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Schrodinger-type operators with unbounded diffusion
and potential terms

ANNA CANALE, ABDELAZIZ RHANDI AND CRISTIAN TACELLI

Abstract. We prove that the realization Ap in L? (RN ),forl < p < oo, of
the Schrodinger-type operator A = (1 + |x|¥)A — |x|# with domain D(A p) =
u e WEP@®RN) . Au e LP(RN)) generates a strongly continuous analytic
semigroup provided that N > 2, o > 2 and 8 > « — 2. Moreover this semigroup
is consistent, irreducible, immediately compact and ultracontractive.
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1. Introduction

In this paper we study the generation of analytic semigroups in L”-spaces of Schro-
dinger-type operators of the form

Au(x) =a(x)Au(x) — V(x)u(x), for x € RV, (1.1)

where a(x) = 1 + |x|* and V(x) = |x|? withe > 2 and B > a — 2. We also
investigate spectral properties of such semigroups. In the case where o € [0, 2] and
B > 0, generation results of analytic semigroups for suitable realizations A, of the
operator A in L? (RY) have been proved in [4].

For B = 0 and o > 2, the generation results depend upon N as it is proved
in [8]. More specifically, if N = 1,2 no realization of A in LP(RN) generates a
strongly continuous (resp. analytic) semigroup. The same happens if N > 3 and
p < N/(N — 2). On the other hand, if N > 3 and p > N/(N — 2), then the
maximal realization A, of the operator A in L? (RYN) generates a positive analytic
semigroup, which is also contractive if « > (p — 1)(N — 2).
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Generation results concerning the case where 8 = 0 and with drift terms of
the form |x|*~2x were obtained recently in [9]. The operator with a more general
diffusion term was also investigated in [10] and [14].

We also quote the recent paper [5]. Here the authors studied the generation of
Co and analytic semigroups in L?(RY), for 1 < p < 0o, of operators of the form
A = [x|“A + ¢|x|*"%x - V — b|x|*2. They prove for o # 2, in particular for
¢ =0and b = 1, that a suitable L?-realization of .4 generates a bounded analytic
semigroup in LP(RV) ifand only if N/p < (N —2)/2++/1 4+ (N — 2)2/4,see [5,
Theorem 1.2]. We note here that = o — 2 corresponds to a critical case. The
methods used in [5] are completely different from ours and lead to results which
are not comparable with our case (8 > o — 2).

Here we consider the case where o« > 2 and assume that N > 2. Let us denote
by A, the realization of A in L? (R™) endowed with its maximal domain

loc

D max(A) = {u eLP (RN) nwx? (RN> . AueLP (]RN)} .12
After proving a priori estimates, we deduce that D), max(A) coincides with
Dy(yi={uew?” (RY):vu, (14 x"=) [Val, (1 4 1x|) D%l e L7 (RV)}

So we show in the main result of this paper that, for any 1 < p < o0, the realization
Apof Ain LP (RN), with domain D p(A), generates a positive strongly continuous
and analytic semigroup (7,(t));>0 for any B > «a — 2. This semigroup is also
consistent, irreducible, immediately compact and ultracontractive.

The paper is structured as follows. In Section 2 we study the invariance of
Co(R™) under the semigroup generated by A in C;,(RY) and show its compactness.
In Section 3 we use reverse Holder classes and some results in [13] to study the
solvability of the elliptic problem in L?(R"). Finally, in Section 4 we prove the
generation results.

Notation. For any k € N U {oco} we denote by C, f (RN) the set of all functions
f : RY — R that are continuously differentiable in R up to k-th order and have
compact support (denoted supp(f)). The space C;(RY) is the set of all bounded
and continuous functions f : RN — R, and we denote by || fllco its sup-norm,
ie., || flloo = sup,ern | f(x)|. We use also the space CoRM) := {f € C,(RYN) :
limjx|— 00 f(x) = 0}. If f is smooth enough we set

N N
VIR =) IDifP, D f0P = ) 1Dyl
i=1

i, j=1

For any xo € RY and any r > 0 we denote by B(xo,7) C R the open ball,
centered at xo with radius r. We simply write B(r) when xo = 0. The function
x e denotes the characteristic function of the (measurable) set £, i.e., xg(x) = 1 if
x € E, xg(x) = 0 otherwise.
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For any p € [1, 00) we denote by L” (R") the Banach space of all measurable
and p-integrable functions in RY with respect to the Lebesgue measure endowed
with its usual norm || - || ,. Finally, by x - y we denote the Euclidean scalar product

of the vectors x, y € RN,

ACKNOWLEDGEMENTS. We are grateful to the referee for his many helpful re-
marks and suggestions.

2. Generation of semigroups in Co(R")

In this section we recall some properties of the elliptic and parabolic problems as-
sociated with A in C,(R"). We prove the existence of a Lyapunov function for A
in the case where ¢ > 2 and 8 > o — 2. This implies the uniqueness of the solu-
tion semigroup (7 (¢));>o to the associated parabolic problem. Using a domination
argument, we show that 7'(¢) is compact and 7' (t)Co(RY) C Co(RY).

