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Intrinsic torsion in quaternionic contact geometry
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Abstract. We investigate quaternionic contact (qc) manifolds from the point
of view of intrinsic torsion. We argue that the natural structure group for this
geometry is a non-compact Lie group K containing Sp(n)H⇤, and show that any
qc structure gives rise to a canonical K -structure with constant intrinsic torsion,
except in seven dimensions, when this condition is equivalent to integrability in
the sense of Duchemin. We prove that the choice of a reduction to Sp(n)H⇤ (or,
equivalently, a complement of the qc distribution) yields a unique K -connection
satisfying natural conditions on torsion and curvature. We show that the choice
of a compatible metric on the qc distribution determines a canonical reduction
to Sp(n)Sp(1) and a canonical Sp(n)Sp(1)-connection whose curvature is almost
entirely determined by its torsion. We show that its Ricci tensor, as well as the
Ricci tensor of the Biquard connection, has an interpretation in terms of intrinsic
torsion.
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Quaternionic contact geometry was introduced by Biquard in [2]; its model is
the sphere, viewed as the conformal infinity of quaternionic hyperbolic space. A
quaternionic contact (qc) structure is canonically defined on any 3-Sasakian man-
ifold, and on more general classes of hypersurfaces in quaternionic manifolds;
see [5, 14]. Explicit examples on Lie groups are also known (see [3, 4]). Aside
from the link with quaternionic-Kähler geometry, a motivating aspect of qc geom-
etry is the presence of a conformal class of subriemannian metrics for which the
Yamabe problem can be studied (see [10]).

A qc structure on a manifold of dimension 4n + 3 is defined as a distribution
of rank 4n that can locally be written as ker ⌘1 \ ker ⌘2 \ ker ⌘3, where the 2-forms
d⌘s define an almost quaternion Hermitian metric on the distribution at each point.
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Whilst the metric on the distribution is not fixed, its conformal class is determined.
Qc geometry is generally studied by fixing a metric in this class; when n > 1, this
determines a unique Riemannian metric and a metric connection, called the Biquard
connection [2]. For n = 1, a similar result holds; however, the resulting connec-
tion only has the same features as the Biquard connection when the qc structure is
integrable in the sense of Duchemin [6].

These connections are defined by torsion conditions which make them unique.
The definition of the Riemannian metric involves the choice of a complement to the
qc distribution, which is characterized by the existence of a compatible connection
with the required torsion conditions. One is led to wonder to which extent the choice
of these conditions is canonical. The literature shows the geometric significance of
the curvature of the Biquard connection, and in particular of its Ricci tensor: for
instance, it was shown in [9, 14] that the traceless Ricci is zero precisely when the
qc structure is 3-Sasakian up to local homothety, and a Lichnerowicz-type result
involving the Ricci tensor was obtained in [11]. Further, the scalar curvature used
in the study of the Yamabe problem is the trace of this Ricci tensor. It is natural
to ask why and whether the Biquard connection and its Ricci tensor are canonical
objects of qc geometry.

This paper uses the language of special geometries: namely, of G-structures
whose intrinsic torsion is partially prescribed. The intrinsic torsion of a G-structure
is a tensor representing the first order obstruction to its flatness; it is obtained from
the torsion of any connection via a projection to Coker @G , where

@G :

⇣
R4n+3

⌘
⇤

⌦ g ! 32
⇣
R4n+3

⌘
⇤

⌦ R4n+3

is induced by the inclusion g ⇢ (R4n+3)⇤ ⌦ R4n+3. A qc structure cannot be flat
in the sense of G-structures, for this would make the distribution integrable in the
sense of the Frobenius theorem; the type of condition that we will consider is that
the intrinsic torsion take values in a fixed G-invariant subspace of Coker @G .

Understanding what the group G should be is one of the goals of this paper. As
a first step, letting Q be the stabilizer of a point in the Grassmannian of 4n-planes
in R4n+3, we show that a qc distribution consists in a Q-structure with intrinsic
torsion taking values in the orbit Q · 2

Q
0 , where 2

Q
0 is a distinguished element in

Coker @Q . The fact that we are dealing with a single Q-orbit suggests that a qc Q-
structure has a canonical reduction, determined by the intrinsic torsion itself. We
are led to consider a smaller structure group B, namely the stabilizer in Q of 2

Q
0 ,

obtaining a notion of qc B-structure.
The definition gives obvious constraints on the intrinsic torsion of a qc B-

structure, which we refine using the Bianchi identity and a calculation involving
certain equivariant linear maps. We show that a qc B-structure takes values in
B · 2B

0 when n > 1; if n = 1, this is only true up to a 12-dimensional, irreducible
representation of SO(4), denoted by S5,1 in [6]. In fact, in the course of the paper we
prove that this component of the intrinsic torsion is zero if and only if the structure
is integrable in the sense of [6] (an empty condition for n > 1).
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Restricting now to the integrable case, we can repeat the argument and further
reduce the structure group to the stabilizer of 2B

0 , which has the form

K = Sp(n)H⇤ n
⇣
R4n

⌘
⇤

,

where (R4n)⇤ is the canonical representation of Sp(n)H⇤ considered in quaternionic
geometry, acting as a subgroup of Hom(R3, R4n). Using the Bianchi identity again,
we prove that the intrinsic torsion of an integrable qc K -structure is constant. In
other words, the corresponding K -orbit of Coker @K contains a single point, and we
cannot repeat the usual procedure. We take this as evidence of the fact that K is the
“natural” structure group of qc geometry. We emphasize that a K -structure involves
neither the choice of a metric on the qc distribution nor of a complement.

The fact that the intrinsic torsion is constant suggests that there could be a
canonical connection with constant torsion, obtained by inverting the map

@K :

⇣
R4n+3

⌘
⇤

⌦ k ! Im @K .

This cannot be done for two reasons: @K is not injective, so the torsion condition
does not define a unique connection, and secondly K is not reductive, so @K does
not even have a K -equivariant right inverse. Nonetheless, we are able to show that
a canonical connection exists on any Sp(n)H⇤-reduction of a qc K -structure; it is
characterized by having constant torsion and satisfying natural conditions on the
curvature. It will be called the qc connection.

The torsion condition gives strong restrictions on the curvature via the Bianchi
identity. A long computation with highest weight vectors allows us to compute the
space in which the curvature takes values. This curvature is a stronger invariant than
the qc conformal curvature tensor introduced in [14], since it obstructs the existence
of a local diffeomorphism with the Heisenberg group that preserves not only the qc
distribution, but also the choice of a complement.

In the last part of the paper, we consider integrable qc structures with a fixed
compatible metric on the associated distribution. These can be characterized as
Sp(n)Sp(1)-structures satisfying an intrinsic torsion condition; we refer to them as
quaternionic-contact metric (qcm) structures.

The qc connection has a metric analogue that we call the qcm connection; the
two are related via a projection, and the results on the curvature of the former carry
over to the latter. In fact, the curvature is entirely determined by the intrinsic torsion
and its covariant derivative, except for the component S4E ⇢ sp(n)⌦sp(n), which
correponds to the curvature space of hyperkähler manifolds of dimension 4n. This
leads to a new proof of a result of [12], relating closedness of the fundamental
four-form to the vanishing of the traceless Ricci tensor for n > 1.

We show that the intrinsic torsion of a qcm structure consists of three compo-
nents: one is a symmetric tensor which can be identified with the Ricci tensor, one
obstructs the integrability of the complement (or “vertical” distribution), and one is
trivial, determined by the definitions.
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Comparing our results with the literature, we recover the existence of both
the Biquard and Duchemin connection on integrable qcm manifolds of arbitrary
dimensions. We show that the “horizontal” part of the curvature of the Biquard
connection is determined linearly by the qcm curvature and torsion; this indicates
that formulae using this part of the curvature can be equally expressed in terms
of the qcm curvature. In particular, we prove that the Ricci tensor of the Biquard
connection can also be identified with the symmetric part of the intrinsic torsion.

1. Representations of Sp(n)Sp(1)

The structure group Sp(n)Sp(1) plays a central role in qc geometry; whilst its rep-
resentation theory is well understood (see [18, 20]), it will be useful to write down
some explicit formulae for use in subsequent computations.

Consider the usual inclusion Sp(n) ⇢ Sp(2n, C) obtained by identifying Hn

withC2n in such a way that multiplication on the left by j isC-linear. This inclusion
induces an identification of sp(2n, C) with the complexification of sp(n).

Denoting by Ei j the elementary matrix with 1 at the entry (i, j), the Cartan
subalgebra of sp(n) is given as

Span {H1, . . . , Hn} , Hk = i Ekk

and it maps to the standard Cartan subalgebra of sp(2n, C) by

Hk 7! i(Ekk � En+k,n+k).

The weight lattice of the latter is generated by

Lk : h⇤

! C, Lk
�
Hj

�
= i�k j .

We shall denote by E the standard representation

E = C2n = Span {v1, . . . , v2n}

of sp(2n, C), so that vi has weight Li and vn+i has weight �Li .
The second factor of the product Sp(n)Sp(1) has sp(1) as its Lie algebra. We

shall fix a generator M of its weight lattice with M(H1) = �i , and denote by

H = C2 = Span {h1, h2}

the standard representation, so that h1 has weight �M and h2 has weight M . We
can think of H as the sp(1)-representation given by left multiplication on the quater-
nions, the identification being given by

a + jb 7! ah1 + bh2, for a, b 2 C.
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Table 1.1. Roots of sp(n)

sp(2n, C) C ⌦ sp(n) root > 0
Ei,n+ j + E j,n+i �

1
2
�
Ei j + E ji

�
j +

1
2 i ⌦

�
Ei j + E ji

�
k Li + L j , i 6= j yes

Ei,n+i �
1
2 Eii j +

1
2 i ⌦ Eii k 2Li yes

Ei, j � En+ j,n+i
1
2
�
Ei j � E ji

�
�

1
2 i ⌦

�
Ei j + E ji

�
i Li � L j i < j

En+i, j + En+ j,i
1
2
�
Ei j + E ji

�
j +

1
2 i ⌦

�
Ei j + E ji

�
k �Li � L j , i 6= j no

En+i,i 1
2 Eii j +

1
2 i ⌦ Eii k �2Li no

We fix the standard ordering for the roots of sp(n), and declare M to be positive.
This is summarized in Tables 1.1 and 1.2, which also contain a generator for each
root space. The isomorphism R4 = H determined by the standard basis {1, i, j, k}
can be extended to an identification R4n = C2n = Hn via

e4( j�1)+1 = v j , e4( j�1)+2 = iv j , e4( j�1)+3 = vn+ j , e4( j�1)+4 = �ivn+ j .

Here {e1, . . . , e4n} is the standard basis of R4n; the dual basis will be denoted by
e1, . . . , e4n . This induces a representation of Sp(n)H⇤, and hence of its subgroup
Sp(n)Sp(1), via

(Sp(n) ⇥ H⇤) ⇥ Hn
! Hn, (g, p) · v = gvp�1.

Table 1.2. Roots of sp(1)

sp(2, C) C ⌦ sp(1) root > 0
E1,2 �

1
2 j +

1
2 i ⌦ k �2M no

E2,1 1
2 j +

1
2 i ⌦ k 2M yes

This is a real representation whose complexification is well known to be isomorphic
to E⌦H , or EH (we shall omit tensor products signs in this context). By choosing
a highest weight vector in both representations and applying subsequently negative
roots to both sides, one obtains the explicit isomorphism of Table 1.3. Since R4n

Table 1.3. Isomorphism of Hn
⌦ C with EH

R4n ⌦ C EH weight
e4( j�1)+1 � ie4( j�1)+2 v j h2 L j + M
e4( j�1) j+1 + ie4( j�1)+2 �vn+ j h1 �L j � M
e4( j�1)+3 � ie4( j�1)+4 v j h1 L j � M
e4( j�1)+3 + ie4( j�1)+4 vn+ j h2 �L j + M
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is isomorphic to its dual via ei ! ei , we shall also identify EH with (R4n)⇤ as an
Sp(n)Sp(1)-module. Thus, we will represent both e1 � ie2 and e1 � ie2 by v1h2;
this has the consequence that v1h2y v1h2 = 0, but v1h2y vn+1h1 = �2. We also
identify 32(R4n)⇤ ⇠

= so(4n) by making 32(R4n)⇤ act on R4n as

32(R4n)⇤ ⇥ R4n ! R4n, (↵, v) 7! vy↵.

In other words, ei ^ e j is identified with ei ⌦ e j � e j ⌦ ei = E ji � Ei j . Then the
action of H⇤ on R4n induces the Lie algebra homomorphism

Lie(H⇤) = sp(1) � R ! Span {Id} � so(4n),
1 7! �Id, i 7! �!1, j 7! �!2, k 7! �!3,

(1.1)

where (as in [19]) the !s satisfy

!1 =

1
2
i
�
v j h2 ^ vn+ j h1 + v j h1 ^ vn+ j h2

�
,

and

!2 + i!3 = v j h2 ^ vn+ j h2, !2 � i!3 = v j h1 ^ vn+ j h1.

Here and in the sequel, ei j or ei, j stands for the wedge product ei ^ e j , and sum-
mation over double indices is implied. It is easy to deduce that the subspace

Span {!1,!2,!3} ⇢ 32
⇣
R4k

⌘
⇤

is fixed underH⇤ action; in fact, it is isomorphic to ImH = sp(1) as anH⇤-module
via (1.1), where H⇤ acts on ImH via

fAd : H⇤

! EndR(ImH), fAd(p)q = pq p.

The tensor product of two complex representations of Sp(n) and Sp(1) has a real
structure when both factors have a real or quaternionic structure; all real represen-
tations of Sp(n)Sp(1) can be written in this way. We denote by3k

0E the irreducible
representation of Sp(n) with highest weight L1 + . . . + Lk , and more generally let
Vl1,...,lk be the irreducible representation with highest weight l1L1 + · · · + lk Lk .
It will be understood that 3k

0E and Vl1,...,lk represent the zero vector space when
n < k. We have the following decompositions (see [21]):

S2E ⌦ E = S3E � E � V21, 32
0E ⌦ E = 33

0E � E � V21,

33(EH) =

(
33
0ES

3H + V21H + E(S3H + H) n > 1
EH n = 1.
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We shall also need:
Lemma 1.1. The following isomorphisms of Sp(n)-modules hold:

32
0E ⌦ S2E = V31 + V211 + 32

0E + S2E,

S2E ⌦ S2E = S4E + V31 + V22 + S2E + 32
0E + R.

