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Criterion of the L2 boundedness and sharp endpoint estimates
for singular integral operators

on product spaces of homogeneous type

YONGSHENG HAN, JI LI AND CHIN-CHENG LIN

Abstract. The purpose of this paper is to introduce a class of general singular
integral operators on spaces eM = M1 ⇥ · · · ⇥ Mn . Each factor space Mi , 1 

i  n, is a space of homogeneous type in the sense of Coifman and Weiss. These
operators generalize those studied by Journé on the Euclidean space and include
operators studied by Nagel and Stein on Carnot-Carathéodory spaces on which
the basic geometry is given by a control, or Carnot-Carathéodory, metric induced
by a collection of vector fields of finite type. We provide the criterion of the
L2(eM) boundedness for these general operators. Thus this result extends the
product T1 theorem of Journé on Euclidean space and recovers the L p, 1 < p <
1, boundedness of those operators on Carnot-Carathéodory space obtained by
Nagel and Stein. We also prove the sharp endpoint estimates for these general
operators on the Hardy spaces H p(eM) and BMO(eM).

Mathematics Subject Classification (2010): 42B20 (primary); 42B25 (sec-
ondary).

1. Introduction and statement of main results

Classical Calderón-Zygmund theory centers around singular integrals associated
with the Hardy-Littlewood maximal operator that commutes with the usual dilations
on Rn , � · x = (�x1, . . . , �xn) for � > 0. On the other hand, the product theory on
Rn began with Zygmund’s study of the strong maximal function in [16] given by

MS( f )(x) = sup
x2R

1
|R|

Z
R

| f (y)|dy,
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where the supremum is taken over the family of all rectangles R with sides parallel
to the axes.

And it continued with Marcinkiewicz’s proof of his famous multiplier theo-
rem. The product theory is invariant with respect to n-fold dilation on Rn , � · x =

(�1x1, . . . , �nxn) for � = (�1, . . . , �n) 2 Rn
+
. In the product setting, one con-

siders operators of the form T f = K ⇤ f, where K is homogeneous, that is,
�1 . . . �nK (� · x) = K (x), or, more generally, K (x) satisfies certain differential
inequalities and cancellation conditions such that the kernels �1 . . . �nK (� · x) also
satisfy the same conditions with the same bounds uniformly for all �i > 0, 1 

i  n. Such operators have been studied for example in Gundy and Stein [11],
R. Fefferman and Stein [10], R. Fefferman [8, 9], Chang and R. Fefferman [2, 3],
Journé [17, 18], Pipher [25], Pott and Villarroya [26], where both the L p theory for
1 < p < 1 and the product H p theory for 0 < p  1 were developed. More
precisely, R. Fefferman and Stein [10] studied the L p boundedness (1 < p < 1)
for the product convolution singular integral operators. Journé in [17] introduced
a non-convolution product singular integral operators, established the product T1
theorem (see [26] for a new version of such operators) and proved the L1

! BMO
boundedness for such operators. The product Hardy space H p (Rn

⇥ Rm) was first
introduced by Gundy and Stein [11]. Chang and R. Fefferman [2, 3] developed
the theory of atomic decomposition and established the dual space of Hardy space
H1 (Rn

⇥ Rm), namely the product BMO (Rn
⇥ Rm) space. Carleson disproved by

a counter-example a conjecture that the product atomic Hardy space on Rn
⇥ Rm

could be defined by rectangle atoms. This motivated Chang and R. Fefferman to
replace the role of cubes in the classical atomic decomposition of H p (Rn) by arbi-
trary open sets of finite measures in the product H p (Rn

⇥ Rm). Subsequently, R.
Fefferman in [9] established the criterion of the H p

! L p boundedness of singu-
lar integral operators in Journé’s class by considering its action only on rectangle
atoms by using Journé lemma. However, R. Fefferman’s criterion cannot be ex-
tended to three or more parameters without further assumptions on the nature of T
as shown in Journé [18]. In fact, Journé provided a counter-example in the three-
parameter setting of singular integral operators such that R. Fefferman’s criterion
breaks down. The H p to L p boundedness for Journé’s class of singular integral
operators with arbitrary number of parameters was established by J. Pipher [25]
by considering directly the action of the operator on (non-rectangle) atoms and an
extension of Journé’s geometric lemma to higher dimensions. The criterion of the
H p

! H p boundedness of singular integral operators in Journé’s class on the
Euclidean space was established in [12].

To study fundamental solutions of ⇤b on certain model domains in several
complex variables, Nagel and Stein [22] developed L p-boundedness for a class of
product singular integral operators. It was well known that any analysis of singular
integrals on a product space eM = M1 ⇥ · · · ⇥ Mn must be based on a formulation
of standard singular integrals on each factor Mi . To carry this out, the important
geometric objects used by Nagel and Stein are: (i) a class of equivalent control
distances constructed on Mi , 1  i  n, via the vector fields {X1, . . . , Xr } where
each Xi , 1  i  r, depends on i; (ii) the volumes of balls satisfy the doubling
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property and the certain low bound estimates. More precisely, one variant of the
control distance on M is defined as follows. For each x, y 2 M , let AC(x, y, �)
denote the collection of absolutely continuous mapping ' : [0, 1] ! M with
'(0) = x, '(1) = y, and for almost every t 2 [0, 1], '0(t) =

Pk
j=1 a jX j ('(t))

with |a j |  �. The control distance ⇢(x, y) from x to y is the infimum of the
set of � > 0 such that AC(x, y, �) 6= ?. See [22] and [24] for more details. It
was shown in [22] that there is a pseudo-metric d ⇡ ⇢ such that d(x, y) is C1 on
M ⇥ M\{diagonal}, and for x 6= y

|@KX @
L
Y d(x, y)| . d(x, y)1�K�L .

Here @KX are products of K vector fields {X1, · · · Xr } acting as derivatives on the x
variable, and @LY are corresponding K vector fields acting on the y variable.

The volume measure on M is defined in [22] as follows. One takes Lebesgue
measure and denotes the measure of a set E by |E |. The ball is defined by
B(x, �) = {y 2 M, d(x, y) < �} and the volume function is defined by V (x, y) =

|B(x, d(x, y))|. Nagel and Stein proved that the volumes of the balls B(x, �) satis-
fies the doubling property (see [22] for the details)

|B(x, 2�)|  C|B(x, �)| for all � > 0 and some constant C (1.1)

and, moreover, it also satisfies the low bound condition, namely for s�1, |B(x, s�)|
� s4|B(x, �)| and for s  1, |B(x, s�)| ⇡ s4|B(x, �)|.

We point out that the doubling condition (1.1) implies that there exist positive
constants C > 0 and ! > 0 (! is said to be the upper dimension of M) such that
for all x 2 M and � � 1,

|B(x, �r)| . C�!|B(x, r)|.

And the low bound condition implies the reverse doubling condition, that is, there
are constants  2 (0,!] and c 2 (0, 1] such that

c� |(B(x, r))|  |B(x, �r)|

for all x 2 M , 0 < r < sup
x,y2M

d(x, y)/2 and 1  � < sup
x,y2M

d(x, y)/2r .

As it was pointed out in [22] there are two paths to formulate standard singular
integrals on each factor Mi , 1  i  n. One is to generalize the class of operators
on each factor Mi , 1  i  n, to the extended class of the T1 theorem of David
and Journé [6] and then pass from this to a corresponding product theory. This was
carried out in [17] for the setting where each factor is a Euclidean space. However,
because of the inherent complications, Nagel and Stein [22] considered the class of
singular integrals of NIS type; that is, non-isotropic smoothing operators of order 0.
These operators may be viewed as Calderón-Zygmund operators whose kernels are
C1 away from the diagonal and its cancellation conditions are given by their action
on smooth bump functions. More precisely, on each factor M, these operators are
defined by the following properties:
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(I-1) If ', 2 C1

0 (M) have disjoint supports, then

hT', i =

Z
M⇥M

K (x, y)'(y) (x)dydx .

(I-2) If ' is a normalized bump function associated to a ball of radius r , then
|@aXT'| . r�a for each integer a � 0.

(I-3) If x 6= y, then for every integer a�0, |@aX,Y K (x, y)|. d(x, y)�aV (x,y)�1.
(I-4) Properties (I-1) through (I-3) also hold with x and y interchanged. That is,

these properties also hold for the adjoint operator T t defined by hT t', i =

hT ,'i.

To pass the above one factor case to the product theory, Nagel and Stein first con-
sider two factors case eM = M1⇥M2. The product operator T on eM is then defined
from C1

0 (eM) to C1(eM). The distribution K (x1, y1, x2, y2), the Schwartz kernel
of T, is a C1 function away from the “cross” = {(x, y) = (x1, x2, y1, y2) : x1 =

y1 and x2 = y2} and satisfies the following additional properties:

(II-1)
⌦
T ('1⌦'2), 1⌦ 2

↵
=

R
K (x1,y1,x2, y2)'1(y1)'2(y2) 1(x1) 2(x2)dydx

whenever 'i , i 2 C1

0 (Mi ) and have disjoint supports for i = 1, 2.
(II-2) For each bump function '2 on M2 and each x2 2 M2, there exists a singular

integral operator T '2,x2 (of one parameter) on M1, so that

⌦
T ('1 ⌦ '2), 1 ⌦  2

↵
=

Z
M2

⌦
T '2,x2'1, 1

↵
 2(x2)dx2.

Moreover, x2 7! T '2,x2 is smooth and uniform in the sense that T '2,x2 , as
well as ⇢L2 @

L
X2(T

'2,x2) for each L � 0, satisfy the conditions (I-1) to (I-4)
uniformly.

(II-3) If 'i is a bump function on a ball Bi (ri ) in Mi , then
��@a1X1@a2X2T ('1 ⌦ '2)

�� . r�a1
1 r�a2

2 .

In (II-2) and (II-3), both inequalities are taken in the sense of (I-2) whenever
'2 is a bump function for B2(r2) in M2.

