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Pointwise estimates and existence of solutions
of porous medium and p-Laplace evolution equations
with absorption and measure data

MARIE-FRANCOISE BIDAUT-VERON AND Quoc-HUNG NGUYEN

Abstract. Let 2 be a bounded domain of RV (N = 2). We obtain a necessary
and a sufficient condition, expressed in terms of capacities, for the existence of a
solution to the porous medium equation with absorption
ur — AQu™ ')+ wf lu=p inQx@©,7T)
u=0 on a2 x (0,7T)
u0) =o
where o and u are bounded Radon measures, g > max(m, 1),andm > % We
also obtain a sufficient condition for the existence of a solution to the p-Laplace
evolution equation
ur — Apu+ulf'u=pn inQx(©,7)
u=0 ond2 x (0, T)
u) =0

whereg > p—1and p > 2.

Mathematics Subject Classification (2010): 35K92 (primary); 35K55, 35K 15
(secondary).

1. Introduction and main results

Let 2 be a bounded domain of R¥Y, N > 2and 7' > 0, and Q7 = Q2 x (0, T). In this
paper we study the existence of solutions to the following two types of evolution
problems: the porous medium problem with absorption

ur — AQu|" ')+ ul? lu=pn inQr
u=0 on 92 x (0, T) (1.1)
u@0)=o
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where m > NT_Q and ¢ > max(1, m), and the p-Laplace evolution problem with

absorption
uy — Apu + 'y =p inQr
u=0 ondQ2 x (0,T) (1.2)
u0) =o

where ¢ > p — 1 > 1, and n and o are bounded Radon measures respectively
on Q7 and Q. In the sequel, for any bounded domain O of R > 1), we denote
by M, (0) the set of bounded Radon measures in O, and by /\/IZ(O) its positive
cone. For any v € M (0), we denote by v and v~ respectively its positive and
negative part.

Whenm = 1, p = 2 and ¢ > 1 the problem has been studied by Brezis and
Friedman [8] with . = 0. It is shown that in the subcritical case ¢ < 1 4+ 2/N,
the problem can be solved for any o € M (R2), and it has no solution when ¢ >
1+ 2/N and o is a Dirac mass. The general case has been solved by Baras and
Pierre [2] and their results are expressed in terms of capacities. For s > 1, « > 0,
the capacity Capg,, ; of a Borel set £ C RY is defined by

Capg,, ((E) = inf{“g|

iS(RN):gELi<RN>,Ga*gZlonE},

where G, is the Bessel kernel of order « and the capacity Cap, ; ; of a compact set
K c RN¥*1 s defined by

Cap, ; ((K)=inf { H(p||;l/3’l(RN+l) peSs (RN+1), ¢ > 1 in a neighborhood of K} ,

where
||(/)| w2 RN+ = ||§0| LS (RN+1) + ||(pt| LS (RN+1) + H Vel | LS (RN+1)
+ Z H(px,-xj | Ls(RN+I)-
ij=12...N

The capacity Cap, ;  is extended to Borel sets by the usual method. Note the
relation between the two capacities:

C™! Capg_, (E) = Cap, ; ((E x {0)) < CCapg_, ,(E)

-3
for any Borel set E C RY, see [19, Corollary 4.21]. In particular, for any o €
Mp(RN) and a € R, the measure ®®b8(1—q) In RN+ g absolutely continuous with
respect to the capacity Cap, ; ; (in RN+1y if and only if w is absolutely continuous

with respect to the capacity Capg (in RN). We recall that a measure p is
2

_258

absolutely continuous with respect to the capacity Cap if, for any Borel set E,

Cap(E) =0 = [u|(E) =0.
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From [2], the problem

—Au+ul?'u=pn inQr

u=~0 ond2 x (0,7)

u0)=o
has a solution if and only if the measures 1 and o are absolutely continuous with
respect to Cap, ; . in Q7 and CapG2 ¢ in Q respectively, where g’ %1.

In Section 2 we study problem (1 1).

For m > 1, Chasseigne [10] has extended the results of [8] for u© = O in the
new subcritical range m < g < m + % The supercritical case ¢ > m + % where
© = 0 and o is positive is studied in [9]. He has essentially proved that if problem
(1.1) has a solution, then o ® §(;—0) is absolutely continuous with respect to the
capacity Cap; e defined for any compact set K ¢ RV *! by

Cap2:17q_im,q/(K)

9
=inf H(p| ;’V_{”}i (@A tp€eS (]RN> , @ > 1in a neighborhood of K

q—m’

where

el vy = lel + il o @y + 1Vl
q—m’

Lq m (RN+I Lq m (RN+I)
+ Z Hfﬂxix«” 4 .
J qg—m N+1
i,j=12,..,N Lamm R

In this section we first give necessary conditions on the measures p and o for exis-
tence, which cover the results mentioned above.

Theorem 1.1. Let g > max(1, m) and u € Mp(Qr) and o € My(Q). If problem
(1.1) has a very weak solution, then | and o & 8;—o) are absolutely continuous
with respect to Cap, | q .

—mql

Remark 1.2. The capacity Cap, ; _a_ 4 is absolutely continuous with respect to
*Trg—m’q—

Ca q since
pz’ 1, g—max{m,1} ’

[elwer ey = CAsupp@D]@lyor gy Vo € € (RN,

o g—maxim, 1]

Therefore 4 and o ®35(;—o) are absolutely continuous with respect to Cap;

tq— max{m I}

In particular o is absolutely continuous with respect to Capg —

b quax{m,l}
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The main result of this section is the following sufficient condition for exis-
tence, where we use the notion of R-truncated Riesz parabolic potential I, on RV !
of a measure p € Mj(QT), defined by

R LA
]Ig[/x](x,t) :/ W% for any (x,7) € RNF!,
0

with R € (0, 00],and Q,(x, 1) = B,(x) x (t — p2, t + p?).
Theorem 1.3. Letm > Y22, g > max(1, m), p € My(Qr) and o € Mp(<).

i. If m > 1 and ju and o are absolutely continuous with respect to Cap, g inQr
and Capg,, . in 2, then there exists a very weak solution u of (1.1), satisfying

q
forae.(x,t) € Qr

Q Q i
|u<x,r)|sc(('“'( ) 1kl T)) F1o1(Q) + 1l(@r) + 1

dN
(1.3)

+ 13 o] ® Sgy=0y + |1ul] (x, t)>,

where C = C(N,m) > 0 and

N +2)2mN + 1
my = N FDCaNFD ) TV,
m(mN +2)(1 +2N)

ii. If NT_2 < m < 1, and u and o are absolutely continuous with respect to

Cap2 1 2 in Qr and CapG 2 in Q, there exists a
» D 2(q—D+NA—m) 2=N{1-m) » 2(g—D)+N(1—m)

very weak solution u of (1.1), such that for a.e.(x,t) € Qr

e = (@ @Y

I (1.4)
+ (H%d [|CT| ® 8(r=0) + |,u|] (x, t)) =N(—m) )1
where C = C(N, m) > 0 and

_ 2N(N +2)(m + 1)
T R4+NmQR=NA=m)Q2+N1+m)’

ma

Moreover we give existence results in the subcritical case, for any u € M (Q27)
and o € M(R2), see Theorem 2.9.
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We also give other types of sufficient conditions for measures which are good
in time, that means

cel'(Q) and|u|<f+wQF,

1.5

where f € L} (Qr), F € LL((0, 7)), w € M} (Q), (1)

see Theorem 2.10. The proof is based on estimates for the stationary problem in
terms of elliptic Riesz potential.