Proof. The fact that each module on the right hand side appears in the tensor prod-
uct can be shown by exhibiting a highest weight vector. Moreover, the Weyl Char-
acter Formula (see (24.19) in [8]) gives

dim V211 =

1
2
(n + 1)(2n + 1)(2n � 1)(n � 2),

dim Vl,1 =

l(2n � 2)
l + 2n � 1

✓
l + 2n
l + 1

◆
,

dim Vl,2 =

(l2 + 2ln � 2n � 1)
2

✓
l + 2n � 2
l + 1

◆
.

It is now a matter of showing that dimensions add up.

2. Distributions as G-structures

In this section we show that qc structures can be characterized in terms of intrinsic
torsion using the language of G-structures. The structure group considered in this
section, denoted by Q, is inherent in the definition of qc structures, but we will
see in later sections that smaller structure groups capture the geometry more com-
pletely. A qc structure on a manifold of dimension 4n + 3 is a distribution D of
rank 4n which can locally be defined as

D = ker ⌘1 \ ker ⌘2 \ ker ⌘3,

where the ⌘s are one-forms such that (d⌘1, d⌘2, d⌘3) restricted toD are compatible
with an almost quaternion Hermitian metric. The latter condition can be rephrased
by requiring the existence at each point x of a frame

u : R4n ! Dx , d⌘s(u(ea), u(eb)) = !s(ea, eb),

where the !s are as in Section 1. The qc structure is said to be integrable (in the
sense of Duchemin) if in addition at each point there are vectors Rs such that

(Rsy d⌘r )|D + (Rry d⌘s)|D = 0;

this condition turns out to be automatic for n > 1 (see [6]). Notice that this is not
related to integrability of the distribution D, nor to integrability in the sense of G-
structures. Whether qc or not, a codimension three distribution can be viewed as a
Q-structure, where

Q = GL(4n, R) ⇥ GL(3, R) n Hom
⇣
R3, R4n

⌘
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is the stabilizer of a point in the Grassmannian of 4n-planes in R4n+3. We shall
denote by T the Q-module obtained by letting Q act on R4n+3 via

(g, p, h) :
✓

v
w

◆
7!

✓
gv + h(p(w))

p(w)

◆
,

denoting by e1, . . . , e4n+3 the standard basis of T , and by e1, . . . , e4n+3 the dual
basis of T ⇤. We shall write

T = R4n � R3 = V � W ;

notice that V and W ⇤ are Q-submodules of T and T ⇤ respectively, but W and
V ⇤, despite having a natural Q-module structure, are only GL(4n, R) ⇥GL(3, R)-
submodules. On the other hand, T/V is a Q-module isomorphic to W ⇤⇤. It will be
convenient to denote by ws the image in T/V of e4n+s , and the e4n+s by ws . We
shall use the contracted notation wrs , wrs for the wedge product of these elements
as well. The intrinsic torsion of a Q-structure takes values in a Q-module defined
as the cokernel of the map

@Q : T ⇤

⌦ q ! 32T ⇤

⌦ T

obtained by restriction from the map

@ : T ⇤

⌦ gl(T ) ! 32T ⇤

⌦ T, ek ⌦ (ei ⌦ e j ) 7! eki ⌦ e j .

Lemma 2.1. The alternating map @Q fits into the exact sequence of Q-modules

0 ! S2T ⇤

⌦ V + S2W ⇤

⌦ T ! T ⇤

⌦ q
@Q
�! 32T ⇤

⌦ T ! 32V ⇤

⌦

T
V

! 0.

Proof. Decomposing T ⇤
⌦ q into GL(4k, R) ⇥ GL(3, R)-submodules, @Q deter-

mines three isomorphisms

W ⇤

⌦ gl(4n, R)
⇠
=

�! W ⇤

⌦ V ⇤

⌦ V,

V ⇤

⌦ gl(3, R)
⇠
=

�! W ⇤

⌦ V ⇤

⌦ W,

V ⇤

⌦ Hom
⇣
R3, R4n

⌘
⇠
=

�! W ⇤

⌦ V ⇤

⌦ V,

and three exact sequences

0 ! S2V ⇤

⌦ V ! V ⇤

⌦ gl(4k, R)
@Q
�! 32V ⇤

⌦ V ! 0

0 ! S2W ⇤

⌦ W ! W ⇤

⌦ gl(3, R)
@Q
�! 32W ⇤

⌦ W ! 0

0 ! S2W ⇤

⌦ V ! W ⇤

⌦ Hom
⇣
R3, R4k

⌘ @Q
�! 32W ⇤

⌦ V ! 0.
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Thus, the cokernel of @Q is 32V ⇤
⌦ W , and the kernel is

S2V ⇤

⌦ V + S2W ⇤

⌦ T + W ⇤

⌦ V ⇤

⌦ V,

which is a Q-submodule of S2T ⇤
⌦ T that can be written as the sum of the two

submodules S2T ⇤
⌦ V and S2W ⇤

⌦ T (intersecting non-trivially).

This shows that the intrinsic torsion is a map

2Q
: P ! 32V ⇤

⌦

T
V

.

We can now characterize qc geometry as follows:

Proposition 2.2. The distribution associated to a Q-structure is integrable if and
only if 2Q is identically zero. It is qc if and only if 2Q takes values in the Q-orbit
of

!1 ⌦ w23 + !2 ⌦ w31 + !3 ⌦ w12.

Proof. Let P be a Q-structure on M . We can represent q as a space of block
matrices, and decompose connection form, tautological form and torsion as

! =

✓
!V ⇤

0 !W

◆
, ✓ =

✓
✓V
✓W

◆
, 2 =

✓
2V
2W

◆
.

The Q-structure P determines at each point x 2 M a projection

h : 32T ⇤

x M ! 32(Dx )
⇤,

where D is the distribution determined by Q. Then, working with a local section s
of P , we can identify the intrinsic torsion with

h
�
s⇤2W

�
= h

�
s⇤(d✓W + !W ^ ✓W )

�
= h

�
s⇤d✓W

�
.

By the Frobenius theorem, D is integrable if and only if the ideal generated by
s⇤✓4n+1, s⇤✓4n+2 and s⇤✓4n+3 is a differential ideal; this is equivalent to

h
�
s⇤(d✓W )

�
= 0.

On the other hand, h(s⇤2W ) is zero if and only if 2Q is zero.
Similarly, for the second part of the statement, the qc condition is equivalent to

h
�
s⇤2W

�
= !1 ⌦ w1 + !2 ⌦ w2 + !3 ⌦ w3

for an appropriately chosen section s.
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A recurring phenomenon in the study of G-structures is that the intrinsic tor-
sion is determined by the exterior derivative of some invariant forms. The struc-
ture group Q has no invariant forms; there is, however, an invariant vector-bundle-
valued differential form whose exterior covariant derivative determines the intrinsic
torsion. This relation is best expressed in the language of tensorial forms (see, e.g.,
[15]). If P is a Q-structure and S a Q-module, a differential form in �k(P, S) is
called pseudotensorial if it is invariant under the natural action of Q on�k(P, S) ⇠

=

�k(P) ⌦ S. It is called tensorial if in addition it is horizontal, i.e., the interior
product with any fundamental vector field is identically zero. Given a connection
and a pseudotensorial form ↵ in �k(P, S), we denote by D↵ its exterior covariant
derivative, as a tensorial (k + 1)-form. In particular, if ✓ is the tautological form,
2 = D✓ is the torsion. To any tensorial form ↵ in �k(P, S) one can associate an
equivariant map

↵✓ : P ! 3kT ⇤

⌦ S,
⌧
↵✓ ,

1
k!

✓ ^ · · · ^ ✓

�
= ↵,

where the angle brackets represent the standard contraction

3kT ⇤

⌦ 3kT ! R,
D
⌘1 ^ · · · ^ ⌘k, X1 ^ · · · ^ Xk

E
= det

⇣
⌘i
�
X j

�⌘
.

With this choice of constants, if G is the trivial group and ↵ = ✓1 ^ · · · ^ ✓k , then
↵✓ is the constant map ↵✓ ⌘ e1,...,k .

We shall denote by r↵ the covariant derivative of ↵, i.e.,

r↵ = D(↵✓ ) 2 �1
⇣
P,3kT ⇤

⌦ S
⌘

.

Given two tensorial forms ↵ 2 �h(P, T ), � 2 �k(P, S), where ↵ = ↵i ⌦ ei , one
can define the interior product ↵y� as the tensorial, S-valued (h + k � 1)-form

(↵y�)u = ↵iu ^ (Xiy�u), ⇡⇤u(Xi ) = u(ei );

for h = 0, this is the usual interior product. In this notation, if ↵ is a tensorial
k-form, then

D↵ =

⌧
r↵,

1
k!

✓ ^ · · · ^ ✓

�
+ 2y↵. (2.1)

The structure group Q fixes a tensor

w123 ⌦ w123 2 33W ⇤

⌦ 33(T/V ) ⇢ 33T ⇤

⌦ ⇤,

where we have set  = 33W ⇤. Accordingly, on a Q-structure P the associated
tensorial 3-form

� 2 �3(P, ⇤), �✓ ⌘ w123 ⌦ w123

is Q-invariant, hence parallel.
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Proposition 2.3. Fix a connection on a Q-structure P . Then the intrinsic torsion
2Q is given by the composition

P (D� )✓
���! 32T ⇤

^ 32W ⇤

⌦ ⇤
p
�! 32V ⇤

⌦ 32W ⇤

⌦ ⇤
c
�! 32V ⇤

⌦

T
V

where p is induced by the restriction map 32T ⇤
! 32V ⇤ and c is the contraction

induced by interior product.

Proof. By (2.1), since � is parallel,

2y � = D� ;

on the other hand (2y � )✓ is obtained from 2✓ ⌦ �✓ via a contraction
⇣
32T ⇤

⌦ W
⌘

⌦ 33W ⇤

⌦ ⇤

! 32T ⇤

^ 32W ⇤

⌦ ⇤.

This shows that (D� )✓ takes values in 32T ⇤
^ 32W ⇤

⌦ ⇤, so the composition
appearing in the statement is well defined. It is now straightforward to verify that
c � p � (D� )✓ coincides with the projection to Coker @B of the torsion 2.

This link between intrinsic torsion and tensorial forms is a recurrent feature of
qc geometry; it will be used in Sections 5 and 7 to prove vanishing conditions on
the intrinsic torsion via the Bianchi identity.

3. Examples

In this section we recall three explicit examples of qc structures, which will be used
in the rest of the paper for reference. They can be seen as the “space forms” of qc
geometry, corresponding to the case of positive, negative and zero scalar curvature.

Example 3.1. Consider the sphere as a homogeneous space G/H , where

G = Sp(n + 1)Sp(1), H = Sp(n)Sp(1).

The Lie algebra of G is

g =

⇢✓✓ a b
�bT d

◆
, q

◆
| a 2 sp(n), b 2 Hn, d, q 2 ImH

�
,

and h is defined by b = 0, d = q.
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We set

w1 = (i Enn,�i) w2 = ( j Enn,� j), w3 = (kEnn,�k)

and

e4l+1 = �En,l+1 + El+1,n, e4l+2 = i(En,l+1 + El+1,n),
e4l+3 = j (En,l+1 + El+1,n), e4l+4 = k(En,l+1 + El+1,n), for 0  l  n � 1.

Then e1, . . . , e4n, w1, w2, w3 define a frame on a complement m of h in g, hence
an Sp(n)Sp(1)-structure; this is invariant under H , so it defines a global structure
on G/H . We compute

dea|32m = (eay!s) ^ ws, dws
|32m = !s .

The projection to h defines a connection; its torsion is

2 = (eay!s) ^ ws
⌦ ea + !s ⌦ ws .

This shows immediately that 2Q
= !s ⌦ ws , so by Proposition 2.2 this is a qc

structure. Consistently with Proposition 2.3,

D� =

⇣
!1 ^ w23 + !2 ^ w31 + !3 ^ w12

⌘
⌦ w123.

We note for future reference that the curvature of this connection is

� = �

X
a<b

eab ⌦ ea ^ eb �

X
a<b,s

eab ⌦ eay!s ^ eby!s �

�
!s � 2wsyw123

�
⌦ !s .

Example 3.2. A similar example is the homogeneous space G/H , where

G = Sp(n, 1)Sp(1), H = Sp(n)Sp(1).

In this case we choose a complement m spanned by

w1 =

�
� i Enn, i

�
, w2 =

�
� j Enn, j

�
, w3 =

�
� kEnn, k

�
,

and

e4l+1 = En,l+1 + El+1,n, e4l+2 = i
�
� En,l+1 + El+1,n

�
,

e4l+3 = j
�
� En,l+1 + El+1,n

�
, e4l+4 = k

�
� En,l+1 + El+1,n

�
.

The connection defined by the projection has torsion

2 = �(eay!s) ^ ws
⌦ ea + !s ⌦ ws

and curvature

� =

X
a<b

eab ⌦ ea ^ eb +

X
a<b,s

eab ⌦ eay!s ^ eby!s +

�
!s + 2wsyw123

�
⌦ !s .
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Example 3.3. The remaining example to consider is the Heisenberg group, which
is characterized by the existence of a left-invariant basis of one-forms e1, . . . , e4n+3
with

dea = 0, de4n+s = !s,

where the !s are defined in terms of the ea in the usual way. In this case we can use
the (�) connection, i.e., the connection for which the indicated frame is parallel. It
has torsion 20 and curvature zero.

A common feature of these examples is the presence of a natural connection,
which will play a role in Section 9. Other homogeneous examples appear in [3, 4].
Hypersurfaces in quaternionic manifolds also give rise to qc structures under certain
conditions, as shown in [5, 14].

4. Qc dialectics

In the language of Proposition 2.2, a qc structure is a Q-structure whose intrinsic
torsion is in the Q-orbit of 2Q

0 , which we define as the image in 32V ⇤
⌦

T
V of

20 = !1 ⌦ e4n+1 + !2 ⌦ e4n+2 + !3 ⌦ e4n+3 2 32T ⇤

⌦ T .

This means that any qc structure has a natural reduction to B, where B denotes the
stabilizer in Q of2Q

0 . In this section we determine B and study the space Coker @B
in which the intrinsic torsion of B-structures takes values. The forms !s are fixed
by the action of Sp(n). More generally, we say three elements �1, �2, �3 of 32R4n
are compatible with an Sp(n)-structure if some linear isomorphism of R4n maps
each �s in !s .

