Schrödinger-type operators with unbounded diffusion and potential terms

ANNA CANALE, ABDELAZIZ RHANDI AND CRISTIAN TACELLI

Abstract. We prove that the realization A_p in $L^p(\mathbb{R}^N)$, for $1 , of the Schrödinger-type operator <math>A = (1 + |x|^{\alpha})\Delta - |x|^{\beta}$ with domain $D(A_p) = \{u \in W^{2,p}(\mathbb{R}^N) : Au \in L^p(\mathbb{R}^N)\}$ generates a strongly continuous analytic semigroup provided that N > 2, $\alpha > 2$ and $\beta > \alpha - 2$. Moreover this semigroup is consistent, irreducible, immediately compact and ultracontractive.

Mathematics Subject Classification (2010): 47D07 (primary); 47D08, 35J10, 35K20 (secondary).

1. Introduction

In this paper we study the generation of analytic semigroups in L^p -spaces of Schrödinger-type operators of the form

$$Au(x) = a(x)\Delta u(x) - V(x)u(x), \quad \text{for} \quad x \in \mathbb{R}^N, \tag{1.1}$$

where $a(x) = 1 + |x|^{\alpha}$ and $V(x) = |x|^{\beta}$ with $\alpha > 2$ and $\beta > \alpha - 2$. We also investigate spectral properties of such semigroups. In the case where $\alpha \in [0, 2]$ and $\beta \ge 0$, generation results of analytic semigroups for suitable realizations A_p of the operator A in $L^p(\mathbb{R}^N)$ have been proved in [4].

For $\beta = 0$ and $\alpha > 2$, the generation results depend upon N as it is proved in [8]. More specifically, if N = 1, 2 no realization of A in $L^p(\mathbb{R}^N)$ generates a strongly continuous (resp. analytic) semigroup. The same happens if $N \ge 3$ and $p \le N/(N-2)$. On the other hand, if $N \ge 3$ and p > N/(N-2), then the maximal realization A_p of the operator A in $L^p(\mathbb{R}^N)$ generates a positive analytic semigroup, which is also contractive if $\alpha \ge (p-1)(N-2)$.

This work has been supported by the M.I.U.R. research project Prin 2010MXMAJR and INdAM-GNAMPA 2014.

Received September 9, 2014; accepted in revised form February 26, 2015.

Published online June 2016.

Generation results concerning the case where $\beta = 0$ and with drift terms of the form $|x|^{\alpha-2}x$ were obtained recently in [9]. The operator with a more general diffusion term was also investigated in [10] and [14].

We also quote the recent paper [5]. Here the authors studied the generation of C_0 and analytic semigroups in $L^p(\mathbb{R}^N)$, for $1 , of operators of the form <math>\mathcal{A} = |x|^{\alpha} \Delta + c|x|^{\alpha-2}x \cdot \nabla - b|x|^{\alpha-2}$. They prove for $\alpha \neq 2$, in particular for c = 0 and b = 1, that a suitable L^p -realization of \mathcal{A} generates a bounded analytic semigroup in $L^p(\mathbb{R}^N)$ if and only if $N/p < (N-2)/2 + \sqrt{1 + (N-2)^2/4}$, see [5, Theorem 1.2]. We note here that $\beta = \alpha - 2$ corresponds to a critical case. The methods used in [5] are completely different from ours and lead to results which are not comparable with our case ($\beta > \alpha - 2$).

Here we consider the case where $\alpha > 2$ and assume that N > 2. Let us denote by A_p the realization of A in $L^p(\mathbb{R}^N)$ endowed with its maximal domain

$$D_{p,\max}(A) = \left\{ u \in L^p\left(\mathbb{R}^N\right) \cap W^{2,p}_{\text{loc}}\left(\mathbb{R}^N\right) : Au \in L^p\left(\mathbb{R}^N\right) \right\}.$$
(1.2)

After proving a priori estimates, we deduce that $D_{p,\max}(A)$ coincides with

$$D_{p}(A) := \left\{ u \in W^{2, p}\left(\mathbb{R}^{N}\right) : Vu, \left(1 + |x|^{\alpha - 1}\right) |\nabla u|, \left(1 + |x|^{\alpha}\right) |D^{2}u| \in L^{p}\left(\mathbb{R}^{N}\right) \right\}.$$

So we show in the main result of this paper that, for any $1 , the realization <math>A_p$ of A in $L^p(\mathbb{R}^N)$, with domain $D_p(A)$, generates a positive strongly continuous and analytic semigroup $(T_p(t))_{t\geq 0}$ for any $\beta > \alpha - 2$. This semigroup is also consistent, irreducible, immediately compact and ultracontractive.

The paper is structured as follows. In Section 2 we study the invariance of $C_0(\mathbb{R}^N)$ under the semigroup generated by A in $C_b(\mathbb{R}^N)$ and show its compactness. In Section 3 we use reverse Hölder classes and some results in [13] to study the solvability of the elliptic problem in $L^p(\mathbb{R}^N)$. Finally, in Section 4 we prove the generation results.

Notation. For any $k \in \mathbb{N} \cup \{\infty\}$ we denote by $C_c^k(\mathbb{R}^N)$ the set of all functions $f : \mathbb{R}^N \to \mathbb{R}$ that are continuously differentiable in \mathbb{R}^N up to *k*-th order and have compact support (denoted $\operatorname{supp}(f)$). The space $C_b(\mathbb{R}^N)$ is the set of all bounded and continuous functions $f : \mathbb{R}^N \to \mathbb{R}$, and we denote by $||f||_{\infty}$ its sup-norm, *i.e.*, $||f||_{\infty} = \sup_{x \in \mathbb{R}^N} |f(x)|$. We use also the space $C_0(\mathbb{R}^N) := \{f \in C_b(\mathbb{R}^N) : \lim_{|x|\to\infty} f(x) = 0\}$. If f is smooth enough we set

$$|\nabla f(x)|^2 = \sum_{i=1}^N |D_i f(x)|^2, \qquad |D^2 f(x)|^2 = \sum_{i,j=1}^N |D_{ij} f(x)|^2.$$

For any $x_0 \in \mathbb{R}^N$ and any r > 0 we denote by $B(x_0, r) \subset \mathbb{R}^N$ the open ball, centered at x_0 with radius r. We simply write B(r) when $x_0 = 0$. The function χ_E denotes the characteristic function of the (measurable) set $E, i.e., \chi_E(x) = 1$ if $x \in E, \chi_E(x) = 0$ otherwise.

For any $p \in [1, \infty)$ we denote by $L^p(\mathbb{R}^N)$ the Banach space of all measurable and *p*-integrable functions in \mathbb{R}^N with respect to the Lebesgue measure endowed with its usual norm $\|\cdot\|_p$. Finally, by $x \cdot y$ we denote the Euclidean scalar product of the vectors $x, y \in \mathbb{R}^N$.

ACKNOWLEDGEMENTS. We are grateful to the referee for his many helpful remarks and suggestions.

2. Generation of semigroups in $C_0(\mathbb{R}^N)$

In this section we recall some properties of the elliptic and parabolic problems associated with A in $C_b(\mathbb{R}^N)$. We prove the existence of a Lyapunov function for A in the case where $\alpha > 2$ and $\beta > \alpha - 2$. This implies the uniqueness of the solution semigroup $(T(t))_{t\geq 0}$ to the associated parabolic problem. Using a domination argument, we show that T(t) is compact and $T(t)C_0(\mathbb{R}^N) \subset C_0(\mathbb{R}^N)$.

First, we endow A with its maximal domain in $C_b(\mathbb{R}^N)$

$$D_{\max}(A) = \left\{ u \in C_b\left(\mathbb{R}^N\right) \cap W^{2,p}_{\text{loc}}\left(\mathbb{R}^N\right), \text{ for } 1 \le p < \infty : Au \in C_b\left(\mathbb{R}^N\right) \right\}.$$

Then, we consider for any $\lambda > 0$ and $f \in C_b(\mathbb{R}^N)$ the elliptic equation

$$\lambda u - Au = f. \tag{2.1}$$

It is well-known that equation (2.1) admits at least one solution in $D_{\max}(A)$ (see [3, Theorem 2.1.1]). A solution is obtained as follows.

Take the unique solution to the Dirichlet problem associated with $\lambda - A$ into the balls B(0, n) for $n \in \mathbb{N}$. Using Schauder interior estimates one can prove that the sequence of solutions so obtained converges to a solution u of (2.1). It is also known that a solution to (2.1) is in general not unique. The solution u, which we obtained by approximation, is nonnegative whenever $f \ge 0$.