In Section 3, we consider problem (1.2). Let us recall some former results
about it.

For ¢ > p — 1 > 0, Pettitta, Ponce and Porretta [21] have proved that it
admits a (unique renormalized) solution provided o € L'(Q) and u € My(Q7)
is a diffuse measure, i.e., absolutely continuous with respect to the C-capacity in
Q7, defined on a compact set K C Q27 by

Cp(K,Qr) =inf{|¢|, :¢ € CX(Qr), ¢ = 1onK}, (1.6)
where
W=lzeLr (.1 W@ N 1A@) ;

z el ((0, Ty, WP (Q) + L2(9)> }

In the recent work [4], we have proved a st%bili}y result for the p-Laplace parabolic
N+

equation, see Theorem 3.5 below, for p > S As a first consequence, in the new
subcritical range
q<p-—1+ %,

problem (1.2) admits a renormalized solution for any measures u € My (Q27) and
o € L'(Q). Moreover, we have obtained sufficient conditions for existence, for
measures that have a good behavior in time, of the form (1.5). It is shown that (1.2)
has a renormalized solution if w € M;(Q) is absolutely continuous with respect
to CapGp’ S The proof is based on estimates of [5] for the stationary problem

which involve Wolff potentials.
Here we give new sufficient conditions when p > 2. Our second main result is
the following:

Theorem 14. Letg > p—1 > land u € Mp(Q7) and o € Mp(Q). If u and o
are absolutely continuous with respect to Cap, ; . in Qr and Capg, . in K2, then

q
there exists a distribution solution of problem (1.2) which satisfies the pointwise
estimate

|u(x,z)|5C(1+D+<|G|(Q)+|“|(QT)> : )) (17)

N + BP[lo @810y + 11l (x. t
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fora.e (x,t) € Qr withC = C(N, p) and

(N+p)G+D(p—1) .
= s A= 1 —1),1/N},
T G- DN+p (I +A(p—1) min{l/(p =D 1/NV g

D = diam(Q) + T'V/?.

Moreover, if o € L! (R2), u is a renormalized solution.

2. Porous medium equation

For k > 0 and s € R we set T (s) = max{min{s, k}, —k}.

2.1. Weak solutions

The solutions of (1.1) are considered in a weak sense:

Definition 2.1. Let u € My (Q27) and 6 € M(Q2) and g € C(R).

i. A function u is a weak solution of problem

up — A(lul™'u) + g) = p inQr
u=20 ond2 x (0,7) 2.1)
u0)=o in Q

if u € C([0, T1; LA(Q)), lul™ € L*((0, T); Hy () and g(u) € L' (Qr), and
forany ¢ € C21(Q x [0, T)),

—/ ugdxdrt +/ V(|ul™ " u) - Vodxdt
Qr Qr

+/ g(u)(pdxdt:/ (pd,u+/ ¢(0)do.
Qr Qr Q

ii. A function u is a very weak solution of (2.1) if u € Lmaxim(Qry and g(u) €
L' (Q7), and forany ¢ € C>1(Q x [0, T)),

—/ ugotdxdt—/ |u|m_1uA<pdxdt+/ g(u)godxdt:/ god,u-i—/w(O)da.
Qr Qr Qr Qr Q

2.2. Necessary conditions for existence

Next we show the necessary conditions stated in Theorem 1.1.
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Proof of Theorem 1.1. As in [2, Proof of Proposition 3.1], it is enough to claim that,

for any compact K C € x [0, T') such that ©~(K) =0and (6~ ® §;;=0))(K) =0

and Cap, | _a_ (K) = 0, there holds ut(K) = 0 and (67 ® §=0))(K) = 0.
=T

For ¢ > 0 we choose an open set O such that (|u| + |o| ® §;=0)) (O\K) < ¢ and

K C O C Qx(—T,T). One can find a sequence {¢,} C C2°(0) which satisfies

0<¢, <1, ¢nlg =1and ¢, — Oin Wi ,(RN+1) and almost everywhere in

O (see [2, Proposition 2.2]). We get o
/ Yndu +/ vn(0)do
Qr Q
= —/ u(@y)dxdt — / lu|™ ' uA@,dxdt +/ lul? " ugndxdt
Qr Qr Qr

= (”““Lq(szT) + ”“HZ(QT)) “% ” whi

q
qg—m> g—1

+ / |u|3<p dxdt.
(RN+1) n
Note that

]gﬁhdu+]g%xmdozﬁﬁTK)+Gf*®5u_mﬂKﬁ—UMPHOI®5mﬁQ(O\K)
>t (K)+(0" @ y=0)) (K) — &
This implies
wHEK) + (0F @ r=0)) (K)

< (Il + bl o) lonhuzy, vy + [

7 g Q

lu|?p,dxdt + .
T

Asn — oo, we get uT(K) + (6 ® 8y=0))(K) < &. Therefore, u™(K) =
(01 @ 8=0)(K) =0. 0

2.3. Estimates on the porous media equation without absorption

The proof of existence results for problem 1.1 is highly dependent on estimates
for the equation of porous media without absorption. We begin by simple a priori
estimates:

Proposition 2.2. Let u € L®(Qr) with |u|™ € L?((0,T); H}(RQ)) be a weak
solution of problem

= A(lu" ') = in Qr
u=0 ond2 x (0,T) 2.2)
u0)=o in Q
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with o € Cp(2) and i € Cp(R27). Then,
Hu”LOO((o,T);Ll(Q)) < |o|(§2) + |ul(S27),

N+2
Lm+2/N.o(Qp) = Ci(lo1(R) + |ul(Qr)) ™2,

[

m(N+1)+1

[Vl s s = C2(01@) + @) 72

mN+1 % (Qr

where C1 = C1(N,m), Cy = Co(N, m).

(2.3)
(2.4)

2.5)

Proof of Proposition 2.2. By using Steklov averages, we can take Ty (|u "=y, k >
0 as a test function. Setting Hy(a) = foa Tk(|y|m_1y)dy, we find forany t € (0, T)

/(Hk(u)),dxdt-i—f |VTk(|u|m_1u)|2dxdt:/ Te(Ju™ 'wydp(x, 1).
Q. Q

Q¢

This leads to

/ VT (lul™ w) Pdxdt < k(|o|(R2) + |ul(R7)) and
Qr
/Q (Hi(w)(t)dx < k(|o|(Q) + |1/(R7)), YT € (0, T).

Since Hy(a) > k (|a| _ k%) for any a and k > 0, we find

/Q(|u|<r> — k) dx < 1o1(®) + |ul(@r), YT € (0, T),

Letting k — 0, we get (2.3).

(2.6)

Next we prove (2.4). By the Gagliardo-Nirenberg embedding theorem, there

holds

2(N+1)
/ Tk(lulm_1u>’ Y dxdt
Qr

LRIV
< ¢ 7ic (juru)| |
L>((0.7):LY(Q) Jor

2(m—1)

< Cikn fu2 /Q v <|u|m—1u))2dxdz.
T

VT <|u|m_1u)‘2dxdt

Lo°((0,T);L1())

Thus, from (2.6) and (2.3) we get

2(N+1)

KN {julm > k)| §/QT‘T,< (lut=1)| ™ dxar

2(m—1)
<ck v o [(Q) + rl(Qr))

N+2
N
9
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which implies (2.4). Finally, we prove (2.5). Thanks to (2.6) and (2.4) we have for
k,ko >0

H)V ('”'m_lu)‘ = k} = kizfokz IV (™ )| > €}lde
= J{u” > do} [+ 75 [ |97t e)| s

_2 _ N+2
< Ciky ™ (10 Q)+ 1) T+ kok (0| (Q)+]l(Rr)).