First, we endow A with its maximal domain in Cp,(RV)

loc

Dinax (A) = {u €Cy (RN) n WP (RN>, forl<p<oo: AueCp (RN)}.

Then, we consider for any A > O and f € C (RV) the elliptic equation
Au— Au = f. (2.1)

It is well-known that equation (2.1) admits at least one solution in Dy (A) (see [3,
Theorem 2.1.1]). A solution is obtained as follows.

Take the unique solution to the Dirichlet problem associated with A — A into
the balls B(0, n) for n € N. Using Schauder interior estimates one can prove that
the sequence of solutions so obtained converges to a solution u of (2.1). It is also
known that a solution to (2.1) is in general not unique. The solution u, which we
obtained by approximation, is nonnegative whenever f > 0.

As regards the parabolic problem

{u,(t,x):Au(t,x) forx € RN and t > 0 02

u(0, x) = f(x) forx e RY |

where f € Cp (RN), it is well-known that one can find a semigroup (7'(¢));>0 of
bounded operator in Cp (R™) such that u(r, x) = T (¢) f(x) is a solution of (2.2) in
the following sense:

1+%,2+(7
loc

ueC([O,+oo)xRN)ﬂC ((O,—I—oo)x]RN)

and u solves (2.2) for any f € Cp(RM) and some o € (0, 1). Uniqueness of
solutions to (2.2) in general is not guaranteed. Moreover the semigroup (7' (¢));>0
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is not strongly continuous in C,(R") and does not preserve in general the space
Co(R"). We note here that the obtained solution « is the minimal solution among
all positive solutions of (2.2). For this reason the semigroup 7 (¢) will be called the
minimal semigroup. For more details we refer to [3, Chapter 2, Section 2].

Uniqueness is obtained if there exists a positive function ¢(x) € C*(RVN),
called Lyapunov function, such that lim|y|, o ¢(x) = +o00 and Ap — Ap < 0O for
some A > 0.

Proposition 2.1. Let N > 2, o > 2and B > o —2. Let ¢ = 1+ |x|Y where y > 2.
Then there exists a constant C > 0 such that

Ap < Co.
Proof. An easy computation gives
Ap =y (N +y =2+ |x|)x 2 = (L + x)x|” .
Then, since 8 > o — 2, there exists a C > 0 such that
y(N +y =D+ D)2 < A+ )P +CA+ 7). O

Then we can assert that problem (2.2) admits a unique solution in C ([0, c0)x RM)N
C12((0, 00) x RN) and problem (2.1) admits a unique solution in Dpax (A).

In order to investigate the compactness of the semigroup and the invariance
of Co(RY) we check the behaviour of 7'(r)1. We use the following result (see [3,
Theorem 5.1.11]):

Theorem 2.2. Let us fix t > 0. Then T (1)1 € Co(RN) if and only if T(¢) is
compact and Co(RN) is invariant under T (1).

Let Ag be the operator defined by Ag := a(x)A. By [6, Example 7.3] or [8,
Proposition 2.2 (iii)], we have that the minimal semigroup (S(¢)) is generated by
(A0, Dimax(A9)NCo(RY)). Moreover the resolvent and the semigroup map C,(RY)
into Co(R") and are compact.

Set v(t,x) = S@)f(x) and u(t,x) = T(@)f(x) fort > 0, x € RN and
0< fe Cp(RV). Then the function w(z, x) = v(z, x) — u(z, x) solves

w(t, x) = Agw(t, x) + V(x)u(t,x) fort >0
w(0,x) =0 for x € RV.

So, applying [3, Theorem 4.1.3], we have w > 0 and hence T'(t) < S(¢). Thus,
T(1)1 € Co(RN), since S(1)1 € Co(RY) for any r > 0 (see [8, Proposition 2.2
(ii1)]). Thus, T'(¢) is compact and Cy (R™) is invariant under T (¢) (cf. [3, Theorem
5.1.11]). Then we have proved the following proposition:

Proposition 2.3. The semigroup (T (1)) is generated by (A, Dypax(A) N Co(RM)),
maps Cyp(RN) into Co(RN) and is compact.
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3. Solvability of the elliptic problem in L?(R")

In this section we study the existence and uniqueness of solutions of the elliptic
problem Au — Apu = f fora given f € LP(RN), where 1 < p < ooand A > 0.
Let us consider first the case A = 0.

We note that the equation (1+ |x|*)Au — Vu = f is equivalent to the equation

\% f ~
- U= =:f.
14 |x|@ 1+ |x|®

Therefore we focus our attention to the LP-realization A p of the Schrodinger oper-

ator
~ \% ~
I+ |x|

Let us denote by G the Green function (or the fundamental solution) for Aie.,
u = [ G Foy. (3.0

Thus, u(x) = [y G(x, ) lfr%?a dy solves Au = f forevery f € LP(RV). So we

have to study the operator

£
T+ e

u(x) =Lf(x):= / G(x,y) (3.2)

To this purpose, we use the bounds of G(x, y) obtained in [13] when the potential
of A p belongs to the reverse Holder class B, for some g > N/2 .