(II-4)
��@a1X1,Y1@a2X2,Y2K (x1, y1; x2, y2)

�� . d1(x1, y1)�a1d2(x2, y2)�a2
V1(x1, y1)V2(x2, y2) .

(II-5) The same conditions hold when the index 1 and 2 are interchanged; that is,
whenever the roles of M1 and M2 are interchanged.

(II-6) The same properties are assumed to hold for the 3 “transposes” of T , i.e.,
those operators which arise by interchanging x1 and y1, or interchanging x2
and y2, or doing both interchanges.

The key to prove the L2 and L p, 1 < p < 1, boundedness of these operators
in [22] is the existence of the Littlewood-Paley theory on eM, which is itself a con-
sequence of the corresponding theory on each factor Mi , 1  i  2. The square
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function used in [22] is constructed in terms of the heat equation. See [22] for the
details.

Recently, in [14], inspired by the works of Nagel and Stein [21–23], the authors
developed a satisfactory theory of multiparameter Hardy spaces in the framework
of the product spaces of homogeneous type. Such a quasi-metric measure space of
homogeneous type includes the model case of Carnot-Carathédory spaces intrinsic
to a family of vector fields satisfying Hörmander’s condition of finite rank. To
be more precise, in [14] they consider (M, d, µ) to be a space of homogeneous
type in the sense of Coifman and Weiis, that is, d is a quasi-metric satisfying (i)
d(x, y) = 0 iff x = y; (ii) d(x, y) = d(y, x); (iii) d(x, z)  A[d(x, y) + d(y, z)]
for some A � 1. Moreover, d(x, y) has the following regularity property

|d(x, y) � d(x 0, y)|  C0d(x, x 0)# [d(x, y) + d(x 0, y)]1�# (1.2)

for some regularity exponent # : 0 < #  1 and all x, x 0, y 2 M . And µ
is a nonnegative measure satisfying the following doubling and reverse doubling
properties:

µ(B(x, �r))  C�!µ(B(x, r)) (1.3)

and
c�µ((B(x, r)))  µ((B(x, �r)) (1.4)

where B(x, r) = {y : d(x, y) < r} is the quasi-metric ball centered at x with radius
r and x 2 M , 0 < r < sup

x,y2M
d(x, y)/2 and 1  � < sup

x,y2M
d(x, y)/2r .

In [14] they introduced multiparametr Hardy spaces H p(eM), provided the dual
spaces of H p(eM) in terms of multiparameter Carleson measure spaces CMOp(eM),
in particular, BMO(eM) = CMO1(eM) and proved the endpoint estimates for those
operators considered by Nagel and Stein in [22] on H p(eM). See [14] for more
details.

The main purpose of this paper is that under the same geometrical conditions as
used in [14], we introduce a class of product operators, which generalizes Journé’s
class on the product Euclidean space in [17] and covers those studied by Nagel and
Stein in [22]. Our goals are

(1) providing the criterion of the L2(eM) boundedness for these general operators;
(2) proving the sharp endpoint estimates for these general operators on the multi-

parameter Hardy spaces H p(eM) and the generalized Carleson measure spaces
CMOp(eM).

We now set our work in context. We begin with recalling H p(eM) and CMOp(eM)
introduced in [14]. The crucial tool for developing H p(eM) and CMOp(eM) is the
existence of a suitable approximation to the identity on one factor M . The con-
struction of such an approximation to the identity is due to Coifman (see [7]). More
precisely, take a smooth function h defined on [0,1), equal to 1 on [1, 2], and equal
to 0 on [0, 1/2] and on [4,1). Let Tk be the operator with kernel 2kh(2kd(x, y))
and Mk andWk be the operators of multiplication by 1/Tk(1) and {Tk[1/Tk(1)]}�1,
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respectively. Set Sk := MkTkWkTkMk . The property (1.2) on the quasi-metric
d(x, y) and the conditions (1.3) and (1.4) on the measure µ imply that Sk(x, y), the
kernel of Sk, satisfy the following conditions: for some constants C > 0,

(i) Sk(x, y) = 0 for d(x, y) � C2�k , and |Sk(x, y)|  C
1

V2�k (x) + V2�k (y)
,

(ii) |Sk(x, y) � Sk(x 0, y)|  C
2k#d(x, x 0)#

V2�k (x) + V2�k (y)
,

(iii) the above property (ii) also holds with x and y interchanged,

(iv)
��
[Sk(x, y)� Sk(x, y0)]� [Sk(x 0, y)� Sk(x 0, y0)]

��
C

22k#d(x, x 0)#d(y, y0)#

V2�k (x) + V2�k (y)
,

(v)
Z
X
Sk(x, y) dµ(y) =

Z
X
Sk(x, y) dµ(x) = 1,

where # is same as in (1.2) and Vr (x) := µ(B(x, r)).
The above sequence {Sk}k2Z of operators is said to be an approximation to

the identity. To define the Littlewood-Paley-Stein square function, we also need to
recall the spaces of test functions and distributions on M .
Definition 1.1 ( [15]). Let 0 < � ,�  # where # is the regularity exponent on M
given in (1.2) and r > 0. A function f defined on M is said to be a test function of
type (x0, r,�, � ) centered at x0 2 M if f satisfies the following conditions

(i) | f (x)|  C 1
Vr (x0) + V (x, x0)

⇣
r

r + d(x, x0)
⌘�
;

(ii) | f (x) � f (y)|  C
⇣ d(x, y)
r + d(x, x0)

⌘� 1
Vr (x0) + V (x, x0)

⇣
r

r + d(x, x0)
⌘�
for

all x, y 2 M with d(x, y) 
1
2A (r + d(x, x0)).

If f is a test function of type (x0, r,�, � ), we write f 2 G(x0, r,�, � ) and the
norm of f 2 G(x0, r,�, � ) is defined by

k f kG(x0,r,�,� ) = inf{C > 0 : (i) and (ii) hold}.

Now fix x0 2 M we denote G(�, � ) = G(x0, 1,�, � ) and by G0(�, � ) the collec-
tion of all test functions in G(�, � ) with

R
M f (x)dµ(x) = 0. It is easy to check

that G(x1, r,�, � ) = G(�, � ) with equivalent norms for all x1 2 M and r > 0.
Furthermore, it is also easy to see that G(�, � ) is a Banach space with respect to
the norm in G(�, � ).

Let
�

G# (�, � ) be the completion of the space G0(#,#) in the norm of G(�, � )

when 0 < �, � < # . If f 2

�

G# (�, � ), we then define k f k �

G# (�,� )
= k f kG(�,� ).� �

G# (�, � )
�
0, the distribution space, is defined by the set of all linear functionals

L from
�

G# (�, � ) to C with the property that there exists C � 0 such that for all
f 2

�

G# (�, � ),
|L( f )|  Ck f k �

G# (�,� )
.



CRITERION OF THE L2 BOUNDEDNESS AND SHARP ENDPOINT ESTIMATES 851

Now we return to the product setting and recall the space of test functions and
distributions on eM = M1 ⇥ M2.
Definition 1.2 ([14]). Let (x0, y0) 2

eM , 0 < �1, �2,�1,�2  # and r1, r2 > 0. A
function f (x, y) defined on eM is said to be a test function of type (x0, y0; r1, r2;
�1,�2; �1, �2) if for any fixed y, y0

2 M2, f (x, y), as a function of the variable of
x, is a test function in G1(x0, r1,�1, �1) on M1. Similarly, for any fixed x, x 0

2 M1,
f (x, y), as a function of the variable of y, is a test function in G2(y0, r2,�2, �2) on
M2.Moreover, the following conditions are satisfied:

(i) k f (·, y)kG1(x0,r1,�1,�1)  C 1
Vr2(y0) + V (y0, y)

⇣ r2
r2 + d(y, y0)

⌘�2
(ii) k f (·, y) � f (·, y0)kG1(x0,r1,�1,�1)

C
⇣ d(y, y0)

r2 + d(y, y0)

⌘�2 1
Vr2(y0) + V (y0, y)

⇣ r2
r2 + d(y, y0)

⌘�2
for all y, y0

2 M2 with d(y, y0)  (r2 + d(y, y0))/2A2;
(iii) Both properties (i) and (ii) also hold with x, y and G1,G2 interchanged.

If f is a test function of type (x0, y0; r1, r2;�1,�2; �1, �2), we write f 2 G(x0, y0;
r1, r2;�1,�2; �1, �2) and the norm of f is defined by

k f kG(x0,y0;r1,r2;�1,�2;�1,�2) = inf{C : (i), (ii) and (iii) hold}.

Similarly, we denote by G(�1,�2; �1, �2) the class of G(x0, y0; 1, 1;�1,�2;
�1, �2) for any fixed (x0, y0) 2

eM . Set that f (x, y) 2 G0(�1,�2; �1, �2)
if
R
M1

f (x, y)dµ1(x) =

R
M2

f (x, y)dµ2(y) = 0.We can check that G(x0, y0; r1, r2;

�1,�2; �1, �2) = G(�1,�2; �1, �2) with equivalent norms for all (x0, y0) 2
eM and

r1, r2 > 0. Furthermore, it is easy to see that G(�1,�2; �1, �2) is a Banach space
with respect to the norm in G(�1,�2; �1, �2).

Let
�

G#1,#2(�1,�2; �1, �2) be the completion of the space G0(#1,#2;#1,#2)
in G(�1,�2; �1, �2) with 0 < �i , �i < #i , where #i is the regularity exponent on
Mi , i = 1, 2. If f 2

�

G#1,#2(�1,�2; �1, �2), we then define k f k �

G#1,#2 (�1,�2;�1,�2)
=

k f kG(�1,�2;�1,�2).