Choosing ko = kT (|o|(R) + [1](R7) 77T, we get (2.5). O

The crucial result used to establish Theorem 1.3 is the following a priori esti-
mates, due to of Liskevich and Skrypnik [17] for m > 1 and Bogelein, Duzaar and
Gianazza [7] form < 1.

Theorem 2.3. Let m > Y22 and p e (Cp(Qr)*t. Letu € L(Qr) with u™ €
L2((0, T); Hli)c(Q)) be a weak solution to equation

u, — AW =pup in Qr.

Then there exists C = C(N,m) such that, for almost all (y,t) € Qr and any
cylinder Q,(y, T) CC Qr, there holds:

i lfm>1

2N

1 1 T+2N
u(y, 1) < C( N2 / |u|m+dedt>
r Or(y,7)

2 :
+ ||u||L°°((r—r2,r+r2);Ll(Br(y))) + 1+ [rl(y, T)>,

i. Ifm <1,

2N (m+1)

1 2(14+mN) C=N{=m) 2+ N(TFm)

uly, 1) <C\ | -——= |u| NO+m) dxdt +1
SNT2 |-

Or(y.s)
2
+ (Bl o) )

As a consequence we get a new a priori estimate for the porous medium equation:

Corollary 24. Let m > NT_Z and u € Cp(27). Let u € L (Q27) with |u|™ €
L%((0, T); Hol(Q)) be the weak solution of problem

ur — A(lu" ') = in Qr

u=0 ond2 x (0,T)

u) =0 in Q.
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Then there exists C = C (N, m) such that, for a.e. (y,7) € Qr:

i Ifm > 1,

Q i
lu(y, 0 §C<<|M|( T)> + Q7)) + 1+ B ull(y, f)): 2.7)

dN
i Ifm <1,
Qr)\"™ A=
u(y. o) 5C<('”L§N”> F 1+ (B, o) )>, (28)

where m1, my and d are defined in Theorem 1.3.
Proof. Let xg € 2, and Q = Bay(xo) x (—(2d)?, (2d)?). Consider the function

U € (Cp(Q)T, with U™ e LP((—(2d)?, (2d)?); H} (Baq(x0))) such that U is
weak solution of

Ur — AU™) = xar il in Baa(xo) x (— (2d)%, (2d)?)
U=0 on 3Baq(x0) x (— (2d)?, (2d)?) (2.9)
U(-Q2d)») =0 in Byq(xo).

From Theorem 2.3, we get, for a.e. (y, 1) € Qr,

Uy, 7) (( ! / U™+ d d)lfzvN
Yy, T) =< cC1 —~ I Ndxdt
dN2 J5400.0)

2d
+ ||U||LOO((‘[fdz,‘[%»dZ);Ll(Bd(y))) + 1 + ]12 [|I'L|](y7 T))

ifm > 1; and

2N (m+1)
1 2(1+mN) Q—N(I—m))2+N(T+m))
U(y, 1)<C m |I/l| N+m) dxdt +1

Qa(y,s)
2
+ (H? [1](y. f)) N )

if m < 1. By Proposition 2.2, we have

”U” L®((t—d?,7+d?); L1 (B4(y))) < [u|(R27),
24N 2 _ .
{IU| > €} < ca(Iul(R27)) N €N Ve > 0.
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Thus, for any ¢¢ > 0,

1 o0
/ U™+ dxdt = <m+ —)/ Ve U > ¢}|de
0 2N

1 to 1
( —)/ +tay 1 H{U > ¢}|de
2N

— gt a1 2y|de
+(m+2N)/ HU > ¢}|

L 2
< e3dV RO 02V (@)

N42

Choosing £o = (11211) ™ we get

(N+2)(2mN+1)

/U(“”(P—”dxdt<csd1v+2 Ll(Qr)\ S
0 = av :

Thus, for a.e. (y, 7) € Qr,

Q 1
Uy, 7) < c6 (('“SN”) + @) + 1+ B0, r))

if m > 1. Similarly, we also obtain for a.e. (y, t) € Qr,

U(y”)fc7<<m5NT)) + 1+ (B kne, o) T >>,

if m < 1. By the comparison principle we get |u| < U in Qr, and (2.7)-(2.8)
follow. .
24. Sufficient conditions for existence
In this section we prove Theorem 1.3 by following several steps of approximation.
24.1. Case of bounded nonlinearity and zero initial data
First, we show that the existence of solution to equations

= AQul" W) + g =p inQr

u=~0 on o2 x (0,T) (2.10)
u0) =0 in

when g : R — R is a nondecreasing continuous and bounded function, such that
£(0) =0, and u € Mp(Q27). We first consider the case where u is continuous and
bounded.
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Lemma 2.5. Let g € Cp(R) be nondecreasing with g(0) = 0, and u € Cp(27).
There exists a weak solution u € L*(Qr) with [u|™ € L*((0, T); Hy () of
problem (2.10).

Moreover, the comparison principle holds for these solutions: if uy, uy are
weak solutions of (2.10) when (u, g) is replaced by (w1, g1) and (3, g2), where
Wi, w2 € Cp(27) with 1 > o and g1, g2 have the same properties as g with
g1 < g inRthenuy > uy in Q.

As a consequence, if 1 > 0 then u > 0.

Proof of Lemma 2.5. Set

mls|" 1 if 1/n <|s| <n
an(s) = {mln|™! if |s| > n
m(1/n)"= ' if|s| < 1/n

and A,(t) = fof ay(s)ds. Then one can find u, being a weak solution of the
following problem:

(un)r — div(a, (upy)Vuy) + gluy) = in Qr
u, =0 ond2 x (0,7) 2.11)
up (0) =0 in Q.

It is easy to see that |u,(x, )| < t“/x”Lm(QT) for all (x,¢) € Qr. Thus, choosing
A, (uy) as a test function, we obtain

2.12)

/Q IV Au(un)Pdxdt < C1(T. |t] iy )-
T

Now set @, (1) = for |Ay(s)|ds. Choosing |A,(uy,)|e as a test function in (2.11),
where ¢ € CC2 o1 (R27), we get the relation

(P () — div(|Ap (un) |V Ay (up)) + V Ap(un) . VIAy(un)| + | An(un)|g(un)
= |Ap(un)lp

in D'(Q7). Hence,
H (P (un))s H LY(Qr)+L%((0,T); H~1(Q))

= ” |An(”")VA"(”n)} ” ey T ” |VA"(’4")| ”2L2(QT)
+ || An(un)g(un)”Ll(QT) + || Al’l(un)/’LHLl(QT)'

Combining this with (2.12) and the estimate |A,(u,)| < Co(T,
deduce that

“HLOO(Q))’ we

sup [ (@nun)i | 1y 2207y 12 <
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On the other hand, since |A,, (u,)| < |un|an(u,) < TH,u“LOO(Q)a,,(un), there holds

/ VO, (uy)|*dxdt = / | Ay (un) |*|Vun |2 dxdt
Qr Qr

= T”/’L”LOO(Q) /Q |an(un)|2|vun|2dxdt
T

< Tl gy [ 1V AN vt < (T i) ).
T
Therefore, ®,(u,) is relatively compact in LY(Q7). Note that
m
2 () 15 Psignts) if |s] < 1

)= § m = (2)" (15l = 1) sign(s) + (|s|m+1 - (5)’”“) sign(s)

|
1f£§|s|§n.