We recall that a nonnegative locally L?-integrable function V on RV is said
to be in By, for 1 < g < o0, if there exists C > 0 such that the reverse Holder

inequality
( 1 / V 3(x)dx>1/ < C ( ! f V (x)dx)

holds for every ball B in RN.A nonnegative function V € L}, (RM) is in By if

1
||V||L00(B) <C (|B| / V(x)dx)
for any ball B in RV

One can verify that

By ifg—a>0
- B, ifg—a>-=%
q
Ve By ifg—a>-2 (3-3)

By ifg—a>—1
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for some ¢ > 1. So, it follows from [13, Theorem 2.7] that, if 8 — a > —2, then
for any k > 0 there is some constant C; > 0 such that, for any x, y € RV,
Cr 1

G(x, < . R
R Ty P P 5

(3.4)

where the function m is defined by

1 1 .
sup! : N_zf V(y)dy < 1}, forx e RY.  (3.5)
m(x) r>0 r B(x,r)

Due to the importance of the auxiliary function m, we establish for it a lower bound:

Lemma 3.1. Leta — 2 < B < «. There exists C = C(a, B, N) such that

m(x) > C 1+ x> (3.6)

Proof. Fix x € RV and set f,(r) = rN%z fB(x,r) V(y)dy, r > 0. Since V € Bn )2
implies V € B, for some g > %, by [13, Lemma 1.2], we have

lim fxy(r) =0 and lim f,(r) =00
r—0 r—00

Thus, 0 < m(x) < o0.
In order to estimate ( me we need to ﬁnd ro = ro(x) such that r € [rg, oo

implies f,(r) > 1. In this case we will have <ro.

m(x)
Since V € By 2, there exists a constant Cy depending only «, 8, N such that

( : / vN/2<y>dy>2/N < <i f V(y)dy)
IB] AT A

for any ball B in RY . Then we have

1 ~
i) =N"toyr? ——— V(y)dy
! 1B, )| J e
N~loyr? 1 . 2N
> ( V(y>N/2dy)
Ci |B(x, )| JBex,r)

N-! 1-2/N - 2/N
_ (N"ow) (/ V(y)N/zdy> ’
C B(x,r)

where oy is the (N — 1)-dimensional measure of d B(0, 1). Hence, if

f V¥ 2dy - C2 > 0. 3.7)
B(x,r)
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N2

W. Note that ‘7 > ‘7* in

then f:(r) = 1, where C» = Ca(@. B. N) = =

RN\ B(0, 1) with V*(x) = 3|x|#~%. Hence,

/ Vo)V Py = f 7o)V dy = f 7+ ()N 2dy
B(x,r) B(x,r)\B(0,1) B(x,r)\B(0,1)
= [ o | PV 2dy
B(x,r) B(x,r)NB(0,1)
> / 7N 2dy / 7 ()N 2y
B(x,r) B(0,1)
- 21—N/2
= / 7Ny - o
B(x.,r) NQ2—-a+p)
> N lonr™ inf (VN2 — C3(a, B, N) (3.8)
B(x,r)
2—N/2rN
=N 'loy———-— —Cs3(e, B, N). 3.9)

(x| + )TN

Letn = # < 1,let 8 > 0 be a parameter to be chosen later, and set

ro=38(1+|x]7.
By (3.8) condition (3.7) becomes

i 2N /2N
/ VY 2dy —Cy = N loy———0 ¢y — ¢
B(x,rp) (x| + rO)TN

sV (1 v
— N“12-N2g, (I +1xD) _c

a—p
(x| + 81 +[xpm =N
SN+ |x Y
a—p -
(14 x| +8(0 + xhm = N
SN + x|
a—p -
B+ DA+ x)z N
N
I}

(148"

> N7127N/20’N Cy

> N2 N2y, Cs

N
Since # < 1 we can choose § > 0O such that N_12_N/20N< ‘Sa_ﬁ ) —Cy>0.
(1+8) 2
So, (3.7) is satisfied for r = rg and hence it is satisfied for any » > ro. Thus,
fe(r) > 1forr >ro,and,hence,ﬁ <ro=208(1+|x]". [
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The same lower bound holds in the case § > « as the following lemma shows:

Lemma 3.2. Let 8 > «. There exists C = C(a, B, N) such that

m(x) > C (1+ x) =" (3.10)

Proof. From [13, Lemma 1.4 (c)], there exist C; > 0 and 0 < 19 < 1 such that, for
X,y € RV,
C
mix) > 1m(y) |
(I +|x = ylm(y)™

In particular,
Cim(0)

") T e m )y

where —— = sup,.o {r : fo(r) <1} with

m(0)
1 |Z|'B oN r p,B-HV—l
o(r) = / dz = / dp .
I rN=2 Jpor 1+ 121 N2 Sy T

We have M;%rﬁ” < for) < ﬁ‘L—NNrﬂH. Since 8 >0and B —a+2>0
it follows that lim, ¢ fo(r) = 0 and lim,_, o, fo(r) = co. Consequently,

