L p(RN ) and so by elliptic regularity we have u 2 Dp,max(A).
This, together with the injectivity of Ap gives the invertibility of Ap and A�1

p 2

L(L p(RN )). This implies in particular that Ap is closed. Finally, the estimate
(3.18) follows from (3.14).

The previous theorem gives in particular the Ap-boundedness of the potential
V and the following regularity result:

Corollary 3.6. Assume that N > 2, ↵ > 2 and � > ↵ � 2. Then:

(i) there exists C > 0 such that for every u 2 Dp,max(A)

k(1+ V )ukp  CkApukp;

(ii)
Dp,max(A) =

n
u 2 W 2,p

⇣
RN

⌘
| Au 2 L p

⇣
RN

⌘o
.

Proof. We have only to prove the inclusion Dp,max(A) ⇢ {u 2 W 2,p(RN ) | Au 2

L p(RN )}. Let u 2 Dp,max(A). Then, by (i), Vu 2 L p(RN ) and hence

1u =

Au + Vu
1+ |x |↵

2 L p
⇣
RN

⌘
.

So, the thesis follows from the Calderon-Zygmund inequality.
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We can now state the main result of this section:

Theorem 3.7. Assume that N > 2, � > ↵�2 and ↵ > 2. Then, [0,+1) ⇢ ⇢(Ap)
and (� � Ap)�1 is a positive operator on L p(RN ) for any � � 0. Moreover, if
f 2 L p(RN ) \ C0(RN ), then (�� Ap)�1 f = (�� A)�1 f .

Proof. Let us first prove that if 0  � 2 ⇢(Ap), then (� � Ap)�1 is a positive
operator on L p(RN ). To this purpose, take 0  f 2 L p(RN ) and set u = (� �

Ap)�1 f . Then, by Corollary 3.6, u 2 D( Ã p) and

�

⇣
Ã p � �q

⌘
u = q f =: f̃ ,

where q(x) =
1

1+|x |↵ . Since Ã p generates an exponentially stable and positive
C0-semigroup (T̃p(t))t�0 on L p(RN ) (see [4, Theorem 2.5]), it follows that the
semigroup (e�t�q T̃p(t))t�0 generated by Ã p � �q is positive and exponentially
stable. Hence,

u =

⇣
�q � Ã p

⌘
�1

f̃ � 0.

We show that E = [0,+1)\⇢(Ap) is a non-empty open and closed set in [0,+1).
By Proposition 3.5 we have 0 2 ⇢(Ap) and hence E 6= ;. On the other hand, using
the above positivity property and the resolvent equation we have (� � Ap)�1 

(�Ap)�1 = L for any � 2 E and therefore
���(�� Ap)�1

���  kLk . (3.19)

It follows that the operator norm of (��Ap)�1 is bounded in E and consequently E
is closed. Finally, since ⇢(Ap) is an open set, it follows that E is open in [0,+1).
Thus, E = [0,+1).

Now in order to show the last statement we may assume f 2 C1

c , the thesis
will follow by density. Setting u := (� � Ap)�1 f , we obtain, by local elliptic
regularity (cf. [2, Theorem 9.19]), that u 2 C2+�loc (RN ) for some 0 < � < 1. On
the other hand, u 2 W 2,p(RN ), by Corollary 3.6. If p �

N
2 , then by the Sobolev’s

inequality, u 2 Lq(RN ) for all q 2 [p,+1). In particular, u 2 Lq(RN ) for some
q > N

2 and hence Au = � f + �u 2 Lq(RN ). Moreover, since u 2 C2+�loc (RN ),
it follows that u 2 W 2,q

loc (RN ). So, u 2 Dq,max(A) ⇢ W 2,q(RN ) ⇢ Cb(RN ), by
Corollary 3.6 and Sobolev’s embedding theorem, since q > N

2 .
Let us now suppose that p < N

2 . Take the sequence (rn), defined by rn =

1/p � 2n/N for any n 2 N, and set qn = 1/rn for any n 2 N. Let n0 be the
smallest integer such that rn0  2/N noting that rn0 > 0. Then, u 2 Dp,max(A) ⇢

Lq1(RN )\L p(RN ), by Sobolev’s embedding theorem. As above we obtain that u 2

Dq1,max(A) ⇢ Lq2(RN ). Iterating this argument, we deduce that u 2 Dqn0 ,max(A).
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So we can conclude that u 2 Cb(RN ) arguing as in the previous case. Thus,
Au = � f + �u 2 Cb(RN ). Again, since u 2 C2+�loc (RN ), it follows that u 2

W 2,q
loc (RN ) for any q 2 (1,+1). Hence, u 2 Dmax(A). So, by the uniqueness of

the solution of the elliptic problem, we have (� � Ap)�1 f = (� � A)�1 f for any
f 2 C1

c (RN ).