So, for every ny, ny > n and |sq], [s2| < TH,LLHLOO(Q),

1 m
peet [T LR LT e (. T|1t] e ) (;) + [y (51) — By (52)-

Hence, for any ¢ > 0,

< H|q)n1(”n1) - cIDﬂ2(””2)| > 8}

’

1
Hm T ||”n1 |m”n1 - |”n2|m“n2| > 28}
1/m
for all ny, np > <C4(m, TH,uH LOO(Q))/&“) . Thus, up to a subsequence {u,} con-
verges a.e. in Q27 to a function u. From (2.11) we can write

—f ungotdxdt—/ An(un)A(pdxdt—i-/ g(un)(pdxdtz/ odu,
Qr Qr Qr Qr

forany ¢ € C 02 o1 (27). Thanks to the dominated convergence Theorem we deduce
that

—/ u(p,dxdt—/ |u|m_1uAg0dxdt+/ g(u)godxdt:/ od L.
Qr Qr Qr Qr

By the Fatou Lemma and (2.12) we also get |u|™ € L?((0, T); Hy ().
Furthermore, from the classical maximum principle, see [15, Theorem 9.7], if
{i1,} is a sequence of solutions to equations (2.11) where (g, ) is replaced by (&, v)
such that v € Cp(27) with v > p and & has the same properties as g, satisfying
h < gin R, then u, < u,. Asn — oo, we get u < . This achieves the proof. [
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Next we come to the general case where p is a bounded measure:
Lemma 2.6. Let m > % and g € Cp(R), such that g is nondecreasing and
g(0) =0, and let u € Mp(Qr).

There exists a very weak solution u of equation (2.10) which satisfies (2.7)-
(2.8) and

N+42
+2,

/Q lg@)ldxdt < |ul(Qr), || pnsovoe i,y < CURIQT)) PN (2.13)
T

where C = C(m, N) > 0.

Moreover, the comparison principle holds for these solutions: ifuy, up are very
weak solutions of (2.10) when (u, g) is replaced by (11, g1) and (12, g2), where
Wi, w2 € Mp(Qr) with uy > o and g1, g2 have the same properties as g with
g1 <ginRthenu; > uyinQr.

Proof. Let {l,} be a sequence in C2°(€27) converging to p in My, (S27), such that
[n| < @nx|p| and |1, | (27) < |1|(27) for any n € N, where {¢,} is a sequence of
mollifiers in RV+!. By Lemma 2.5 there exists a very weak solution u,, of problem

(tn)r — A(|Mn|milun) +g(un) =y inQr
u, =0 ondQ2 x (0, 7T)
up (0) =0 in Q

which satisfies for a.e. (y, 7) € Qr,

Q "
e (v, 0] sc(('“SN”) +|u|<szT>+1+¢n*11§d[|u|]<y,r>> itm > 1,

Qr)\" == AN
|un<y,r)|5C(('“'C§NT)) + 1+ (g0 # B 0) >) ifm =<1,

and

2
dxdt < k|u|(27), Vk > 0, (2.14)

VT (lal "

A

{in] > €}] < CLE XM (u|(Qr)) V-, Ve=0, (215

_/Q |8 (un)ldxdt < [p|(R27).

For ! > 0, we consider S; € CZ(R) such that

S;(a) = |a|™a, forla] <!, and S;(a) = (20)"*'sign(a), for |a| > 2.
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Then we find the relation
(Si ()= div (7 V (1uta" " tn ) )+l =1V S ) + u) S )
= Sll(un)ﬂn
in D'(Qr). It leads to
[l 1@y 200711000

< 187 @n) 1V Qua " w12 gy + |l VR PS] ) |1,

+ ”g(un)S[/(un)HLl(QT) + H S[/(un)Mn HLl(QT)'

Since [S](un)| < Caxi—2,21)(un) and [S) (up)| < C3lun|™ 1 x1—21,211 (), we ob-
tain

[ St L@y 420,10

< C4 (” ’VT(ZI)’" <|un|m_lun)

vant l&l oo @271 + |,an|(QT)) :

From (2.14) we deduce that {(S;(i,)); } is bounded in L' (Q27)+L2((0, T); H~1())
and forany n € N,

[ SrCuail i@+ 220,751
< Cy ((2l)m/2(|,u|(QT))1/2 + &) Lo 1271 + |u|(szT)) :

Moreover, {S;(uy)} is bounded in L2((0, T); HOI(Q)). Hence, {S;(u,,)} is relatively
compact in L' (Q7) for any / > 0. Thanks to (2.15) we find
H“unl |mun1 - |Mn1 |mun|’ > £}|
< |{luny | > 031 + Hlany | > Y|+ {151 Gtny) = Siuny)| > €}]
—2_m N2
<200V TMulQr) N 4 |[{IS1(un,) — Si(uny)| > £}].
Thus, up to a subsequence {u, } converges a.e. in 27 to a function u. Consequently,

u is a very weak solution of equation (2.10) and satisfies (2.13) and (2.7)-(2.8). The
other conclusions follow in the same way. O

Remark 2.7. If supp(n) C Q x [a, T] for some a > 0, then the solution u in
Lemma 2.6 satisfiesu = 0in  x [0, a).

2.4.2. Proof of Theorem 1.3

Now we recall the important approximation property of Radon measures which was
proved in [3] and [19].
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Proposition 2.8. Let s > 1 and n € M;’(QT). If w is absolutely continuous
with respect to Cap, | ¢ in Qr, there exists a nondecreasing sequence {ji,} C

M;(QT), with compact support in Qr which converges to 1 weakly in Mp(Q21)
and satisfies ]Ig[un] e L{ (RN*Y) forany R > 0.

loc

We are now ready to prove Theorem 1.3. We reduce to the case of zero initial
data by considering the problem on (-7, T') with the measure 0™ ® 8r=0y + p in
Qx (-=T,T).

Proof of Theorem 1.3. First suppose m > 1. Assume that p, o are absolutely con-
tinuous with respect to Cap, ; . in Q27 and Capg, . in Q. Then o @ Sy=0y +
q

w07 ® S=0) + 1~ are absolutely continuous with respect to Cap, 1 4 In 2 X
(=T, T). Applying Proposition 2.8 to o+ ® §j—0y + u™, 0~ ® Sp=0y + 1™,
there exist two nondecreasing sequences {v; ,} and {va2,} of positive bounded
measures with compact support in  x (=7, T') which converge respectively to
0" ® 8=y + " and 0~ ® Sy—0) + u~ in Mp(Q x (=T, T)) and such that
LB v ], B van] € L9(Q x (=T, T)) forall n € N,

Step 1. For any n1, ny € N, we show that there exists a very weak solution u"*1-"2 :=
u of

u; — A (Iulm_lu) + ul 'y = Uln, — V20, IMQx(=T,T)
u=~0 ondQ x (=T, T) (2.16)
u(-T)=0 in Q.