0 <sup{r: for) <1} <oo

r>0
and, hence, m(0) = C, for some constant C» > 0. Then

C\C c
m(x) > e S S
(L+ Calx)™ = (1 4+ |x]T

(3.11)

for some constant C3 > 0. _
On the other hand, since 8 > «, we obtain by (3.3) that V € By. Then,
by [13, Remark 2.9], we have
m(x) = CsV'2(x) = Cslx|? (1 + k)% . (3.12)
The thesis follows taking into account (3.11) and (3.12). ]

Applying the estimate (3.4) and the previous lemma we obtain the following
upper bounds for the Green function G:

Lemma 3.3. Let G(x, y) denote the Green function of the Schridinger operator
B
A— % and assume that f > o — 2. Then,
1 1

L e =yl (L y ok b=y

G(x,y) = Cy forx,y e RV, (3.13)

for any k > 0 and some constant Cy > 0 depending on k.
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Using the above lemma we have the following estimate:

Lemma 3.4. Assume that « > 2, N > 2 and 8 > a — 2. Then there exists a
positive constant C such that for every0 <y < B and f € LP(RN)

Ix " LElp < Clflps (3.14)
where L is defined in (3.2).

Proof. LetT(x, y) = ?im;?, f e LP(RN) and

u(x) = / F G ¥ f()dy.
RN
‘We have to show that

Ixully < ClLflp-

Let us consider the regions E1 := {|[x — y| < (1 4+ |y])} and E; = {|x — y| >
(1 + |y])} and write

u(x) =/E L, ) f(y)dy +/ L, y) f(ndy = ur(x) +uz(x) .

E>

In E{ we have

1+|X|§1+|x—y|+|y|<2
14yl L+ 1yl
So, by Lemma 3.2

1 B 1 o
+""/E G e £ )1y

xYur(x)| < |x ”/ I(x, dy <
] <l | renirody < e | e
<ca+l! [ Genlfmdy < Crtwic),
where i (x) = fRN G(x, )| f(y)|dy. By (3.3) we have Ve B%. So, applying [13,

Corollary 2.8], we obtain ||m212||p < Cllfllp and then |[|x[Yuill, < Cl fllp-
In the region E,, we have, by Holder’s inequality,

|1x17 uz(x)| < IXI]’/E L, »ILfnldy
2

1 1
= [ e (1T 0) 1)l 3.15)
2

< (/ |x|VF<x,y)dy)” </ |x|yr(x,y)|f(y>|l’dy)” .
E> Ey
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We propose to estimate first sz |x|YT'(x, y)dy.In E; wehave 1 + |x| < 1+ |y|+
|x — y| <2|x — y|, then from (3.13) it follows that

Ix|"T(x,y) < [x["G(x,y)

B
~c 1+ |x] 1 -
=yl 1+ DA B =
<C 1 1
T
For every k > f — N + 2, taking into account that i yl < 1_Hyl,we get
1
X[ T(x, y) = e
I +1yD* 2

Sinceﬁ—a+2>Owecanchooseksuchthat%(ﬂ—oz—|—2)+N—2—/3>N,
then

1

x|YT(x, ydy<[ |x|YG(x, y)d <C/ dy < C.
P vy = [ Il G, vy = e

Ey
Moreover by the symmetry of G we have

Ix["T(x,y) < [x["G(x,y)

B
=C il B=a 1 N-2
e = Ik (1 e =
c 1 1
= |x_y|k7ﬁ+N72 (1—|—|x|)kﬁ%a .
Taking into account that =y yl < Zﬁ , arguing as above we obtain
/ |x|¥T(x, y)dx < C. (3.16)
E>
Hence (3.15) implies
@]’ < ¢ [ rreosifor. G.17)
Ey

Thus, by (3.17) and (3.16), we have
el w2l SC/ / I TG ) Xyl 1511 (6 YL )Py
RN JRN

=C/ lf 1P (/ IXI”F(x,y)dX)dySCIIfllg- O
RN E
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We are now ready to show the invertibility of A, and D) max(A) C D(V):

Proposition 3.5. Assume that N > 2, « > 2 and f > o — 2. Then the operator
A, is closed and invertible. Moreover there exists C > 0 such that, for every
0 <y < B,wehave

I Pullp < CllApullp,  Yu € Dp max(A) . (3.18)

Proof. Let us first prove the injectivity of A,. Letu € Dp max(A) such that A,u =

0, in particular A,u = 0. It follows that u € Dpmax(A) = D(A) N D (i),

(see [11]). Then multiplying A,u by u|u|P~2 and integrating over RV we obtain,
by [7],

) |x|ﬁ
0= ululP""Audx — lu|Pdx
RN ry 1+ |x|*
|x|?