4. Generation of semigroups

In this section we show that Ap generates an analytic semigroup on L p(RN ), for
1 < p < 1, provided that N > 2, ↵ > 2 and � > ↵ � 2.

We start by giving the characterization of the domain of A. More precisely
we prove that the maximal domain Dp,max(A) coincides with the weighted Sobolev
space Dp(A) defined by

Dp(A) :=
n
u2W 2,p

⇣
RN

⌘
: Vu,

⇣
1+ |x |↵�1

⌘
ru,

�
1+ |x |↵

�
D2u 2 L p

⇣
RN

⌘o

endowed with its canonical norm.
To this purpose we need the following covering result, see [1, Proposition 6.1],

to prove a weighted gradient estimate:

Proposition 4.1. For every 0  k < 1/2 there exists a natural number ⇣ = ⇣(N , k)
with the following property: givenF = {B(x, ⇢(x))}x2RN , where ⇢ : RN

! R+ is
a Lipschitz continuous function with Lipschitz constant k, there exists a countable
subcovering {B(xn, ⇢(xn))}n2N of RN such that at most ⇣ among the double balls
{B(xn, 2⇢(xn))}n2N overlap.

We need the following weighted gradient and second derivative estimate:

Lemma 4.2. Assume that N > 2, ↵ > 2 and � > ↵ � 2. Then there exists a
constant C > 0 such that for every u 2 Dp(A) we have

���⇣1+ |x |↵�1
⌘

ru
���
p

 CkApukp , (4.1)����1+ |x |↵
�
D2u

���
p

 CkApukp . (4.2)

Proof. Let u 2 Dp(A). We fix x0 2 Rn and choose # 2 C1

c (RN ) such that
0  #  1, #(x) = 1 for x 2 B(1) and #(x) = 0 for x 2 RN

\ B(2). Moreover,
we set #⇢(x) = #

⇣
x�x0
⇢

⌘
, where ⇢ =

1
4 (1 + |x0|). We apply the well-known

inequality

krvkL p(B(R))  Ckvk
1/2
L p(B(R))k1vk

1/2
L p(B(R)),

where v 2 W 2,p(B(R)) \ W 1,p
0 (B(R)) and R > 0,

(4.3)
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to the function #⇢u and obtain, for every " > 0,

k(1+ |x0|)↵�1
rukL p(B(x0,⇢))  k(1+ |x0|)↵�1

r(#⇢u)kL p(B(x0,2⇢))

 C
��(1+ |x0|)↵1(#⇢u)

�� 12
L p(B(x0,2⇢))

���(1+ |x0|)↵�2#⇢u
��� 12
L p(B(x0,2⇢))

 C
✓
"
��(1+ |x0|)↵1(#⇢u)

��
L p(B(x0,2⇢))

+

1
4"

���(1+ |x0|)↵�2#⇢u
���
L p(B(x0,2⇢))

◆

 C
✓
"
��(1+ |x0|)↵1u

��
L p(B(x0,2⇢))

+

2M
⇢
"
��(1+ |x0|)↵ru

��
L p(B(x0,2⇢))

+

"M
⇢2

��(1+ |x0|)↵u
��
L p(B(x0,2⇢))

+

1
4"

���(1+ |x0|)↵�2u
���
L p(B(x0,2⇢))

◆

 C
✓
"
��(1+ |x0|)↵1u

��
L p(B(x0,2⇢))

+ 8M"
���(1+ |x0|)↵�1

ru
���
L p(B(x0,2⇢))

+

✓
16"M +

1
4"

◆���(1+ |x0|)↵�2u
���
L p(B(x0,2⇢))

◆

 C(M)

✓
"
��(1+ |x0|)↵1u

��
L p(B(x0,2⇢))

+ "
���(1+ |x0|)↵�1

ru
���
L p(B(x0,2⇢))

+

1
"

���(1+ |x0|)↵�2u
���
L p(B(x0,2⇢))

◆
,

where M = kr#k1 + k1#k1. Since 2⇢ =
1
2 (1+ |x0|) we get

1
2
(1+ |x0|)  1+ |x | 

3
2
(1+ |x0|), for x 2 B(x0, 2⇢).