We define the distribution space
� �

G#1,#2(�1,�2; �1, �2)
�0
by all linear func-

tionals L from
�

G#1,#2(�1,�2; �1, �2) to C with the property that there exists C � 0
such that for all f 2

�

G#1,#2(�1,�2; �1, �2),

|L( f )|  Ck f k �

G#1,#2 (�1,�2;�1,�2)
.

We now recall the Littlewood-Paley-Stein square function, the Hardy space and the
generalized Carleson measure space on eM = M1 ⇥ M2.
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Definition 1.3 ( [14]). Let {Siki }ki2Z be approximations to the identity on Mi and

Di
ki = Siki � Siki�1, i = 1, 2. For f 2

� �

G#1,#2(�1,�2; �1, �2)
�
0 with 0 < �i , �i <

#i , i = 1, 2, S( f ), the Littlewood-Paley-Stein square function of f, is defined by

S( f )(x, y)=

(
1X

k1=�1

1X
k2=�1

X
⌧1

X
⌧2

|D1k1D
2
k2( f )(x, y)|

2�I k1+N11,⌧1
(x)�I k2+N22,⌧2

(y)

)1/2
,

where I ki+Nii,⌧i , i = 1, 2, are “dyadic cubes” in Mi in the sense of Christ [4] (see
Theorem 2.1 below and also [27]).

Definition 1.4 ([14]). Let max
� !1
!1+#1

, !2
!2+#2

�
< p  1, 0 < �i , �i < #i for

i = 1, 2, and N1, N2 are fixed large integers. Let {Siki }ki2Z be an approximation to
the identity on Mi and for ki 2 Z, set Di

ki = Siki � Siki�1, i = 1, 2. The Hardy space

H p(eM) is defined by the set of all f 2

� �

G#1,#2(�1,�2; �1, �2)
�
0 such that

H p(eM) =

⇢
f 2

� �

G#1,#2(�1,�2; �1, �2)
�
0

: 0<�i , �i <#i , i=1, 2, S( f )2L p(eM)

�

and if f 2 H p(eM), the norm of f is defined by k f kH p(eM) = kS( f )kp.

Definition 1.5 ([14]). Let max
� 2!1
2!1+#1 ,

2!2
2!2+#2

�
< p  1, 0 < �i , �i < #i for

i = 1, 2, and N1, N2 are fixed large integers. Let {Siki }ki2Z be an approximation
to the identity on Mi and for ki 2 Z, set Di

ki = Siki � Siki�1, i = 1, 2. The
generalized Carleson measure space CMOp(eM) is defined by the set of all f 2� �

G#1,#2(�1,�2; �1, �2)
�
0 such that

k f kCMOp(eM)

= sup
�

(
1

|�|

2
p�1

Z
�

X
k1,k2

X
I1⇥I2✓�

��D1k1D2k2( f )(x, y)��2�I1(x)�I2(y)dµ1(x)dµ2(y)

)1
2

<1,

where� ranges over all open sets in eM with finite measures and for each k1 and k2,
I1, I2 range over all the dyadic cubes in M1 and M2 with length `(I1) = 2�k1�N1

and `(I2) = 2�k2�N2 , respectively.

To see why these definitions are well posed, and in particular, why fixed large
integers N1 and N2 are needed, the crucial tool is the following Carlderón repro-
ducing formula on eM .
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Let {Siki }ki2Z be approximations to the identity on Mi and Di
ki = Siki � Siki�1,

i = 1, 2. Then the Calderón reproducing formula is given by

f (x, y) =

1X
k1=�1

1X
k2=�1

X
⌧1

X
⌧2

µ1(I k1+N11,⌧1 )µ2(I k2+N22,⌧2 )

⇥
fD1k1(x, yk1+N1⌧1 )fD2k2(y, yk2+N2⌧2 )D1k1D

2
k2( f )(y

k1+N1
⌧1 , yk2+N2⌧2 )

=

1X
k1=�1

1X
k2=�1

X
I1

X
I2

µ1(I1)µ2(I2)

⇥ D1k1(x1, xI1)D
2
k2(x2, xI2)

ffD1k1ffD2k2( f )(xI1, xI2),

(1.5)

where the series converges in both the norm of
�

G#1,#2(� 0

1,�
0

2, �
0

1, �
0

2) with 0 <
� 0

i < �i < #i , �
0

i , �i < #i , i = 1, 2, and the norm of L p(M1 ⇥ M2), 1 < p < 1.
See [14] for the existence of operators fD1k1, fD2k2, ffD1k1, ffD2k2 and the choice of
fixed N1 and N2.

It was well known that this kind of identities is a powerful tool in classical
harmonic analysis. See [1] and [20] for the classical case and [5] for spaces of
homogeneous type. Applying the above Carlderón reproducing formula, in [14] it
was proved that for max

� 2!1
2!1+#1 ,

2!2
2!2+#2

�
< p  1,

�
H p(eM)

�
0

= CMOp(eM).

In particular, ⇣
H1(eM)

⌘
0

= CMO1(eM) = BMO(eM).

Now we are ready to introduce a class of general singular integral operators oneM = M1 ⇥ M2 and state our main results.
Let C⌘0 (M1) denote the space of continuous functions f with compact support

such that
k f k⌘(M1) := sup

x,y2M1,x 6=y

| f (x) � f (y)|
d1(x, y)⌘

< 1

and C⌘0 (M2) is defined similarly. And let C
⌘
0 (
eM), ⌘ > 0, denote the space of

continuous functions f with compact support such that

k f k⌘ := sup
x1 6=y1,x2 6=y2

| f (x1, x2) � f (y1, x2) � f (x1, y2) + f (y1, y2)|
d1(x1, y1)⌘d2(x2, y2)⌘

< 1.

We first consider one factor case. A continuous function K1(x1, y1) defined on
M1\{(x1, y1) : x1 = y1} is called a Calderón-Zygmund kernel if there exist constant
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C > 0 and a regularity exponent "1 2 (0, 1] such that

(a) |K1(x1, y1)|  CV (x1, y1)�1;

(b) |K1(x1, y1) � K1(x1, y0

1)|  C
✓d1(y1, y0

1)

d1(x1, y1)

◆"1
V (x1, y1)�1

if d1(y1, y0

1) 

d1(x1, y1)
2A1

;

(c) |K1(x1, y1) � K1(x 0

1, y1)|  C
✓d1(x1, x 0

1)

d1(x1, y1)

◆"1
V (x1, y1)�1

if d1(x1, x 0

1) 

d1(x1, y1)
2A1

.

The smallest such constant C is denoted by |K1|CZ . We say that an operator T1 is
a singular integral operator associated with a Calderón-Zygmund kernel K1 if the
operator T1 is a continuous linear operator from C⌘0 (M1) into its dual such that

hT1 f, gi =

ZZ
g(x1)K1(x1, y1) f (y1)dµ1(y1)dµ1(x1)

for all functions f, g 2 C⌘0 (M1) with disjoint supports. T1 is said to be a Calderón-
Zygmund operator if it extends to be a bounded operator on L2(M1). If T1 is a
Calderón-Zygmund operator associated with a kernel K1, its operator norm is de-
fined by kT1kCZ = kT1kL2!L2 + |K1|CZ .

Now we introduce a class of the product singular integral operators on eM . Let
T : C⌘0 (eM) ! [C1

0 (eM)]0 be a linear operator. T is said to be a singular integral
operator if there exists a pair (K1, K2) of Calderón-Zygmund valued operators on
M2 and M1, respectively, such that

hg ⌦ k, T f ⌦ hi =

ZZ
g(x1)hk, K1(x1, y1)hi f (y1)dµ1(x1)dµ1(y1)

for all f, g 2 C⌘0 (M1) and h, k 2 C⌘0 (M2), with supp f \ supp g = ? and

hk ⌦ g, Th ⌦ f i =

ZZ
g(x2)hk, K2(x2, y2)hi f (y2)dµ2(x2)dµ2(y2)

for all f, g 2 C⌘0 (M2) and h, k 2 C⌘0 (M1), with supp f \ supp g = ?. More-
over, kKi (xi , yi )kCZ , i = 1, 2, as functions of xi , yi 2 Mi , satisfy the following
conditions:

(i) kKi (xi , yi )kCZ  CV (xi , yi )�1;

(ii) kKi (xi , yi ) � Ki (xi , y0

i )kCZ  C
✓di (yi , y0

i )

di (xi , yi )

◆"i
V (xi , yi )�1

if di (yi , y0

i ) 

di (xi , yi )
2Ai

;
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(iii) kKi (xi , yi ) � Ki (y0

i , yi )kCZ  C
✓di (xi , y0

i )

di (xi , yi )

◆"i
V (xi , yi )�1

if di (xi , y0

i ) 

di (xi , yi )
2Ai

.

We remark, as mentioned, that the above class of the product singular integral op-
erators includes those introduced by Journé in [17] and studied by Nagel and Stein
in [22].

Suppose that T is such a product singular integral operator on eM . T is said
to be a product Calderón-Zygmund operator on eM if T extends to be a bounded
operator on L2.

We now describe how a product singular integral operator T acts on bounded
C⌘(eM) functions (denote by C⌘b (eM)). Following Journé in [17], we first define the
operator T1 by the following

hg1 ⌦ g2, T f1 ⌦ f2i = hg2, hg1, T1 f1i f2i

for f1, g1 2 C⌘0 (M1) and f2, g2 2 C⌘0 (M2). Note that when g1 2 C⌘00(M1) and
f1 2 C⌘b (M1), the inner product hg1, T1 f1i is well defined. Moreover, hg1, T1 f1i
is a singular integral operator on M2 with a Calderón-Zygmund kernel
hg1, T1 f1i(x2, y2) = hg1, K2(x2, y2) f1i. Therefore, for g2 2 C⌘00(M2) and f2 2

C⌘b (M2), hg2, hg1, T1 f1i f2i is well defined. One defines hg2, T2 f2i similarly for
g2 2 C⌘00(M2) and f2 2 C⌘b (M2). Using these definitions, we can give a meaning
of the notation T1 = 0. More precisely, T1 = 0 means hg1 ⌦ g2, T1i = 0 for all
g1 2 C⌘00(M1) and g2 2 C⌘00(M2), that is,ZZ

g(x1)g(x2)K (x1, x2, y1, y2)dµ1(x1)dµ2(x2)dµ1(y1)dµ2(y2) = 0.