(p )/RNIMI |Vuldx RN1+|x|a|MI x

from which we have u = 0. On the other hand, we recall that the function given by
(3.2) solves Au = f for every f € LP(RN). Applying Lemma 3.4 with y = 0,
we deduce that u € LP(R") and so by elliptic regularity we have u € D p,max(A).
This, together with the injectivity of A, gives the invertibility of A, and A;l €
L(LP(RN)). This implies in particular that A p is closed. Finally, the estimate
(3.18) follows from (3.14). ]

The previous theorem gives in particular the A,-boundedness of the potential
V and the following regularity result:

Corollary 3.6. Assume that N > 2, a > 2 and > o — 2. Then:
(i) there exists C > 0 such that for every u € Dp max(A)
11+ WVullp, = CllApullp;
(i)
Dpmax () = fue W2 (RY) | au e 7 (RY)].

Proof. We have only to prove the inclusion D max(A) C {u € wZp (RM) | Au €
LP(RM)}. Letu € D max(A). Then, by (i), Vu € L? (RY) and hence

Au+V
Au:MeLl’(RN).
1+ [x]*

So, the thesis follows from the Calderon-Zygmund inequality. O
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We can now state the main result of this section:

Theorem 3.7. Assumethat N > 2,8 > a—2anda > 2. Then, [0, +00) C p(A))
and (A — A p)_1 is a positive operator on LP(RY) for any » > 0. Moreover, if
feLP@®N)NCoRN), then (L — A~ f = — A7 f.

Proof. Let us first prove that if 0 < A € p(A)), then (A — Ap)_1 is a positive
operator on L?(R"). To this purpose, take 0 < f € LP(RN) and setu = (A —
Ap)*lf. Then, by Corollary 3.6,u € D(A,) and

_(Ap_)‘Q)”:q}C:: .

where g(x) = ﬁ Since Ap generates an exponentially stable and positive

Cop-semigroup (fp (t))i>0 on LP (RM) (see [4, Theorem 2.5]), it follows that the
semigroup (e~'*4 fp (1))1=0 generated by A p — Aq is positive and exponentially
stable. Hence,

u= ()\q—;\p)_lsz.

We show that E = [0, +00)Np(A)) is anon-empty open and closed set in [0, +00).
By Proposition 3.5 we have 0 € p(A,) and hence E # (. On the other hand, using
the above positivity property and the resolvent equation we have (A — A p)_1 <
(—Ap)*1 = L for any A € E and therefore

[6-=ap~| =L (3.19)

It follows that the operator norm of (A — A 1,)*1 is bounded in E and consequently £
is closed. Finally, since p(A) is an open set, it follows that E is open in [0, 4+00).
Thus, E = [0, +00).

Now in order to show the last statement we may assume f € C2°, the thesis
will follow by density. Setting u := (A — A p)_1 f, we obtain, by local elliptic
regularity (cf. [2, Theorem 9.19]), that u € C 2to (RN) for some 0 < o < 1. On

loc

the other hand, u € W>?(R"), by Corollary 3.6. If p > %, then by the Sobolev’s
inequality, u € LY(RY) for all g € [p, +00). In particular, u € L4 (R") for some

q > % and hence Au = —f + Au € LY(RN). Moreover, since u CIZOJC“I RN),

it follows that u € W2/ (RY). So, u € Dy max(A) C W24(RN) C C»(RY), by

Corollary 3.6 and Sobolev’s embedding theorem, since g > %

Let us now suppose that p < % Take the sequence (r,), defined by r, =
1/p —2n/N for any n € N, and set g, = 1/r, for any n € N. Let ng be the
smallest integer such that r,;, < 2/N noting that r,,, > 0. Then, u € Dj max(A) C
LiY(RN)NLP (RN), by Sobolev’s embedding theorem. As above we obtain thatu €

Dy, max(A) C L (RM). Iterating this argument, we deduce that u € ano,maX(A).
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So we can conclude that u € C,(RY) arguing as in the previous case. Thus,
Au = —f + Au € Cp(RM), Again, since u € C2+‘7(]RN), it follows that u €

loc
Wlf)’cq (RN) for any g € (1, +00). Hence, u € Dpax(A). So, by the uniqueness of
the solution of the elliptic problem, we have (A — A p)_1 f =G — A~ f forany
[ € CEMN). 0

4. Generation of semigroups

In this section we show that A, generates an analytic semigroup on LP(RN), for
l < p <oo,providedthat N > 2, ¢ >2and 8 > o — 2.

We start by giving the characterization of the domain of A. More precisely
we prove that the maximal domain D, nax(A) coincides with the weighted Sobolev
space D, (A) defined by

Dyyi={uew?” (RY) : vu, (14 |x1"™") Vu, (1 + 1) D2u € L7 (RV) ]

endowed with its canonical norm.
To this purpose we need the following covering result, see [1, Proposition 6.1],
to prove a weighted gradient estimate:

Proposition 4.1. Forevery0 < k < 1/2 there exists a natural number ¢ = ¢ (N, k)
with the following property: given F = {B(x, p(x))},cpn, where p : RN — R is
a Lipschitz continuous function with Lipschitz constant k, there exists a countable
subcovering {B(xy, p(xn))}neN of R such that at most ¢ among the double balls

{B(xXn, 20 (xp))}nen overlap.
We need the following weighted gradient and second derivative estimate:

Lemma 4.2. Assume that N > 2, « > 2 and B > a — 2. Then there exists a
constant C > 0 such that for every u € D,(A) we have

(1 ety vu] < ctapu, @

[+ 121y %] < clapu, . 42)

Proof. Let u € Dp(A). We fix xo € R" and choose ¢ € CSO(RN ) such that
0<v® <1,9kx)=1forx e B(l) and 9(x) = 0 for x € RV \ B(2). Moreover,

we set 9,(x) = ¥ (";xo

), where p = %(1 + |xo|). We apply the well-known
inequality

1/2 1/2
VullLr gy < C”U”L/I’(B(R))”Av”L/P(B(R))’

(4.3)
where v € W2P(B(R)) N W, ”(B(R)) and R > 0,
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to the function #,u and obtain, for every £ > 0,
L+ 1x0 D' Vaull Lo By oy < 11+ [x0)* 'V (@, u)an(B(xo,zp»

< C 0+ 0D A | sy 1+ 110D 2

LP(B(x0,2p))

< C( H(l + X0 A, u)HLp(B(xO 2o T 1o H(] + xoD)* 219

LP(B(XO,Z/O)))

2M
( ”(1 + |x0|)aAu”LP(B(x0 2y T € ”(1 |x0|)av””m(3(xo,2p))

n i H(l + [xo))*2u
(B(x0.20) " 4¢ 0

e o
+ p2 ”(1 + |)C()|) MHLI’ LP(B(X(),Z/))))

<cC <s 1+ 10D At g 2y + 8ME [ €1+ Lx0D? 'V

LP(B(x0,2p))

(168M + ) 1+ 1xon2u

LP(B(XOaZP)))

-1
= e (8 [+ 10D A )+ | 1+ oD Vi LP(BGo.20)

1
+- H(l + IxoD?2u

Lﬂ(B(xo,zp))) ’

where M = ||V |loo + || A ||0o. Since 2p = %(1 + |xo]) we get

1 3
S +1x0D) =1+ Ix] = S(1+Ixol),  forx € B(xo, 2p).

Thus,

< <—) H(l |X0|) 'lv ’
LP(B(x0,p)) 2

< C(e la+ Ix0|)"‘Au||L,,(B(xO’Zp)) +e ”(1 + o) Vu

H(l + le)“_]Vu‘

L?(B(x0,p))

LP(B(x0,2p))

e (44)
&

LP(B(x0,2p)) >

c (2] (1 +1x))* A o1 H 1 a-ly
( 8”( D MHLP(B(XO’ZP))+ o uLP(B(xo,2p))

a—2u

LP(B(x0.2p)) )

Let { B(xy, p(x,))} be a countable covering of RY asin Proposition 4.1 such that at
most { among the double balls {B(x,, 2p(x,))} overlap.
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We write (4.4) with xg replaced by x,, and sum over n. Taking into account the
above covering result, we get

Ha n |x|)“—1wﬂp < C(s |1+ Do Au  +e H(l n |x|)"‘_1Vqu

1
+ = @+ peneu ) .
& p
Choosing ¢ such that eC < 1/2 we have

1 1 C
- H(1+|x|)“—lwﬂ <~ [+ xn*Aul +—H(1+|x|)“—2uH
2 p -2 Pg p
Furthermore [|[x|*2ull, < (1 + |x|P)ull, < Cl|Apull, for any u € D,(A) C
D) max(A) and some C > 0 by Corollary 3.6. Hence,

[l Va| < C (1apuly + ully).

As regards the second order derivatives we consider the classical Calder6n-
Zygmund inequality on B(1)

||

by rescaling and translating we get

H D*v

for every xg € RVN,R > 0and v € W>P(B(xo, R))ﬂW(:’p(B(xo, R)). We observe
that the constant C does not depend on R and xg.

Then we fix xo € R” and choose p and ¥, € C>°(R") as above. Applying
(4.5) to the function ¢,u in B(xo, 2p), we obtain

< CllAv|Leiay, v e WEP(B(1) N WP (B()) ,
LrBy) S lAvlLrBa)), v (B(1)) N Wy " (B(1))

<C|A 4.5
L BGoR) = I AVI|ILr(B(xo, R)) 4.5)

|1+ Lo D%

< |+ 1xobe D2@m)

LP(B(x0.p)) LP(B(x0,2p))

< C |+ 1x0D* A@ ) | 1o xg.20) -

Reasoning as above we obtain
o+ 0
p
<c (||(1 D au, + [+ 1DV |+ e > .
p p

The lemma follows by Corollary 3.6 and by the gradient estimate (4.1). O
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The following lemma shows that C° (RN) is a core for (A, D p(A)).

Lemma 4.3. Assume N > 2, « > 2 and B > o — 2. The space CSO(RN) is dense
in D, (A) with respect to the graph norm.