Lemma 4.1. Let 0 ⇢ 32R4n be the space spanned by three 2-forms compatible
with an Sp(n)-structure. Then the structure is uniquely determined by 0, up to H⇤

action.

Proof. Let �1, �2, �3 be compatible with an Sp(n)-structure. Each two-form �s
defines an isomorphism

�s : R4k !

⇣
R4k

⌘
⇤

, X 7! Xy �s .

Three complex structures are induced on R4n by

J3 = �� �1
2 �1 = � �1

1 �2

and cyclic permutations. It follows that

(a�1 + b�2 + c�3)�1 =

1
a2 + b2 + c2

a� �1
1 + b� �1

2 + c� �1
3 .
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We can therefore define a linear map on the space 0 spanned by the �s ,

0 ! Hom
⇣⇣

R4n
⌘

⇤

, R4n
⌘

, � ! � † = k� k
2 � �1, for � 6= 0.

By construction
↵†� + �†↵ = h↵,�iId, for ↵,� 2 0.

Take three elements ↵,�, � in 0 and assume they are also compatible with an
Sp(n)-structure. Then

↵�1� + ��1↵ = k↵k
�2 ↵†� + k�k

�2 �†↵ = 0,

leading to
k↵k

�2 ↵†� � k�k
�2 ↵†� + k�k

�2
h↵,�iId = 0.

Now observe that ↵†� is not a multiple of the identity whenever ↵,� are linearly
independent. Thus, ↵,� are orthogonal with the same norm.

Summing up, ↵, � and � form an orthogonal basis of 0 of elements with
the same norm; this basis is positevely oriented by construction, and so uniquely
determined up to H⇤ action.

Recall from Section 1 that both Hn and ImH (and therefore its dual (ImH)⇤)
are equipped with a left H⇤-action. The identification R4n = Hn induces

⇢ : GL(n, H) ⇥ H⇤

! GL(4n, R), ⇢(g, p)(v) = gvp�1.

Proposition 4.2. The stabilizer in Q of 2Q
0 is the group

B = Sp(n)H⇤ n Hom(W, V ),

where the first factor represents the image of the homomorphism

◆ : Sp(n) ⇥ H⇤

! GL(V ) ⇥ GL(W ), (g, p) 7!

�
⇢(g, p), fAd(p)�

having implicitly identified W with (ImH)⇤.

Proof. It is clear that Sp(n) n Hom(W, V ) fixes 2
Q
0 . As for H⇤, observe that ◆

makes
Span {!1,!2,!3} ⇢ 32V ⇤

isomorphic to ImH as a representation of H⇤ (see Section 1). Thus, identifying W
with (ImH)⇤, 2Q

0 is in the trivial submodule of ImH ⌦ (ImH)⇤. Conversely, we
must show that the stabilizer of 2Q

0 in GL(V ) ⇥ GL(W ) is ◆(Sp(n) ⇥ H⇤). In fact,
the stabilizer of Span {!1,!2,!3} in GL(V ) ⇥ GL(W ) is Sp(n)H⇤

⇥ GL(W ) by
Lemma 4.1. On the other hand 2

Q
0 determines an isomorphism

W ⇤

! Span {!1,!2,!3}

and the subgroup of Sp(n)H⇤
⇥GL(W ) that fixes this isomorphism is precisely the

image of ◆.
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Remark 4.3. The identification ofW with (ImH)⇤has the consequence that scalars
� 2 R⇤

⇢ B act on T as ��2IdW + ��1IdV .
We can now refine the second part of Proposition 2.2 in the following way:

Corollary 4.4. Every qc Q-structure has a unique B-reduction P such that

2Q(u) = 20, for u 2 P.

We shall refer to such a structure as a qc B-structure. This leads us to consider the
intrinsic torsion of B-structures. Consider the following diagram:

T ⇤
⌦ b

✏✏

@B // 32T ⇤
⌦ T

✏✏

// Coker @B //

r
✏✏

0

T ⇤
⌦ q

@Q // 32T ⇤
⌦ T // 32V ⇤

⌦
T
V

// 0.

By construction r is B-equivariant, and maps the intrinsic torsion of a B-structure
to its Q-intrinsic torsion, i.e., the intrinsic torsion of the induced Q-structure. Ac-
cordingly, a qc B-structure has intrinsic torsion in r�1(2Q

0 ). In fact, we will see
in Section 5 that the intrinsic torsion of a qc B-structure is forced to lie in a much
smaller space. For the moment, we use the above diagram to study Coker @B .

Lemma 4.5. The projection 32T ⇤
⌦ T ! Coker @B induces by restriction B-

equivariant maps

pVVV : 32V ⇤

⌦ V ! Coker @B, pVWW : V ⇤

⌦ W ⇤

⌦ W ! Coker @B,

such that
ker r = Im pVVV + Im pVWW (not a direct sum).

Proof. We first prove that

Im @B � 32W ⇤

⌦ T + V ⇤

⌦ W ⇤

⌦ V . (4.1)

Indeed, the maps

@B : V ⇤

⌦ Hom(W, V ) ! 31,1
⌦ V, @B : W ⇤

⌦ Hom(W, V ) ! 30,2
⌦ V

are obviously surjective; moreover, the composition map

W ⌦ sp(1) @B
�! 32W ⇤

⌦ W + (V ⌦ W ) ⌦ V ! 32W ⇤

⌦ W

is an isomorphism. This proves (4.1).
The projection 32T ⇤

⌦ T ! Coker @B induces a B-equivariant map

p : 32T ⇤

⌦ V ! Coker @B;
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by (4.1), p factors through

32T ⇤

⌦ V ! 32V ⇤

⌦ V ! Coker @B .

Composing on the left with the inclusion 32V ⇤
⌦ V ! 32T ⇤

⌦ V (which is not
B-equivariant) gives an equivariant map.

Similarly, the map

T ⇤

^ W ⇤

⌦ T ! Coker @B

factors through

T ⇤

^ W ⇤

⌦ T ! V ⇤

⌦ W ⇤

⌦ W ! Coker @B .

Finally, (4.1) implies that the map

32V ⇤

⌦ T + V ⇤

⌦ W ⇤

⌦ W ! Coker @B

is surjective, yielding the final part of the statement.

Remark 4.6. It is not possible to construct an analogous B-equivariant map

pVVW : 32V ⇤

⌦ W ! Coker @B .

Indeed, the smallest B-module in 32T ⇤
⌦ T containing 32V ⇤

⌦W is 32V ⇤
⌦ T ,

and the image of32V ⇤
⌦ T in the cokernel is bigger than the image of32V ⇤

⌦W .

It follows from the above remark that we cannot think of2Q
0 as a “component”

of the B-intrinsic torsion: we have to express the relation in terms of a short exact
sequence.

Proposition 4.7. There is an exact sequence of B-modules

0 ! W1 � W2
i

�! Coker @B
r
�! Coker @Q ! 0 (4.2)

where

W1 = V ⇤

⌦ sp(n)? ⇠
=

(
(V21 + 33

0E + 2E)(S3H + H) for n > 1
ES3H + EH for n = 1,

W2 = V ⇤

⌦ S20(W ) ⇠
= ES3H + ES5H,

and the restriction of i to each component is given by restricting the B-equivariant
alternating maps

@1 : V ⇤

⌦ gl(V ) ! 32V ⇤

⌦ V, @2 : V ⇤

⌦ gl(W ) ! V ⇤

⌦ W ⇤

⌦ W.

In this statement, sp(n)? denotes the orthogonal complement of sp(n) in so(4n).
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Proof. As an Sp(n)H⇤-module, the Lie algebra of B decomposes as

b = sp(n) � sp(1) � R � Hom(W, V ),

where the inclusion of sp(1) � R in gl(T ) is given by

p 7! (R�p, ead(p)), for p 2 sp(1); � 7! (��Id,�2�Id), for � 2 R.

By Lemma 4.5,

ker r=

32V ⇤
⌦ V + V ⇤

⌦ W ⇤
⌦ W

Im @B \ (32V ⇤
⌦ V + V ⇤

⌦ W ⇤
⌦ W )

=

32V ⇤
⌦ V + V ⇤

⌦ W ⇤
⌦ W

@B(V ⇤
⌦ (sp(n) + H))

;

using the fact that @2 is injective, the snake lemma applied to

0 // V ⇤
⌦sp(n) //

@1
✏✏

V ⇤
⌦ (sp(n) + H)

@
✏✏

// V ⇤
⌦ H //

@2
✏✏

0

0 //32V ⇤
⌦V //32V ⇤

⌦V+V ⇤
⌦W ⇤

⌦W // V ⇤
⌦ W ⇤

⌦W // 0

yields
0 ! W1 ! ker r ! W2 ! 0.

This sequence splits by Lemma 4.5. Now observe that Hom(W, V ) acts trivially on
W1 and W2, and the component R acts as a multiple of the identity on32V ⇤

⌦V +

V ⇤
⌦ W ⇤

⌦ W . The decomposition of W1 and W2 into irreducibile B-modules is
therefore the same as the decomposition into Sp(n)Sp(1)-modules.

Remark 4.8. An alternative description can be obtained by applying the snake
lemma to

0 // T ⇤
⌦ b //

@b

✏✏

T ⇤
⌦ q

@q

✏✏

// T ⇤
⌦

q
b

//

✏✏

0

0 // 32T ⇤
⌦ T // 32T ⇤

⌦ T // 0

giving an exact sequence

ker @Q
↵
�! T ⇤

⌦

q

b
! Coker @B ! Coker @Q ! 0.

This means that
Coker↵ = W1 + W2,

i.e., we can think of the Wi as the components of Coker↵.

Corollary 4.9. The kernel of @B is S2W ⇤
⌦ V + (S2ES2H + S2H), where the

second summand lies diagonally in W ⇤
⌦ (sp(n) + H) + V ⇤

⌦ Hom(W, V ).
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Proof. By Proposition 4.7, the kernel of @B is an Sp(n)Sp(1)-module of the same
dimension as S2W ⇤

⌦ V + S2H(S2E � R), and clearly it contains S2W ⌦ V . The
restriction of @ to V ⇤

⌦ Hom(W, V ) is injective with image V ⇤
⌦ W ⇤

⌦ V , so it
contains @1(W ⇤

⌦ (sp(n) + H)). Taking the kernel of @2 in W ⇤
⌦ (sp(n) + H), we

find S2W ⇤
⌦ V + (S2ES2H + S2H).

In later sections we shall have to work with certain invariant maps. Since the
decomposition of W1 + W2 into Sp(n)Sp(1)-modules contains some modules with
multiplicity greater than one, it is clear that Schur’s lemma will not be sufficient in
order to study these maps. Thus, we shall have to be more explicit. Since we refer
to Sp(n)Sp(1)-modules, we can identify T , V and W with their duals through the
metric here. Assume first n > 1. The space V ⌦32V contains three copies of EH ,
corresponding to the highest weight vectors

↵1 = v1h2 ⌦

�
vn+ j h1 ^ v j h2 + vn+ j h2 ^ v j h1

�
+ 2v1h1 ⌦ v j h2 ^ vn+ j h2,

↵2 = vn+ j h2 ⌦

�
v j h2 ^ v1h1 + v1h2 ^ v j h1

�
� v j h2 ⌦

�
vn+ j h2 ^ v1h1 + v1h2 ^ vn+ j h1

�
,

↵3 = vn+ j h2 ⌦

�
v1h1 ^ v j h2 + v1h2 ^ v j h1

�
� v j h2 ⌦

�
v1h1 ^ vn+ j h2 + v1h2 ^ vn+ j h1

�
� 2vn+ j h1 ⌦

�
v1h2 ^ v j h2

�
+ 2v j h1 ⌦

�
v1h2 ^ vn+ j h2

�
.

Similarly, V ⌦ 32V contains the linearly independent highest weight vectors

�1 = v1h2 ⌦

�
v j h2 ^ vn+ j h2

�
,

�2 = v j h2 ⌦

�
v1h2 ^ vn+ j h2

�
� vn+ j h2 ⌦

�
v1h2 ^ v j h2

�
,

each generating a submodule isomorphic to ES3H .
We shall denote by �̃i , ↵̃i the images of these vectors under the isomorphism

e· : V ⌦ 32V ! 32V ⌦ V, ]v ⌦ ⌘ = ⌘ ⌦ v.

Each of V ⌦ S20W and V ⌦ 32W contains an ES3H , with highest weight vectors

�3 = v1h2 ⌦ (w1 ⌦ (w2 + iw3) + (w2 + iw3) ⌦ w1)

� 2iv1h1 ⌦ (w2 + iw3) ⌦ (w2 + iw3),
�4 = v1h2 ⌦ w1 ⌦ (w2 + iw3) � v1h2 ⌦ (w2 + iw3) ⌦ w1.

Finally, V ⌦ W ⌦ W contains two copies of EH , generated by

↵4 = v1h2 ⌦

�
w1 ⌦ w1 + w2 ⌦ w2 + w3 ⌦ w3

�
,

↵5 = v1h2 ⌦

�
w2 ⌦ w3 � w3 ⌦ w2

�
+ v1h1 ⌦

�
w1 ⌦ (w2 + iw3) �

�
w2 + iw3

�
⌦ w1

�
.
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If n = 1, all these highest weight vectors remain well defined, although they do not
generate distinct modules, as ↵3 = ↵1 and �2 = �1. Accordingly, we can drop the
assumption on n for the rest of the section.

Lemma 4.10. We have

@(↵1) =

1
2
↵̃3 �

3
2
↵̃2, @(↵2) = �↵̃1 �

1
2
↵̃3 +

1
2
↵̃2, @(↵3) = ↵̃1 �

1
2
↵̃3 �

3
2
↵̃2,

@�1 = ��̃2, @�2 = �̃2 � 2�̃1,

and @(V ⇤
⌦ (sp(n) + H)) ⇢ Im @B contains

@(↵2), ↵̃2 + ↵̃3 + 8↵4, 8i↵5 � ↵̃3 + 3↵̃2, �̃2 + 2i�4.