Thus,
���(1+ |x |)↵�1

ru
���
L p(B(x0,⇢))



✓
3
2

◆↵�1 ���(1+ |x0|)↵�1
ru

���
L p(B(x0,⇢))

 C
✓
"
��(1+ |x0|)↵1u

��
L p(B(x0,2⇢))

+ "
���(1+ |x0|)↵�1

ru
���
L p(B(x0,2⇢))

+

1
"

���(1+ |x0|)↵�2u
���
L p(B(x0,2⇢))

◆

C
✓
2↵"

��(1+|x |)↵1u
��
L p(B(x0,2⇢))

+ 2↵�1"
���(1+ |x |)↵�1

ru
���
L p(B(x0,2⇢))

+

2↵�2

"

���(1+ |x |)↵�2u
���
L p(B(x0,2⇢))

◆
.

(4.4)

Let {B(xn, ⇢(xn))} be a countable covering of RN as in Proposition 4.1 such that at
most ⇣ among the double balls {B(xn, 2⇢(xn))} overlap.
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We write (4.4) with x0 replaced by xn and sum over n. Taking into account the
above covering result, we get

���(1+ |x |)↵�1
ru

���
p

 C
✓
"
��(1+ |x |)↵1u

��
p + "

���(1+ |x |)↵�1
ru

���
p

+

1
"

���(1+ |x |)↵�2u
���
p

◆
.

Choosing " such that "C < 1/2 we have

1
2

���(1+ |x |)↵�1
ru

���
p



1
2
��(1+ |x |)↵1u

��
p +

C
"

���(1+ |x |)↵�2u
���
p

.

Furthermore k|x |↵�2ukp  k(1 + |x |�)ukp  CkApukp for any u 2 Dp(A) ⇢

Dp,max(A) and some C > 0 by Corollary 3.6. Hence,
���(1+ |x |)↵�1

ru
���
p

 C
�
kApukp + kukp

�
.

As regards the second order derivatives we consider the classical Calderón-
Zygmund inequality on B(1)���D2v���

L p(B(1))
 Ck1vkL p(B(1)), v 2 W 2,p(B(1)) \ W 1,p

0 (B(1)) ,

by rescaling and translating we get���D2v���
L p(B(x0,R))

 Ck1vkL p(B(x0,R)) (4.5)

for every x0 2 RN , R > 0 and v 2 W 2,p(B(x0, R))\W 1,p
0 (B(x0, R)). We observe

that the constant C does not depend on R and x0.
Then we fix x0 2 Rn and choose ⇢ and #⇢ 2 C1

c (RN ) as above. Applying
(4.5) to the function #⇢u in B(x0, 2⇢), we obtain

���(1+ |x0|)↵D2u
���
L p(B(x0,⇢))



���(1+ |x0|)↵D2(#⇢u)
���
L p(B(x0,2⇢))

 C
��(1+ |x0|)↵1(#⇢u)

��
L p(B(x0,2⇢))

.

Reasoning as above we obtain���(1+ |x |)↵D2u
���
p

 C
✓��(1+ |x |)↵1u

��
p +

���(1+ |x |)↵�1
ru

���
p

+

���(1+ |x |)↵�2u
���
p

◆
.

The lemma follows by Corollary 3.6 and by the gradient estimate (4.1).
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The following lemma shows that C1

c (RN ) is a core for (A, Dp(A)).

Lemma 4.3. Assume N > 2, ↵ > 2 and � > ↵ � 2. The space C1

c (RN ) is dense
in Dp(A) with respect to the graph norm.

Proof. Let us first observe that C1

c (RN ) is dense in W 2,p
c (RN ) with respect to the

operator norm. Let u 2 W 2,p
c (RN ) and consider un = ⇢n ⇤u, where ⇢n are standard

mollifiers. We have un 2 C1

c (RN ), un ! u in L p(RN ) and D2un ! D2u in
L p(RN ). Moreover, supp un ⇢ supp u+ B(1) := K for any n 2 N. Then

��Apu � Aun
��
p =

��Apu � Aun
��
L p(K )



���1+ |x |↵
�
1(u � un)

��
L p(K )

+

��
|x |�(u � un)

��
L p(K )



���1+ |x |↵
���

L1(K )
k1(u � un)kL p(K )

+

��
|x |�

��
L1(K )

k(u � un)kL p(K ) ! 0 as n ! 1 .