Similarly, T1(1) = 0 is equivalent to hg1, hg2, T2 f2i1i = 0 for all g1 2 C⌘00(M1)
and f2, g2 2 C⌘0 (M2), that is, for g1 2 C⌘00(M1), g2 2 C⌘00(M2) and almost every-
where y2 2 M2,ZZ

g(x1)g(x2)K (x1, x2, y1, y2)dµ1(x1)dµ2(x2)dµ1(y1) = 0.

While T1⇤(1) = 0 means hg2, T2 f2i⇤1 = 0 in the same conditions. Interchanging
the role of indices one obtains the meaning of T2(1) = 0 and T2⇤(1) = 0.

We also need to introduce the definition of weak boundedness property (denote
by WBP). We begin with the one factor case. Let T1 be a singular integral operator
on M1 and let AM1(�, x01 , r1), � 2 (0,#1], x01 2 M1 and r1 > 0, be a set of all
f 2 C�0(M1) supported in B(x01 , r1) satisfying k f k1  1 and k f k�  r��

1 .We say
that T1 has the weak boundedness property if there exist 0 < �  #1 and a constant
C > 0 such that for all x01 2 M1, r1 > 0, and all �, 2 AM1(�, x01 , r1),

|hT1�, i|  CVr1(x
0
1).
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Similarly we can define the set AM2(�, x02 , r2), � 2 (0,#2], x02 2 M2 and the weak
boundedness property for a singular integral operator on M2.

In the following, we define the weak boundedness property in the product set-
ting.
Definition 1.6. Let T be a product singular integral operator on eM . T has the WBP
if

khT1�1, 1ikCZ . Vr1(x
0
1) for all �1, 1 2 AM1(�, x

0
1 , r1), (1.6)

khT2�2, 2ikCZ . Vr2(x
0
2) for all �2, 2 2 AM2(�, x

0
2 , r2). (1.7)

It is easy to see that if T satisfies (1.6) and (1.7), then

|hT�1 ⌦ �2, 1 ⌦  2i| . Vr1(x
0
1)Vr2(x

0
2)

for all �1, 1 2 AM1(�, x01 , r1) and �
2, 2 2 AM2(�, x02 , r2).

We point out that if T is a product Calderón-Zygmund operator on eM, then T
has the weak boundedness property. We denote eT by the partial adjoint operator of
T with the kernel K (y1, x2, x1, y2).

Main results of this paper are the following:
Theorem 1.7. Let T be a product singular integral operator on eM . Then T and eT
are both bounded on L2(eM) if and only if T1, T ⇤1 eT1, and (eT )⇤1 lie in BMO(eM)
and T has the weak boundedness property.

Theorem 1.8. Let T be a product Calderón-Zygmund operator on eM and
max

� !1
!1+#1

, !2
!2+#2

�
< p  1. Then T extends to a bounded operator from H p(eM)

to itself if and only if (T ⇤)1(1) = (T ⇤)2(1) = 0.

Theorem 1.9. Let T be a product Calderón-Zygmund operator on eM and
max

� 2!1
2!1+#1 ,

2!2
2!2+#2

�
< p  1. Then T extends to a bounded operator from

CMOp(eM) to itself, particularly from BMO(eM) to itself, if and only if T1(1) =

T2(1) = 0.
Before ending this section, we would like to describe our strategy of the proofs.

To show the necessity of Theorem 1, we will employ an approach which is differ-
ent from the one given by Journé [17]. Note that Journé obtained this implication
by showing that the L2 boundedness implies the L1

! BMO boundedness. For
this purpose, he established a fundamental geometric covering lemma. As a conse-
quence of this implication, together with an interpolation theorem and the duality
argument, Journé proved that the L2 boundedness implies the L p, 1 < p < 1,
boundedness. We will prove this implication by applying the Hardy space theory
developed in [14]. More precisely, we first show that the L2 boundedness implies
the H1 ! L1 boundedness. We would like to point out that the H1 ! L1 bound-
edness was obtained in [14] under the cancellation conditions used in [22]. How-
ever, this is not available for the current situation. To show that the L2 boundedness
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implies the H1 ! L1 boundedness without assuming any cancellation conditions,
we will apply an atomic decomposition for H p(eM). For this purpose, following
Pipher’s idea [25], we first establish Journé-type covering lemma and develop an
atomic decomposition in our setting. Applying an atomic decomposition and a
similar idea as in [9], we conclude that L2 boundedness implies the H p

! L p
boundedness, particularly, H1 ! L1 boundedness. From this together with the
duality between H1(eM) and BMO(eM) we obtain the L1

! BMO boundedness
and hence the desired necessary condition of Theorem 1 follows. Moreover, by an
interpolation theorem proved in [14], we also conclude that the L2 boundedness
implies the L p, 1 < p < 1, boundedness.

In [17] the proof of the sufficiency of the classical product T1 theorem was
decomposed in three steps. In the first step, Journé claimed that if T satisfies
T1(1) = T ⇤

1 (1) = 0 and has the weak boundedness property, then it can be viewed
as a classical vector valued singular integral operator acting on C1

0 (R)⇥H and the
L2-boundedness of such an operator follows from the classical case. The second
step is the decomposition of an operator T having the weak boundedness properties
and T (1) = T ⇤(1) =

eT (1) =
eT ⇤(1) = 0 as the sum of two operators S and T � S

with both the weak boundedness properties and S2(1) = S⇤

2 (1) = (T � S)1(1) =

(T � S)⇤1(1) = 0. The L2 boundedness of T is then a consequence of the first step.
The last step is, as in the classical one parameter case, to construct the para-product
operator Wb, for b 2 BMO(R ⇥ R) so that Wb1 = b,W ⇤

b 1 =
eWb1 =

eW ⇤

b 1 = 0. If
one sets S = T�WT1�W ⇤

T ⇤1�
eWeT1�eW ⇤eT ⇤1, then S(1) = S⇤(1) =

eS(1) =
eS⇤(1) =

0. Moreover, all para-product operators Wb,W ⇤

b , eWb and eW ⇤

b are in Journé’s class
and bounded on L2(R ⇥ R). See [17] for all details. We will develop a new ap-
proach to prove the sufficiency of Theorem 1. To describe ideas of this approach,
we first outline a new proof for the classical T1 theorem on M1. As in the classical
case, we consider the following bilinear form

hg, T f i =

*
1X

j=�1

Dj eDj (g), T
1X

k=�1

DkeDk( f )
+

=

X
j,k

h
eDj (g), DjT DkeDk( f )i.

The original proof of the classical T1 theorem includes two steps. In the first step, if
T is a singular integral operator having the weak boundedness property and T (1) =

T ⇤(1) = 0, then DjT Dk(x, y), the kernel of the operator DjT Dk, satisfies the
almost orthogonal estimate. From this together with the Littlewood-Paley estimate
on L2 implies |hg, T f i|  Ck f k2kgk2 and hence the L2 boundedness of T follows.
The second step is to reduce the general case to the first case in terms of the para-
product operator. Observing that without assuming any cancellation condition on
K the following almost orthogonal estimate for j  k still holds����

ZZ
[Dj (x, u) � Dj (x, y)]K (u, v)Dk(v, y)dµ1(u)dµ1(v)

����
 C2( j�k)✏ 1

V2� j (x) + V2� j (y) + V (x, y)
2� j"

(2� j
+ d(x, y))"

,
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and similarly for k < j. This leads to the following decomposition:

hg, T f i =

X
jk

Z eDj (g)(x)
ZZ

[Dj (x, u) � Dj (x, y)]K (u, v)

⇥ Dk(v, y)dµ1(u)dµ1(v)eDk( f )(y)dµ1(y)dµ1(x)

+

X
k< j

Z eDj (g)(x)
ZZ

Dj (x, u)K (u, v)

⇥ [Dk(v, y) � Dk(x, y)]dµ1(u)dµ1(v)eDk( f )(y)dµ1(y)dµ1(x)

+

X
jk

Z eDj (g)(x)
ZZ

Dj (x, y)K (u, v)

⇥ Dk(v, y)dµ1(u)dµ1(v)eDk( f )(y)dµ1(y)dµ1(x)

+

X
k< j

Z eDj (g)(x)
ZZ

Dj (x, u)K (u, v)

⇥ Dk(x, y)dµ1(u)dµ1(v)eDk( f )(y)dµ1(y)dµ1(x).

The almost orthogonal estimates, as mentioned above, together with the Littlewood-
Paley estimate on L2 imply that the first two series are bounded by some con-
stant Ck f k2kgk2. To see that the last two series are also bounded by Ck f k2kgk2,
we only consider the third series and rewrite it as

R P
k
eSk(g)(y)Dk(T ⇤1)(y) ·eDk( f )(y)dµ1(y), where eSk =

P
jk D j eDj . The Carleson measure estimate to-

gether with Littlewood-Paley estimate yields
����
Z X

k

eSk(g)(y)Dk(T ⇤1)(y)eDk( f )(y)dµ1(y)
����



⇢Z X
k

|
eSk(g)(y)|2|Dk(T ⇤1)(y)|2dµ1(y)

� 1
2
⇢Z X

k
|
eDk( f )(y)|2dµ1(y)

� 1
2

Ck f k2kgk2.