Proof. Let us first observe that C2° (RV) is dense in WC2 "P(RN) with respect to the

operator norm. Letu € WC2 "P(RN) and consider u,, = p,, *u, where p, are standard
mollifiers. We have u, € CSO(RN), u, — uin LP(RN) and D?*u, — D?u in
LP(RN). Moreover, suppu, C suppu + B(1) := K for any n € N. Then

[ Ap = Aun |, = [ Apu — Aun |,
= ”(1 + |x*) A — ”ﬂ)”Ln(K) + ” el e — u”)”LP(K)
= ||(1 + |x|a)||Loo(K) ||A(I/t - I/tn)”LP(K)
+ 1P| ooy 1@ = un) oy — Oasn — oo
Now, let u in D max(A) and let n be a smooth function such that n = 1 in B(1),
n =0inRY \ B2),0 < n <1 and set n,(x) = n(%) Then consider u, =

Naut € WC2 "P(RN). First we have u,, — u in L?(R") by dominated convergence.
As regard A,u, we have

Apttn (0)= (14 |x|%) Amuu) (x) = |x [Py (x)u(x)
=10 () Apu(X)+2(1 =+ [x[*) Vi () Ve (x) 4 (1 + [x]%) Ay ()t (x)

2 o X 1 o X
=nn(x)Apu(x)+;(l+|x| )Vn(;)Vu(x)+ﬁ(l+|x| )An(;) u(x)

and
MApu — Apu in L? (RN>

by dominated convergence. As regards the last terms we note that Vn(x/n) and
An(x/n) can be different from zero only for n < |x| < 2n, then we have

1 X _
(14 1x1) [V (5)| 19u] = € (14 ™) IVl tpnzioi 20
and 1
X —
(14 161 [0 (2) 1l = €1+ ) b tgnzp <2

The right-hand sides tend to 0 as n — 00, since by Proposition 3.5 and Lemma 4.2
we have [[(1+ [x[*2ull, < CllApull, and [(1+ [x|*~)Vull, < Cl|Apull . So.
applying again the dominated convergence theorem, we obtain A,u, — Apu in
LP(RN). This ends the proof of the lemma. L

We can give now the complete characterization of D, max(A).
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Theorem 4.4. Assume that N > 2, o > 2 and B > o — 2. Then maximal domain
Dy max(A) coincides with D, (A).

Proof. We have to prove only the inclusion Dy max(A) C D, (A).

Let it € Dp max(A) and set f = Au. The operator A in B(p), for p > 0,is an
elliptic operator with bounded coefficients, then the problem

Au = f in B(p)
{ u=0 ondB(p), (4.6)

admits a unique solution u, in W2P(B(p)) N Wol’p(B(,o)) (cf. [2, Theorem 9.15]).
Now u, € D,(A) and by Lemma 4.2 and Corollary 3.6 (i)

H (1 + |x|°‘_2> u,
LP(B(p))

n H(l + |x[%) D2u,

+ H(l + |x|“—1) Vu,

LP(B(p))

+ |[Vuyllrrip < C||Au
LB IVupliLesp) Aupllp

with C independent of p. Using a standard weak compactness argument we can

construct a sequence u,,, which converges to a function u in Wli’cp such that Au =
f . Since the estimates above are independent of p, also u € D,(A). Then we have
Au = Au and since Dy(A) C Dy max(A) and A is invertible on D) max(A) by
Proposition 3.5, we have &z = u. O

Let us give now the main result of this section:

Theorem 4.5. Assume N > 2, a > 2 and B > a — 2. Then the operator A, with
domain D max(A) generates an analytic semigroup in LP (RM).

Proof. Let f € LP,and p > 0. Consider the operator X;, = A, — o where w
is a constant which will be chosen later. It is known that the elliptic problem in

LP(B(p))

)»u—;(u:f in B(p)
{u =0 ! on dB(p) , @.7)

admits a unique solution u,, in WZP(B(p)) N Wol’p(B(p)) for A > 0, (cf. [2, Theo-
rem 9.15]). _

Let us prove that that e*'% A, is dissipative in B(p) for 0 < 6 < 6, with
suitable 6, € (0, 7]. To this purpose observe that

Apu, = div ((1 + IxI“)Vup) —olx|* lmVup — IxIﬁup — U, .
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Set u* = Eplu,olp_2 and recall that a(x) = 1 + |x|*. Multiplying X;,up by u* and
integrating over B(p), we obtain

/ X;up u*dx:—/ a()c)|u,o|p_4 |Re(ﬁqup)|2dx
B(p) B(p)

—/ a()|u,|” " Im@, Vu,)|* dx

B(p)

—(p- 2)/ a(o)|u,|” i, Vi, Re(@, Vu,)dx
B(p)

_ -2 1 X
—/ p|up|” " |x | l—Vupdx—/ (Ix1P +o) luy|Pdx.
B(p) |x| B(p)

We note here that the integration by part in the singular case 1 < p < 2 is allowed

thanks to [7]. By taking the real and imaginary part of the left- and the right-hand
side, we have

Re (/ Z;,up u*dx)
B(p)

:—(p—l)/ a(x)|up|p_4|Re(ﬁqup)|2dx—/ a(x)|up|p_4|Im(Equp)|2dx
B(p) B(p)

- / |“p|p_2|x|a_1iRe(ﬁpV”p) dx _f (Ix1” + @) |up|"dx
B(p) |x] B(p)