Now, let u in Dp,max(A) and let ⌘ be a smooth function such that ⌘ = 1 in B(1),
⌘ = 0 in RN

\ B(2), 0  ⌘  1 and set ⌘n(x) = ⌘
� x
n
�
. Then consider un =

⌘nu 2 W 2,p
c (RN ). First we have un ! u in L p(RN ) by dominated convergence.

As regard Apun we have

Apun(x)=
�
1+ |x |↵

�
1(⌘nu)(x) � |x |�⌘n(x)u(x)

=⌘n(x)Apu(x)+2
�
1+ |x |↵

�
r⌘n(x)ru(x) +

�
1+ |x |↵

�
1⌘n(x)u(x)

=⌘n(x)Apu(x)+
2
n
�
1+|x |↵

�
r⌘

⇣ x
n

⌘
ru(x)+

1
n2

�
1+|x |↵

�
1⌘

⇣ x
n

⌘
u(x)

and
⌘n Apu ! Apu in L p

⇣
RN

⌘
by dominated convergence. As regards the last terms we note that r⌘(x/n) and
1⌘(x/n) can be different from zero only for n  |x |  2n, then we have

1
n
�
1+ |x |↵

� ���r⌘ ⇣ xn
⌘��� |ru|  C

�
1+ |x |↵�1�

|ru|�{n|x |2n}

and
1
n2

�
1+ |x |↵

� ���1⌘ ⇣ xn
⌘��� |u|  C

�
1+ |x |↵�2�

|u|�{n|x |2n} .

The right-hand sides tend to 0 as n ! 1, since by Proposition 3.5 and Lemma 4.2
we have k(1+ |x |↵�2)ukp  CkApukp and k(1+ |x |↵�1)rukp  CkApukp. So,
applying again the dominated convergence theorem, we obtain Apun ! Apu in
L p(RN ). This ends the proof of the lemma.

We can give now the complete characterization of Dp,max(A).
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Theorem 4.4. Assume that N > 2, ↵ > 2 and � > ↵ � 2. Then maximal domain
Dp,max(A) coincides with Dp(A).

Proof. We have to prove only the inclusion Dp,max(A) ⇢ Dp(A).
Let ũ 2 Dp,max(A) and set f = Aũ. The operator A in B(⇢), for ⇢ > 0, is an

elliptic operator with bounded coefficients, then the problem

⇢
Au = f in B(⇢)
u = 0 on @B(⇢) ,

(4.6)

admits a unique solution u⇢ in W 2,p(B(⇢)) \ W 1,p
0 (B(⇢)) (cf. [2, Theorem 9.15]).

Now u⇢ 2 Dp(A) and by Lemma 4.2 and Corollary 3.6 (i)

���⇣1+ |x |↵�2
⌘
u⇢

���
L p(B(⇢))

+

���⇣1+ |x |↵�1
⌘

ru⇢
���
L p(B(⇢))

+

����1+ |x |↵
�
D2u⇢

���
L p(B(⇢))

+ kVu⇢kL p(B(⇢))  CkAu⇢kp

with C independent of ⇢. Using a standard weak compactness argument we can
construct a sequence u⇢n which converges to a function u in W

2,p
loc such that Au =

f . Since the estimates above are independent of ⇢, also u 2 Dp(A). Then we have
Aũ = Au and since Dp(A) ⇢ Dp,max(A) and A is invertible on Dp,max(A) by
Proposition 3.5, we have ũ = u.

Let us give now the main result of this section:

Theorem 4.5. Assume N > 2, ↵ > 2 and � > ↵ � 2. Then the operator Ap with
domain Dp,max(A) generates an analytic semigroup in L p(RN ).