As regards the parabolic problem

$$\begin{cases} u_t(t,x) = Au(t,x) & \text{for } x \in \mathbb{R}^N \text{ and } t > 0\\ u(0,x) = f(x) & \text{for } x \in \mathbb{R}^N \end{cases},$$
(2.2)

where $f \in C_b(\mathbb{R}^N)$, it is well-known that one can find a semigroup $(T(t))_{t\geq 0}$ of bounded operator in $C_b(\mathbb{R}^N)$ such that u(t, x) = T(t)f(x) is a solution of (2.2) in the following sense:

$$u \in C\left([0, +\infty) \times \mathbb{R}^N\right) \cap C^{1+\frac{\sigma}{2}, 2+\sigma}_{\text{loc}}\left((0, +\infty) \times \mathbb{R}^N\right)$$

and u solves (2.2) for any $f \in C_b(\mathbb{R}^N)$ and some $\sigma \in (0, 1)$. Uniqueness of solutions to (2.2) in general is not guaranteed. Moreover the semigroup $(T(t))_{t\geq 0}$

is not strongly continuous in $C_b(\mathbb{R}^N)$ and does not preserve in general the space $C_0(\mathbb{R}^N)$. We note here that the obtained solution u is the minimal solution among all positive solutions of (2.2). For this reason the semigroup T(t) will be called the minimal semigroup. For more details we refer to [3, Chapter 2, Section 2].

Uniqueness is obtained if there exists a positive function $\varphi(x) \in C^2(\mathbb{R}^N)$, called *Lyapunov function*, such that $\lim_{|x|\to\infty} \varphi(x) = +\infty$ and $A\varphi - \lambda\varphi \leq 0$ for some $\lambda > 0$.

Proposition 2.1. Let N > 2, $\alpha > 2$ and $\beta > \alpha - 2$. Let $\varphi = 1 + |x|^{\gamma}$ where $\gamma > 2$. Then there exists a constant C > 0 such that

$$A\varphi \leq C\varphi.$$

Proof. An easy computation gives

$$A\varphi = \gamma (N + \gamma - 2)(1 + |x|^{\alpha})|x|^{\gamma - 2} - (1 + |x|^{\gamma})|x|^{\beta}.$$

Then, since $\beta > \alpha - 2$, there exists a C > 0 such that

$$\gamma(N+\gamma-2)(1+|x|^{\alpha})|x|^{\gamma-2} \le (1+|x|^{\gamma})|x|^{\beta} + C(1+|x|^{\gamma}).$$

Then we can assert that problem (2.2) admits a unique solution in $C([0, \infty) \times \mathbb{R}^N) \cap C^{1,2}((0, \infty) \times \mathbb{R}^N)$ and problem (2.1) admits a unique solution in $D_{\max}(A)$.

In order to investigate the compactness of the semigroup and the invariance of $C_0(\mathbb{R}^N)$ we check the behaviour of $T(t)\mathbf{1}$. We use the following result (see [3, Theorem 5.1.11]):

Theorem 2.2. Let us fix t > 0. Then $T(t)\mathbf{1} \in C_0(\mathbb{R}^N)$ if and only if T(t) is compact and $C_0(\mathbb{R}^N)$ is invariant under T(t).

Let A_0 be the operator defined by $A_0 := a(x)\Delta$. By [6, Example 7.3] or [8, Proposition 2.2 (iii)], we have that the minimal semigroup (S(t)) is generated by $(A_0, D_{\max}(A_0) \cap C_0(\mathbb{R}^N))$. Moreover the resolvent and the semigroup map $C_b(\mathbb{R}^N)$ into $C_0(\mathbb{R}^N)$ and are compact.

Set $v(t, x) = S(t)\hat{f}(x)$ and u(t, x) = T(t)f(x) for $t > 0, x \in \mathbb{R}^N$ and $0 \le f \in C_b(\mathbb{R}^N)$. Then the function w(t, x) = v(t, x) - u(t, x) solves

$$\begin{cases} w_t(t, x) = A_0 w(t, x) + V(x) u(t, x) & \text{for } t > 0 \\ w(0, x) = 0 & \text{for } x \in \mathbb{R}^N. \end{cases}$$

So, applying [3, Theorem 4.1.3], we have $w \ge 0$ and hence $T(t) \le S(t)$. Thus, $T(t)\mathbf{1} \in C_0(\mathbb{R}^N)$, since $S(t)\mathbf{1} \in C_0(\mathbb{R}^N)$ for any t > 0 (see [8, Proposition 2.2 (iii)]). Thus, T(t) is compact and $C_0(\mathbb{R}^N)$ is invariant under T(t) (*cf.* [3, Theorem 5.1.11]). Then we have proved the following proposition:

Proposition 2.3. The semigroup (T(t)) is generated by $(A, D_{\max}(A) \cap C_0(\mathbb{R}^N))$, maps $C_b(\mathbb{R}^N)$ into $C_0(\mathbb{R}^N)$ and is compact.

3. Solvability of the elliptic problem in $L^p(\mathbb{R}^N)$

In this section we study the existence and uniqueness of solutions of the elliptic problem $\lambda u - A_p u = f$ for a given $f \in L^p(\mathbb{R}^N)$, where $1 and <math>\lambda \ge 0$. Let us consider first the case $\lambda = 0$.

We note that the equation $(1+|x|^{\alpha})\Delta u - Vu = f$ is equivalent to the equation

$$\Delta u - \frac{V}{1+|x|^{\alpha}}u = \frac{f}{1+|x|^{\alpha}} =: \tilde{f}.$$

Therefore we focus our attention to the L^p -realization \tilde{A}_p of the Schrödinger operator

$$\tilde{A} = \Delta - \frac{V}{1 + |x|^{\alpha}} = \Delta - \tilde{V}$$

Let us denote by G the Green function (or the fundamental solution) for \tilde{A} , *i.e.*,

$$u(x) = \int_{\mathbb{R}^N} G(x, y)\tilde{f}(y)dy.$$
(3.1)

Thus, $u(x) = \int_{\mathbb{R}^N} G(x, y) \frac{f(y)}{1+|y|^{\alpha}} dy$ solves Au = f for every $f \in L^p(\mathbb{R}^N)$. So we have to study the operator

$$u(x) = Lf(x) := \int_{\mathbb{R}^N} G(x, y) \frac{f(y)}{1 + |y|^{\alpha}} dy.$$
 (3.2)

To this purpose, we use the bounds of G(x, y) obtained in [13] when the potential of \tilde{A}_p belongs to the reverse Hölder class B_q for some $q \ge N/2$.

We recall that a nonnegative locally L^q -integrable function V on \mathbb{R}^N is said to be in B_q , for $1 < q < \infty$, if there exists C > 0 such that the reverse Hölder inequality

$$\left(\frac{1}{|B|}\int_{B}V^{q}(x)dx\right)^{1/q} \leq C\left(\frac{1}{|B|}\int_{B}V(x)dx\right)$$

holds for every ball B in \mathbb{R}^N . A nonnegative function $V \in L^{\infty}_{loc}(\mathbb{R}^N)$ is in B_{∞} if

$$\|V\|_{L^{\infty}(B)} \le C\left(\frac{1}{|B|}\int_{B}V(x)dx\right)$$

for any ball *B* in \mathbb{R}^N .

One can verify that

$$\tilde{V} \in \begin{cases} B_{\infty} & \text{if } \beta - \alpha \ge 0\\ B_{q} & \text{if } \beta - \alpha > -\frac{N}{q}\\ B_{\frac{N}{2}} & \text{if } \beta - \alpha > -2\\ B_{N} & \text{if } \beta - \alpha > -1 \end{cases}$$
(3.3)

for some q > 1. So, it follows from [13, Theorem 2.7] that, if $\beta - \alpha > -2$, then for any k > 0 there is some constant $C_k > 0$ such that, for any $x, y \in \mathbb{R}^N$,

$$|G(x, y)| \le \frac{C_k}{(1+m(x)|x-y|)^k} \cdot \frac{1}{|x-y|^{N-2}},$$
(3.4)

where the function m is defined by

$$\frac{1}{m(x)} := \sup_{r>0} \left\{ r : \frac{1}{r^{N-2}} \int_{B(x,r)} \tilde{V}(y) dy \le 1 \right\}, \quad \text{for } x \in \mathbb{R}^N.$$
(3.5)

Due to the importance of the auxiliary function m, we establish for it a lower bound:

Lemma 3.1. Let $\alpha - 2 < \beta < \alpha$. There exists $C = C(\alpha, \beta, N)$ such that

$$m(x) \ge C (1+|x|)^{\frac{\beta-\alpha}{2}}.$$
 (3.6)

Proof. Fix $x \in \mathbb{R}^N$, and set $f_x(r) = \frac{1}{r^{N-2}} \int_{B(x,r)} \tilde{V}(y) dy$, r > 0. Since $\tilde{V} \in B_{N/2}$ implies $V \in B_q$ for some $q > \frac{N}{2}$, by [13, Lemma 1.2], we have

$$\lim_{r\to 0} f_x(r) = 0 \text{ and } \lim_{r\to\infty} f_x(r) = \infty.$$

Thus, $0 < m(x) < \infty$.

In order to estimate $\frac{1}{m(x)}$ we need to find $r_0 = r_0(x)$ such that $r \in [r_0, \infty[$ implies $f_x(r) \ge 1$. In this case we will have $\frac{1}{m(x)} \le r_0$.