By Lemma 2.6, for k1, kp > O there exists a weak solution ug, r, of the problem

m—1 4q
(”klykz)z —A (‘”khkz’ “kl»k2> + Tk ((”l:,kz) )
_ q .
~T}, ((ukh,q) ) = Ulp, — Unm, inQx (—T.7)
Uk, ky, =0 ondQ x (—T,T)
ukl,kz(_T) =0 in Q

which satisfies

gy o | < c((|o|(sz>+ |u|<szT>>"“
LR21 —

dN
2.17)

+ 1o 1(R) + |1l(Qr) + 1+ [v1n, + van, | )

and

/QT Ti, ((uljl’b)q)dxdt—i—/g Ty ((w5,00) ") et < Il(@1).

T
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Moreover, for any n; € N, ko > 0, {ug, r, }, is non-increasing and for any ny €
N, k1 > 0, {ug, i, }x, is non-decreasing. Therefore, thanks to the fact that H%dl [v1,n].
]I%d‘ [vpn] € L9(2 x (=T, T)) and from (2.17) and the dominated convergence
theorem, u = limy, — oo limg, 00 Uk, k, i @ very weak solution of (2.16).

Step 2. We show that u = lim,, o0 lim,, 00 #""2 is a very weak solution of
(1.1). By Lemma 2.6, {u"!"*2},, is non-increasing, {u"!""2},, is non-decreasing and
(2.17) is true when u, x, is replaced by u"*1>"2, and

/ "2 |9dxdt < |ul(Qr) Vni,ng €N
Qr

From the monotone convergence theorem we obtain that u = lim,,  lim,,
Un, n, 1S a very weak solution of

wy — A (lu™ ') + [ulf""'u = 0 ® Sy—0) + X, 0 InQx (=T, T)
u=20 ondQ2 x (—=T,T)
u(=T)=0 in
withu = 0in Q2 x (—T,0), and u satisfies (1.3). Clearly, u is a very weak solution
of equation (1.1).

Next suppose m < 1. The proof is similar, with the new capacitary assump-
tions, and (1.3) is replaced by (1.4). ]

2.4.3. The subcritical case

We also obtain the description of the subcritical case.

Theorem 2.9. Let m > Nsz and0 < g <m+ % Then problem (1.1) has a very
weak solution for any u € Mp(Q7) and o € Mp(2).

Proof. As the proof of Theorem 1.3, we can reduce to the case 0 = 0. By Lemma
2.6, there exists a very weak solution ug, x, of

(”khkz)t_A \”klyk2|m_l”k1,k2 + T, ”:k !
1,K2

— q .
—Tx, ((”k1,k2> ) =u in Qr
u, =0 on d2 x (0, T)
u,(0) =0 in Q

such that {u, i, }x, and {ug, r, }x, are monotone sequences and

” Uk kr ” LmH2N00(Qp) = C(lul (QT))mNN_sz .

In particular, {1y, k,} is a uniformly bounded in L*(Q27) forany 0 < s < m + %
Therefore, we get that u = limg, , o0 limg, - o0 Uk, &, 1S @ very weak solution of
(1.1). This completes the proof. O
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2.4.4. Existence for good measures in time

Next, from an idea of [4, Theorem 2.3], we obtain an existence result for measures
which present a good behaviour in time:

Theorem 2.10. Let m > NTQ g > max(1,m) and f € L'(Q), u € Mp(Qr),
such that

| <w®F for some w € M;(Q) and F € LL((O, T)).

If w is absolutely continuous with respect to Capg, _a_ in S2, then there exists a
’q
very weak solution of problem

ur — A(u|" ')+l u=f+p inQr
u=20 ond2 x (0,T) (2.18)
u(0) =0.

Proof. For R € (0, oco], we define the R-truncated Riesz elliptic potential of a
measure v € M;(Q) by

Ru(By(x) dp
1§[v](x)=f0 ﬁ? Vx € Q.

By [5, Theorem 2.6], there exists sequence {w;,} C /\/IZ(Q) with compact support

in © which converges to w in M} (2) and such that Igdiam(m [wn] € LY/™ () for
any n € N. We can write

fHu=m—p2, = f+pt, p=f4u,
and ™, u” S 0 ® F. We set
=T, (fO)+inf{u®, 0, @ T,(F)},  p2,n=To(f ) +inf{u™, 0, ® T,(F)}.
Then { Ml,n} , { ;/,2,,,} are nondecreasing sequences converging to (i1, (47 respec-

tively in M (27) and 10, 2,0 < ®p @ X0,7), With @, = n(xq + w,) and

Igdiam(m [@n] € L™ (). As in the proof of Theorem 1.3, there exists a sequence

of weak solution {u,, n,.k, .k, } Of equations

m—1 + q
(Mnlansklka)[_A(|Mnlan2sklak2| unls"Zsklka) + T, ((”nl,nz,kl,kz) )
_ q .
_Tk2 <(un|,l’l2,k1,k2) ) = Ml,nl - Mz,nz n QT

Uny,ny ki ky =0 on Q2 x (0, T)

(2.19)

Unyny.ky kp (0) =0 in Q.
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Using the comparison principle as in [4], we can assume that

m—1
—Uny < |Uny,np k1 k| Uny,ny,kyky = Unys

where for any n € N, v, is a nonnegative weak solution of

—Av, =w, InQ
u, =0 on 92

such that )
ve < B @] Vi e N

Hence, utilizing the arguments in the proof of Theorem 1.3, it is easy to obtain the
result as desired. 0

3. p—Laplacian evolution equation

Here we consider solutions in the weak sense of distributions, or in the renormalized
sense.

3.1. Distribution and renormalized solutions

We first consider weak solutions in the sense of distributions:

Definition 3.1. Let © € My(Q7), 0 € Mp(R) and B € C(R). A measurable
function u is a distribution solution of problem

up — Apu+ B(u) =p inQr
u=0 on 92 x (0,7) 3.1
u) =o in

if u € L*((0, T); W2 () for any s € [1, p—
that

NLH) _and B(u) € L'(Qr), such

—/ uprdxdt + IVulp_2Vu.Vg0dxdt+/ B(u)godxdt:/ godu—i—/ ¢ 0)do
Qr Qr Qr Qr Q

for every ¢ € CC1 (2 x[0,7)).

Remark 3.2. Leto’ € My(Q) anda’ € (0,T),setw = 4+ 0’ ® 8;=«). Let u be
a distribution solution of problem (3.1) with data w and o = 0, such that

supp(u) C R x [@’,T], andu=0,Bu)=0 inQ x (0,a).

Then i := u|g [y 1) is a distribution solution of problem (3.1) in  x (a’, T) with
data . and o”’.
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Asitis well known, when p # 2, this notion is not well adapted to the quasilin-
ear problem. The notion of renormalized solution is stronger. It was first introduced
by Blanchard and Murat [6] to obtain uniqueness results for the p-Laplace evolu-
tion problem for L' data u and o, and developed by Petitta [20] for measure data
w. It requires a decomposition of the measure u, that we recall now.

Let Mo(Q21) be the space of Radon measures in Q7 which are absolutely
continuous with respect to the C,-capacity, defined at (1.6), and M, (Q27) be the
space of measures in 27 with support on a set of zero C ,-capacity. Classically, any
u € Mp(Q27) can be written in a unique way under the form u = o + s where
no € Mo(7) N Mp(Qr) and us € M (Qr). In turn o can be decomposed
under the form

po = f —divg + hy,
where f € L'(Q7), g € (L (7)Y and h € LP((0, T); W(j”’(sz)), see [12]; and

we say that (f, g, h) is a decomposition of . We say that a sequence of {u,} in
Mp(21) converges to u € M (27) in the narrow topology of measures if

lim od, = / pdp Vo € C(Qr) N L>®(Q7).
n—o0 Jo. Qr

We recall that if u is a measurable function defined and finite a.e. in Q7, such that
Tr(u) € LP((0,T); WO1 P (Q)) for any k > 0, there exists a measurable function
v: Qr — RY such that VT (1) = Xju|<kV a.e. in Qr and for all k > 0. We define
the gradient Vu of u by v = Vu.