Proof. Let f 2 L p, and ⇢ > 0. Consider the operator fAp := Ap � ! where !
is a constant which will be chosen later. It is known that the elliptic problem in
L p(B(⇢)) ⇢

�u �
fApu = f in B(⇢)

u = 0 on @B(⇢) ,
(4.7)

admits a unique solution u⇢ in W 2,p(B(⇢)) \W 1,p
0 (B(⇢)) for � > 0, (cf. [2, Theo-

rem 9.15]).
Let us prove that that e±i✓fAp is dissipative in B(⇢) for 0  ✓  ✓↵ with

suitable ✓↵ 2 (0, ⇡2 ]. To this purpose observe that

fApu⇢ = div
�
(1+ |x |↵)ru⇢

�
� ↵|x |↵�1 x

|x |
ru⇢ � |x |�u⇢ � !u⇢ .
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Set u? = u⇢ |u⇢ |p�2 and recall that a(x) = 1+ |x |↵ . Multiplying fApu⇢ by u? and
integrating over B(⇢), we obtainZ
B(⇢)

fApu⇢ u?dx=�

Z
B(⇢)

a(x)
��u⇢��p�4 ��Re(u⇢ru⇢)��2 dx

�

Z
B(⇢)

a(x)
��u⇢��p�4 ��Im(u⇢ru⇢)

��2 dx
�(p � 2)

Z
B(⇢)

a(x)
��u⇢��p�4u⇢ru⇢Re(u⇢ru⇢)dx

�↵

Z
B(⇢)

u⇢
��u⇢��p�2|x |↵�1 x

|x |
ru⇢ dx�

Z
B(⇢)

�
|x |�+!

�
|u⇢ |pdx .

We note here that the integration by part in the singular case 1 < p < 2 is allowed
thanks to [7]. By taking the real and imaginary part of the left- and the right-hand
side, we have

Re
✓Z

B(⇢)

fApu⇢ u?dx
◆

=�(p�1)
Z
B(⇢)

a(x)
��u⇢��p�4��Re�u⇢ru⇢���2dx�

Z
B(⇢)

a(x)
��u⇢��p�4��Im�

u⇢ru⇢
���2dx

� ↵

Z
B(⇢)

��u⇢��p�2|x |↵�1 x
|x |
Re

�
u⇢ru⇢

�
dx �

Z
B(⇢)

�
|x |� + !

� ��u⇢��pdx
=�(p�1)

Z
B(⇢)

a(x)
��u⇢��p�4��Re�u⇢ru⇢���2dx�

Z
B(⇢)

a(x)
��u⇢��p�4��Im�

u⇢ru⇢
���2dx

�

↵

p

Z
B(⇢)

|x |↵�1 x
|x |

r

���u⇢��p� dx �

Z
B(⇢)

�
|x |� + !

�
|u⇢ |pdx

=�(p�1)
Z
B(⇢)

a(x)
��u⇢��p�4 ��Re�u⇢ru⇢���2 dx�

Z
B(⇢)

a(x)
��u⇢��p�4��Im�

u⇢ru⇢
���2dx

+

Z
B(⇢)

✓
↵(N � 2+ ↵)

p
|x |↵�2

� |x |� � !

◆ ��u⇢��pdx
and

Im
✓Z

B(⇢)

fApu⇢ u?dx
◆

= �(p � 2)
Z
B(⇢)

a(x)
��u⇢��p�4Im�

u⇢ru⇢
�
Re

�
u⇢ru⇢

�
dx

� ↵

Z
B(⇢)

��u⇢��p�2|x |↵�1 x
|x |
Im

�
u⇢ru⇢

�
dx .

We can choose c̃ > 0 and ! > 0 (depending on c̃) such that

↵(N � 2+ ↵)

p
|x |↵�2

� |x |� � !  �c̃|x |↵�2.
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So, we obtain

� Re
✓Z

B(⇢)

fApu⇢ u?dx
◆

� (p � 1)
Z
B(⇢)

a(x)
��u⇢��p�4��Re�u⇢ru⇢���2dx

+

Z
B(⇢)

a(x)
��u⇢��p�4 ��Im�

u⇢ru⇢
���2 dx + c̃

Z
B(⇢)

��u⇢��p|x |↵�2dx

= (p � 1)B2 + C2 + c̃D2.