Since $\tilde{V} \in B_{N/2}$, there exists a constant C_1 depending only α , β , N such that

$$\left(\frac{1}{|B|} \int_B \tilde{V}^{N/2}(y) dy\right)^{2/N} \le C_1 \left(\frac{1}{|B|} \int_B \tilde{V}(y) dy\right)$$

for any ball *B* in \mathbb{R}^N . Then we have

$$f_{x}(r) = N^{-1} \sigma_{N} r^{2} \frac{1}{|B(x,r)|} \int_{B(x,r)} \tilde{V}(y) dy$$

$$\geq \frac{N^{-1} \sigma_{N} r^{2}}{C_{1}} \left(\frac{1}{|B(x,r)|} \int_{B(x,r)} \tilde{V}(y)^{N/2} dy \right)^{2/N}$$

$$= \frac{(N^{-1} \sigma_{N})^{1-2/N}}{C_{1}} \left(\int_{B(x,r)} \tilde{V}(y)^{N/2} dy \right)^{2/N},$$

where σ_N is the (N-1)-dimensional measure of $\partial B(0, 1)$. Hence, if

$$\int_{B(x,r)} \tilde{V}(y)^{N/2} dy - C_2 \ge 0, \qquad (3.7)$$

then $f_x(r) \ge 1$, where $C_2 = C_2(\alpha, \beta, N) = \frac{C_1^{N/2}}{(N^{-1}\sigma_N)^{N/2-1}}$. Note that $\tilde{V} \ge \tilde{V}^*$ in $\mathbb{R}^N \setminus B(0, 1)$ with $\tilde{V}^*(x) = \frac{1}{2}|x|^{\beta-\alpha}$. Hence,

$$\int_{B(x,r)} \tilde{V}(y)^{N/2} dy \ge \int_{B(x,r)\setminus B(0,1)} \tilde{V}(y)^{N/2} dy \ge \int_{B(x,r)\setminus B(0,1)} \tilde{V}^*(y)^{N/2} dy \\
= \int_{B(x,r)} \tilde{V}^*(y)^{N/2} dy - \int_{B(x,r)\cap B(0,1)} \tilde{V}^*(y)^{N/2} dy \\
\ge \int_{B(x,r)} \tilde{V}^*(y)^{N/2} dy - \int_{B(0,1)} \tilde{V}^*(y)^{N/2} dy \\
= \int_{B(x,r)} \tilde{V}^*(y)^{N/2} dy - \frac{2^{1-N/2}\sigma_N}{N(2-\alpha+\beta)} \\
\ge N^{-1}\sigma_N r^N \inf_{B(x,r)} (\tilde{V}^*)^{N/2} - C_3(\alpha,\beta,N) \tag{3.8}$$

$$= N^{-1} \sigma_N \frac{2^{-N/2} r^N}{(|x|+r)^{\frac{\alpha-\beta}{2}N}} - C_3(\alpha,\beta,N).$$
(3.9)

Let $\eta = \frac{\alpha - \beta}{2} < 1$, let $\delta > 0$ be a parameter to be chosen later, and set

$$r_0 = \delta (1+|x|)^{\eta} \, .$$

By (3.8) condition (3.7) becomes

$$\begin{split} \int_{B(x,r_0)} \tilde{V}(y)^{N/2} dy - C_2 &\geq N^{-1} \sigma_N \frac{2^{-N/2} r_0^N}{(|x|+r_0|)^{\frac{\alpha-\beta}{2}N}} - C_2 - C_3 \\ &= N^{-1} 2^{-N/2} \sigma_N \frac{\delta^N (1+|x|)^{\eta N}}{(|x|+\delta(1+|x|)^{\eta})^{\frac{\alpha-\beta}{2}N}} - C_4 \\ &\geq N^{-1} 2^{-N/2} \sigma_N \frac{\delta^N (1+|x|)^{\eta N}}{(1+|x|+\delta(1+|x|)^{\eta})^{\frac{\alpha-\beta}{2}N}} - C_4 \\ &\geq N^{-1} 2^{-N/2} \sigma_N \frac{\delta^N (1+|x|)^{\eta N}}{((\delta+1)(1+|x|))^{\frac{\alpha-\beta}{2}N}} - C_4 \\ &= N^{-1} 2^{-N/2} \sigma_N \left(\frac{\delta}{(1+\delta)^{\frac{\alpha-\beta}{2}}}\right)^N - C_4 \,. \end{split}$$

Since $\frac{\alpha-\beta}{2} < 1$ we can choose $\delta > 0$ such that $N^{-1}2^{-N/2}\sigma_N\left(\frac{\delta}{(1+\delta)^{\frac{\alpha-\beta}{2}}}\right)^N - C_4 \ge 0$. So, (3.7) is satisfied for $r = r_0$ and hence it is satisfied for any $r > r_0$. Thus, $f_x(r) \ge 1$ for $r > r_0$, and, hence, $\frac{1}{m(x)} \le r_0 = \delta(1+|x|)^\eta$. The same lower bound holds in the case $\beta \ge \alpha$ as the following lemma shows: Lemma 3.2. Let $\beta > \alpha$. There exists $C = C(\alpha, \beta, N)$ such that

$$m(x) \ge C (1+|x|)^{\frac{\beta-\alpha}{2}}.$$
 (3.10)

Proof. From [13, Lemma 1.4 (c)], there exist $C_1 > 0$ and $0 < \eta_0 < 1$ such that, for $x, y \in \mathbb{R}^N$,

$$m(x) \ge \frac{C_1 m(y)}{(1+|x-y|m(y))^{\eta_0}}$$

In particular,

$$m(x) \ge \frac{C_1 m(0)}{(1+|x|m(0))^{\eta_0}},$$

where $\frac{1}{m(0)} = \sup_{r>0} \{r : f_0(r) \le 1\}$ with

$$f_0(r) = \frac{1}{r^{N-2}} \int_{B(0,r)} \frac{|z|^{\beta}}{1+|z|^{\alpha}} dz = \frac{\sigma_N}{r^{N-2}} \int_0^r \frac{\rho^{\beta+N-1}}{1+\rho^{\alpha}} d\rho$$

We have $\frac{\sigma_N}{(\beta+N)(1+r^{\alpha})}r^{\beta+2} \le f_0(r) \le \frac{\sigma_N}{\beta+N}r^{\beta+2}$. Since $\beta > 0$ and $\beta - \alpha + 2 > 0$ it follows that $\lim_{r\to 0} f_0(r) = 0$ and $\lim_{r\to\infty} f_0(r) = \infty$. Consequently,

$$0 < \sup_{r>0} \{r : f_0(r) \le 1\} < \infty$$

and, hence, $m(0) = C_2$ for some constant $C_2 > 0$. Then

$$m(x) \ge \frac{C_1 C_2}{(1+C_2|x|)^{\eta_0}} \ge \frac{C_3}{(1+|x|)^{\eta_0}}$$
(3.11)

for some constant $C_3 > 0$.

On the other hand, since $\beta \geq \alpha$, we obtain by (3.3) that $\tilde{V} \in B_{\infty}$. Then, by [13, Remark 2.9], we have

$$m(x) \ge C_5 \tilde{V}^{1/2}(x) = C_5 |x|^{\frac{\beta}{2}} (1+|x|)^{-\frac{\alpha}{2}}.$$
 (3.12)

The thesis follows taking into account (3.11) and (3.12).

Applying the estimate (3.4) and the previous lemma we obtain the following upper bounds for the Green function G:

Lemma 3.3. Let G(x, y) denote the Green function of the Schrödinger operator $\Delta - \frac{|x|^{\beta}}{1+|x|^{\alpha}}$ and assume that $\beta > \alpha - 2$. Then,

$$G(x, y) \le C_k \frac{1}{1 + |x - y|^k (1 + |y|)^{\frac{\beta - \alpha}{2}k}} \frac{1}{|x - y|^{N-2}}, \quad for \ x, y \in \mathbb{R}^N, \ (3.13)$$

for any k > 0 and some constant $C_k > 0$ depending on k.

Using the above lemma we have the following estimate:

Lemma 3.4. Assume that $\alpha > 2$, N > 2 and $\beta > \alpha - 2$. Then there exists a positive constant *C* such that for every $0 \le \gamma \le \beta$ and $f \in L^p(\mathbb{R}^N)$

$$\||x|^{\gamma} Lf\|_{p} \le C \|f\|_{p}, \tag{3.14}$$

where L is defined in (3.2).