Definition 3.3. Let p > 2%l and = po + py € My(Qr), o € L'() and

B € C(R). A measurable function u is a renormalized solution of (3.1) if there
exists a decomposition (f, g, k) of g such that

, N
vzu—heLS((o, T);WOI’S(Q))HLOO ((0, T);LI(Q)>, Vse [1,;:——) ,
Ty(v) € LP ((0, T): W&’”(Q)) Vk >0, B e L' (Qr),
and:
(i) For any § € W2 (R) such that S’ has compact support on R, and S(0) = 0,

—/S(a)<p(0)dx —/ go,S(v)dxdt—i—/ S/(v)IVulp_2Vu - Vodxdt
Q Qr Qr

+/ S”(v)<p|Vu|p2Vu~Vvdxdt+/ S"(vV)oB(u)dxdt
Qr Q

-~ /Q (fS' ()¢ + g.V(S' W)p)dxdt
! (3.3)

for any ¢ € LP((0,T); Wy"(Q)) N L*(Qr) such that ¢, € LP((0,T);
WlP(Q)) + L1(Q7) and o(., T) = 0;
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(ii) For any ¢ € C(Q7),

1
lim — / GIVu|P2Vu - Vudxdt = | ¢pduf and  (34)
m—=00 m Jim<v<2m} Qr
1
lim — / G|Vu|P~2Vu - Vvdxdt = | pdu; . (3.5)
m—=0m J{—m>v>—2m)} Qr

We first mention a convergence result of [4].

Proposition 3.4. Let {,} be bounded in Mp(Q2r) and {c,,} be bounded in LY(Q),
and B = 0. Let uy, be a renormalized solution of (3.1) with data pt, = py,0 + tn.s
relative to a decomposition (fy, gn, hn) of n0 and initial data oy, .

If{ f} is bounded in L' (1), {gn} bounded in (L” (27))N and {h,} conver-
gentin LP((0,T); Wol’p(Q)), then, up to a subsequence, {u,} converges to a func-
tion u in LY (7). Moreover, if {iun} is bounded in LY(Q7), then {u,)} is convergent

in L*((0, T); Wy "* () for any s € [1, p— NLJFJ

Next we recall the fundamental stability result of [4].

Theorem 3.5. Suppose that p > 216\/:—11 and B=0. Leto € L' () and

w=f—divg+h +uf —pu; € Mp(Qr),

with f € LY Q7). g € (LY Q)N h € LP((0,T); Wy P () and pf, uy €
MF(Qr). Let 0, € LY(Q) and

pn = fu — divgn + (hn)e + pn — 10 € Mp(Q7),

with fy € LX), gn € (LY ()Y, hy € LP(O, T); WP (), and py, 1 €
MF(Qr), such that

Pn = 10;1 - diV,O,% + Pn,ss NMn = 77,11 - diV?’)i + Nn,s,

with p}, n} € LY(Qr), p2. 3 € (LY ()™ and pns, mn.s € M (Qr).
Assume that {u,} is bounded in Myp(27), {04}, {fu}, {gn}, {hn} converge to
o, f, g, hin L"(Q), weakly in L' (27), in (L? (27))N, in L?((0, T); Wé*l’(sz)) re-
spectively; and {p,}, {n,} converge to u;r, Wy in the narrow topology of measures;
and {,0,” , {n,ll} are bounded in LY (1), and {,0,%} , {n,%} bounded in (LP/(QT))N.
Let {u,} be a sequence of renormalized solutions of

(tn) — Apun =up inQr
u, =0 on o2 x (0,T) 3.6)
u,(0) = oy, in Q
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relative to the decomposition (f, + p,ll — n,ll, gn + p,zl — n,%, hy) of tno. Let v, =
u, — hy,.

Then up to a subsequence, {u,} converges a.e. in Qr to a renormalized so-
lution u of (3.1), and {v,} converges a.e. in Qr to v = u — h. Moreover, {Vv,}
converge to Vv a.e. in Qr, and {Ty(v,)} converges to Ty (v) strongly in LP((0, T);

Wy P (Q)) for any k > 0.

In order to apply this result, we need some the following properties concerning
approximate measures of u € M;(QT), see also [4].

Proposition 3.6. Let 1 = po + s € M} (Qr), o € Mo(Qr) N M} (Qr) and
s € Ms(Qr). Let {(pl’n} , {(pz,n} be sequences of mollifiers in RY, R respectively.

There exist sequences of measures jno = (fu, &n, hn), and [y s, such that
Sns 8ns s in,s € C° (1) and strongly converge to f, g, h in LY(Qr), (Lp/(QT))N
and LP((0,T); Wol’p(SZ)) respectively, |, s converges to s € M;F(QT), and
Hn = Mno + WUns converges to |, in the narrow topology, and satisfying 0 <
Un = (‘pl,n‘pZ,n) * W, and

|l @y + Ngnll e @ppy + Wnll oo, rysmitr gy + Hons (@)
<2u(Qr) forany n € N.

Proposition 3.7. Let i = o+ s, tn = n,0+HMn,s € MZ_(QT) with [0, fn,0 €
Mop(Q7) N M;(QT) and w5, s € MF(Qr) such that {p,} is nondecreasing
and converges to  in Mp(Qr).

Then, { U, s} is nondecreasing and converging to g in Myp(Q2r); and there
exist decompositions (f, g, h) of wo, (fu, &n» hn) of tn,0 such that { fu}, {gn}, {hn}
strongly converge to f, g, h in LY(Qr), (Lp/(QT))N and LP((0, T); Wol’p(Q)) re-
spectively, satisfying

|l i@y + 18nll o ey + Mmoo, rysmtr y + Hons (@)
<2u(2r) forany n € N.

3.2. Estimates on the p-Laplace equation without absorption

Here the crucial point for proving existence results for problem (1.2) is a result of
Liskevich, Skrypnik and Sobol [16] for the p-Laplace evolution problem without
absorption:

Theorem 3.8. Let p > 2, and i € My(Qr). Let u € C([0, T]; L% () N

loc
sz)c((O, T); WIL’CP () be a distribution solution to equation

up — Apu = in Q. 3.7
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Then there exists C = C (N, p) such that, for every Lebesgue point (x,t) € Qr of
u, and any p > 0 such that Q, pr(x,t) := B,(x) x (t — pP,t + pP) C Qr , there
holds

T
uee ni=c 1+ [ esnes PG| (B8)
0, (x.1)

pN+p
where A = min{l/(p — 1), 1/N} and
Polpd(x, ) = Y Dp(pi)(x, 1),

i=0

| L BI(Q,, (1)

, — 1 _ T p2
Dp(ﬂz)(x, r) = tnli(; {(P )t 2+ 2(p — 1Hp-1 'OiN

with p; =27 p, Qp.cpr(x,1) = By(x) x (t — TpP, 1t + TpP).
As a consequence, we deduce the following estimate:
Proposition 3.9. Let u be a distribution solution of the problem
ur — Apu = inQr
u=~0 on o2 x (0,T)
u0) =0 in Q

with data € Cp(27). Then there exists C = C(N, p) such that for a.e. (x,t) €
Qr,

ju(x, 0l < C (1 D+ ('”Lﬁ“)m e r)) NED)
where m3 and D are defined at (1.8).
Proof. Let xo € Q and Q = Byp(xo) x (—(2D)P, (2D)P). Let
U € LP((—=2D)", 2D)P); W, (Bap (x0)))
with U € C(Q) be the distribution solution of

U —ApU = xorln] inQ
u=0 on dB>p(xp) X (—(2D)?, (2D)?) (3.10)
u(=(2D)?) =0 in Byp(xo)

for xg € Q. Thus, by Theorem 3.8 we find, for any (x, ¢) € Qr,

1 U, 1+A(lp—1) b
Ux,n)<ci |1+ —/ [ + P, [ul(x,0)], (3.11)
DN+p Op,pr(x,t) b

where Op pr(x,t) = Bp(x) x (t — DP,t + DP).
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According to Proposition 4.8 and [4, Remark 4.9], there exists a constant C, >
0 such that

U] > 6] < ca(ul@r) ¢ PFI-F Ve > 0.