This new approach can be carried out to the product case. Indeed, by the Calderón’s
reproducing formula in (1.5) on the product eM,we begin with the following bilinear
form

hg, T f i =

X
k0

1

X
⌧

0

1

X
k1

X
⌧1

X
k0

2

X
⌧

0

2

X
k2

X
⌧2

µ((I 1)
0

)µ(I 1)µ((I 2)
0

)µ(I 2)

⇥
fD1k0

1

fD2k0

2
(g)(x(I 1)0 , x(I 2)0 )

⇥

⌦
D1
k0

1
D2
k0

2
, T D1k1D

2
k2
↵
(x(I 1)0 , x(I 2)0 , xI 1, xI 2)

fD1k1fD2k2( f )(xI 1, xI 2).
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We would also like to point out that

⌦
D1
k0

1
D2
k0

2
, T D1k1D

2
k2
↵
=

⌦
D1
k0

1
, hD2

k0

2
, K1(x1, y1)D2k2iD

1
k1
↵

=

⌦
D2
k0

2
, hD1

k0

1
, K2(x2, y2)D1k1iD

2
k2
↵
,

which will be crucial for this new approach.
Our strategy of the proof of the sufficiency of Theorem 1 uses a similar de-

composition as one parameter case. However, some new mixed situations have to
be taken into account. More precisely, except applying the almost orthogonal es-
timate and Carleson measure estimate on M1 ⇥ M2, one also needs to consider
two more mixed cases: the almost orthogonal estimate on one factor, say M1, and
Carleson measure estimate on M2, and the Littlewood-Paley estimate on one fac-
tor, say M1, and Carleson measure estimate on M2. See more details in Subsec-
tion 2.2.

Note that in [17] Journé proved that if T is a convolution operator and bounded
on L2, then T admits a bounded extension from BMO(R ⇥ R) to itself. He men-
tioned without proof that if T is a Calderón-Zygmund operator and T1(1)=T2(1)=
0, then T H1, T H2 and T H1H2 are Cadelrón-Zygmund operators, where H1, H2
and H1H2 are the Hilbert transforms and double Hilbert transform. From this to-
gether with the characterization of the product BMO(R ⇥ R) in terms of the bi-
Hilbert transform, the boundedness of T on BMO(R ⇥ R) follows. In our setting,
however, his method is not available. In this paper, the L2 theory and the duality
argument between H p(eM) and CMOp(eM) will play a crucial role in the proofs
of Theorems 2 and 3. More precisely, it is known that L2(eM) \ H p(eM) is dense
in H p(eM). Therefore, to show that T f is bounded on H p(eM), it suffices to con-
sider f 2 L2(eM) \ H p(eM). This argument for space CMOp(eM) is no long true.
However, L2(eM) \ CMOp(eM) is dense in the weak topology (H p,CMOp). Then
applying this density argument together with the duality argument implies the suf-
ficiency of Theorem 3. We will show the necessity of Theorem 3 first and the same
conclusion for Theorem 2 follows from the density argument and the duality argu-
ment. This approach is new even for the classical case.

The paper is organized as follows. In Section 2, we we prove Theorem 1. In
Subsection 2.2, we prove the necessity. Journé-type covering lemma and atomic
decomposition are provided in Subsections 2.2.1 and 2.2.2. We prove that if T is
bounded on L2 then T extends to a bounded operator from H p to L p, from L1

to BMO, and from L p to itself in Subsections 2.2.3, 2.2.4 and Subsection 2.2.5,
respectively. The sufficiency of Theorem 1 is proved in the Subsection 2.3. The
proofs of Theorem 2 and 3 will be given in Section 3. In the last section, we will
point out that all results in this paper can be carried out to the case with arbitrarily
many parameters. We, however, state these results only and omit the details of the
proofs.

Throughout the paper, A ⇡ B means that the ratio A/B is bounded and
bounded away from zero by constants that do not depend on the relevant variables
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in A and B. A . B means that the ratio A/B is bounded by a constant independent
of the relevant variables.

2. Proof of Theorem 1

In this section we prove Theorem 1.

2.1. Necessity of Theorem 1

To show the necessity of Theorem 1, we will employ the Hardy space theory on eM
developed in [14]. As mentioned in Section 1, we first show that if T is a Calderón-
Zygmund operator on eM then T extends to a bounded operator from H p(eM) to
L p(eM) for p  1 and is close to 1. This, particularly for p = 1, together with the
duality (L1, L1) and (H1,BMO), implies that T is bounded from L1 to BMO. To
achieve this goal, the main tool we need is an atomic decomposition for H p(eM). To
this end, as in the classical case, we shall first provide Journé-type covering lemma
on eM, for which we turn to next subsection.

2.1.1. Journé-type covering lemma

We first need a result of Christ.

Theorem 2.1 ([4]). Let (M, ⇢, µ) be a space of homogeneous type, then, there ex-
ists a collection {I k↵ ⇢ M : k 2 Z,↵ 2 I k} of open subsets, where I k is some index
set, and C1,C2 > 0, such that

(i) µ(M \

S
↵ I k↵ ) = 0 for each fixed k and I k↵

T
I k� = ? if ↵ 6= �;

(ii) for any ↵,�, k, l with l � k, either I l� ⇢ I k↵ or I l�
T
I k↵ = ?;

(iii) for each (k,↵) and each l < k there is a unique � such that I k↵ ⇢ I l�;
(iv) diam(I k↵ )  C12�k;
(v) each I k↵ contains some ball B(zk↵,C22�k), where zk↵ 2 M .

Note that Carnot-Carathéodory spaces are spaces of homogeneous type. Therefore,
we can think of I k↵ as being a dyadic cube with diameter rough 2�k centered at zk↵ .
As a result, we consider C I k↵ to be the cube with the same center as I k↵ and diameter
Cdiam(I k↵ ). To simplify notations, we will call I dyadic cubes and denote the side
length of I by `(I ).

Let {I ki⌧i ⇢ Mi : ki 2 Z, ⌧i 2 I ki } be the same as in Theorem 2.1. We call
R = I k1⌧1 ⇥ I k2⌧2 a dyadic rectangle in eM . Let� ⇢

eM be an open set of finite measure
andMi (�) denote the family of dyadic rectangles R ⇢ �which are maximal in the
i th “direction”, i = 1, 2. Also we denote byM(�) the set of all maximal dyadic
rectangles contained in �. For the sake of simplicity, we denote by R = I1 ⇥ I2
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any dyadic rectangles on M1 ⇥ M2. Given R = I1 ⇥ I2 2M1(�), let bI2 =
bI2(I1)

be the biggest dyadic cube containing I2 such that

µ (( I1 ⇥
bI2 )\�) >

1
2
µ(I1 ⇥

bI2),
where µ = µ1⇥µ2 is the measure on eM . Similarly, Given R = I1⇥ I2 2M2(�),
let bI1 =

bI1(I2) be the biggest dyadic cube containing I1 such that
µ ((bI1 ⇥ I2 )\�) >

1
2
µ(bI1 ⇥ I2).

For Ii = I ki⌧i ⇢ Mi , we denote by (Ii )k , k 2 N, any dyadic cube I ki�k�i
containing

I ki⌧i , and (Ii )0 = Ii , where i = 1, 2. Moreover, let w(x) be any increasing function
such that

P
1

j=0 jw(C02� j ) < 1, where C0 is any given positive constant. In
applications, we may take w(x) = x� for any � > 0.

The Journé-type covering lemma on eM is the following:

Lemma 2.2. Let � be any open subset in eM with finite measure. Then there exists
a positive constant C such that

X
R=I1⇥I22M1(�)

µ(R)w

✓
`(I2)
`(bI2)

◆
 Cµ(�) (2.1)

and X
R=I1⇥I22M2(�)

µ(R)w

✓
`(I1)
`(bI1)

◆
 Cµ(�). (2.2)

Proof. It suffices to prove (2.2) since (2.1) follows similarly. Following [25], let
R = I1 ⇥ I2 2M2(�) and for k 2 N let

AI1,k = [

�
I2 : I1 ⇥ I2 2M2(�) and bI1 = (I1)k�1

 

where we use (I1)1 to denote the father of I1 in the setting of dyadic cubes in M1.
Hence, (I1)k�1 means the ancestor of I1 at (k � 1)-level. We also denote the set

A(�)={I1 ⇢ M1 : dyadic, and 9 a dyadic I2 2 M2, such that I1 ⇥ I22M2(�)}.

We rewrite the left side in (2.2) as

X
R=I1⇥I22M2(�)

µ(R)w

✓
`(I1)
`(bI1)

◆
=

X
I12A(�)

µ1(I1)
1X
k=1

X
I2: I22AI1,k

µ2(I2)w
✓
`(I1)
`(bI1)

◆
.
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Note that from the definition of AI1,k , we have that for k 2 N and bI1 = (I1)k�1,
`(I1)
`(bI1)  C2�k . This yields

X
R=I1⇥I22M2(�)

µ(R)w

✓
`(I1)
`(bI1)

◆


X
I12A(�)

µ1(I1)
1X
k=1

w(C2�k)
X

I2: I22AI1,k
µ2(I2)



X
I12A(�)

µ1(I1)
1X
k=1

w(C2�k)µ2(AI1,k),
(2.3)

where the second inequality follows from the fact that all I2 in AI1,k are disjoint
since I2 are the maximal dyadic cubes and bI1 = (I1)k�1 for each fixed k 2 N. We
now estimate µ2(AI1,k). For any x2 2 AI1,k, by the definition of AI1,k, there exists
some dyadic cube I2 such that I1 ⇥ I2 2 M2(�), x2 2 I2, and bI1 = (I1)k�1 for
some k 2 N. Thus, by the definition of bI1, µ

�
(I1)k�1⇥ I2\�

�
> 1

2µ
�
(I1)k�1⇥ I2

�
and µ

�
(I1)k ⇥ I2 \�

�


1
2µ
�
(I1)k ⇥ I2

�
. Now set EI1(�) = [{I2 : I1 ⇥ I2 ⇢ �},

then from the last inequality above, we have

µ
�
(I1)k ⇥ (I2 \ E(I1)k )

�


1
2
µ
�
(I1)k ⇥ I2

�
,

which implies that µ2(I2 \ E(I1)k ) 
1
2µ2(I2) and hence µ2(I2 \ (E(I1)k )

c) >
1
2µ2(I2), where we denote (E(I1)k )

c
= EI1\E(I1)k . This gives

MHL ,2
�
�EI1\E(I1)k

�
(x2) >

1
2
,

and hence AI1,k ⇢

�
x2 2 M2 : MHL ,2

�
�EI1\E(I1)k

�
(x2) > 1

2
 
, which implies that

µ2(AI1,k)  µ2

✓n
x2 2 M2 : MHL ,2

⇣
�EI1\E(I1)k

⌘
(x2) >

1
2

o◆

 Cµ2(EI1\E(I1)k ),

(2.4)

where we use MHL ,2 to denote the Hardy–Littlewood maximal function on M2.
Thus, combining the estimates of (2.3) and (2.4), we obtain

X
R=I1⇥I22M2(�)

µ(R)w

✓
`1(I1)
`1( Î1)

◆
 C

X
I12A(�)

µ1(I1)
1X
k=1

w(C2�1k)µ2(EI1\E(I1)k ).