Proof. Let $\Gamma(x, y) = \frac{G(x, y)}{1+|y|^{\alpha}}, f \in L^p(\mathbb{R}^N)$ and

$$u(x) = \int_{\mathbb{R}^N} \Gamma(x, y) f(y) dy.$$

We have to show that

$$||x|^{\gamma}u||_{p} \leq C||f||_{p}.$$

Let us consider the regions $E_1 := \{|x - y| \le (1 + |y|)\}$ and $E_2 := \{|x - y| > |x - y|\}$ (1 + |y|) and write

$$u(x) = \int_{E_1} \Gamma(x, y) f(y) dy + \int_{E_2} \Gamma(x, y) f(y) dy =: u_1(x) + u_2(x) .$$

In E_1 we have

$$\frac{1+|x|}{1+|y|} \le \frac{1+|x-y|+|y|}{1+|y|} \le 2.$$

So, by Lemma 3.2

$$\begin{split} \left| |x|^{\gamma} u_{1}(x) \right| &\leq |x|^{\gamma} \int_{E_{1}} \Gamma(x, y) |f(y)| dy \leq \frac{1 + |x|^{\beta}}{1 + |x|^{\alpha}} \int_{E_{1}} \frac{1 + |x|^{\alpha}}{1 + |y|^{\alpha}} G(x, y) |f(y)| dy \\ &\leq C(1 + |x|)^{\beta - \alpha} \int_{\mathbb{R}^{N}} G(x, y) |f(y)| dy \leq Cm^{2}(x) \tilde{u}(x), \end{split}$$

where $\tilde{u}(x) = \int_{\mathbb{R}^N} G(x, y) |f(y)| dy$. By (3.3) we have $\tilde{V} \in B_{\frac{N}{2}}$. So, applying [13, Corollary 2.8], we obtain $||m^2 \tilde{u}||_p \le C ||f||_p$ and then $|||x|^{\gamma} u_1||_p \le C ||f||_p$. In the region E_2 , we have, by Hölder's inequality,

$$\begin{aligned} \left| |x|^{\gamma} u_{2}(x) \right| &\leq |x|^{\gamma} \int_{E_{2}} \Gamma(x, y) |f(y)| dy \\ &= \int_{E_{2}} \left(|x|^{\gamma} \Gamma(x, y) \right)^{\frac{1}{p'}} \left(|x|^{\gamma} \Gamma(x, y) \right)^{\frac{1}{p}} |f(y)| dy \\ &\leq \left(\int_{E_{2}} |x|^{\gamma} \Gamma(x, y) dy \right)^{\frac{1}{p'}} \left(\int_{E_{2}} |x|^{\gamma} \Gamma(x, y) |f(y)|^{p} dy \right)^{\frac{1}{p}} . \end{aligned}$$
(3.15)

We propose to estimate first $\int_{E_2} |x|^{\gamma} \Gamma(x, y) dy$. In E_2 we have $1 + |x| \le 1 + |y| + |x - y| \le 2|x - y|$, then from (3.13) it follows that

$$\begin{aligned} |x|^{\gamma} \Gamma(x, y) &\leq |x|^{\gamma} G(x, y) \\ &\leq C \frac{1 + |x|^{\beta}}{|x - y|^{k} (1 + |y|)^{k\frac{\beta - \alpha}{2}}} \frac{1}{|x - y|^{N - 2}} \\ &\leq C \frac{1}{|x - y|^{k - \beta + N - 2}} \frac{1}{(1 + |y|)^{k\frac{\beta - \alpha}{2}}} \,. \end{aligned}$$

For every $k > \beta - N + 2$, taking into account that $\frac{1}{|x-y|} < \frac{1}{1+|y|}$, we get

$$|x|^{\gamma}\Gamma(x,y) \le \frac{1}{(1+|y|)^{k\frac{\beta-\alpha+2}{2}+N-2-\beta}}$$

Since $\beta - \alpha + 2 > 0$ we can choose k such that $\frac{k}{2}(\beta - \alpha + 2) + N - 2 - \beta > N$, then

$$\int_{E_2} |x|^{\gamma} \Gamma(x, y) dy \leq \int_{E_2} |x|^{\gamma} G(x, y) dy \leq C \int_{\mathbb{R}^N} \frac{1}{(1+|y|)^{\frac{k}{2}(2+\beta-\alpha)+N-2-\beta}} dy < C.$$

Moreover by the symmetry of G we have

$$\begin{split} |x|^{\gamma} \Gamma(x, y) &\leq |x|^{\gamma} G(x, y) \\ &\leq C \frac{1 + |x|^{\beta}}{|x - y|^{k} (1 + |x|)^{k\frac{\beta - \alpha}{2}}} \frac{1}{|x - y|^{N - 2}} \\ &\leq C \frac{1}{|x - y|^{k - \beta + N - 2}} \frac{1}{(1 + |x|)^{k\frac{\beta - \alpha}{2}}} \,. \end{split}$$

Taking into account that $\frac{1}{|x-y|} \le 2\frac{1}{1+|x|}$, arguing as above we obtain

$$\int_{E_2} |x|^{\gamma} \Gamma(x, y) dx \le C.$$
(3.16)

Hence (3.15) implies

$$\left| |x|^{\gamma} u_2(x) \right|^p \le C \int_{E_2} |x|^{\gamma} \Gamma(x, y) |f(y)|^p dy.$$
(3.17)

Thus, by (3.17) and (3.16), we have

$$\begin{aligned} \||x|^{\gamma} u_{2}\|_{p}^{p} &\leq C \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} |x|^{\gamma} \Gamma(x, y) \chi_{\{|x-y|>1+|y|\}}(x, y) |f(y)|^{p} dy dx \\ &= C \int_{\mathbb{R}^{N}} |f(y)|^{p} \left(\int_{E_{2}} |x|^{\gamma} \Gamma(x, y) dx \right) dy \leq C \|f\|_{p}^{p}. \end{aligned}$$

We are now ready to show the invertibility of A_p and $D_{p,\max}(A) \subset D(V)$:

Proposition 3.5. Assume that N > 2, $\alpha > 2$ and $\beta > \alpha - 2$. Then the operator A_p is closed and invertible. Moreover there exists C > 0 such that, for every $0 \le \gamma \le \beta$, we have

$$\| | \cdot |^{\gamma} u \|_{p} \le C \| A_{p} u \|_{p}, \quad \forall u \in D_{p, \max}(A) .$$
(3.18)

Proof. Let us first prove the injectivity of A_p . Let $u \in D_{p,\max}(A)$ such that $A_p u = 0$, in particular $\tilde{A}_p u = 0$. It follows that $u \in D_{p,\max}(\tilde{A}) = D(\Delta) \cap D\left(\frac{|x|^{\beta}}{1+|x|^{\alpha}}\right)$, (see [11]). Then multiplying $A_p u$ by $u|u|^{p-2}$ and integrating over \mathbb{R}^N we obtain, by [7],

$$0 = \int_{\mathbb{R}^{N}} u|u|^{p-2} \Delta u \, dx - \int_{\mathbb{R}^{N}} \frac{|x|^{\beta}}{1+|x|^{\alpha}} |u|^{p} dx$$

= $-(p-1) \int_{\mathbb{R}^{N}} |u|^{p-2} |\nabla u|^{2} dx - \int_{\mathbb{R}^{N}} \frac{|x|^{\beta}}{1+|x|^{\alpha}} |u|^{p} dx,$

from which we have $u \equiv 0$. On the other hand, we recall that the function given by (3.2) solves Au = f for every $f \in L^p(\mathbb{R}^N)$. Applying Lemma 3.4 with $\gamma = 0$, we deduce that $u \in L^p(\mathbb{R}^N)$ and so by elliptic regularity we have $u \in D_{p,\max}(A)$. This, together with the injectivity of A_p gives the invertibility of A_p and $A_p^{-1} \in \mathcal{L}(L^p(\mathbb{R}^N))$. This implies in particular that A_p is closed. Finally, the estimate (3.18) follows from (3.14).

The previous theorem gives in particular the A_p -boundedness of the potential V and the following regularity result:

Corollary 3.6. Assume that N > 2, $\alpha > 2$ and $\beta > \alpha - 2$. Then:

(i) there exists C > 0 such that for every $u \in D_{p,\max}(A)$

$$||(1+V)u||_p \le C ||A_pu||_p;$$

(ii)

$$D_{p,\max}(A) = \left\{ u \in W^{2,p}\left(\mathbb{R}^{N}\right) \mid Au \in L^{p}\left(\mathbb{R}^{N}\right) \right\}.$$

Proof. We have only to prove the inclusion $D_{p,\max}(A) \subset \{u \in W^{2,p}(\mathbb{R}^N) \mid Au \in L^p(\mathbb{R}^N)\}$. Let $u \in D_{p,\max}(A)$. Then, by (i), $Vu \in L^p(\mathbb{R}^N)$ and hence

$$\Delta u = \frac{Au + Vu}{1 + |x|^{\alpha}} \in L^p\left(\mathbb{R}^N\right).$$

So, the thesis follows from the Calderon-Zygmund inequality.

591

We can now state the main result of this section:

Theorem 3.7. Assume that N > 2, $\beta > \alpha - 2$ and $\alpha > 2$. Then, $[0, +\infty) \subset \rho(A_p)$ and $(\lambda - A_p)^{-1}$ is a positive operator on $L^p(\mathbb{R}^N)$ for any $\lambda \ge 0$. Moreover, if $f \in L^p(\mathbb{R}^N) \cap C_0(\mathbb{R}^N)$, then $(\lambda - A_p)^{-1}f = (\lambda - A)^{-1}f$.