=—(p— 1)/ a()|uy | H|Re (@, Vu,) | dx —/ a()|u,|”HIim(@, Vu,) | dx
B(p) B(p)
o

——/ |x|°‘_liV(|up|p) dx—/ (|x|ﬁ+a))|up|pdx
P JBp) x| B(p)

=—(p—1)/ a(x)|up|p74 \Re(ﬁqupﬂzdx—/ a(x)|up|p74{lm(ﬁqup)izdx
B(p) B(p)

N -2
+/ (ulxla_Z—lxlﬂ—w> ‘up’pdx
B(p) p

and
Im(/ Ay, u*dx) =—(p—2) / a(x)|up}p_4lm(ﬂqup)Re(ﬁqup) dx
B(p) B(p)

—a/ |up|p_2|x|°’71|ilm(ﬁqup)dx.
B(p) x|

We can choose ¢ > 0 and @ > 0 (depending on ¢) such that

N =2
AN 24D ) w2 e — oo < — ]2
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So, we obtain

—Re (/ Ay, u*dx) > (p— 1)/ a(x)|up|p74|Re(ﬁqup)|2dx
B(p) B(p)

+/ a(x)|up|p_4|Im(ﬁqup)|2dx+E/
B(p)

}up|p|x|°‘_2dx
B(p)

=(p—1)B>+C*+¢&D.

Moreover,
1

'Im (/ X;,up u*dx)‘
B(p)

_ 2
<tp=2 ([ ol e [Refa,vi) )
B(p)

1
2
. ( /B . P *ax) |Im(ﬁqup)|2dx)
1 1

To ([ "~ 1 [1m (37, Ve, ) [ dx)j ([ Jup |7 1x1% 72 dx>§
B(p) B(p)

=|p—2|BC +aCD,

where

B? = / |up|p_4a(x) |Re(ﬁqup)|2dx,
B(p)

o / lu,|P~*a(e) [Im(7, Vae, ) [ dix.,
B(p)

D? = / |up’p|x|°‘_2 dx.
B(p)

2
Let us observe that, choosing 82 = Altfp__z‘l) + i—; (which is independent of p), we

obtain
'Im(/ X;,up u*dx) <34 {—Re(/ A:,up u*dx)} .
B(p) B(p)

If tan6, = &, then eim;l:, is dissipative in B(p) for 0 < 6 < 6,. From [12,
Theorem 1.3.9] follows that the problem (4.7) has a unique solution u, for every
A€ Xy, 0<6 <6, where

Yo ={r € C\ {0} : |ArgA| < /2 + 6}.

Moreover, there exists a constant Cg which is independent of p, such that

Co
lupllLr(Bpy < m”f”uu for A € Xy. (4.8)
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Let us now fix A € Xy, with0 < 6 < 6, and a radius r > 0. We apply the interior
L7 estimates (cf. [2, Theorem 9.11]) to the functions u, with p > r + 1. So, by
(4.8), we have

lupllw2r ey < Ci (Ihp — ApuplliLee+1y + lupllLrae+1y) < Call fliLe.

Using a weak compactness and a diagonal argument, we can construct a sequence
(pn) — oo such that the functions (u,,) converge weakly in leo’cp to a function u
which satisfies Au — A,u = f and

Co

llullp <
2]

1N, forie Tq. 4.9)

~

Moreover, u € D) max(Ap). We have now only to show that A — A, is invertible
on Dp max(Ap) for A € Xy. Consider the set

E={r>0:%nC0 Cp(A,)}.

where C(r) := {A € C : |A| < r}. Since, by Theorem 3.7, 0 is in the resolvent
set of A,, then R = sup E > 0. On the other hand, the norm of the resolvent is
bounded by Cy/|A| in C(R) N Xy, consequently it cannot explode on the boundary
of C(R),then R = oo and this ends the proof of the theorem. ]

Remark 4.6. Since A, generates an analytic semigroup 7),(-) on L? (RV) and the
semigroups Ty (-), for g € (1, 00) are consistent, see Theorem 3.7, one can deduce
(as in the proof of [4, Proposition 2.6]) using Corollary 3.6 that T),(¢)L? RN) c
C;H(RN) forany ¢t > 0, v € (0, 1) and for any p € (1, c0).

We end this section by studying the spectrum of A,. We recall from Proposi-
tion 3.5 that

[Ix1Pul, < ClApullp. Y € Dpmax(A).
So, arguing as in [4], we obtain the following results:
Proposition 4.7. Assume N > 2, a > 2and B > a — 2. Then:

(i) The resolvent of A, is compact in L?;
(ii) The spectrum of A, consists of a sequence of negative real eigenvalues which
accumulates at —00. Moreover, o (A)) is independent of p;

(iii) The semigroup T, ((-) is irreducible, the eigenspace corresponding to the largest
eigenvalue Ao of A is one-dimensional and is spanned by a strictly positive
function v, which is radial, belongs to C l],+” RMYNC2RN) forany v € (0, 1)
and tends to 0 when |x| — o0.
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