Proof. The first part is a straightforward computation. For the second part, observe
that, by Section 1, !2 + i!3 2 sp(1) ⌦ C acts on W ⇠

= ImH as

2
�
� w3 ⌦ w1 + w1 ⌦ w3 � iw1 ⌦ w2 + iw2 ⌦ w1

�
= �2i

�
w1 ⌦ (w2 + iw3) �

�
w2 + iw3

�
⌦ w1

�
,

and !1 acts as
�2w2 ⌦ w3 + 2w3 ⌦ w2.

It follows that 4i↵5 � ↵1, and �1 � 2i�4 lie in V ⌦ b.
Now recall that �IdV � 2IdW lies in b, and

IdV =

1
2
�
�v j h2 ⌦ vn+ j h1 � vn+ j h1 ⌦ v j h2 + v j h1 ⌦ vn+ j h2+vn+ j h2 ⌦ v j h1

�
,

giving

Im @B 3 @(v1h2 ⌦ (�2IdV � 4IdW )) = �

1
2
↵̃2 �

1
2
↵̃3 � 4↵4.

Proposition 4.11. The components isomorphic to EH and ES3H insideW1,@1(W1)
and W2 are identified by

W1 3 �1,�2,↵1,↵3, @1(W1) 3 �̃1, �̃2, ↵̃1 � ↵̃3, ↵̃1 � 3↵̃2, W2 3 �3;

moreover the following equivalences modulo Im @B hold:

↵̃1 ⌘

3
8
(↵̃1 � ↵̃3) �

1
8
(↵̃1 � 3↵̃2), ↵̃2 ⌘

1
8
(↵̃1 � ↵̃3) �

3
8
(↵̃1 � 3↵̃2),

↵̃3 ⌘ �

5
8
(↵̃1 � ↵̃3) �

1
8
(↵̃1 � 3↵̃2), ↵4 ⌘

1
16

(↵̃1 � ↵̃3) +

1
16

(↵̃1 � 3↵̃2),

↵5 ⌘

i
8
(↵̃1 � ↵̃3) �

i
8
(↵̃1 � 3↵̃2).
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Proof. With respect to the splitting

V ⌦ 32V = V ⌦ sp(1) + V ⌦ S2E + V ⌦ 32
0ES

2H,

↵1,�1 lie in the first component, ↵2 in the second, n↵3 � ↵1, n�2 � �1 in the third.
Hence, by Lemma 4.10, 2↵̃1 + ↵̃3 � ↵̃2 is in the image of @B . The rest of the
statement is now a straightforward computation.

5. Intrinsic torsion conditions

In this section we study the intrinsic torsion of B-structures, establishing formulae
to compute the “components” of the intrinsic torsion in terms of the exterior co-
variant derivative of suitable invariant tensorial forms. Then we specialize to the
qc case, showing that the intrinsic torsion lies in a specific invariant subspace. The
first problem is that Coker @B is not completely reducible as a B-module, i.e., the
sequence (4.2) does not split. To work around this problem, we shall employ a
reduction to Sp(n)H⇤, which amounts to choosing an arbitrary complement of D
at each point. Nonetheless, we are still thinking of B as the structure group of qc
geometry, and the main result of this section is stated in terms of B-structures.

Under Sp(n)H⇤, we have the decomposition

32T ⇤

⌦ T = Im (@B) � 32V ⇤

⌦ W � @1(W1) � @2(W2).

Accordingly, the torsion of a connection splits into components as

2 = 2⇤ + 2Q
+ 21 + 22, (5.1)

and the qc condition reads
2Q

= 20.

Moreover, the reduction makes 3T ⇤ into a bigraded vector space,

3T ⇤

=

M
p,q

3p,q , 3p,q
= 3pV ⇤

⌦ 3qW ⇤.

Given ↵ 2 3T ⇤
⌦ S, we shall denote by ↵ p,q its component in 3p,q

⌦ S. This
notation carries over to tensorial forms, i.e.,

(↵✓ )
p,q

= (↵ p,q)✓ , ↵ 2 �p+q(P, S).

We shall also need to consider the projection

⇡�1 : Im @B ! 31,1
⌦ W,

and set
2�1 = ⇡�1(2⇤).



INTRINSIC TORSION IN QUATERNIONIC CONTACT GEOMETRY 645

We can now prove a result analogous to Proposition 2.3. The first step is choosing
two B-invariant tensorial forms, namely

⌘ 2 �1(P, T/V ), ⌘✓ ⌘ w1 ⌦ w1 + w2 ⌦ w2 + w3 ⌦ w3,

� 2 �5(P, T/V ⌦ ⇤), �✓ ⌘ !s ^ w123 ⌦ (ws ⌦ w123),

where as usual  = 33W ⇤. A direct computation with highest weight vectors,
together with Lemma 4.10, gives:

Lemma 5.1. The kernel of the map

z : 32T ⇤

⌦ T ! 33T ⇤

⌦ W, ↵ ! ↵y
�
!s ^ w123

�
⌦ ws

contains (and equals when n > 1)

@B
⇣
T ⌦ (sp(n) + Hom(W, V )) + W ⇤

⌦ H
⌘

+ @2(W2) + 2EH + ES3H,

where 2EH + ES3H ⇢ @B(V ⇤
⌦H)+ @1(W1) contains the highest weight vectors

(↵̃2 + ↵̃3 + 8↵4) + 2(↵̃1 � ↵̃3) + 2(↵̃1 � 3↵̃2),
(8i↵5 � ↵̃3 + 3↵̃2) � (↵̃1 � ↵̃3) + (↵̃1 � 3↵̃2),
(�̃2 + 2i�4) � �̃2.

Regardless of n, the restriction z|@1(W1) is injective, and z|Im @B = g � ⇡�1, where

g(↵) = ↵ ^ (20y � ) + 20 ^ (↵y � ).

Proposition 5.2. Le P be a B-structure; for every connection on P and every re-
duction to Sp(n)H⇤,

22 + 2�1 = (D⌘)1,1, 2Q
= (D⌘)2,0,

(22 + 2�1)y � = (D� )1,3, 2Qy � = (D� )2,2,

21y � = (D� )3,3 � g(2�1), 2Qy � = (D� )4,2.

These equations determine the intrinsic torsion in the sense that in each equation
(except the last one for n = 1) the components of the intrinsic torsion appearing on
the left hand side are determined by the right hand side.

Proof. By (2.1) D⌘ = 2y ⌘; more precisely,

(D⌘)2,0 = 22,0y ⌘, (D⌘)1,1 = 21,1y ⌘.

These interior products correspond respectively to the contractions

(32,0
⌦ W ) ⌦ (W ⇤

⌦ W )!32,0
⌦ W, (31,1

⌦ W ) ⌦ (W ⇤

⌦ W )!31,1
⌦ W.
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Moreover, since ⌘ is the identity in W ⇤
⌦ W = Hom(W,W ), contraction with ⌘

gives rise to two isomorphisms. Thus, (D⌘)1,1 determines the component31,1
⌦W

of the torsion, which equals 22 + 2�1. Similarly, the component 32V ⇤
⌦ W can

be read off (D⌘)2,0, and the same arguments apply to D� .
By the same token,

D� = 2y � ;

since (2y � )✓ = z(2✓ ) ⌦ w123, and by Lemma 5.1 the restriction of z to

32,0
⌦ W ! 34,2

⌦ W

is injective, it follows that (D� )4,2 = 2Qy � determines 2Q if n > 1.
Again by Lemma 5.1,

(D� )3,3 = 21y � + g(2�1),

and this equation determines 21 because z is injective on @1(W1).

Example 5.3. Going back to the example Sp(n + 1)/Sp(n)Sp(1) of Section 3, ob-
serve that D is the horizontal part of d; therefore,

D� =

�
!1 ^ w23 + !2 ^ e31 + !3 ^ e12

�
⌦ w123,

D⌘ = !s ⌦ ws � 2wsyw123 ⌦ ws,

D� = !s ^

�
!1 ^ w23 + !2 ^ e31 + !3 ^ e12

�
⌦ (ws ⌦ w123).

Working with the reduction to Sp(n)H⇤ introduced in Section 3, Proposition 5.2
gives

21 = 22 = 2�1 = 0, 2Q
= 20.

We now turn to qc geometry. Let us consider the map

h : V ⇤

⌦ W ⇤

⌦ W ! 33,0
⌦ W, ei ⌦ w j

⌦ wk ! ei ^ ! j ⌦ wk .

Lemma 5.4. The kernel of

f : @1(W1) + @2(W2) ! 33,0
⌦ W, f (21,22) = z(21) � h(22)

is isomorphic to (
ES3H + ES5H for n = 1
ES3H for n > 1;

the component ES3H contains the highest weight vector

4�̃1 + �̃2 + 2i�3 = @1(�2�2 � 3�1) + 2i@2(�3).
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Notice that W1 � W2 has a unique submodule isomorphic to ES5H ; from now
on, ES5H will indicate this submodule unless otherwise specified. The component
isomorphic to ES3H identified in the lemma will be denoted by Ê S3H , and we
will denote by 2B

0 the image of 20 in Coker @B .

Theorem 5.5. A B-structure is qc if and only if the intrinsic torsion takes values in8<
:

2B
0 + Ê S3H for n > 1

2B
0 + Ê S3H + ES5H for n = 1.

Proof. Choose an arbitrary connection. The qc condition 2Q
= 20 implies

� = 20 ^ � = D⌘ ^ �,

giving
D� = D2⌘ ^ � + D⌘ ^ D� ;

however, if � is the curvature, D2⌘ ^ � = � ^ ⌘ ^ � = 0, so

D� � D⌘ ^ D� = 0.

Decomposing into components, we get

(D� )3,3 � (D⌘)1,1 ^ (D� )2,2 � (D⌘)2,0 ^ (D� )1,3 = 0,

whence, by Proposition 5.2,

(D� )3,3=22 ^ (20y � ) + 20 ^ (22y � ) + 2�1 ^ (20y � ) + 20 ^ (2�1y � ).

Up to a contraction 33W ⇤
⌦ ⇤ ⇠

= R, the map 22 7! 22y � corresponds to the
trace V ⇤

⌦ W ⇤
⌦ W ! V ⇤; by construction this is zero. It follows that

(D� )3,3 = 22 ^ (20y � ) + g(2�1),

so by Proposition 5.2 z(21) = h(22), and the statement follows from Lem-
ma 5.4.

6. A further reduction

Theorem 5.5 relies on the decomposition (5.1), which depends in turn on the choice
of a reduction of the structure group to Sp(n)H⇤. In this section we illustrate how
the choice of this reduction affects the torsion, and show that it is canonical in part;
in other words, we obtain a canonical reduction to an intermediate group K ,

Sp(n)H⇤

⇢ K ⇢ B.
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More precisely, the splitting under Sp(n)H⇤

Hom(W, V ) = EH ⇥ ES3H,

is also a product of abelian Lie groups, so that EH and ES3H appear as subgroups
of B. Notice that this EH is isomorphic to V ⇤, rather than V , as an Sp(n)H⇤-
module; as an Sp(n)Sp(1)-module, we can write

EH =

�
ws

⌦ vy!s | v 2 V
 
. (6.1)

We set
K = Sp(n)H⇤ n EH.

We will see that an arbitrary B-structure has a canonical K -reduction induced by
the choice of a complement of Ê S3H in W1 + W2, but in the qc case, thanks to
Theorem 5.5, the reduction is independent of the choice of complement of Ê S3H .

The key fact is that the action of the subgroup Hom(W, V ) ⇢ B on 20 is
“linearized” when taking the quotient by Im @B , as shown in the following lemma.

Lemma 6.1. The Lie group Hom(W, V ) acts on 2B
0 with stabilizer equal to EH ;

the orbit is 2B
0 + Ê S3H .

Proof. The action of the Lie group Hom(W, V ) induces an infinitesimal action of
its Lie algebra, which coincides with Hom(W, V ) itself. Denoting the former action
by juxtaposition and the latter by ·, we see that

wi
⌦ e j · ↵ = �wi

^ e jy↵, for ↵ 2 32V ⇤.

Therefore

g20 = 20 + g · 20 mod 30,2
⌦ T + 31,1

⌦ V ⇢ Im @B,

i.e., g2B
0 = 2B

0 + g · 2B
0 . The Lie algebra action gives an Sp(n)Sp(1)-invariant

map
Hom(W, V ) ⌦ 32T ⇤

⌦ T ! 32T ⇤

⌦ T ;

since 20 is invariant, the action on 20 gives an invariant map

Hom(W, V ) ! 32T ⇤

⌦ T .

Under this map, the highest weight vector�
w2 + iw3

�
⌦ v1h2 2 ES3H ⇢ Hom(W, V )

has image
�̃1 +

i
2
�3 �

i
2
�4 ⌘ �̃1 +

i
2
�3 +

1
4
�̃2,

which by definition lies in Ê S3H .
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On the other hand the highest weight vector
�
w2 + iw3

�
⌦ v1h1 + iw1 ⌦ v1h2 2 EH ⇢ Hom(W, V )

has image

(!2 + i!3) ⌦ v1h1 + i!1 ⌦ v1h2 � v1h2 ^ ws
⌦ ws

+ iv1h1 ^

�
w1 ^ (w2 + iw3)

�
+ iv1h2 ^ (w2 ^ w3) =

1
2
↵̃1 � ↵4 + i↵5,

which, by Proposition 4.11, lies in Im @B .

Theorem 6.2. For any fixed Sp(n)H⇤-invariant complement Ê S3H
?

of Ê S3H in
W1 + W2, every B-structure has a unique K -reduction such that the restriction of

the B-intrinsic torsion takes values in 2B
0 + Ê S3H

?

.

Proof. Let 2B
: P ! Coker @B be the intrinsic torsion. By Lemma 6.1, 2B

0 has
stabilizer K ; consider the K -equivariant map

f : P ! Coker @B, f (u) = 2B(u) � 2B
0 .

Since 2Q(u) = r(2B(u)) = 2
Q
0 , the map f takes values in ker r , which by

Proposition 4.7 equals W1 + W2.
Now set

P̃ =

⇢
u 2 P | f (u) 2 Ê S3H

?

�
.

By construction, P̃ is closed under the action of K . Conversely, given any u 2 P ,
g 2 Hom(W, V ),

f (ug) = 2B(ug) � 2B
0 = g�1

⇣
2B(u) � g2B

0

⌘

lies in Ê S3H
?

if and only if so does2B(u) � g2B
0 . By Lemma 6.1, this condition

is satisfied for exactly one g 2 ES3H . Thus, P̃ is a K -structure.