Proof. Let us first prove that if $0 \le \lambda \in \rho(A_p)$, then $(\lambda - A_p)^{-1}$ is a positive operator on $L^p(\mathbb{R}^N)$. To this purpose, take $0 \le f \in L^p(\mathbb{R}^N)$ and set $u = (\lambda - A_p)^{-1}f$. Then, by Corollary 3.6, $u \in D(\tilde{A}_p)$ and

$$-\left(\tilde{A}_p-\lambda q\right)u=qf=:\tilde{f},$$

where $q(x) = \frac{1}{1+|x|^{\alpha}}$. Since \tilde{A}_p generates an exponentially stable and positive C_0 -semigroup $(\tilde{T}_p(t))_{t\geq 0}$ on $L^p(\mathbb{R}^N)$ (see [4, Theorem 2.5]), it follows that the semigroup $(e^{-t\lambda q}\tilde{T}_p(t))_{t\geq 0}$ generated by $\tilde{A}_p - \lambda q$ is positive and exponentially stable. Hence,

$$u = \left(\lambda q - \tilde{A}_p\right)^{-1} \tilde{f} \ge 0.$$

We show that $E = [0, +\infty) \cap \rho(A_p)$ is a non-empty open and closed set in $[0, +\infty)$. By Proposition 3.5 we have $0 \in \rho(A_p)$ and hence $E \neq \emptyset$. On the other hand, using the above positivity property and the resolvent equation we have $(\lambda - A_p)^{-1} \leq (-A_p)^{-1} = L$ for any $\lambda \in E$ and therefore

$$\left\| (\lambda - A_p)^{-1} \right\| \le \|L\|$$
 (3.19)

It follows that the operator norm of $(\lambda - A_p)^{-1}$ is bounded in *E* and consequently *E* is closed. Finally, since $\rho(A_p)$ is an open set, it follows that *E* is open in $[0, +\infty)$. Thus, $E = [0, +\infty)$.

Now in order to show the last statement we may assume $f \in C_c^{\infty}$, the thesis will follow by density. Setting $u := (\lambda - A_p)^{-1} f$, we obtain, by local elliptic regularity (cf. [2, Theorem 9.19]), that $u \in C_{loc}^{2+\sigma}(\mathbb{R}^N)$ for some $0 < \sigma < 1$. On the other hand, $u \in W^{2,p}(\mathbb{R}^N)$, by Corollary 3.6. If $p \ge \frac{N}{2}$, then by the Sobolev's inequality, $u \in L^q(\mathbb{R}^N)$ for all $q \in [p, +\infty)$. In particular, $u \in L^q(\mathbb{R}^N)$ for some $q > \frac{N}{2}$ and hence $Au = -f + \lambda u \in L^q(\mathbb{R}^N)$. Moreover, since $u \in C_{loc}^{2+\sigma}(\mathbb{R}^N)$, it follows that $u \in W_{loc}^{2,q}(\mathbb{R}^N)$. So, $u \in D_{q,\max}(A) \subset W^{2,q}(\mathbb{R}^N) \subset C_b(\mathbb{R}^N)$, by Corollary 3.6 and Sobolev's embedding theorem, since $q > \frac{N}{2}$.

Let us now suppose that $p < \frac{N}{2}$. Take the sequence (r_n) , defined by $r_n = 1/p - 2n/N$ for any $n \in \mathbb{N}$, and set $q_n = 1/r_n$ for any $n \in \mathbb{N}$. Let n_0 be the smallest integer such that $r_{n_0} \le 2/N$ noting that $r_{n_0} > 0$. Then, $u \in D_{p,\max}(A) \subset L^{q_1}(\mathbb{R}^N) \cap L^p(\mathbb{R}^N)$, by Sobolev's embedding theorem. As above we obtain that $u \in D_{q_1,\max}(A) \subset L^{q_2}(\mathbb{R}^N)$. Iterating this argument, we deduce that $u \in D_{q_{n_0},\max}(A)$.

So we can conclude that $u \in C_b(\mathbb{R}^N)$ arguing as in the previous case. Thus, $Au = -f + \lambda u \in C_b(\mathbb{R}^N)$. Again, since $u \in C_{loc}^{2+\sigma}(\mathbb{R}^N)$, it follows that $u \in W_{loc}^{2,q}(\mathbb{R}^N)$ for any $q \in (1, +\infty)$. Hence, $u \in D_{max}(A)$. So, by the uniqueness of the solution of the elliptic problem, we have $(\lambda - A_p)^{-1}f = (\lambda - A)^{-1}f$ for any $f \in C_c^{\infty}(\mathbb{R}^N)$.

4. Generation of semigroups

In this section we show that A_p generates an analytic semigroup on $L^p(\mathbb{R}^N)$, for 1 , provided that <math>N > 2, $\alpha > 2$ and $\beta > \alpha - 2$.

We start by giving the characterization of the domain of A. More precisely we prove that the maximal domain $D_{p,\max}(A)$ coincides with the weighted Sobolev space $D_p(A)$ defined by

$$D_p(A) := \left\{ u \in W^{2,p}\left(\mathbb{R}^N\right) : Vu, \left(1 + |x|^{\alpha-1}\right) \nabla u, \left(1 + |x|^{\alpha}\right) D^2 u \in L^p\left(\mathbb{R}^N\right) \right\}$$

endowed with its canonical norm.

To this purpose we need the following covering result, see [1, Proposition 6.1], to prove a weighted gradient estimate:

Proposition 4.1. For every $0 \le k < 1/2$ there exists a natural number $\zeta = \zeta(N, k)$ with the following property: given $\mathcal{F} = \{B(x, \rho(x))\}_{x \in \mathbb{R}^N}$, where $\rho : \mathbb{R}^N \to \mathbb{R}_+$ is a Lipschitz continuous function with Lipschitz constant k, there exists a countable subcovering $\{B(x_n, \rho(x_n))\}_{n \in \mathbb{N}}$ of \mathbb{R}^N such that at most ζ among the double balls $\{B(x_n, 2\rho(x_n))\}_{n \in \mathbb{N}}$ overlap.

We need the following weighted gradient and second derivative estimate:

Lemma 4.2. Assume that N > 2, $\alpha > 2$ and $\beta > \alpha - 2$. Then there exists a constant C > 0 such that for every $u \in D_p(A)$ we have

$$\left\| \left(1 + |x|^{\alpha - 1} \right) \nabla u \right\|_p \le C \|A_p u\|_p , \qquad (4.1)$$

$$\left\| \left(1 + |x|^{\alpha} \right) D^2 u \right\|_p \le C \|A_p u\|_p .$$
(4.2)

Proof. Let $u \in D_p(A)$. We fix $x_0 \in \mathbb{R}^n$ and choose $\vartheta \in C_c^{\infty}(\mathbb{R}^N)$ such that $0 \le \vartheta \le 1, \vartheta(x) = 1$ for $x \in B(1)$ and $\vartheta(x) = 0$ for $x \in \mathbb{R}^N \setminus B(2)$. Moreover, we set $\vartheta_{\rho}(x) = \vartheta\left(\frac{x-x_0}{\rho}\right)$, where $\rho = \frac{1}{4}(1+|x_0|)$. We apply the well-known inequality

$$\|\nabla v\|_{L^{p}(B(R))} \leq C \|v\|_{L^{p}(B(R))}^{1/2} \|\Delta v\|_{L^{p}(B(R))}^{1/2},$$

where $v \in W^{2,p}(B(R)) \cap W_{0}^{1,p}(B(R))$ and $R > 0,$ (4.3)

to the function $\vartheta_{\rho}u$ and obtain, for every $\varepsilon > 0$,

$$\begin{split} \|(1+|x_{0}|)^{\alpha-1}\nabla u\|_{L^{p}(B(x_{0},\rho))} &\leq \|(1+|x_{0}|)^{\alpha-1}\nabla(\vartheta_{\rho}u)\|_{L^{p}(B(x_{0},2\rho))} \\ &\leq C \left\|(1+|x_{0}|)^{\alpha}\Delta(\vartheta_{\rho}u)\right\|_{L^{p}(B(x_{0},2\rho))}^{\frac{1}{2}} \left\|(1+|x_{0}|)^{\alpha-2}\vartheta_{\rho}u\right\|_{L^{p}(B(x_{0},2\rho))}^{\frac{1}{2}} \\ &\leq C \left(\varepsilon \left\|(1+|x_{0}|)^{\alpha}\Delta(\vartheta_{\rho}u)\right\|_{L^{p}(B(x_{0},2\rho))} + \frac{1}{4\varepsilon} \left\|(1+|x_{0}|)^{\alpha-2}\vartheta_{\rho}u\right\|_{L^{p}(B(x_{0},2\rho))}\right) \\ &\leq C \left(\varepsilon \left\|(1+|x_{0}|)^{\alpha}\Delta u\right\|_{L^{p}(B(x_{0},2\rho))} + \frac{2M}{\rho}\varepsilon \left\|(1+|x_{0}|)^{\alpha-2}u\right\|_{L^{p}(B(x_{0},2\rho))} \\ &\quad + \frac{\varepsilon M}{\rho^{2}} \left\|(1+|x_{0}|)^{\alpha}u\|_{L^{p}(B(x_{0},2\rho))} + \frac{1}{4\varepsilon} \left\|(1+|x_{0}|)^{\alpha-2}u\right\|_{L^{p}(B(x_{0},2\rho))}\right) \\ &\leq C \left(\varepsilon \left\|(1+|x_{0}|)^{\alpha}\Delta u\right\|_{L^{p}(B(x_{0},2\rho))} + 8M\varepsilon \left\|(1+|x_{0}|)^{\alpha-1}\nabla u\right\|_{L^{p}(B(x_{0},2\rho))} \\ &\quad + \left(16\varepsilon M + \frac{1}{4\varepsilon}\right) \left\|(1+|x_{0}|)^{\alpha-2}u\right\|_{L^{p}(B(x_{0},2\rho))}\right) \\ &\leq C(M) \left(\varepsilon \left\|(1+|x_{0}|)^{\alpha}\Delta u\right\|_{L^{p}(B(x_{0},2\rho))} + \varepsilon \left\|(1+|x_{0}|)^{\alpha-1}\nabla u\right\|_{L^{p}(B(x_{0},2\rho))} \\ &\quad + \frac{1}{\varepsilon} \left\|(1+|x_{0}|)^{\alpha-2}u\right\|_{L^{p}(B(x_{0},2\rho))}\right), \end{split}$$