Next, we point out that for each k 2 N,

µ2(EI1\E(I1)k )  µ2(EI1\E(I1)1) + · · · + µ2(E(I1)k�1\E(I1)k )

 C
X
eI dyadic

I1✓eI&(I1)k , eI⇥(EeI \E(eI )1 )⇢�

µ2(EeI \E(eI )1),
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where the last inequality follows from the definition of (I1)k . As a consequence,

X
R=I1⇥I22M2(�)

µ(R)w

✓
`(I1)
`(bI1)

◆

 C
X

I12A(�)

µ1(I1)
1X
k=1

w(C2�k)
X
eI : dyadic

I1✓eI&(I1)k , eI⇥(EeI \E(eI )1 )⇢�

µ2(EeI \E(eI )1).

Now interchanging the order of the sums we can obtain that the above inequality is
bounded by

C
1X
k=1

w(C2�k)
X
eI : dyadiceI⇥(EeI \E(eI )1 )⇢�

µ1(eI )µ2(EeI \E(eI )1)
X

I1: dyadic
I1✓eI&(I1)k ,

µ1(I1)
µ1(eI )

 C
1X
k=1

w(C2�1k)
X
eI : dyadiceI⇥(EeI \E(eI )1 )⇢�

µ1(eI )µ2(EeI \E(eI )1)
kX
j=1

X
I1: dyadic

I1✓eI&(I1) j ,

µ1(I1)
µ1(eI ) .

Note that for each j = 1, . . . , k,
P

I1: dyadic
I1✓eI&(I1) j ,

µ1(I1)
µ1(eI )  C , where C is a constant

independent of I1,eI . Hence,X
R=I1⇥I22M2(�)

µ(R)w

✓
`1(I1)
`1( Î1)

◆
 C

1X
k=1

kw(C2�1k)
X
eI : dyadiceI⇥(EeI \E(eI )1 )⇢�

µ1(eI )µ2(EeI \E(eI )1)

 C
1X
k=1

kw(C2�1k)µ(�)  Cµ(�),

since eI ⇥ (EeI \E(eI )1) are contained in {
eI dyadic,eI ⇥ (EeI \E(eI )1) ⇢ �} and are

disjoint.

The proof of Lemma 2.2 is concluded. This covering lemma will be a key
tool to obtain an atomic decomposition for H p(eM), which will be given in next
subsection.

2.1.2. Atomic decomposition

In this subsection we will apply Journé-type covering lemma to provide an atomic
decomposition for H p(eM). We point out that the atomic decomposition provided
in this subsection is different from the classical ones. More precisely, we will prove
an atomic decomposition for Lq(eM) \ H p(eM) for any 1 < q < 1, where the
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decomposition converges in both Lq(eM) and H p(eM) norms. In particular, the con-
vergence in both L2(eM) and H p(eM) norms will be crucial for proving the bound-
edness of Calderón–Zygmund operators from H p(eM) to L p(eM).

Suppose that max
� !1
!1+#1

, !2
!2+#2

�
< p  1 and 1 < q < 1. We first define a

(p, q)-atom for the Hardy space H p(eM) as follows.
Definition 2.3. A function a(x1,x2) defined on eM is called a (p,q)-atom of H p(eM)
if a(x1, x2) satisfies:

(1) supp a ⇢ �, where � is an open set of eM with finite measure;
(2) kakLq  µ(�)1/q�1/p;
(3) a can be further decomposed into rectangle (p, q)-atoms aR associated to dyadic

rectangle R = I1 ⇥ I2, satisfying the following
(i) there exist two constants C1 and C2 such that supp aR ⇢ C1 I1 ⇥ C2 I2;
(ii)

R
M1 aR(x1, x2)dx1 = 0 for a.e. x2 2 M2 and

R
M2 aR(x1, x2)dx2 = 0 for a.e.

x1 2 M1;
(iii-a) for 2  q < 1, a =

P
R2M(�) aR and

�P
R2M(�) kaRk

q
Lq
�1/q



µ(�)1/q�1/p.
(iii-b) for 1 < q < 2, a =

P
R2M1(�) aR +

P
R2M2(�) aR and for some � > 0,

there exists a constant Cq,� such that
 X
R2M1(�)

✓
µ2(I2)
µ2(bI2)

◆�
kaRk

q
Lq +

X
R2M2(�)

✓
µ1(I1)
µ1(bI1)

◆�
kaRk

q
Lq

!1/q
Cq,�µ(�)1/q�1/p.

We remark that, when eM = Rn
⇥ Rm , a (p, 2)-atom with the conditions (i), (ii)

and (iii-a) (q = 2) was introduced by R. Fefferman [9]. Note that the condition in
(iii-b) is new.

The main result in this subsection is the following:

Theorem 2.4. Suppose that max
� !1
!1+#1

, !2
!2+#2

�
< p  1 < q < 1. Then

f 2 Lq(eM) \ H p(eM) if and only if f has an atomic decomposition; that is,

f =

1X
i=�1

�i ai ,

where ai are (p, q)-atoms,
P

i |�i |
p < 1, and the series converges in both H p(eM)

and Lq(eM). Moreover,

k f kH p(eM) ⇡ inf

8<
:
(X

i
|�i |

p

) 1
p

, f =

X
i
�i ai

9=
; ,

where the infimum is taken over all decompositions as above and the implicit con-
stants are independent of the Lq(eM) and H p(eM) norms of f .
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Proof of Theorem 2.4. Let f 2 Lq(eM) \ H p(eM). We prove that f has an atomic
decomposition. The key tool to do this is the following Calderón reproducing for-
mula in (1.5).

f (x1, x2) =

1X
k1=�1

1X
k2=�1

X
I1

X
I2

µ1(I1)µ2(I2)

⇥ D1k1(x1, xI1)D
2
k2(x2, xI2)

ffD1k1ffD2k2( f )(xI1, xI2)
(2.5)

where the series converges in the norm of Lq(eM), 1 < q < 1 and H p(eM). Note
that as a function of x1, D1k1(x1, xI1) is supported in {x1 : d1(x1, xI1)  C2�k1+N1

}

and similarly for D2k2(x2, xI2). For each k 2 Z, let

�k = {(x1, x2) 2 M1 ⇥ M2 :
eeS( f )(x1, x2) > 2k},

whereeeS( f ) is similar to S( f ) but with D1k1D2k2 replaced by feD1k1feD2k2 . More pre-
cisely,

eeS( f )(x1, x2)=
(

1X
k1=�1

1X
k2=�1

X
I1

X
I2

|
feD1k1feD2k2( f )(x1, x2)|2�I1(x1)�I2(x2)

)1/2
.

By a result in [14], kS( f )kp ⇡ k
eeS( f )kp for max � !1

!1+#1
, !2
!2+#2

�
< p < 1 and

therefore, k f kH p(eM) ⇡ k
eeS( f )kp.

Set e�k = {(x1, x2) 2 M1 ⇥ M2 : Ms(��k )(x1, x2) > eC}, whereMs is the
strong maximal function on eM and eC is a constant to be decided later. Let

Bk =

�
R = I1 ⇥ I2 : µ(�k \ R) >

1
2
µ(R), and µ(�k+1 \ R) 

1
2
µ(R)

 
.

Rewrite the summation
1P

k1=�1

1P
k2=�1

P
I1

P
I2
in (2.5) as

1P
k=�1

P
R=I1⇥I22Bk

. Then we

have

f (x1, x2) =

1X
k=�1

�kak(x1, x2),

where
ak(x1, x2)

=

1
�k

X
R=I1⇥I22Bk

µ1(I1)µ2(I2)D1k1(x1, xI1)D
2
k2(x2,xI2)

ffD1k1ffD2k2( f )(xI1,xI2)
and

�k =C
����
⇢ X
R=I1⇥I22Bk

���ffD1k1ffD2k2( f )(xI1,xI2)�R(·, ·)
���2
�1/2����

q
µ(e�k)

1/p�1/q
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when 2  q < 1, and for 1 < q < 2,

�k =C
����
⇢ X
R=I1⇥I22Bk

���ffD1k1ffD2k2( f )(xI1,xI2)�R(·, ·)
���2
�1/2����

2
µ(e�k)

1/p�1/2.

Next, using the duality argument we obtain that k

P
|k|>` �kak(x1, x2)kq ! 0 as

` ! 1, which yields that the atomic decomposition
P

1

k=�1
�kak(x1, x2) con-

verges to f in the Lq norm.
To see that ak has compact support, by choosing eC sufficiently small, we can

conclude that supp ak ⇢
e�k since D1k1(x1, xI1) and D

2
k2(x2, xI2), as functions of

x1 and x2, respectively, have compact supports with diameters being equivalent
to 2�k1 and 2�k2, respectively. This implies that ak satisfies the condition (1) of
Definition 2.3.