Thus, for any ¢¢ > 0,

[e.¢]
/;2|U|(“1)(”_])dxdt=(k+ D(p — 1)/0 (AHDP=D=1 11| > g}|de
Lo
=+ D(p - 1><f (O] > ey)de
0

o0
+//Z (HDP=D=lny| > z}|dz>
0

Deptl_2 N
SC3DN+”E(()H1)([7_1)+C4(5(()H1)(p bt N(|M|(QT))%-

N+p
Choosing ZO o (lﬂll()#) (p—1)N+p we get
| |(Q ) (th)(?;—]\}:fp—l)
pP— 14
/ \U*HDP=Dgxdr < espNP (“’D_NT) . (3.12)
0
Next we show that
PE[u](x, 1) < (p = 2D + e Il ). (3.13)

Indeed, we have

1 IMI(Qp, (x, t))

Dy(pi)(x,t) < (p—2)pi +

2(p — HP~! o
where p; = 27/ D. Thus,
IMI(Q (X, 1))
PJlul(x. 1) < (p =D + 5 m 1 ZO o
2D
<(p —2)D+C5/ 7|“|(Q"I§x”))d—p.
0 Y Y
So from (3.12), (3.13) and (3.11) we get, for any (x, t) € Qr,
Qr\"™
Ul =C (1 LD+ ('“';NT)) + B2l r)) .

By the comparison principle we get |u| < U in Qr, thus (3.9) follows. O
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As a consequence we obtain a new existence result for equation (3.7):

Proposition 3.10. Let p > 2, and u € Mp(Qr), 0 € Mp(Q). There exists a
distribution solution u of problem

up— Apu=p inQr
u=0 ondQ2 x (0,T) (3.14)
ul0 =o

which satisfies for any (x,t) € Qr

lu(x, )]

m3 3.15
§C(1+D+<|U|(Q);,\|,M|(QT)> +H§D[|a|®a{t20}+|u|]<x,t>),( :

where C = C(N, p). Moreover, if o € LY(), u is a renormalized solution.

Proof. Let {@1.,}, {¢2.,} be sequences of standard mollifiers in RY and R. Let
= o + s € Mp(Qr), with o € Mo(Qr), s € My(Qr).

By Lemma 3.6, there exist sequences of nonnegative measures [, 0; =
(fni> 8n.i» hn,i) and pp s such that f, i, gn.i, hyi € CZ°(Q2r) and strongly con-
verge to some f;,g;,h; respectively in LI(QT),(LP/(QT))N and LP((O,T);W(}’p(Q)),
and [y 1, n.2s Knos1s Mns2 € C(Qr) converge to w™, w™, u, wy in the nar-
row topology, with (, ; = wn,0.; + tn.s.i,fori =1, 2, and satisfying

ng = (fi,81.h), ug = (f2, g2, h2) and
0< Mn,1 = ((pl,n(pZ,n) * ,U«+, 0< Mn2 = ((pl,n(pZ,n) * U

Let 01, 02,0 € CX(R2), converging to o and o~ in the narrow topology, and in
LY(Q)if o € L'(), such that

0< Ol,n = Pl,n *G+7O S0n S Qia*k0 .

Set wp = pn,1 — n2 and o, = 01,5 — 02,5.
Let u,, be solution of the approximate problem

(un): — Apun =up in Q7
u, =0 ond2 x (0,7) (3.16)
Mn(O) = Oy on 2.

We set gy m(x,t) = o,(x) fiT ¢2,m(s)ds. By Theorem 3.5, we can see that there
exists a sequence {uy ; }m of solutions of the problem

(un,m)t - Apl/‘n,l,m = (gn,m)t + XQr MUn nQx(-7,7T)
Up1m =0 ondQ x (=T,T) (3.17)
Unm(=T) =0 on €2
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which converges to u, in 2 x (0, T). By Proposition 3.9, there holds, for any
(x,1) € Qr,

G2 )] < C(l “D4 (IMnI(QT) + (lon| ® g2,m) (R x (T, T))) ’

DN

+ B2 pal + 10wl ® 2ml(x, r)).

Therefore

(. )] < C <1 LD+ (IMnI(QT) + (lon| ® g2,m)( X (=T, T))) 3)

DN
+ C(prap2.m) * BP Il + 10| ® Sj—0y ] (x, 1).

Letting m — oo, we deduce that

e, )] < C (1 +D+ ('“n'@ﬂ - |on|(sz)> )

DN
+erprn) + (BP[Inl + 101 © =], 1)) @).

Therefore, by Proposition 3.4 and Theorem 3.5, up to a subsequence, {u,} con-
verges to a distribution solution u of (3.14) (a renormalized solution if o € LY(Q)),
and satisfying (3.15). O

3.3. Sufficient conditions for existence
In this part we prove Theorem 1.4.

Proof of Theorem 1.4.

Step 1. First, assume that o € L'(€). Since u is absolutely continuous with
respect to Capy ; 4, the same happens for wt and u~. Applying Proposition 2.8
to ut, u™, there exist two nondecreasing sequences {1 ,} and {u2 ,} of positive
bounded measures with compact support in Q7 which converge to 4™ and ©~ in
M (S27) respectively and such that I5° (1,11, I5°[12.n] € L9(Qr) forall n € N.

Fori = 1,2, set ;1 = w1 and ju; ; = pij — pij—1 = 0,80 i, =
> =1 i, j- We write

Min = Min,0 + Minss Ki,j = i, j,0 + i js
with ;i 0, lli,n,O e Mo(Qr), Min,s> lli,n,s € My (7).
Let {¢,,} be a sequence of mollifiers in R¥*!. As in the proof of Proposition

3.10, for any j € N and i = 1,2, there exist sequences of nonnegative mea-
sures fpm,i, j,0 = (fm,i,j» &m.i,j»Pm,i,j) and iy ; j s suchthat fi, i i, &m.i,j» m.i,j €
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C°(Q2r) and strongly converge to some f; j, & j, hij in LY(Q7), (LP,(QT))N
and LP((0,T); W1 P(Q)) respectively; and fiy ;. ;, Mm ij.s € C°(Qr) converge
to fi;, Jo i js in the narrow topology, with [ i = fim,i, j0 —|— fm,i, j,s» Which
satisfy [t Mi,j,0 = (fl} 8i,j» 1,]) and

0 < fim,i,j < @m* i j, fm,i,j (1) < i j (1),

H fm,i,jHLl(szT) + Hgm,i,j” wr' @y T ”hmvivjHLP((O,T);WOI'P(SZ)) (3.18)
Fim,i,js () < 20 (7).