where $M = \|\nabla \vartheta\|_{\infty} + \|\Delta \vartheta\|_{\infty}$. Since $2\rho = \frac{1}{2}(1 + |x_0|)$ we get

$$\frac{1}{2}(1+|x_0|) \le 1+|x| \le \frac{3}{2}(1+|x_0|), \quad \text{for } x \in B(x_0, 2\rho).$$

Thus,

$$\begin{split} \left\| (1+|x|)^{\alpha-1} \nabla u \right\|_{L^{p}(B(x_{0},\rho))} &\leq \left(\frac{3}{2}\right)^{\alpha-1} \left\| (1+|x_{0}|)^{\alpha-1} \nabla u \right\|_{L^{p}(B(x_{0},\rho))} \\ &\leq C \left(\varepsilon \left\| (1+|x_{0}|)^{\alpha} \Delta u \right\|_{L^{p}(B(x_{0},2\rho))} + \varepsilon \left\| (1+|x_{0}|)^{\alpha-1} \nabla u \right\|_{L^{p}(B(x_{0},2\rho))} \\ &\quad + \frac{1}{\varepsilon} \left\| (1+|x_{0}|)^{\alpha-2} u \right\|_{L^{p}(B(x_{0},2\rho))} \right)$$

$$\leq C \left(2^{\alpha} \varepsilon \left\| (1+|x|)^{\alpha} \Delta u \right\|_{L^{p}(B(x_{0},2\rho))} + 2^{\alpha-1} \varepsilon \left\| (1+|x|)^{\alpha-1} \nabla u \right\|_{L^{p}(B(x_{0},2\rho))} \\ &\quad + \frac{2^{\alpha-2}}{\varepsilon} \left\| (1+|x|)^{\alpha-2} u \right\|_{L^{p}(B(x_{0},2\rho))} \right). \end{split}$$

$$(4.4)$$

Let $\{B(x_n, \rho(x_n))\}$ be a countable covering of \mathbb{R}^N as in Proposition 4.1 such that at most ζ among the double balls $\{B(x_n, 2\rho(x_n))\}$ overlap.

We write (4.4) with x_0 replaced by x_n and sum over n. Taking into account the above covering result, we get

$$\begin{split} \left\| (1+|x|)^{\alpha-1} \nabla u \right\|_p &\leq C \bigg(\varepsilon \left\| (1+|x|)^{\alpha} \Delta u \right\|_p + \varepsilon \left\| (1+|x|)^{\alpha-1} \nabla u \right\|_p \\ &+ \frac{1}{\varepsilon} \left\| (1+|x|)^{\alpha-2} u \right\|_p \bigg) \,. \end{split}$$

Choosing ε such that $\varepsilon C < 1/2$ we have

$$\frac{1}{2} \left\| (1+|x|)^{\alpha-1} \nabla u \right\|_{p} \le \frac{1}{2} \left\| (1+|x|)^{\alpha} \Delta u \right\|_{p} + \frac{C}{\varepsilon} \left\| (1+|x|)^{\alpha-2} u \right\|_{p}$$

Furthermore $|||x|^{\alpha-2}u||_p \le ||(1+|x|^{\beta})u||_p \le C ||A_pu||_p$ for any $u \in D_p(A) \subset D_{p,\max}(A)$ and some C > 0 by Corollary 3.6. Hence,

$$\left\| (1+|x|)^{\alpha-1} \nabla u \right\|_p \le C \left(\|A_p u\|_p + \|u\|_p \right)$$

As regards the second order derivatives we consider the classical Calderón-Zygmund inequality on B(1)

$$\left\| D^2 v \right\|_{L^p(B(1))} \le C \|\Delta v\|_{L^p(B(1))}, \quad v \in W^{2,p}(B(1)) \cap W^{1,p}_0(B(1)) ,$$

by rescaling and translating we get

$$\left\| D^2 v \right\|_{L^p(B(x_0,R))} \le C \|\Delta v\|_{L^p(B(x_0,R))}$$
(4.5)

for every $x_0 \in \mathbb{R}^N$, R > 0 and $v \in W^{2,p}(B(x_0, R)) \cap W_0^{1,p}(B(x_0, R))$. We observe that the constant *C* does not depend on *R* and x_0 .

Then we fix $x_0 \in \mathbb{R}^n$ and choose ρ and $\vartheta_{\rho} \in C_c^{\infty}(\mathbb{R}^N)$ as above. Applying (4.5) to the function $\vartheta_{\rho}u$ in $B(x_0, 2\rho)$, we obtain

$$\begin{split} \left\| (1+|x_0|)^{\alpha} D^2 u \right\|_{L^p(B(x_0,\rho))} &\leq \left\| (1+|x_0|)^{\alpha} D^2(\vartheta_{\rho} u) \right\|_{L^p(B(x_0,2\rho))} \\ &\leq C \left\| (1+|x_0|)^{\alpha} \Delta(\vartheta_{\rho} u) \right\|_{L^p(B(x_0,2\rho))} \end{split}$$

Reasoning as above we obtain

$$\left\| (1+|x|)^{\alpha} D^{2} u \right\|_{p}$$

 $\leq C \left(\left\| (1+|x|)^{\alpha} \Delta u \right\|_{p} + \left\| (1+|x|)^{\alpha-1} \nabla u \right\|_{p} + \left\| (1+|x|)^{\alpha-2} u \right\|_{p} \right).$

The lemma follows by Corollary 3.6 and by the gradient estimate (4.1).

The following lemma shows that $C_{c}^{\infty}(\mathbb{R}^{N})$ is a core for $(A, D_{p}(A))$.

Lemma 4.3. Assume N > 2, $\alpha > 2$ and $\beta > \alpha - 2$. The space $C_c^{\infty}(\mathbb{R}^N)$ is dense in $D_p(A)$ with respect to the graph norm.

Proof. Let us first observe that $C_c^{\infty}(\mathbb{R}^N)$ is dense in $W_c^{2,p}(\mathbb{R}^N)$ with respect to the operator norm. Let $u \in W_c^{2,p}(\mathbb{R}^N)$ and consider $u_n = \rho_n * u$, where ρ_n are standard mollifiers. We have $u_n \in C_c^{\infty}(\mathbb{R}^N)$, $u_n \to u$ in $L^p(\mathbb{R}^N)$ and $D^2u_n \to D^2u$ in $L^p(\mathbb{R}^N)$. Moreover, supp $u_n \subset$ supp u + B(1) := K for any $n \in \mathbb{N}$. Then

$$\begin{split} \|A_{p}u - Au_{n}\|_{p} &= \|A_{p}u - Au_{n}\|_{L^{p}(K)} \\ &\leq \|(1 + |x|^{\alpha}) \Delta(u - u_{n})\|_{L^{p}(K)} + \||x|^{\beta}(u - u_{n})\|_{L^{p}(K)} \\ &\leq \|(1 + |x|^{\alpha})\|_{L^{\infty}(K)} \|\Delta(u - u_{n})\|_{L^{p}(K)} \\ &+ \||x|^{\beta}\|_{L^{\infty}(K)} \|(u - u_{n})\|_{L^{p}(K)} \to 0 \text{ as } n \to \infty \,. \end{split}$$

Now, let u in $D_{p,\max}(A)$ and let η be a smooth function such that $\eta = 1$ in B(1), $\eta = 0$ in $\mathbb{R}^N \setminus B(2), 0 \le \eta \le 1$ and set $\eta_n(x) = \eta\left(\frac{x}{n}\right)$. Then consider $u_n = \eta_n u \in W_c^{2,p}(\mathbb{R}^N)$. First we have $u_n \to u$ in $L^p(\mathbb{R}^N)$ by dominated convergence. As regard $A_p u_n$ we have

$$A_{p}u_{n}(x) = (1 + |x|^{\alpha})\Delta(\eta_{n}u)(x) - |x|^{\beta}\eta_{n}(x)u(x)$$