Combining this result with Theorem 5.5, and specializing to the qc case, we
find

Corollary 6.3. Every qc B-structure has a unique K -reduction P such that
(

2B(u) = 2B
0 for n > 1

2B(u) 2 2B
0 + ES5H for n = 1,

for all u in P .
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We shall refer to such a K -structure as a qc K -structure. We shall say a qc K -
structure P is integrable if2B

= 2B
0 identically on P . This condition is automatic

when n > 1. We shall see in Corollary 9.2 that this definition agrees with that
of [6].
Remark 6.4. An alternative approach more akin to Biquard’s would be to fix a
compatible metric on D, or, in other words, to choose an arbitrary reduction from
B to B̃ = Sp(n)Sp(1) n Hom(W, V ). Proceeding as in Lemma 6.1, we would see
that Im @B̃ does not contain

1
2 ↵̃1�↵4+ i↵5, and so the construction of Corollary 6.3

would give a “canonical” reduction to Sp(n)Sp(1), depending only on the choice
of the metric. However, as we are mainly interested in the intrinsic geometry of qc
structures, we will refrain from fixing a metric until Section 9.

Remark 6.5. Since the projection of Ê S3H onto W2 is injective, the K -reduction
is characterized by the condition 22 = 0, or 22 2 ES5H when n = 1. In practice,
if one finds a connection which satisfies this condition with respect to some frame,
then the frame is compatible with the K -reduction of Corollary 6.3.

7. K -intrinsic torsion

Corollary 6.3 motivates us to study the intrinsic torsion of qc K -structure. In fact,
we have defined integrable qc K -structures by the condition that the restriction of
the B-intrinsic torsion be constant, equal to 2B

0 . In this section we show that the
K -intrinsic torsion of an integrable qc K -structure is also constant. It follows that a
qc K -structure admits a family of connections whose torsion equals20; this family
is parametrized by sections of a bundle with fibre ker @K , which is identified by the
following:

Lemma 7.1. The kernel of @K is the S2H containing

v j h2 ⌦

⇣�
w2 + iw3

�
⌦ vn+ j h1 + iw1 ⌦ vn+ j h2)

⌘

� vn+ j h2 ⌦

⇣�
w2 + iw3

�
⌦ v j h1 + iw1 ⌦ v j h2)

⌘
�

�
w2 + iw3

�
⌦ (IdV + 2IdW )

+ iw1 ⌦ (!2 + i!3) � i
�
w2 + iw3

�
⌦ !1,

(7.1)

and the inclusion V ⇤
⌦

b
k ! T ⇤

⌦
b
k induces an exact sequence of K -modules

0 ! S2ES2H ! V ⇤

⌦

b

k
! Coker @K ! Coker @B ! 0. (7.2)

Proof. If we set

T1 = W ⇤

⌦ Hom(W, V ), T2 = W ⇤

⌦ Hom(sp(n) + H) + V ⇤

⌦ Hom(W, V ),
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Corollary 4.9 implies ker @B decomposes as the direct sum of S2W ⇤
⌦ V ⇢ T1 and

S2H(S2E + R) ⇢ T2. Since @(T1) and @(T2) intersect trivially, ker @K is also a
direct sum, i.e.,

ker @K =

�
S2W ⇤

⌦ V \ (T ⇤

⌦ k)
�
+

�
S2H

�
S2E + R

�
\ (T ⇤

⌦ k)
�
.

A direct computation shows that the first summand is trivial. The components of
type S2HS2E inside T2 \ (T ⇤

⌦ k) are identified by
�
w2 + iw3

�
⌦ (v1h2 ^ v1h1), v1h2 ⌦

��
w2 + iw3

�
⌦ v1h1 + iw1 ⌦ v1h2

�
,

so ker @K contains no S2HS2E . The S2H components inside T2\ (T ⇤
⌦ k) contain

�
w2 + iw3

�
⌦ (IdV + 2IdW ), w1 ⌦ (!2 + i!3) �

�
w2 + iw3

�
⌦ !1,

and

v j h2 ⌦

��
w2 + iw3

�
⌦ vn+ j h1 + iw1 ⌦ vn+ j h2

�
�vn+ j h2 ⌦

��
w2 + iw3

�
⌦ v j h1 + iw1 ⌦ v j h2

�
.

It is straightforward to verify that there is only one linear combination that goes to
zero, up to multiple, namely (7.1).

The commutative diagram with exact rows

0 // T ⇤
⌦ k //

@K
✏✏

T ⇤
⌦ b

@B
✏✏

// T ⇤
⌦

b
k

//

✏✏

0

0 // 32T ⇤
⌦ T // 32T ⇤

⌦ T // 0

determines an exact sequence

0 ! ker @K ! ker @B ! T ⇤

⌦

b

k

f
�! Coker @K ! Coker @B ! 0.

By the exactness of the top row in the diagram, S2W ⇤
⌦ V maps injectively into

T ⇤
⌦

b
k ; the image equals W

⇤
⌦

b
k by a dimension count. This gives exactness of

(7.2) as a sequence of vector spaces. Moreover, we have a diagram

V ⇤
⌦

b
k

◆ //

Id

$$IIIIIIIII
T ⇤

⌦
b
k

✏✏

f // Coker @K

V ⇤
⌦

b
k

f̃
::tttttttttt

where f̃ is K -equivariant. Therefore, f � ◆ is also equivariant. Since EH acts
trivially on V ⇤

⌦
k
b, all maps in (7.2) are equivariant.
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Working with Sp(n)Sp(1)-modules, we can define a complement of S2ES2H
in V ⇤

⌦ ES3H ⇢ V ⇤
⌦ b, namely

W3 =

(
S4H(S2E + 32

0E + R) + S2H32
0E + S2H for n > 1

S4H(S2E + R) + S2H for n = 1,

and by the above lemma we have a decomposition into Sp(n)Sp(1)-modules

32T ⇤

⌦ T = Im (@K ) � 32V ⇤

⌦ W � @1(W1) � @2(W2) � @(W3).

Accordingly, the torsion of a connection splits into components as

2 = 2⇤ + 2Q
+ 21 + 22 + 23.

This decomposition is not a decomposition of K -modules, i.e., it depends on the
pointwise choice of a complement of D. But restricting to the qc case, we find the
following:

Lemma 7.2. The intrinsic torsion of a qc K -structure takes values in
(
Span

�
2K
0
 

� @(W3) for n > 1
Span

�
2K
0
 

� @(W3) � ES5H for n = 1,
(7.3)

which is a direct sum of K -submodules of Coker @K .

Proof. Having defined qc K -structures by the condition of Corollary 6.3, it suffices
to show that (7.3) is a K -module. In (7.2), EH acts trivially on V ⇤

⌦
k
b, so @(W3)

is a K -submodule. The same applies to ES5H ⇢ 31,1
⌦ W . It remains to be seen

how EH acts on 2K
0 . The group action of Hom(W, V ) on 3V ⇤ is given on simple

elements by �
wi

⌦ e j
�
↵ = ↵ � wi

^ e jy↵.

Recalling (6.1),

(ws
⌦ vy!s)!r ⌦ wr =20+(ws

⌦ vy!s) · 20 � kvk
2 ⌘y �

�ws
^((vy!s)y!r )⌦(vy!r )�kvk

2wryw123⌦(vy!r ).

However (ws
⌦ vy!s) · 20 was seen in Lemma 6.1 to be in some EH ⇢ Im @B ,

but it is really in Im @K , since V ⇤
⌦ ES3H contains no EH . Similarly, ⌘y � lies in

a trivial submodule of 30,2
⌦ W , which is contained in Im @K , and

wryw123 ⌦ (vy!r ) 2 30,2
⌦ V ⇢ Im @K .

Thus,

(ws
⌦ vy!s)!r ⌦ wr � 20 = �ws

^ ((vy!s)y!r ) ⌦ (vy!r ) mod Im @K ,
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which is in the image of S2(EH) under the equivariant map V ⌦ V ! 31,1
⌦ V

u⌦v !�

�
w1^((uy!1)y!r )+w2^((uy!2)y!r )+w3̂ ((uy!3)y!r )

�
⌦(vy!r ).

The target space 31,1
⌦ V is contained in @(W3) + Im @K ; however, @(W3) has

no irreducible component in common with S2(EH) = S2ES2H + 32
0E + R. We

conclude that the action of EH on 2K
0 is trivial.

A computation with highest weight vectors yields:

Lemma 7.3. Consider the map

q : 32,0
⌦ H ! 32,1

⌦ W, q(↵ ⌦ p) = ↵ ^ ws
⌦

ead(p)ws;

then
{v 2 W3 | @(v)y20 2 Im q} = 0.

We can now prove the main result of this section.

Theorem 7.4. The intrinsic torsion of an integrable qc K -structure is constant, i.e.,

2K
⌘ 2K

0 .

Proof. Choose an arbitrary reduction to Sp(n)Sp(1) and a connection such that the
torsion takes values in @(W3) + 20. In particular, 2�1 and 22 vanish, as does the
component 20,2. Then the Bianchi identity and Proposition 5.2 give

� ^ ⌘ = D2⌘ = D20 = 2y20.

In particular,
�2,0

^ ⌘ = 21,1y20.

By Lemma 7.3, this implies that 21,1 is zero.

Since the intrinsic torsion is trivial, we are motivated to consider specific con-
nections. As 20 is not invariant under K , we cannot conclude that there exists
a connection with torsion equal to 20: we must consider the stabilizer of 20 in
32T ⇤

⌦ T and take a corresponding reduction. Given a K -structure P and a reduc-
tion P̃ to Sp(n)H⇤, we define a K -connection on P̃ as a one-form ! 2 �1(P̃, k)
which is the restriction of a (uniquely determined) connection form on P .

Corollary 7.5. Any reduction to Sp(n)H⇤ of an integrable qc K -structure admits a
K -connection with torsion equal to 20.

Proof. Fix an arbitrary connection !, and let 2 be its torsion. By Theorem 7.4,
2✓ �20 defines an Sp(n)H⇤-equivariant map taking values in Im @K .Since @K :T ⇤

⌦

k ! Im @K admits an Sp(n)H⇤-invariant right inverse, we obtain a tensorial k-
valued 1-form A such that the connection ! + A has torsion 20.
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This result only applies to integrable qc structures. For this reason, in the rest
of the paper we shall only consider integrable qc structures.
Remark 7.6. Given a reduction to Sp(n)H⇤, all other reductions are parametrized
by forms of type (1, 0), since K/Sp(n)H⇤ ⇠

= V ⇤ as an Sp(n)H⇤-module. Such
a reduction is determined canonically once one fixes a compatible metric on D
(see [2], or Proposition 9.1); replacing the metric g with a different metric f g in the
conformal class affects the reduction to Sp(n)H⇤ via d f 1,0.

8. Connections and curvature

We saw in Corollary 7.5 that, given an integrable qc K -structure, any reduction to
Sp(n)H⇤ has a K -connection with torsion equal to20, though this is not unique due
to the fact that @K has a kernel. In this section we find a natural condition that can be
imposed on the curvature of such a connection that makes it unique, given the choice
of the reduction. As a byproduct, we compute the K -module in which the curvature
lies. Notice that this is not a metric connection, unlike the Biquard connection. The
curvature of a connection with torsion 20 takes values in 32T ⇤

⌦ k; this is a space
of dimension 16n4 + O(n3) which, as an Sp(n)Sp(1)-module, decomposes as

S4E+V31(R+S2H) + V22 + V211S2H + S3E(2H + S3H) + V21(3H + 2S3H)

+ 33
0E(H + S3H) + S2E(3R + 6S2H + S4H) + 32

0E(3R + 5S2H + 2S4H)

+ E(8H + 7S3H + S5H) + 4R + 6S2H + 3S4H.

However, the Bianchi identity implies that the curvature lies in a module of dimen-
sion 23n

4
+ O(n3), identified by the following:

Lemma 8.1. Let
� : 32T ⇤

⌦ k ! 33
⌦ T

be the restriction of the skew-symmetrization map 32T ⇤
⌦ gl(T ) ! 33

⌦ T , and
set

s : T ⇤

⌦

�
32T ⇤

⌦ T
�

! 33T ⇤

⌦ T, x ⌦ y ⌦ z ! x ^ y ⌦ z.

If we denote by gEH the submodule of 32T ⇤
⌦ T containing

1
2
↵̃1 � ↵4 + i↵5 2 32,0

⌦ V + 31,1
⌦ W, (8.1)

the preimage of s(T ⇤
⌦

gEH) under � is the direct sum of

R1 ⇠
= S4E +

�
S2E + 32

0E + R
��
S2H + R) ⇢ 32,0

⌦ (sp(n) + H
�

R2 ⇠
= S3EH + 2ES3H + 2EH ⇢ 31,1

⌦ (sp(n) + H) + 32,0
⌦ EH

R3 ⇠
= S2ES2H + S4H + S2H + R ⇢ 30,2

⌦ (sp(n) + H) + 31,1
⌦ EH

R4 ⇠
= ES3H ⇢ 30,2

⌦ EH.
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Moreover, denoting by tr : 32T ⇤
⌦ k ! 32T ⇤ the trace,

R̃1 = R1 \ ker tr ⇠
= S4E + S2ES2H + 32

0E + R,

R̃2 = R2 \ ker tr ⇠
= S3EH + ES3H + EH,

R̃3 = R3 \ ker tr ⇠
= S2ES2H + S4H + R.

Proof. To begin with, we determine the kernel of �, which we decompose as the
direct sum of the kernels of the following maps, obtained by restriction:

�1 : 32,0
⌦ (sp(n) + H) ! 33,0

⌦ V + 32,1
⌦ W,

�2 : 31,1
⌦ (sp(n) + H) + 32,0

⌦ EH ! 32,1
⌦ V + 31,2

⌦ W,

�3 : 30,2
⌦ (sp(n) + H) + 31,1

⌦ EH ! 31,2
⌦ V + 30,3

⌦ W,

�4 : 30,2
⌦ EH ! 30,3

⌦ V .