We now verify that ak satisfies (2) of Definition 2.3. By the duality argument,
we have

��� X
R=I1⇥I22Bk

µ(R)D1k1(·, xI1)D
2
k2(·, xI2)

ffD1k1ffD2k2( f )(xI1, xI2)
���
q

 C
���n X

R=I1⇥I22Bk

��eeDk1
eeDk2( f )(xI1, xI2)

��2�R(·, ·)
o1/2���

q
.

This yields that when 2  q < 1, kakkq  µ
�e�k

�1/q�1/p
. And for 1 < q < 2,

since ak is supported in e�k , applying Hölder’s inequality yields

kakkq  kakk2µ(e�k)
1/q�1/2

 Cµ
�e�k

�1/q�1/p
.

As a consequence, we get that ak satisfies (2) of Definition 2.3.
It remains to check that ak satisfies the condition (3) of Definition 2.3. To see

this, we can further decompose ak as ak =

P
R2M(e�k) ak,R, where

ak,R(x1, x2) =

1
�k

X
R=I1⇥I22Bk , R⇢R

µ1(I1)µ2(I2)D1k1(x1, xI1)D
2
k2(x2, xI2)

⇥

ffD1k1ffD2k2( f )(xI1, xI2).
Similar to ak , we can verify that supp ak,R ⇢ CR and by the facts that

Z
D1k1(x1, xI1)dµ1(x1) =

Z
D2k2(x2, xI2)dµ2(x2) = 0,

Z
M1
ak,R(x1, x2)dµ1(x1) = 0 for a.e. x2 2 M2 ,
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and Z
M2
ak,R(x1, x2)dµ2(x2) = 0 for a.e. x1 2 M1,

which yield that the conditions (i) and (ii) of (3) in Definition 2.3 hold. Now it’s
left to show that ak satisfies the conditions (iii-a) and (iii-b) of (3).

For 2  q < 1, applying the same argument for the estimates of kakkq with
2  q < 1 yields

8<
:

X
R2M(e�k)

��ak,R��qLq
9=
;
1/q

 µ(e�k)
1/q�1/p,

which concludes that the condition (iii-a) holds. For 1 < q < 2, by applying
Hölder’s inequality and Journé-type covering lemma with �0 =

2�
2�q , we can get

that (iii-b) holds. This implies that we obtain a desired atomic decomposition for f .
To prove the converse, it suffices to verify that there is a positive constant C

such that
kS(a)kL p(eM)  C (2.6)

for each (p, q)-atom a of H p(eM) with 1 < q < 1.
To this end, fix an (p, q)-atom a with supp a ⇢ � and a =

P
R2M(�) aR .

Set e� = {(x1, x2) 2
eM : Ms(��)(x1, x2) > 1/2} and ee� = {(x1, x2) 2

eM :

Ms(�e�)(x1, x2) > 1/2}. Moreover, for any R = I1 ⇥ I2 2 M1(�), set bR =

bI1 ⇥ I2 ⇢M1(e�). Then µ(bR \�) > µ(bR)
2 . Similarly, set bbR =

bI1 ⇥
bI2 ⇢M2(

ee�).

Then µ(bbR \
e�) > µ(bbR )

2 .

Now let C be a constant to be chosen later. We decompose kS(a)kpL p(eM)
as

Z
[R2M(�)100CbbR

S(a)(x1, x2)pdµ1(x1)dµ2(x2)

+

Z
([R2M(�)100CbbR )c

S(a)(x1, x2)pdµ1(x1)dµ2(x2) := A + B.

Applying Hölder’s inequality, the estimate of A then follows from the L2 bound-
edness of eS and the L2 norm of the atom a as in (2) of Definition 2.3. Using the
decomposition of a as in (3) of Definition 2.3 and the fact p  1, B is bounded by

X
R2M(�)

Z
(100CbbR )c

S(aR)(x1, x2)pdµ1(x1)dµ2(x2).

Then we split
�
100CbbR �c into two parts �100CbI1�c ⇥ M2 and M1 ⇥

�
100CbI2�c and

denote these two parts by B1 and B2, respectively. It suffices to estimate B1 since
the estimate for B2 is similar by the symmetry. To estimate B1, we continue to split
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it into two cases
�
100CbI1�c⇥100C I2 and �100CbI1�c⇥(100C I2)c and denote these

two cases by B11 and B12. Applying Hölder’s inequality on the second variable and
the vector-valued Littlewood-Paley estimate, B11 is bounded by

C
X

R2M(�)

µ2(I2)1�p/q
Z
x1 62100CbI1

 Z
M2

h 1X
k1=�1

�� Z
M1

D1k1(x1, y1)

⇥ aR(y1, x2)dµ1(y1)
��2i q2 dµ2(x2)

�p/q
dµ1(x1).

Using the cancellation condition of the atom aR and writing
�� R

M1 D
1
k1(x1, y1) ⇥

aR(y1, x2)dµ1(y1)
��
=

�� R
M1[D

1
k1(x1, y1)� D1k1(x1, z1)]aR(y1, x2)dµ1(y1)

��, where
z1 is the center of I1, and then applying the smoothness conditions on D1k1 imply
that

�� R
M1 D

1
k1(x1, y1)aR(y1, x2)dµ1(y1)

�� is bounded by
C2k1#1`(I1)#1

✓
1

V2�k1 (x1) + V2�k1 (z1) + V (x1, z1)

◆Z
M1

|aR(y1, x2)|dµ1(y1).

Inserting this estimate back yields that B11 is dominated by

C
X

R2M(�)

µ(R)1�p/q
kaRk

p
Lq (eM)

✓
`(I1)
`(bI1)

◆p#1
 
V (z1, `(bI1))

µ1(I1)

!1�p

.

Note that
⇣
V (z1,`(bI1))

µ1(I1)

⌘1�p
 C

⇣
`(I1)
`(bI1)

⌘Q1(1�p)
. The above quantity is bounded by

C
X

R2M(�)

µ(R)1�p/q
kaRk

p
Lq (eM)

✓
`(I1)
`(bI1)

◆p#1�Q1(1�p)
. (2.7)

This yields that when 2  q < 1,

B11  C
X

R2M(�)

kaRk
p
Lq (eM)

µ(R)1�p/qw

✓
`(I1)
`(bI1)

◆
,

where w(x) = x↵ with ↵ = p#1� Q1(1� p). Note that ↵ > 0 since p > Q!1
Q!1+#1 .

Then, applying Hölder’s inequality and the Journé-type covering lemma gives

B11  C

 X
R2M(�)

kaRk
q
Lq (eM)

!p/q  X
R2M(�)

µ(R)w

✓
`(I1)
`(bI1)

◆!1�p/q

 Cµ(�)p/q�1µ(�)1�p/q
 C.



CRITERION OF THE L2 BOUNDEDNESS AND SHARP ENDPOINT ESTIMATES 869

For 1 < q < 2, setting w = w
1
2 , ew = w

q
q�p and eew = w

q
p and applying the same

estimate as above imply that

B11  C
X

R2M(�)

kaRk
p
Lq (eM)

µ(R)1�p/qw

✓
`(I1)
`(bI1)

◆

 C
X

R2M(�)

kaRk
p
Lq (eM)

w

✓
`(I1)
`(bI1)

◆
µ(R)1�p/qw

✓
`(I1)
`(bI1)

◆
.

Applying Hölder’s inequality and Journé-type covering lemma implies

B11  C

 X
R2M(�)

kaRk
q
Lq (eM)

eew
✓
`(I1)
`(bI1)

◆!p/q X
R2M(�)

µ(R)ew
✓
`(I1)
`(bI1)

◆!1�p/q

 Cµ(�)p/q�1µ(�)1�p/q
 C.

We now estimate B12. Using the cancellation condition of the atoms aR , we write
B12 as

X
R2M(�)

Z
x1 62100CbI1

Z
x2 62100C I2

����
bk1X

k1=�1

bk2X
k2=�1

���
Z
eM [D1k1(x1, y1) � D1k1(x1, z1)]

⇥ [D2k2(x2, y2) � D2k2(x2, z2)]aR(y1, y2)dµ1(y1)dµ2(y2)
���q
����
p/q

dx1dx2,

where the constantsbk1 andbk2 satisfy 2�
bk1

⇡ `(bI1) and 2�
bk2

⇡ `(I2), respectively.
Applying smoothness properties of D1k1(x1, y1) and D

2
k2(x2, y2) yields that B12 sat-

isfies the same estimate as B11 as in (2.7). This concludes the proof of Theorem 2.4.
For more details of the proof, we refer the readers to the long version of this pa-
per [13].

2.1.3. H p
! L p boundedness

In this subsection applying the atomic decomposition provided in the previous sub-
section, we prove that if T is a product Calderón-Zygmund operator, then T can be
extended to a bounded operator from H p(eM) to L p(eM). Note that if T is a product
Calderón-Zygmund operator then K (x1, y1, x2, y2), the kernel of T , satisfies the
following estimates

kKi (xi , yi ) � Ki (xi , y0

i )kL2  C
✓di (yi , y0

i )

di (xi , yi )

◆"i
V (xi , yi )�1

if di (yi , y0

i )  di (xi , yi )/2Ai , for i = 1, 2. From this it is easy to see that

|K (x1,y1,x2,y2) � K (x1,y0

1,x2,y2) � K (x1, y1, x2, y0

2) + K (x1, y0

1, x2, y
0

2)|

 C
✓d1(y1, y0

1)

d1(x1, y1)

◆"i
V (x1, y1)�1

✓d2(y2, y0

2)

d2(x2, y2)

◆"i
V (x2, y2)�1

if d1(y1, y0

1)  d1(x1, y1)/2A1 and d2(y2, y0

2)  d2(x2, y2)/2A2.
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The main result of this subsection is the following:

Theorem 2.5. For max
� !1
!1+#1

, !2
!2+#2

�
< p  1, T extends to a bounded op-

erator from H p(eM) to L p(eM). Moreover, there exists a constant C such that
kT f kL p(eM)  Ck f kH p(eM).