= $\eta_{n}(x)A_{p}u(x) + 2(1 + |x|^{\alpha})\nabla\eta_{n}(x)\nabla u(x) + (1 + |x|^{\alpha})\Delta\eta_{n}(x)u(x)$
= $\eta_{n}(x)A_{p}u(x) + \frac{2}{n}(1 + |x|^{\alpha})\nabla\eta\left(\frac{x}{n}\right)\nabla u(x) + \frac{1}{n^{2}}(1 + |x|^{\alpha})\Delta\eta\left(\frac{x}{n}\right)u(x)$

and

$$\eta_n A_p u \to A_p u$$
 in $L^p\left(\mathbb{R}^N\right)$

by dominated convergence. As regards the last terms we note that $\nabla \eta(x/n)$ and $\Delta \eta(x/n)$ can be different from zero only for $n \le |x| \le 2n$, then we have

$$\frac{1}{n}\left(1+|x|^{\alpha}\right)\left|\nabla\eta\left(\frac{x}{n}\right)\right|\left|\nabla u\right| \le C\left(1+|x|^{\alpha-1}\right)\left|\nabla u\right|\chi_{\{n\le|x|\le 2n\}}$$

and

$$\frac{1}{n^2} \left(1 + |x|^{\alpha}\right) \left| \Delta \eta \left(\frac{x}{n}\right) \right| |u| \le C \left(1 + |x|^{\alpha - 2}\right) |u| \chi_{\{n \le |x| \le 2n\}}$$

The right-hand sides tend to 0 as $n \to \infty$, since by Proposition 3.5 and Lemma 4.2 we have $\|(1+|x|^{\alpha-2})u\|_p \le C \|A_pu\|_p$ and $\|(1+|x|^{\alpha-1})\nabla u\|_p \le C \|A_pu\|_p$. So, applying again the dominated convergence theorem, we obtain $A_pu_n \to A_pu$ in $L^p(\mathbb{R}^N)$. This ends the proof of the lemma.

We can give now the complete characterization of $D_{p,\max}(A)$.

Theorem 4.4. Assume that N > 2, $\alpha > 2$ and $\beta > \alpha - 2$. Then maximal domain $D_{p,\max}(A)$ coincides with $D_p(A)$.

Proof. We have to prove only the inclusion $D_{p,\max}(A) \subset D_p(A)$.

Let $\tilde{u} \in D_{p,\max}(A)$ and set $f = A\tilde{u}$. The operator A in $B(\rho)$, for $\rho > 0$, is an elliptic operator with bounded coefficients, then the problem

$$\begin{cases} Au = f & \text{in } B(\rho) \\ u = 0 & \text{on } \partial B(\rho) \end{cases},$$
(4.6)

admits a unique solution u_{ρ} in $W^{2,p}(B(\rho)) \cap W_0^{1,p}(B(\rho))$ (cf. [2, Theorem 9.15]). Now $u_{\rho} \in D_p(A)$ and by Lemma 4.2 and Corollary 3.6 (i)

$$\left\| \left(1 + |x|^{\alpha - 2} \right) u_{\rho} \right\|_{L^{p}(B(\rho))} + \left\| \left(1 + |x|^{\alpha - 1} \right) \nabla u_{\rho} \right\|_{L^{p}(B(\rho))} + \left\| \left(1 + |x|^{\alpha} \right) D^{2} u_{\rho} \right\|_{L^{p}(B(\rho))} + \| V u_{\rho} \|_{L^{p}(B(\rho))} \le C \| A u_{\rho} \|_{p}$$

with *C* independent of ρ . Using a standard weak compactness argument we can construct a sequence u_{ρ_n} which converges to a function *u* in $W_{loc}^{2,p}$ such that Au = f. Since the estimates above are independent of ρ , also $u \in D_p(A)$. Then we have $A\tilde{u} = Au$ and since $D_p(A) \subset D_{p,\max}(A)$ and *A* is invertible on $D_{p,\max}(A)$ by Proposition 3.5, we have $\tilde{u} = u$.

Let us give now the main result of this section:

Theorem 4.5. Assume N > 2, $\alpha > 2$ and $\beta > \alpha - 2$. Then the operator A_p with domain $D_{p,\max}(A)$ generates an analytic semigroup in $L^p(\mathbb{R}^N)$.

Proof. Let $f \in L^p$, and $\rho > 0$. Consider the operator $\widetilde{A_p} := A_p - \omega$ where ω is a constant which will be chosen later. It is known that the elliptic problem in $L^p(B(\rho))$

$$\begin{cases} \lambda u - \widetilde{A_p}u = f & \text{in } B(\rho) \\ u = 0 & \text{on } \partial B(\rho) \end{cases},$$
(4.7)

admits a unique solution u_{ρ} in $W^{2,p}(B(\rho)) \cap W_0^{1,p}(B(\rho))$ for $\lambda > 0$, (*cf.* [2, Theorem 9.15]).

Let us prove that that $e^{\pm i\theta} \widetilde{A_p}$ is dissipative in $B(\rho)$ for $0 \le \theta \le \theta_{\alpha}$ with suitable $\theta_{\alpha} \in (0, \frac{\pi}{2}]$. To this purpose observe that

$$\widetilde{A_{\rho}}u_{\rho} = \operatorname{div}\left((1+|x|^{\alpha})\nabla u_{\rho}\right) - \alpha|x|^{\alpha-1}\frac{x}{|x|}\nabla u_{\rho} - |x|^{\beta}u_{\rho} - \omega u_{\rho}.$$

Set $u^* = \overline{u}_{\rho} |u_{\rho}|^{p-2}$ and recall that $a(x) = 1 + |x|^{\alpha}$. Multiplying $\widetilde{A_p} u_{\rho}$ by u^* and integrating over $B(\rho)$, we obtain

$$\begin{split} \int_{B(\rho)} \widetilde{A_{\rho}} u_{\rho} \, u^{\star} dx &= -\int_{B(\rho)} a(x) \left| u_{\rho} \right|^{p-4} \left| \operatorname{Re}(\overline{u}_{\rho} \nabla u_{\rho}) \right|^{2} dx \\ &- \int_{B(\rho)} a(x) \left| u_{\rho} \right|^{p-4} \left| \operatorname{Im}(\overline{u}_{\rho} \nabla u_{\rho}) \right|^{2} dx \\ &- (p-2) \int_{B(\rho)} a(x) \left| u_{\rho} \right|^{p-4} \overline{u}_{\rho} \nabla u_{\rho} \operatorname{Re}(\overline{u}_{\rho} \nabla u_{\rho}) dx \\ &- \alpha \int_{B(\rho)} \overline{u}_{\rho} \left| u_{\rho} \right|^{p-2} |x|^{\alpha-1} \frac{x}{|x|} \nabla u_{\rho} \, dx - \int_{B(\rho)} (|x|^{\beta} + \omega) \left| u_{\rho} \right|^{p} dx. \end{split}$$

We note here that the integration by part in the singular case 1 is allowed thanks to [7]. By taking the real and imaginary part of the left- and the right-hand side, we have

and

$$\operatorname{Im}\left(\int_{B(\rho)} \widetilde{A_{p}} u_{\rho} u^{\star} dx\right) = -(p-2) \int_{B(\rho)} a(x) |u_{\rho}|^{p-4} \operatorname{Im}\left(\overline{u}_{\rho} \nabla u_{\rho}\right) \operatorname{Re}\left(\overline{u}_{\rho} \nabla u_{\rho}\right) dx$$
$$-\alpha \int_{B(\rho)} |u_{\rho}|^{p-2} |x|^{\alpha-1} \frac{x}{|x|} \operatorname{Im}\left(\overline{u}_{\rho} \nabla u_{\rho}\right) dx.$$

We can choose $\tilde{c} > 0$ and $\omega > 0$ (depending on \tilde{c}) such that

$$\frac{\alpha(N-2+\alpha)}{p}|x|^{\alpha-2}-|x|^{\beta}-\omega\leq-\tilde{c}|x|^{\alpha-2}.$$

So, we obtain

$$-\operatorname{Re}\left(\int_{B(\rho)} \widetilde{A_{\rho}} u_{\rho} \, u^{\star} dx\right) \ge (p-1) \int_{B(\rho)} a(x) |u_{\rho}|^{p-4} |\operatorname{Re}(\overline{u}_{\rho} \nabla u_{\rho})|^{2} dx$$
$$+ \int_{B(\rho)} a(x) |u_{\rho}|^{p-4} |\operatorname{Im}(\overline{u}_{\rho} \nabla u_{\rho})|^{2} dx + \tilde{c} \int_{B(\rho)} |u_{\rho}|^{p} |x|^{\alpha-2} dx$$
$$= (p-1)B^{2} + C^{2} + \tilde{c}D^{2}.$$