The kernel of �1 is contained in 32,0
⌦ (sp(n)); by construction, it coincides with

the space of curvature tensors of metrics with holonomy Sp(n), i.e., the kernel of

S2(sp(n)) ! 34T ⇤, a � b 7! a ^ b,

which is known to equal S4E (see [17]). The restriction of �3 to31,1
⌦EH+30,2

⌦

R is an isomorphism: in fact, �3(311
⌦ EH) coincides with 31,0

⌦ @(W ⇤
⌦ EH),

and we know from Lemma 7.1 that @K is injective. Thus, ker �3 ⇠
= S2ES2H + R +

S2H+S4H . The kernel of �4 is ES3H , because it is clearly surjective. Considering
the composition of �2 with the projection on31,2

⌦W , we see that �2 has the same
kernel as its restriction to

31,1
⌦ sp(n) + 31,0

^ S2H + 32,0
⌦ EH,

where S2H contains

w1 ⌦ (!2 + i!3) �

�
w2 + iw3

�
⌦ !1 + i

�
w2 + iw3

�
⌦ (IdV + 2IdW ).

Moreover the restrictions of �2 to 31,1
⌦ sp(n) + 31,0

^ S2H and 32,0
⌦ EH are

injective. Thus, we must investigate the common components in
(
S3E(S3H + H) + V21(S3H + H) + 2E(S3H + H) for n > 1
S3E(S3H + H) + 2E(S3H + H) for n = 1

and(
S3EH + V21(2H + S3H) + 33

0E(H + S3H) + E(3H + 2S3H) for n > 1
S3EH + E(2H + S3H) for n = 1.
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Decomposing the target space 32,1
⌦ V as8>>><

>>>:

S3E(S3H + H) + V21(3H + 3S3H + S5H)

+ 33
0E(2H + 2S3H + S5H)

+ E(5S3H + 5H + 2S5H)

for n > 1

S3E(S3H + H) + E(3S3H + 3H + S5H) for n = 1

we see that the kernel contains exactly one copy of S3EH . Considering the com-
ponents isomorphic to ES3H in 31,1

⌦ sp(n) and 31,0
^ S2H , one verifies that

only the second among (w2 + iw3) ^ ↵2 and

v1h2 ^ w1 ⌦ (!2 + i!3) � v1h2 ^

�
w2 + iw3

�
⌦ !1

+ iv1h2 ^

�
w2 + iw3

�
⌦ (IdV + 2IdW )

(8.2)

has image in �2(32,0
⌦ EH). Thus, the kernel contains exactly one copy of ES3H .

Similarly, only one of the two components isomorphic to EH in 31,1
⌦ sp(n) +

31,0
^ S2H has image contained in �2(32,0

⌦ EH); this component is contained
in 31,0

^ S2H and is identified by the highest weight vector

v1h1 ^

�
w1 ⌦ (!2 + i!3) +

�
w2 + iw3

�
⌦ (�!1 + i(IdV + 2IdW ))

�
+ v1h2 ^

✓
1
2
i(w2 + iw3) ⌦ (!2 � i!3) � w1 ⌦ (IdV + 2IdW )

�

1
2
i(w2 � iw3) ⌦ (!2 + i!3)

◆
.

(8.3)

A long yet straightforward computation shows that for the remaining modules, �2
has the greatest rank that Schur’s lemma allows, so

ker �2 = S3EH + ES3H + EH.

It follows from Lemma 4.10 that gEH is contained in Im @K ; this implies that the
image of s is contained in the image of �. Moreover, s is injective, and the image
of W ⇤

⌦
gEH ⇠

= EH + ES3H is contained in 32,1
⌦ V + 31,2

⌦ W , giving

R2 = ker �2 + EH + ES3H.

Similarly, we see that

R1 = ker �1 + S2E
�
S2H + R

�
+ 32

0E
�
S2H + R

�
+

�
S2H + R

�
.

Finally, consider the commutative diagram

R1
tr //

�1

))RRRRRRRRRRRRRRR 32,0

V ⌦
gEH s// 33,0

⌦ V + 32,1
⌦ W

f
66mmmmmmmmmmmmm
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where f is induced by the contraction W ⌦ W ! R. Since f � s is surjective and
Im �1 contains Im s, it follows that tr = f � �1 is also surjective, proving that R1 is
isomorphic to R̃1 + 32,0.

Similarly, the trace map

tr : 31,1
⌦ (sp(n) + H) ! 31,1 ⇠

= EH + ES3H,

does not kill either (8.2) or (8.3), so the restriction to R2 is surjective.
In the same way, the trace maps R3 to 30,2 ⇠

= S2H , so R̃3 differs from R3 at
most by an S2H . A non-zero element

x = x1 + x2, for x1 2 30,2
⌦ sp(1), and x2 2 31,1

⌦ EH,

can only be in the kernel of � if x1 is not zero; however, if x1 is in the submodule
isomorphic to S2H , then �(x1)0,3 is not zero. It follows that there is no S2H in
R̃3.

Proposition 8.2. On an integrable qc manifold, the curvature of a connection with
torsion 20 takes values in R1 + R2 + R3 + R4.

Proof. Writing 20 for h20,
1
2✓ ^ ✓i, the Bianchi identity gives

D20 = � ^ ✓ .

By (2.1),

D20 =

⌧
r20,

1
6
✓ ^ ✓ ^ ✓

�
+ 20y20.

The calculations of Lemma 6.1 show that the infinitesimal action of k on 20 gives
an EH containing (8.1). Thus D20 lies in the image of T ⇤

⌦
gEH under the map s

of Lemma 8.1.
It now follows from the Bianchi identity that �✓ is in the preimage of s(T ⇤

⌦gEH) under �; Lemma 8.1 concludes the proof.

We can now ask whether among the connections with torsion 20 there is one
with “minimal” curvature. Since the connection is well defined up to a section of a
bundle with fibre S2H , minimality should be taken to mean that the component in
one of the two S2H appearing in R1 + R2 + R3 + R4 is zero. The key observation
is that taking the interior product with20 of a highest weight vector in ker @K gives

�

�
!2 + i!3

�
⌦ (IdV + 2IdW ) + i!1 ⌦ (!2 + i!3) � i

�
!2 + i!3

�
⌦ !1,

which is an element of S2H ⇢ R1. This is therefore the natural candidate as a
component of curvature to kill.

In fact, it turns out that this component behaves like torsion, i.e., it depends on
the choice of connection via a pointwise isomorphism ker @K ⇠

= S2H , although of
course the full curvature tensor depends on the connection in a more complicated
way. This enables us to prove:
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Theorem 8.3. Any Sp(n)H⇤-reduction of an integrable qc K -structure has a u-
nique K -connection such that:

1. The torsion is 20;
2. The curvature has no component in S2H ⇢ R1.

Condition (2) can be replaced with:

20. The curvature � satisfies (tr�2,0)✓ 2 S2E + 32
0S
2E .

Proof. Let ! be any connection with torsion 20. By Proposition 8.2, the curvature
lies in R1 + R2 + R3 + R4. By Lemma 8.1, the component of R1 isomorphic to
S2H is not contained in R̃1, so the conditions (2) and (20) are equivalent.

The generic connection with torsion 20 has the form !A = ! + A, where A✓

takes values in ker @K . The curvature of !A is

�A = � + DA +

1
2
[A, A],

where � denotes the curvature of ! and D is the exterior covariant derivative with
respect to !.

By Lemma 7.1, A1,0 takes values in the abelian subalgebra EH , so

(�A)
2,0

= �2,0
+ (DA)2,0,

and, by (2.1),

DA =

1
2
h✓ ^ ✓,rAi + 20y A.

However, the infinitesimal action of k on T ⇤
⌦ k takes ker @K = S2H into

ker @K + W ⇤

⌦ k;

it follows that h✓ ^ ✓,rAi
2,0 is trace-free, and

tr(�A)
2,0

� tr�2,0
= tr(20y A).

By Proposition 8.2, the right-hand side lies in S2H ⇢ 32,0. Since the map

ker @K 3 t ! tr(20y t) 2 S2H ⇢ 32,0

is easily seen to be an isomorphism, there is a unique !A such as in the state-
ment.

We shall refer to the connection of Theorem 8.3 as the qc connection.
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Example 8.4. Let us consider the sphere, with the connection ! considered in Sec-
tion 3. Then the connection

!qc = ! + A, A = �ea ⌦ ws
⌦ (eay!s)

has torsion 20 and curvature

�qc = d! +

1
2
[!,!] + DA +

1
2
[A, A].

For X,Y in m, we find

�qc(X,Y ) = �(X,Y ) + d A(X,Y ) +

1
2
[A, A](X,Y );

since EH is abelian [A, A] = 0, and we compute

�qc=�

X
a<b

eab ⌦ ea ^ eb�
X
a<b,s

eab ⌦ eay!s ^ eby!s � (!s � 2wsyw123) ⌦ !s

�

X
a,s,r

eay!r ^ wr
⌦ ws

⌦ (eay!s).

In particular �2,0
qc is traceless, and !qc is the qc connection. In fact, the curvature

is contained in the trivial submodules of R1 and R3. This can also be seen as a
consequence of the fact that the curvature is both G-invariant and H -equivariant as
a map

�✓ : G ! 32T ⇤

⌦ k,

and so must take values in an invariant space.
Example 8.5. Similarly, the qc connection on the homogeneous space

Sp(n, 1)Sp(1)/Sp(n)Sp(1)

is related to the connection ! considered in Section 3 via

!qc = ! + A, A = ea ⌦ ws
⌦ (eay!s);

in this case

�qc=
X
a<b

eab ⌦ ea ^ eb +

X
a<b,s

eab ⌦ eay!s ^ eby!s +

�
!s + 2wsyw123

�
⌦ !s

�

X
a,s,r

eay!r ^ wr
⌦ ws

⌦ (eay!s).

Thus, the scalar component in R3 is the same as in the case of the sphere, whilst the
component in R1 has the opposite sign.
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Example 8.6. Consider now the solvable Lie group G of [3] characterized by the
existence of left-invariant one-forms e1, . . . , e7 such that

(de1, . . . , de7) =

�
0, e15 + e34 � e46,�e24 + e16 + e45,�2e14,
e12 � e34 + e46, e13 � e42 � e45, e14 � e23 + e56

�
.

(8.4)

The coframe e1, . . . , e7 defines a K -structure. Appling Proposition 5.2 to the (�)
connection, we obtain:

2�1=e46 ⌦ w1 � e45 ⌦ w2, g(2�1)=e134567 ⌦ w1 � e124567 ⌦ w2=(D� )3,3.

Thus 22 = 21 = 0 and the structure is integrable. The qc connection is given by

!qc=
1
4
e5 ⌦ !1+

1
4
e6 ⌦ !2�

✓
1
2
e4+

1
4
e7
◆

⌦ !3 �

✓
3
2
e4 +

1
2
e7
◆

⌦

⇣
e14 + e23

⌘

�

3
4
e1 ⌦ ws

⌦ (e1y!s) +

1
4
e2 ⌦ ws

⌦ (e2y!s) +

1
4
e3 ⌦ ws

⌦ (e3y!s)

�

3
4
e4 ⌦ ws

⌦ (e4y!s).

In terms of the modules of Proposition 8.2, we see that the curvature is contained in
R̃1+ R̃3, and has a non-zero component in each irreducible submodule of R̃1+ R̃3.

Recall that two qc manifolds (M,D), (M 0,D0) are said to be qc conformal if
there exists a diffeomorphism � : M ! M 0 such that d� maps D into D0. It was
proved in [12] that a qc manifold is locally qc conformal to the Heisenberg group if
and only if a tensor called qc conformal curvature is zero (see also [1, 16]).

The existence of such a local diffeomorphism that also preserves the Sp(n)H⇤-
structure can be characterized by the flatness of the qc connection:

Corollary 8.7. A qc Sp(n)H⇤-structure is locally equivalent to the standard struc-
ture on the Heisenberg group if and only if the qc connection is flat.

Proof. On the Heisenberg group, the (�) connection has torsion20 and zero curva-
ture, so it satisfies the conditions of Theorem 8.3; consequently, the qc connection
is flat, and one implication is proved.

Conversely, assume that !qc is flat. Then every point has a neighbourhood U
on which an adapted parallel coframe e1, . . . , e4n+3 is defined; since the torsion is
20, it follows that

de1 = 0 = · · · = de4n, de4n+s = !s, s = 1, 2, 3.

In other words, the dual basis of vector fields defines a subalgebra of X(U) isomor-
phic to the Lie algebra of the Heisenberg group; by a standard result (see [7, Theo-
rem 1.8.3]), this shows that U is locally equivalent to the Heisenberg group.
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Since the qc connection on the sphere is not flat, it follows that the stan-
dard Sp(n)H⇤-structures on the sphere and the Heisenberg group are not equiva-
lent. However, it was shown in [14] that these qc manifolds are locally confor-
mally equivalent via the Cayley transform; this is not an equivalence of Sp(n)H⇤-
structures, because it does not preserve the complement.

9. Qcm structures

There is no natural choice of metric on a qc K -structure, although there is a confor-
mal class of metrics on the horizontal distribution. In this section we begin by fixing
a metric in this class, partly to compare our results with those of [2, 6]. Indeed, we
recover the known fact that the choice of metric determines the complement in full.
In addition we construct a canonical metric connection whose torsion lies in an
affine space parallel to S2(EH) + W ⌦ EH . Its curvature lies in a “small” sub-
module, which we identify, and is almost entirely determined by the torsion and
its derivative. This connection differs from the Biquard connection; it should be
regarded as the metric version of the qc connection of Section 8.

In our language, the choice of a metric amounts to considering an arbitrary
reduction of an integrable qc K -structure to G = Sp(n)Sp(1) n EH . Since @G is
injective, the argument of Remark 4.8 shows that the sequence

0 ! ker @K ! T ⇤

⌦ R @
�! Coker @G ! Coker @K ! 0.

is exact. Thus, the G-intrinsic torsion takes values in 2G
0 + @(T ⇤

⌦ R). In analogy
with Theorem 6.2, this suggests that some reduction to Sp(n)Sp(1) kills a compo-
nent of the intrinsic torsion isomorphic to EH .

It turns out that such a reduction exists and is unique; in other words, a qc
distribution and a compatible metric on the distribution determine a canonical
Sp(n)Sp(1)-structure:

Proposition 9.1. Given an integrable qc structure and a choice of metric on the
horizontal distribution compatible with the structure, there is a unique reduction P
to Sp(n)Sp(1) such that 2G

|P ⌘ 2G
0 and the metric is compatible with P .

Proof. Corollary 6.3 gives a canonical K -reduction; by Theorem 8.3, its K -intrinsic
torsion is 2K

0 . The choice of metric gives a reduction to G.
In terms of the structure group Sp(n)Sp(1), the calculations of Lemma 7.2 give

(ws
⌦ vy!s)!r ⌦ wr � 20 = (ws

⌦ vy!s) · 20 mod Im @G .