Moreover,����Im
✓Z

B(⇢)

fApu⇢ u?dx
◆����

 |p � 2|
✓Z

B(⇢)

��u⇢��p�4a(x) ��Re�u⇢ru⇢���2 dx
◆ 1
2

·

✓Z
B(⇢)

��u⇢��p�4a(x) ��Im�
u⇢ru⇢

���2 dx
◆ 1
2

+ ↵

✓Z
B(⇢)

��u⇢��p�4|x |↵ ��Im�
u⇢ru⇢

���2 dx
◆ 1
2
✓Z

B(⇢)

��u⇢��p|x |↵�2 dx
◆ 1
2

= |p � 2|BC + ↵CD,

where

B2 =

Z
B(⇢)

��u⇢��p�4a(x) ��Re�u⇢ru⇢���2 dx,
C2 =

Z
B(⇢)

��u⇢��p�4a(x) ��Im�
u⇢ru⇢

���2 dx,
D2 =

Z
B(⇢)

��u⇢��p|x |↵�2 dx .

Let us observe that, choosing �2 =
|p�2|2
4(p�1) +

↵2

4c̃ (which is independent of ⇢), we
obtain ����Im

✓Z
B(⇢)

fApu⇢ u?dx
◆����  �

⇢
�Re

✓Z
B(⇢)

fApu⇢ u?dx
◆�

.

If tan ✓↵ = �, then e±i✓fAp is dissipative in B(⇢) for 0  ✓  ✓↵ . From [12,
Theorem I.3.9] follows that the problem (4.7) has a unique solution u⇢ for every
� 2 6✓ , 0  ✓ < ✓↵ where

6✓ = {� 2 C \ {0} : |Arg �| < ⇡/2+ ✓}.

Moreover, there exists a constant C✓ which is independent of ⇢, such that

ku⇢kL p(B(⇢)) 

C✓
|�|

k f kL p , for � 2 6✓ . (4.8)
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Let us now fix � 2 6✓ , with 0 < ✓ < ✓↵ and a radius r > 0. We apply the interior
L p estimates (cf. [2, Theorem 9.11]) to the functions u⇢ with ⇢ > r + 1. So, by
(4.8), we have

ku⇢kW 2,p(B(r))  C1
�
k�u⇢ �

fApu⇢kL p(B(r+1)) + ku⇢kL p(B(r+1))
�

 C2k f kL p .

Using a weak compactness and a diagonal argument, we can construct a sequence
(⇢n) ! 1 such that the functions (u⇢n ) converge weakly in W

2,p
loc to a function u

which satisfies �u �
fApu = f and

kukp 

C✓
|�|

k f kp, for � 2 6✓ . (4.9)

Moreover, u 2 Dp,max(Ap). We have now only to show that � �
fAp is invertible

on Dp,max(Ap) for � 2 6✓ . Consider the set

E =

�
r > 0 : 6✓ \ C(r) ⇢ ⇢

�fAp� ,

where C(r) := {� 2 C : |�| < r}. Since, by Theorem 3.7, 0 is in the resolvent
set of fAp, then R = sup E > 0. On the other hand, the norm of the resolvent is
bounded by C✓/|�| in C(R) \6✓ , consequently it cannot explode on the boundary
of C(R), then R = 1 and this ends the proof of the theorem.

Remark 4.6. Since Ap generates an analytic semigroup Tp(·) on L p(RN ) and the
semigroups Tq(·), for q 2 (1,1) are consistent, see Theorem 3.7, one can deduce
(as in the proof of [4, Proposition 2.6]) using Corollary 3.6 that Tp(t)L p(RN ) ⇢

C1+⌫b (RN ) for any t > 0, ⌫ 2 (0, 1) and for any p 2 (1,1).

We end this section by studying the spectrum of Ap. We recall from Proposi-
tion 3.5 that ��

|x |�u
��
p  CkApukp, 8u 2 Dp,max(A).

So, arguing as in [4], we obtain the following results:

Proposition 4.7. Assume N > 2, ↵ > 2 and � > ↵ � 2. Then:

(i) The resolvent of Ap is compact in L p;
(ii) The spectrum of Ap consists of a sequence of negative real eigenvalues which

accumulates at �1. Moreover, � (Ap) is independent of p;
(iii) The semigroup Tp((·) is irreducible, the eigenspace corresponding to the largest

eigenvalue �0 of A is one-dimensional and is spanned by a strictly positive
function , which is radial, belongs to C1+⌫b (RN )\C2(RN ) for any ⌫ 2 (0, 1)
and tends to 0 when |x | ! 1.
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