Moreover,

$$\begin{split} & \left| \operatorname{Im} \left(\int_{B(\rho)} \widetilde{A_{\rho}} u_{\rho} \, u^{\star} dx \right) \right| \\ & \leq |p-2| \left(\int_{B(\rho)} |u_{\rho}|^{p-4} a(x) \left| \operatorname{Re}(\overline{u}_{\rho} \nabla u_{\rho}) \right|^{2} dx \right)^{\frac{1}{2}} \\ & \cdot \left(\int_{B(\rho)} |u_{\rho}|^{p-4} a(x) \left| \operatorname{Im}(\overline{u}_{\rho} \nabla u_{\rho}) \right|^{2} dx \right)^{\frac{1}{2}} \\ & + \alpha \left(\int_{B(\rho)} |u_{\rho}|^{p-4} |x|^{\alpha} \left| \operatorname{Im}(\overline{u}_{\rho} \nabla u_{\rho}) \right|^{2} dx \right)^{\frac{1}{2}} \left(\int_{B(\rho)} |u_{\rho}|^{p} |x|^{\alpha-2} dx \right)^{\frac{1}{2}} \\ & = |p-2|BC + \alpha CD, \end{split}$$

where

$$B^{2} = \int_{B(\rho)} |u_{\rho}|^{p-4} a(x) |\operatorname{Re}(\overline{u}_{\rho} \nabla u_{\rho})|^{2} dx,$$

$$C^{2} = \int_{B(\rho)} |u_{\rho}|^{p-4} a(x) |\operatorname{Im}(\overline{u}_{\rho} \nabla u_{\rho})|^{2} dx,$$

$$D^{2} = \int_{B(\rho)} |u_{\rho}|^{p} |x|^{\alpha-2} dx.$$

Let us observe that, choosing $\delta^2 = \frac{|p-2|^2}{4(p-1)} + \frac{\alpha^2}{4\tilde{c}}$ (which is independent of ρ), we obtain

$$\left|\operatorname{Im}\left(\int_{B(\rho)}\widetilde{A_{p}}u_{\rho}\,u^{\star}dx\right)\right| \leq \delta\left\{-\operatorname{Re}\left(\int_{B(\rho)}\widetilde{A_{p}}u_{\rho}\,u^{\star}dx\right)\right\}.$$

If $\tan \theta_{\alpha} = \delta$, then $e^{\pm i\theta} \widetilde{A_{\rho}}$ is dissipative in $B(\rho)$ for $0 \le \theta \le \theta_{\alpha}$. From [12, Theorem I.3.9] follows that the problem (4.7) has a unique solution u_{ρ} for every $\lambda \in \Sigma_{\theta}$, $0 \le \theta < \theta_{\alpha}$ where

$$\Sigma_{\theta} = \{\lambda \in \mathbb{C} \setminus \{0\} : |\operatorname{Arg} \lambda| < \pi/2 + \theta\}.$$

Moreover, there exists a constant C_{θ} which is independent of ρ , such that

$$\|u_{\rho}\|_{L^{p}(B(\rho))} \leq \frac{C_{\theta}}{|\lambda|} \|f\|_{L^{p}}, \quad \text{for } \lambda \in \Sigma_{\theta}.$$
(4.8)

Let us now fix $\lambda \in \Sigma_{\theta}$, with $0 < \theta < \theta_{\alpha}$ and a radius r > 0. We apply the interior L^{p} estimates (cf. [2, Theorem 9.11]) to the functions u_{ρ} with $\rho > r + 1$. So, by (4.8), we have

$$\|u_{\rho}\|_{W^{2,p}(B(r))} \leq C_1 \left(\|\lambda u_{\rho} - \widetilde{A_{\rho}} u_{\rho}\|_{L^p(B(r+1))} + \|u_{\rho}\|_{L^p(B(r+1))} \right) \leq C_2 \|f\|_{L^p}.$$

Using a weak compactness and a diagonal argument, we can construct a sequence $(\rho_n) \to \infty$ such that the functions (u_{ρ_n}) converge weakly in $W_{\text{loc}}^{2,p}$ to a function u which satisfies $\lambda u - \widetilde{A_p}u = f$ and

$$\|u\|_{p} \leq \frac{C_{\theta}}{|\lambda|} \|f\|_{p}, \quad \text{for } \lambda \in \Sigma_{\theta}.$$
(4.9)

Moreover, $u \in D_{p,\max}(A_p)$. We have now only to show that $\lambda - \widetilde{A_p}$ is invertible on $D_{p,\max}(A_p)$ for $\lambda \in \Sigma_{\theta}$. Consider the set

$$E = \left\{ r > 0 : \Sigma_{\theta} \cap C(r) \subset \rho(\widetilde{A_p}) \right\},\$$

where $C(r) := \{\lambda \in \mathbb{C} : |\lambda| < r\}$. Since, by Theorem 3.7, 0 is in the resolvent set of A_p , then $R = \sup E > 0$. On the other hand, the norm of the resolvent is bounded by $C_{\theta}/|\lambda|$ in $C(R) \cap \Sigma_{\theta}$, consequently it cannot explode on the boundary of C(R), then $R = \infty$ and this ends the proof of the theorem.

Remark 4.6. Since A_p generates an analytic semigroup $T_p(\cdot)$ on $L^p(\mathbb{R}^N)$ and the semigroups $T_q(\cdot)$, for $q \in (1, \infty)$ are consistent, see Theorem 3.7, one can deduce (as in the proof of [4, Proposition 2.6]) using Corollary 3.6 that $T_p(t)L^p(\mathbb{R}^N) \subset C_b^{1+\nu}(\mathbb{R}^N)$ for any t > 0, $\nu \in (0, 1)$ and for any $p \in (1, \infty)$.

We end this section by studying the spectrum of A_p . We recall from Proposition 3.5 that

$$\left\| |x|^{\beta} u \right\|_{p} \le C \|A_{p} u\|_{p}, \quad \forall u \in D_{p,\max}(A).$$

So, arguing as in [4], we obtain the following results:

Proposition 4.7. Assume N > 2, $\alpha > 2$ and $\beta > \alpha - 2$. Then:

- (i) The resolvent of A_p is compact in L^p ;
- (ii) The spectrum of A_p consists of a sequence of negative real eigenvalues which accumulates at $-\infty$. Moreover, $\sigma(A_p)$ is independent of p;
- (iii) The semigroup $T_p((\cdot)$ is irreducible, the eigenspace corresponding to the largest eigenvalue λ_0 of A is one-dimensional and is spanned by a strictly positive function ψ , which is radial, belongs to $C_b^{1+\nu}(\mathbb{R}^N) \cap C^2(\mathbb{R}^N)$ for any $\nu \in (0, 1)$ and tends to 0 when $|x| \to \infty$.

References

- [1] G. CUPINI and S. FORNARO, Maximal regularity in L^p for a class of elliptic operators with unbounded coefficients, Differential Integral Equations 17 (2004), 259–296.
- [2] D. GILBARG and N. TRUDINGER, "Elliptic Partial Differential Equations of Second Order", Second edition, Springer, Berlin, 1983.
- [3] L. LORENZI and M. BERTOLDI, "Analytical Methods for Markov Semigroups", Chapman & Hall/CRC, Taylor & Francis Group, Roca Baton, 2007.
- [4] L. LORENZI and A. RHANDI, On Schrödinger type operators with unbounded coefficients: generation and heat kernel estimates, J. Evol. Equ. 15 (2015), 53–88.
- [5] G. METAFUNE, N. OKAZAWA, M. SOBAJIMA and C. SPINA, Scale invariant elliptic operators with singular coefficients, J. Evol. Equ. (2016), 1–49, doi 10.1007/s00028-015-0307-1.
- [6] G. METAFUNE, D. PALLARA and M. WACKER, *Feller Semigroups on* \mathbb{R}^N , Semigroup Forum **65** (2002), 159–205.
- [7] G. METAFUNE and C. SPINA, An integration by parts formula in Sobolev spaces, Mediter. J. Math. 5 (2008), 359–371.
- [8] G. METAFUNE and C. SPINA, *Elliptic operators with unbounded coefficients in L^p spaces*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) **11** (2012), 303–340.
- [9] G. METAFUNE, C. SPINA and C. TACELLI, *Elliptic operators with unbounded diffusion* and drift coefficients in L^p spaces, Adv. Differential Equations **19** (2014), 473–526.
- [10] G. METAFUNE, C. SPINA and C. TACELLI, On a class of elliptic operators with unbounded diffusion coefficients, Evol. Equ. Control Theory 3 (2014), 671–680.
- [11] N. OKAZAWA, An L^p theory for Schrödinger operators with nonnegative potentials, J. Math. Soc. Japan 36 (1984), 675–688.
- [12] A. PAZY, "Semigroups of Linear Operators and Applications to Partial Differential Equations", Applied Mathematical Sciences, Springer-Verlag, 1983.
- [13] Z. SHEN, L_p estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513–546.
- [14] M. SOBAJIMA and C. SPINA, Second order elliptic operators with diffusion coefficients growing as $|x|^{\alpha}$ at infinity, Forum Math. **28** (2016), 391–402.

Dipartimento di Ingegneria dell'Informazione Ingegneria Elettrica e Matematica Applicata Università degli Studi di Salerno Via Giovanni Paolo II, 132 I 84084 Fisciano (Sa), Italia acanale@unisa.it arhandi@unisa.it ctacelli@unisa.it