By Lemma 6.1, the right hand side lies in the EH containing 12 ↵̃1�↵4+ i↵5, which
is not in Im @G . Thus, the argument of Theorem 6.2 applies, and we find a unique
reduction to Sp(n)Sp(1) that satisfies the required condition.

The uniqueness follows from the fact that the torsion condition in the defini-
tion implies that the B-intrinsic torsion is 2B

0 , which makes the reduction to K
unique.
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We can now prove that the two definitions of integrability for seven-dimen-
sional qc structures agree:

Corollary 9.2. A qc structure is integrable in the sense of Duchemin if and only if
it is compatible with an integrable qc K -structure.

Proof. An integrable qc structure in the sense of Duchemin is a qc B-structure that
about each point admits a section s such that (with obvious notation)

(s⇤d⌘)1,1 2 31,1
⌦ W ⇠

= V ⌦ W ⌦ W

is skew-symmetric in the last two indices. Fix a B-connection ! on such a structure;
Proposition 5.2 gives

(d⌘ + ! ^ ⌘)1,1 = (D⌘)1,1 = 22 + 2�1.

By construction, both s⇤(! ^ ⌘) and 2�1 have no component in V ⌦ S20W . Thus,
if s⇤(d⌘)1,1 is skew-symmetric then 22 is zero.

Conversely, given an integrable qc K -structure, take a reduction P such as in
Proposition 9.1, and choose a G-connection on P with torsion 2 = 20. Then

(d⌘ + ! ^ ⌘)1,1 = (D⌘)1,1 = 0;

because of how G is defined, in this case s⇤(! ^⌘) has no component in V ⌦ S2W ,
so s⇤(d⌘)1,1 is skew-symmetric for any section of P .

Proposition 9.1 motivates the following:
Definition 9.3. A quaternionic-contact metric (qcm) structure on a (4n+3)-dimen-
sional manifold is an Sp(n)Sp(1)-structure with G-intrinsic torsion equal to 2G

0 .
In this language, Proposition 9.1 asserts that an integrable qc structure deter-

mines a family of qcm structures, one for each choice of compatible metric on the
horizontal distribution. Notice that the qc structure underlying a qcm structure is
always integrable.

Having reduced the structure group, we refine the usual decomposition as

32T ⇤

⌦ T = Im (@Sp(n)Sp(1)) � 32V ⇤

⌦ W � @1(W1) � @2(W2) � @(W3)
� @(V ⇤

⌦ R) � @(T ⇤

⌦ EH),

and decompose the torsion of any Sp(n)Sp(1)-connection as

2 = 2⇤ + 2Q
+ 21 + · · · + 25. (9.1)

By construction, any connection on a qcm structure satisfies

2Q
= 20, 21 = · · · = 24 = 0.

We shall need the following lemma in order to characterize the curvature of the
qcm connection. The final part of the lemma will also be used in the proof of
Corollary 9.9.
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Lemma 9.4. Consider the projections

psp(1)
1 : R̃1 ! 32,0

⌦ sp(1), psp(1)
2 : R̃2 ! 31,1

⌦ sp(1),
pEH2 : R̃2 ! 32,0

⌦ EH, pEH3 : R̃3 ! 31,1
⌦ EH.

Then

Im psp(1)
1

⇠
= S2(EH), Im psp(1)

2
⇠
= EH + ES3H, ker pEH2 = 0 = ker pEH3 .

Moreover, if n > 1, and R denotes the trivial module in 31,0
⌦ EH ,

Im pEH2 \

�
sp(1) ⌦ EH + 31,0

^ R
�

= 0.

If n = 1, then Im pEH2 is the direct sum of ES3H ⇢ sp(1) ⌦ EH and a diagonal
EH in sp(1) ⌦ EH + 31,0

^ R.

Proof. By construction ker psp(1)
1 is the preimage of s(V ⇤

⌦
gEH) in 32,0

⌦ sp(n)
under �. It is easy to check that the submodule of s(V ⇤

⌦
gEH) isomorphic to

S2(EH) is transverse to33,0
⌦V , which contains �(32,0

⌦sp(n)). Thus, ker psp(1)
1

is the kernel of � in 32,0
⌦ sp(n). The fact that the image of psp(1)

2 contains
EH+ES3H follows immediately from (8.2) and (8.3). By Schur’s lemma, equality
holds. The projection pEH3 is injective because otherwise � would not be injective
on 30,2

⌦ (sp(n) + sp(1)), which is absurd. Similarly, if pEH2 were not injec-
tive then �(31,1

⌦ (sp(n) + sp(1))) would intersect s(W ⇤
⌦

gEH) non-trivially;
then @(31,0

⌦ (sp(n) + sp(1))) would intersect eEH , which is absurd because, by
Lemma 4.10, ↵̃1 is not a linear combination of @(↵1) and @(↵2).

The last part of the statement amounts to proving that the intersection

�
�
32,0

⌦ (sp(n) + sp(1)) + sp(1) ⌦ EH + 31,0
^ R

�
\ s

⇣
W ⇤

⌦
gEH⌘

is EH + ES3H when n = 1 and zero otherwise. Computing with highest weight
vectors, we see that for n = 1

s
✓�

w2 + iw3
�
⌦

✓
1
2
↵̃1 � ↵4 + i↵5

◆

= �

1
2
�

✓⇣�
w2 + iw3

�
^ v1h1 + iw1 ^ v1h2

⌘
⌦ (!2 + i!3) +

�
w2 + iw3

�
^ ↵2

+ v j h2 ^ vn+ j h2 ^

⇣
iw1 ⌦ v1h2 + (w2 + iw3) ⌦ v1h1

⌘◆
,

showing that the intersection contains ES3H ; no such equality holds for n > 1.
Similarly, one verifies that the intersection only contains EH when n = 1, but the
relevant EH projects non-trivially to both sp(1) ⌦ EH and 31,0

^ R.
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Theorem 9.5. The intrinsic torsion of a qcm structure lies in

Span {20} + S2ES2H + 32
0E + R + EH + ES3H.

In particular any qcm structure has a unique connection with torsion

20 + @(�V ) + @(�W ), for �V 2 S2(EH) ⇢ V ⇤

⌦ EH, and �W 2 W ⇤

⌦ EH;

its curvature satisfies

�2,0
2 S2(EH) + S4E,

�1,1
2 S3EH + ES3H + EH,

�0,2
2 S2ES2H + S4H + R.

Moreover there are linear equivariant maps

f1 : S2(EH) ! 32,0
⌦ (sp(n) + sp(1)),

f2 : W ⇤

⌦ EH ! 31,1
⌦ (sp(n) + sp(1)),

f3 : 32,0
⌦ EH ! 31,1

⌦ (sp(n) + sp(1)),
f4 : 31,1

⌦ EH ! 30,2
⌦ (sp(n) + sp(1))

such that f1 and f2 are injective,

�2,0
� f1(�V ) 2 S4E, �1,1

� f2(�W ) 2 S3EH, �0,2
= f4(D(�V + �W )1,1),

and �1,1
� f3((D�V )2,0) is in ES3H (and zero when n > 1).

Proof. Consider an Sp(n)Sp(1) connection ! with torsion 20 + 25, where

25 = @(�V ) + @(�W ), for �V 2 V ⇤

⌦ EH, and �W 2 W ⇤

⌦ EH.

Then
!qc = ! � �V � �W

is a K -connection with curvature

�qc = � � D(�V + �W );

in particular, tr�C is zero, so !qc is the qc connection and, in the notation of
Lemma 8.1,

�qc 2 R̃1 + R̃2 + R̃3 + R4.

In particular
⇥
�2,0
qc

⇤
sp(1) 2 S2ES2H + 32

0E + R, and
⇥
�1,1
qc

⇤
sp(1) 2 ES3H + EH.
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Since ⌘ and 20 are parallel under !, we compute

D⌘ = 20y ⌘ = 20, � ^ ⌘ = D20 = 25y20.

Now
(25y20)

2,1
= @(�V )y20, (25y20)

1,2
= @(�W )y20.

Notice that applying this argument to the (0, 3) part we obtain no information, as
both [�0,2

qc ]sp(1) ^ ⌘ and (25y20)0,3 are zero.
Using the fact that � = [�qc]sp(n)+sp(1), we deduce⇥

�2,0
qc

⇤
sp(1) ^ ⌘ = @(�V )y20,

⇥
�1,1
qc

⇤
sp(1) ^ ⌘ = @(�W )y20. (9.2)

It is easy to verify that the map

T ⇤

⌦ EH ! 32,1
⌦ W, v ! @(v)y20 (9.3)

is injective; thus, (9.2) implies that �V is in S2(EH). By Lemma 9.4, �V and
�W determine part of the curvature, and the dependence can be expressed by linear
maps f1, f2 as in the statement. Notice that f1 and f2 are necessarily injective
because so is the map (9.3).

We can now write

D�V 2 T ⇤

^ S2(EH) + 2y�V , D�W 2 (31,1
+ 30,2) ⌦ EH + 2y�W ,

where
2y�V = @(�V + �W )y�V , 2y�W = 20y�W ;

therefore,

�2,0
qc = �2,0

� 20y�W � (D�V )2,0, �1,1
qc = �1,1

� (D�V )1,1 � (D�W )1,1,

and

�0,2
qc = �0,2

� @(�W )y�V � (D�W )0,2.

In consequence,

�2,0
2 R̃1, �1,1

� 20y�W � (D�V )2,0 2 R̃2,

and

�0,2
� (D�V )1,1 � (D�W )1,1 2 R̃3.

Taking pEH2 we see that�1,1 is determined by20y�W + (D�V )2,0, where the first
summand lies in S2H ⌦ EH . It also follows from Lemma 9.4 that (D�V )2,0 alone
determines all of �1,1 when n > 1, and its component S3EH + EH when n = 1.

Similarly, the fact that pEH3 is injective shows that (D�V + D�W )1,1 deter-
mines �0,2.
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We shall refer to the connection of Theorem 9.5 as the qcm connection; it can be
regarded as a canonical object of qcm geometry in the same way that the qc connec-
tion is canonical in qc geometry, since the two are related by the obvious projection
from k to sp(n)+sp(1). The qcm connection is also natural in that it coincides with
the natural connection that appears in the three fundamental examples of Section 3.
Remark 9.6. The curvature of the qcm connection has the remarkable property
that the torsion (together with its covariant derivative) determines all of its curva-
ture except for S4E ⇢ R̃1. This component of the curvature is the same whether
one considers the qc, qcm or Biquard connection (see Corollary 10.6), and can be
identified with the qc conformal curvature tensor constructed in [12].
Remark 9.7. We could have considered the curvature of the qc connection instead,
but this would have changed little, because its curvature, as shown in the course of
the proof, can be identified with the curvature of the qcm connection by means of a
projection to sp(n)sp(1). The fact that the modules appearing in Theorem 9.5 are
smaller than those of Proposition 8.2 is a consequence of the fact that we are now
working with a qcm structure rather than an arbitrary Sp(n)Sp(1) reduction of a qc
structure.

Recall that the (horizontal) Ricci tensor is defined as

Ric(X,Y ) =

4nX
a=1

hea,�(ea, X)Y i, for X,Y 2 V ;

notice that the contraction is only taken on indices along V . Its trace is called the qc
scalar curvature. The Ricci tensor arises from an equivariant map 32,0

⌦ (sp(n) +

sp(1)) ! V ⇤
⌦ V ⇤. Restricting to R̃1, it follows by Schur’s lemma that the image

is contained in S2(V ⇤): so, the Ricci tensor is symmetric, as proved in [2] for the
Biquard connection.
Remark 9.8. With a bit of work one can show that the image is exactly S2(V ⇤),
so the Ricci of the qcm connection can be identified with �V . In particular, the
qc scalar curvature is the scalar part of �V . The remaining part of the intrinsic
torsion, �W , is easily seen to be the obstruction to the complement distribution
being integrable.

A qc manifold is called qc-Einstein if the Biquard connection has zero traceless
Ricci. This is a very strong condition, due to results of [13]. We can now prove an
analogous result which uses the qcm connection instead.

Corollary 9.9. On a qcm manifold of dimension greater than seven, the following
conditions are equivalent:

1. the four-form
P

s !2s is closed;
2. �V is a constant scalar and �W = 0;
3. the qcm connection has curvature in S4E + 2R ⇢ R1 + R3;
4. the horizontal traceless Ricci of the qcm connection is zero;
5. the traceless part of �V is zero.
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Proof. The fundamental form
P

s !2s is parallel under !qcm; therefore, it is closed
if 2y

P
!2s = 0, or

@(�V )y
X
s

!2s = 0, @(�W )y
X
s

!2s = 0.

The second equation is equivalent to �W = 0, because interior product with the
fundamental form is an injection of V into 33,0. The first equation means that �V
is in the kernel of a map S2(EH) ! 34,1 which is easily checked to have kernel
R (since we assume n > 1). Thus, (1) is equivalent to (2).

The fact that (2) implies (3) follows from Theorem 9.5; on the other hand, (3)
obviously implies (4).

The fact that (4) is equivalent to (5) follows from

�2,0
� f1(�V ) 2 S4E,

and from the fact that the Ricci contraction from R̃1 to S2(EH) has kernel S4E , as
noted in a remark above.

Now assume (5) holds; then (D�V )2,0 2 V ⇤
^ R. By Lemma 9.4,

pEH2
⇣
�1,1

� 20y�W � (D�V )2,0
⌘

= 0.

This implies that both �W and (D�V )2,0 are zero.
Similarly, (D�V )1,1 lies in as module isomorphic to S2H , so

�0,2
� (D�V )1,1 � (D�W )1,1 2 R̃3

implies that (D�V )1,1 is zero. Summing up, r�V is zero, i.e., �V is constant. This
establishes the equivalence of (2) and (5), completing the proof.

Remark 9.10. One can rephrase Corollary 9.9 in terms of the Biquard connection,
for condition (5) is equivalent to T⇠ = 0 (Corollary 10.4), and condition (4) is
equivalent to qc-Einstein (Corollary 10.7). This version of the statement was proved
in [13].
Remark 9.11. There are two points in the proof where the assumption on the di-
mension is used. First, the map S2(EH) ! 34,1 whose kernel contains �V is zero
when n = 1, so (1) does not imply (2) for n = 1. In fact, this implication has a
known counterexample [3].