Note that, for any n, m € N,

n

Z (lam,l,j + llm,Z,j) < Qm * (Ml,n + MZ,n)
=1

n
and ) (fm1,5(R1) + fm 2./ (Q)) < |1l(Q7).
j=1

Step 1.a For any n, k € N, we show that there exist a renormalized solution u,, 4 := u
to

- Apu + Tk(lu|q_1u) =1y — M2,n N Qr
u=20 on a2 x (0, 7T) (3.19)
u(0) =T,(c™) — T,(c7) on 2

relative to the decomposition (3-"1_y f1,j — 2=y f2.js 2 j=1 81 — D=1 82.js
Y izt =221 h2,j) of 1m0 — 12,00 and a renormalized solution vy, == v
to

_Apv+Tk(vq) = Uin+M2n in Qr
v=20 ond2 x (0,7) (3.20)
v(0) =T, (lo]) on Q,

relative to the decomposition (37— f1,; + 2}y f2.j, 2 =1 81,7 + 21 82,/
Z;le hi,j + 2?21 h,j) of j41,4,0 + 2,1,0, such that

lo|(€2) + |pl(S27)
DN

m3
lul<v=<C (1 +D+ ( > +13P [T (o)) ®5{z=0}]>

3.21)
+ C]I%D [Ml,n + MZ,n] s

and

/ Tr(vdxdt < |u|(Qr) + 10 (2). (3.22)
Qr
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Indeed, for any m € N, let uy km = Um, Vnk.m = vm € W be solutions of
problems

Wm)e — Dptim + T (lum! 9 um) = Y (fim1,j — fim2,j) in Qr

j=1
up =0 on 92 x (0, T)

um(0) = T,(0F) — Ty(o7) on Q

and

n

W)t — Dpvm + T (vih) = X (Am.1,j + fimp2,j) in Qr
=1

v, =0 ondQ2 x (0,7)
um (0) = T (lo]) on 2.

By the comparison principle and Proposition 3.9 we have

Q) + ul(Qr)\™
[um| < vm < c1 <1+D+<|U|( )D/LM( T)) +H§D[Tn(lal)®8{t_o}]>

+ Ccr1om * H%D [//Ll,n + MZ,n] .

Moreover,
/ Ti(vih)dxdt < |ul(Qr) + |o(Q).
Qr

From Proposition 3.4, up to subsequences, {u,;}m, {vm}m converge to some u, v
a.e. in Q7. Then, applying Theorem 3.5 to data (2;21([%,1,]' — fm2,j) —

Ti(um| 7 ), To (o) =T (0 7)) and (Cjy (fim 1, j+fim 2. ) =T W), Tu(lo ),
up to subsequences, {u;,},, converges to a renormalized solution u of problem
(3.19) and {vy, },, converges to a solution v of (3.20). Clearly, # and v satisfy (3.21)
and (3.22).

Step 1.b For any n € N, we show that there exist renormalized solutions u" :=
u, V" :=vto

Ur — Apu + |u|q_1u = MUl,n — M2,n in Qr
u=20 ond2 x (0,T) (3.23)
u(0) =T, (cT) — T, (c7) on

relative to the decomposition (3-"}_y f1,; — 2=y f2.j5 211 81,7 — 21 82.j
ity =21 ha, ) of f1n0 — 2,n0 and

Uy — Apv +v? = p1 0+ @2, in Qr
v=20 ondQ2 x (0, T) (3.24)
v(0) =T,(lo]) on
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relative to the decomposition (3-7_y f1,j + 2=y f2.js 2 j=1 81 + D2 j—1 82.js
ity + 3 ha, ) of j1n0 + 2,00, tespectively and u, v satisfies (3.21)
and

/ vidxdt < |u|(Qr) + |o]|(R). (3.25)
Qr

Indeed, for any k € N, by Step 1.a, there exist renormalized solutions u, i, v k
of equations (3.19) and (3.20), respectively, which satisfy (3.21) and (3.22) with
U=1Upk, V= "Unk.

Thanks to Proposition 3.4, up to subsequences, {u, i}, {vn k}x converge to
some u", v" a.e. in Q7. Then, {Tk(|un,k|q’lun,k)}k, {Tk(vz,k)}k converge to some

|97y (v in LY(Q7), respectively, from (3.21) and the dominated conver-
gence Theorem, since ]I%D[,ul,n + w2.,] € L1(Q27) for any n € N. Thus, by The-
orem 3.5, up to a subsequence, {1, i}k {Vn i}k converge to renormalized solutions
u”, v" of problems (3.23) and (3.24) which still satisfy (3.21) with u = u", v = V"
and (3.25).

Moreover, we can see that the sequence {v"}, is increasing. Note that from
(3.18) we have

”flJ ”Ll(QT) + Hgi’j || (LY Q)N + Hhi,.i ”Lp((o,T);Wéfp(Q)) < 2/, j(827),
which implies
+

n
> fi
=t e

<20 (R7) < 2|pl(R27).

Step 1.c We show that, up to subsequence, {©#"},, converges to a renormalized solu-
tion u of problem

+
(Lr' Q)N

J

n n
gi.j ZhU 3.26
= Jj=1 LP((0,T); Wy " () (3.26)

u; — Apu + 'y =p in Qr
u=20 ond2 x (0,7) 3.27)
u) =o in £

relative to the decomposition (Z?il fij— Zjil 12 2?021 g1j — 2?11 8.,
;’.Ozl hi,j — Zjil ha,j) of o ,and {v"}, converges to a renormalized solution v
of problem

v — Apu+v? = || in Qr
v=~0 ond2 x (0,T) (3.28)
v(0) = |o| in

relative to the decomposition (Z?OZI fij+ 2?021 i Z;’ozl g1j + Z?il 82,js
Yo b+ 2250 ha ) of |uol and

lo|(€2) + |p|(S27)
DN

m3
|u|§v§C<l+D+< > —I—]I%D [|0|®5{;:o}+|ﬂ|]>. (3.29)
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Indeed, by Proposition 3.4, up to subsequences, {u"},, {v"}, converges to some
u, v a.e. in Q7. Then, thanks to (3.25) with v = v", the fact that {v"},, is increasing
and the monotone convergence Theorem, we deduce that u”, v"* converge to u, v in
L(Qr).

Therefore, from (3.26), we can apply Theorem 3.5 to obtain that, up to subse-
quences, {u"},, {v"}, converge to renormalized solutions u, v of problems (3.27)
and (3.28) which satisfy (3.29).

Note that, if o = 0 and supp(n) C Qx[a,T]l,a > 0,thenu = v = 0in
Q x (0,a), since uy y = vpkr =0in 2 x (0, a).

Step 2. We consider any 0 € M (2) such that o is absolutely continuous with
respect to Capg, 4 In €2. Then 1 +0 @ §(;=0) 1s absolutely continuous with respect

q
to Cap, | o in Q2 x (=T, T). As above, we verify that there exists a renormalized
solution u of

ur — Apu + lul9y = Xorih+0 ®8p=0y in Qx(=T,T)

u=20 ondQ2 x (—=T,T)
u(-=T)=0 on 2
satisfying # = 0 in Q x (—T7,0) and (1.7). Finally, we get the result from Re-
mark 3.2, achieving the proof. U
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