Secondly, the fact that �V is a scalar does not apparently force �W to vanish
for n = 1, because of the form that Lemma 9.4 takes in this instance. A very recent
result [9] shows however that even when the dimension is seven, �V is a scalar only
when the vertical distribution is integrable, hence �W = 0.

We conclude this section by noting that the natural qcm structure in each ex-
ample of Section 3 satisfies the conditions of Corollary 9.9, with �V a positive,
negative or zero constant. In these examples, the S4E component of the qcm curva-
ture is also zero. More generally, 3-Sasakian manifolds have a natural qc-Einstein
structure; the converse also holds up to local homothety (see [13]).
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10. The Biquard connection

In this section we compare our results with those of [2, 6]. In fact, we recover the
existence of the Biquard and Duchemin connection, and express them in terms of
the qcm connection, showing that all three connections exist in all dimensions. We
show that the component of the torsion of the Biquard connection usually denoted
by T⇠ can be identified with a traceless symmetric endomorphism of D, which can
be identified with the traceless Ricci of either the Biquard or the qcm connection.

We shall decompose any ⌘ 2 32T ⇤
⌦ T as

[⌘]V + [⌘]W , for [⌘]V 2 32T ⇤

⌦ V, and [⌘]W 2 32T ⇤

⌦ W.

Recall the following:

Theorem 10.1 (Biquard [2]). If n > 1, given a qc structure with a fixed compat-
ible metric on the distribution D, there is a unique complement WB and a unique
connection which:

1. preserves both D and WB , as well as the Sp(n)Sp(1)-structure on D, and acts
on WB as on the subbundle of End(V ) determined by the almost complex struc-
tures;

2. satisfies the torsion conditions

⇥
22,0⇤

V = 0,
⇥
21,1⇤

V 2 @
⇣
W ⇤

⌦ (sp(n)sp(1))?
⌘

, (10.1)

where the orthogonal complement is taken in gl(V ).

In seven dimensions, we have the following similar result:

Theorem 10.2 (Duchemin [6]). If n = 1, given a qc structure with a fixed com-
patible metric on the distribution D, then there is a unique complement WD and a
unique connection which:

1. preserves both D and WD , and the metrics on them;
2. satisfies the torsion conditions

⇥
22,0⇤

V = 0,
⇥
20,2⇤

W = 0, and 21,1
2 ES5H + W ⇤

⌦ S2V . (10.2)

The ES5H component is zero if and only if the qc structure is integrable.

We shall refer to these connections as the Biquard connection and the Du-
chemin connection. Notice that the Duchemin connection has holonomy contained
in SO(4) ⇥ SO(3), or Sp(n)Sp(1) ⇥ SO(W ).

We introduce two equivariant maps

TB : S2(EH) ! W ⇤

⌦ (sp(n) + sp(1)), TD : S2(EH) ! W ⇤

⌦ so(W );
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equivariance implies that TB is zero on 32
0E and TD is zero on 32

0E + S2ES2H :
on the remaining components, we set

TD
�
ea ⌦ ws

⌦ eay!s
�
=4ws

⌦

�
wsyw123

�
, TB

�
ea ⌦ ws

⌦ eay!s
�
=2ws

⌦ !s,

and

TB
�
v1h2 ⌦

��
w2 + iw3

�
⌦ v1h1 + iw1 ⌦ v1h2

��
=

1
2
�
w2 + iw3

�
⌦ v1h2 ^ v1h1.

We can recover the existence of the Biquard and Duchemin connections as a con-
sequence of what we have proved so far; in particular, we show that our choice of
complement coincides with WB and WD .

Theorem 10.3. On a qcm structure:

• There is a unique connection !B whose torsion 2B satisfies (10.1); it is related
to the qcm connection via

!B = !qcm + TB(�V ),

and satisfies

22,0
B = 20, 21,1

B 2 S2ES2H + 32
0E, 20,2

B 2 EH + ES3H + R;

• There is a unique Sp(n)Sp(1) ⇥ SO(W )-connection !D whose torsion 2D sat-
isfies (10.2), given by

!D = !qcm + TB(�V ) + TD(�V );

moreover 2D = 2B � [20,2
B ]W .

Given a qc structure and a metric on the horizontal distribution:

• There is a unique Sp(n)Sp(1)-structure compatible with structure and metric
that admits a connection satisfying (10.1);

• There is a unique Sp(n)Sp(1)-structure compatible with structure and metric
that admits an Sp(n)Sp(1) ⇥ SO(W )-connection satisfying (10.2).

These two Sp(n)Sp(1)-structures coincide, they are a qcm structure P in the sense
of Definition 9.3, and the natural complement

P ⇥Sp(n)Sp(1) W ⇢ P ⇥Sp(n)Sp(1) T

coincides with the complement WB (respectively WD).
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Proof. Let !qcm be the qcm connection; its torsion is determined by �V , �W as
defined in Theorem 9.5. Consider the connection

!B = !qcm+⌘V+⌘W , where ⌘V 2V ⇤

⌦(sp(n)+sp(1)), ⌘W 2W ⇤

⌦(sp(n)+sp(1));

its torsion 2B satisfies

(2B)2,0 = 20 + @(⌘V )2,0, (2B)0,2 = @(�W ) + @(⌘W )0,2,

and

(2B)1,1 = @(�V ) + @(⌘V )1,1 + @(⌘W )1,1.

The first equation in (10.1) is equivalent to ⌘V = 0, whereas the second equation
means that

@(�V ) + @(⌘W )1,1 2 @
⇣
W ⇤

⌦ (sp(n) + sp(1))?
⌘

.

There is a unique solution in ⌘W , proving existence and uniqueness of rB . Since
TB satisfies

@(TB(v)) + @(v) 2 @
⇣
W ⇤

⌦ (sp(n) + sp(1))?
⌘

, for v 2 S2(EH),

the solution is given by ⌘W = TB(�V ). Notice that @ � TB + @ is zero on the
component isomorphic to R, so (2B)1,1 lies in S2ES2H + 32

0E .
To determine !D , we think of the Lie algebra of Sp(n)Sp(1) ⇥ SO(W ) as

(sp(n) + sp(1)) + so(W ), with sp(1) contained diagonally in so(V ) + so(W ) as
usual. Accordingly, we can write an arbitrary Sp(n)Sp(1) ⇥ SO(W )-connection as
!D = !qcm + ⌘V + ⌘W + A, where ⌘V and ⌘W are as in the first part of the proof
and A is an so(W )-valued tensorial 1-form. The torsion is then

(2D)2,0 = 20 + @(⌘V )2,0, (2D)0,2 = @(�W ) + @(⌘W )0,2 + @(A)0,2,

(2D)1,1 = @(�V ) + @(⌘V )1,1 + @(⌘W )1,1 + @(A)1,1.

The condition on (2D)2,0 immediately implies that ⌘V = 0; so, the condition on
(2D)1,1 reads

@(A)1,1 = 0, @(�V ) + @(⌘W )1,1 2 W ⇤

⌦ (sp(n) + sp(1))?.

Therefore ⌘W = TB(�V ). Imposing

0 =

h
(2D)0,2

i
W

= @(TB(�V ))0,2 + (@A)0,2

gives A = TD(�V ). It is now clear that the torsion2D differs from2B only in that
the R component is zero.
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In order to prove the uniqueness of the qcm structure, observe that a qc struc-
ture and a metric determine a qc Sp(n)Sp(1) n Hom(W, V )-structure. Take an
arbitrary reduction to Sp(n)Sp(1), and assume it has a connection satisfying (10.1).
Decomposing its torsion according to (9.1), we find

⇥
22,0⇤

V =

⇥
(2⇤)

2,0⇤
V +

⇥
(21)

2,0⇤
V +

⇥
(24)

2,0⇤
V .

Write
2⇤ = @(⌘V + ⌘W ), 21 = @1(⌘1), 24 = @(�V + �W ),

with obvious notation; then (⌘V , ⌘1, �V ) is in the kernel of

V ⇤

⌦ (sp(n) + sp(1)) � W1 � V ⇤

⌦ R ! 32V ⇤

⌦ V, v !

⇥
@(v)2,0

⇤��
V .

This map is surjective with kernel 2EH+ES3H . To identify these subspaces more
precisely, observe that V ⇤

⌦ (sp(n) + sp(1)) intersects W1 in V ⇤
⌦ sp(1); thus, the

kernel contains (↵1,�↵1, 0) and (�1,��1, 0). The calculations of Lemma 4.10
show that the kernel also contains

(↵2,↵3, v1h2 ⌦ (4IdV + 8IdW ));

in particular, the kernel projects injectively on W1.
By Theorem 5.5, ⌘1 lies in the ES3H containing 2�2 + 3�1, which intersects

V ⇤
⌦ sp(1) trivially; hence, ⌘1 = 0. Thus, 21 = 0; by Theorem 5.5 and integra-

bility, this implies that 22 = 0, so 2B
= 2B

0 . In addition, �V is also forced to be
zero, so P is a qcm structure.

This result shows that both the Duchemin and Biquard connections exist in all
dimensions; moreover, they only differ by a component inR ⇢ W ⇤

⌦so(W ), which
has the effect of killing [20,2

]W .
The tensor T⇠ that appears in the literature can be identified with 21,1. It is

customary to decompose T⇠ as

T⇠ = T 0⇠ + b⇠ , where b⇠ 2 W ⇤

⌦ so(V ), and T 0⇠ 2 W ⇤

⌦ S2V .

Decomposing into irreducible modules,

b⇠ 2 32
0E

�
S4H + S2H + R

�
, T 0⇠ 2 S2E

�
S4H + S2H + R

�
+32

0ES
2H + S2H;

however, it follows from Theorem 10.3 that b⇠ is indeed contained in 32
0E and T

0
⇠

in S2ES2H . This is consistent with the results of [2] (see also [14, Proposition 2.4]
and [5, Proposition 3.1]).

As an element of S2ES2H + 32
0E , T⇠ can be viewed as a traceless symmetric

tensor; in fact, it can be identified with the traceless part of �V :

Corollary 10.4. There is a linear map S2(EH) ! W ⇤
⌦ (sp(n) + sp(1))? with

kernel R that maps �V to T⇠ .
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Proof. It suffices to check that the map

S2(EH) ! 32T ⇤

⌦ T, �V ! @(�V ) + TB(�V )

has kernel R.

Example 10.5. Theorem 10.3 also tells us how to compute the torsion of the Bi-
quard connection from that of the qcm connection. For instance, the qcm connec-
tion on the Lie group (8.4) satisfies

�V =

1
2
�
e1 ⌦ e1 + e4 ⌦ e4 � e2 ⌦ e2 � e3 ⌦ e3

�
+

1
4
ea ⌦ ea, �W = 0;

therefore the S2ES2H component of torsion of the Biquard connection is the pro-
jection to W ⌦ S2V ⇢ 31,1

⌦ V of

@

✓
1
2
�
e1 ⌦ e1 + e4 ⌦ e4 � e2 ⌦ e2 � e3 ⌦ e3

�◆

i.e.,

(2B)1,1 = �

1
2
e5 ^

�
e1 � e2 � e3 � e4

�
�

1
2
e6 ^

�
e1 � e3 � e4 � e2

�
.

The R component is

@

✓
1
2
ws

⌦ !s

◆0,2
= wsyw123 ⌦ ws;

finally, the EH + ES3H component is zero because �W is zero, so

(2B)0,2 =

X
s

wsyw123 ⌦ ws .

The torsion of the Duchemin connection only differs in that 20,2
D = 0.

It is not surprising that the curvatures of the Biquard and qcm connections are
related by a formula involving the torsion. The remarkable fact is that the (2, 0)
components of the curvature only differ by a term that depends linearly on �V :

Corollary 10.6. On a qcm structure, the Biquard connection has curvature

�B = �qcm + DqcmTB(�V ) +

1
2
[TB(�V ), TB(�V )].

In particular,

(�B)2,0 =

�
�qcm

�2,0
+ 20y TB(�V ) 2 R̃1 +

�
S2ES2H + R

�
,

where the two summands intersect trivially.
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Proof. The first formula is obvious. Now [TB(�V ), TB(�V )] has type (0, 2), and

�
DqcmTB

�2,0
= 22,0y TB(�V ) = 20y TB(�V )

takes values in S2ES2H + R; the relevant modules contain

(!2 + i!3) ⌦ v1h2 ^ v1h1, !s ⌦ !s .

In order to prove that S2ES2H is not contained in R̃1, it is sufficient to show that

�((!2 + i!3) ⌦ v1h2 ^ v1h1) = v j h2 ^ vn+ j h2 ^ (v1h2 ⌦ v1h1 � v1h1 ⌦ v1h2)

does not lie in s(V ⇤
⌦

gEH), which follows from

s(v1h2 ⌦ v1h2) =

1
2
v1h2 ^ (vn+ j h1 ^ v j h2 + vn+ j h2 ^ v j h1) ⌦ v1h2

+ v1h2 ^ v j h2 ^ vn+ j h2 ⌦ v1h1
+ iv1h2 ^ v1h1 ^ (w1 ⌦ (w2 + iw3) � (w2 + iw3) ⌦ w1).

A similar computation shows that �(!s⌦!s) does not belong to the image of s.

We can now use results from [14] to give a geometric characterization of the
Ricci tensors.

Corollary 10.7. On a qcm manifold, the component �V of the intrinsic torsion, the
Ricci tensor of the Biquard connection and the Ricci tensor of the qcm connection
coincide up to linear equivariant automorphisms of S2(V ).

Proof. By Theorem 9.5 and subsequent remarks, the Ricci of the qcm connection
can be identified with �V . By Corollary 10.6, there is a linear equivariant endomor-
phism f of S2(EH) that maps �V to the Ricci of the Biquard connection.

To prove that f is an isomorphism, observe that by [14] the traceless Ricci of
the Biquard connection can be identified with the component of T⇠ in S2ES2H +

32
0E , which can in turn be identified with �V by Corollary 10.4. This shows that
f is injective on S2ES2H + 32

0E . Suppose that, for some n, f is zero on the
component R of S2(EH). This implies that, on any integrable qc manifold of
dimension 4n + 3, the Biquard connection has qc scalar curvature equal to zero.
The example of the sphere (see Section 3 or [2]), which exists in all dimensions,
shows that this is not true.
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