Proof. Fix max
� !1
!1+#1

, !2
!2+#2

�
< p  1. Since H p(eM) \ L2(eM) is dense in

H p(eM), it suffices to prove that there exists a positive constant C such that for
every f 2 H p(eM) \ L2(eM),

kT f kL p(eM)  Ck f kH p(eM). (2.8)

The proof of the estimate of (2.8) is similar to the proof of Theorem 2.4 with q = 2.
Indeed, we only need to show that there exists a positive constant C such that for
any (p, 2)-atom a of H p(eM),

kTakL p(eM)  C.

And the proof of this estimate is similar to the proof of (2.6) with q = 2. To see
this, we decompose kT (a)kpL p(eM)

by

Z
[R2M(�)100CbbR

T (a)(x1, x2)pdµ1(x1)dµ2(x2)

+

X
R2M(�)

Z
(100CbbR )c

T (aR)(x1, x2)pdµ1(x1)dµ2(x2)

:= A + B.

Furthermore, similarly decompose B = B1+B2 and B1 = B11+B12.Applying the
similar estimates, it is easy to verify that B11 and B12 satisfy the estimate in (2.7)
with q = 2 and hence repeating the same proof concludes the Theorem 2.5. For
more details of the proof, we refer the readers to the long version of this paper [13].

2.1.4. L1
! BMO boundedness

As a consequence of Theorem 2.5 with p = 1, together with the duality that
(H1(eM))⇤ = BMO(eM), we obtain the following

Theorem 2.6. Suppose that T is a Calderón-Zygmund operator. Then T extends to
a bounded operator from L1(eM) to BMO(eM). Moreover, there exists a constant C
such that

kT f kBMO(eM)  Ck f k1.

We point out that Theorem 2.6 gives the necessary condition of Theorem 1 as fol-
lows.
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Corollary 2.7. Suppose that T and eT are Calderón-Zygmund operators. Then
T (1), T ⇤(1),eT (1) and (eT )⇤(1) lie in BMO(eM).

Proof of Theorem 2.6. Suppose that T is a Calderón-Zygmund operator defined in
Subsection 3.1. We have to define T f for f 2 L1(eM). To this end, we first
observe that if f 2 L1(eM) \ L2(eM) then T f is well defined, and moreover,
for g 2 H1(eM) \ L2(eM), hT f, gi = h f, T ⇤gi. This together with the fact that,
by Theorem 2.5, T ⇤ is bounded from H1(eM) to L1(eM) and the duality arguments
(L1, L1) and (H1,BMO) gives T f 2 BMO(eM) since T ⇤g 2 L1(eM) and H1(eM)\
L2(eM) is dense in H1(eM). To define T f for f 2 L1, we define functions f j (x, y)
by f j (x, y) = f (x, y), when d(x, x0)  j, d(y, y0)  j and f j (x, y) = 0,
otherwise, where x0 2 M1 and y0 2 M2 are any fixed points. Then f j 2 L1(eM) \

L2(eM) and thus for g 2 H1(eM) \ L2(eM),

hT f j , gi = h f j , T ⇤gi ! h f, T ⇤gi.

Indeed, k f jkL1(eM)  k f kL1(eM), f j ! f almost everywhere, and T ⇤g 2 L1(eM),
so that we can apply Lebesgue’s dominated convergence theorem. This implies that
functions T f j form a bounded sequence in BMO(eM) and this sequence converges
to T f in the topology (H1,BMO). It remains to show the estimate in Theorem 2.6.
To do this, we first consider f 2 L2(eM)\ L1(eM). Then for g 2 H1(eM)\ L2(eM),
as mentioned,

|hT f, gi|  Ck f kL1(eM)kgkH1(eM).

This together with the fact that H1(eM) \ L2(eM) is dense in H1(eM) implies that
hT f, gi defines a continuous linear functional on H1(eM) and its norm is dominated
by Ck f kL1(eM). By the duality argument between H1(eM) and CMO1(eM), these

exists h 2 CMO1(eM) such that hT f, gi = hh, gi for all g 2

�

G#1,#2(�1,�2; �1, �2)
and khkCMO1(eM)  Ck f kL1(eM). Now we point out that as a function of

(y1, y2) D2k2D
1
k1(x1, y1, x2, y2) 2

�

G#1,#2(�1,�2; �1, �2). Taking g(x1, x2) =

D2k2D
1
k1(x1, y1, x2, y2) in the above equality yields that D

2
k2D

1
k1(T f )(x1, x2) =

D2k2D
1
k1(h)(x1, x2) and hence for f 2 L2(eM) \ L1(eM),

kT f kCMO1(eM) = khkCMO1(eM)  Ck f kL1(eM).

For f 2 L1, by the definition for T f, we have

D2k2D
1
k1(T f )(x1, x2) = D2k2D

1
k1(limj

T f j )(x1, x2)

since D2k2 D
1
k1(x1, x2) 2

�

G#1,#2(�1,�2; �1, �2) so D2k2 D
1
k1(x1, x2) 2 H1(eM) \

L2(eM). Thus
kT f kCMO1(eM) = k lim

j
T f jkCMO1(eM)  lim inf

j
kT f jkCMO1(eM)

 C lim inf
j

k f jkL1(eM)  Ck f kL1(eM).

Note that CMO1(eM) = BMO(eM). The proof of Theorem 2.6 is concluded.
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2.1.5. L p, 1 < p < 1, boundedness

In this subsection we prove the L p, 1< p<1, boundedness, namely the following:

Theorem 2.8. Suppose T is a Calderón-Zygmund operator. Then T extends to a
bounded operator from L p, 1 < p < 1, to itself. Moreover, there exists a constant
C such that

kT f kp  Ck f kp.

Indeed, in [14] the following Calderón-Zygmund decomposition was obtained.

Theorem 2.9. Letmax
� !1
!1+#1

, !2
!2+#2

�
< p2 < p < p1 < 1, ↵ > 0 be given and

f 2 H p(eM). Then we may write f = g + b where g 2 H p1(eM) and b 2 H p2(eM)
such that kgkp1H p1 (eM)

 C↵ p1�p
k f kpH p(eM)

and kbkp2H p2 (eM)
 C↵ p2�p

k f kpH p(eM)
,

where C is an absolute constant.

As a consequence of Theorem 2.9, the following interpolation theorem was
proved in [14].

Theorem 2.10. Let max
� !1
!1+#1

, !2
!2+#2

�
< p2 < p1 < 1 and T be a linear

operator which is bounded from H p2(eM) to L p2(eM) and from H p1(eM) to L p1(eM),
then T is bounded on H p(eM) for p2 < p < p1.

Note that H p(eM) = L p(eM) for 1 < p < 1. Now the proof of Theorem 2.8
with 1 < p < 2 follows from Theorem 2.5 and 2.10 directly by taking p2 = 1 and
p1 = 2. The duality argument gives the proof of Theorem 2.8 for 2 < p < 1.

2.2. Sufficiency of Theorem 1

In this section, we prove the sufficiency of Theorem 1. It suffices to prove that for
f, g 2

�

G#1,#2(�1,�2; �1, �2) with compact supports, there exists a constant C such
that |hg, T f i|  Ck f k2kgk2. This is because, by Calderón’s reproducing formula
in (1.5), the collection of functions in

�

G#1,#2(�1,�2; �1, �2) having compact sup-
ports is dense in L2. As described in Section 1, we write with changing the notation
from I i to Ii , i = 1, 2,

hg, T f i =

X
k0

1

X
I 01

X
k1

X
I1

X
k0

2

X
I 02

X
k2

X
I2

µ1(I
0

1)µ
1(I)µ2(I

0

2)µ
2(I2)

⇥

ffD1k0

1

ffD2k0

2
(g)(xI 01

, xI 02
)
⌦
D1
k0

1
D2
k0

2
, T D1k1D

2
k2
↵
(xI 01

, xI 02
, xI1, xI2)

⇥

ffD1k1ffD2k2( f )(xI1, xI2).
(2.9)

To see the above equality, we first consider one parameter case. Let f1, g1 2

�

G# (�, � )(M1) with compact supports and T1 be a singular integral operator on
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M1. Then by the Carlderón reproducing formula on M1,

hg1, T1 f1i =

X
k0

1

X
I 01

µ1(I
0

1)
ffD1k0

1
(g)(xI 01

)
⌦
D1
k0

1
(·, xI 01

), T1 f1
↵

=

X
k0

1

X
I 01

X
k1

X
I1

µ1(I
0

1)µ1(I1)

⇥

ffD1k0

1
(g)(xI 01

)
⌦
D1
k0

1
, T1D1k1

↵
(xI 01

, xI1)fD1k1( f1)(xI1).

(2.10)

For the equality (2.10), we use the fact that
P
k0

1>0

P
I 01

µ1(I
0

1)
ffD1k0

1
(g)(xI 01

)D1
k0

1
(x1, xI 01

)

converges in the test function space
�

G# (�, � )(M1) with compact support, so that
⌧ X
k0

1>0

X
I 01

µ1(I
0

1)
ffD1k0

1
(g)(xI 01

)D1
k0

1
(·, xI 01

), T1 f1
�

=

X
k0

1>0

X
I 01

µ1(I
0

1)
ffD1k0

1
(g)(xI 01

)hD1
k0

1
(·, xI 01

), T1 f1i.

This, however, is not true for the term
P
k0

10

P
I 01

µ1(I
0

1)
ffD1k0

1
(g)(xI 01

)D1
k0

1
(x1,xI 01

), since

the support of D1
k0

1
(x1,xI 01

) gets bigger as k 0

1 tends to�1, even though
P
k0

10

P
I 01

µ1(I
0

1)·

ffD1k0

1
(g)(xI 01

)D1
k0

1
(x1, xI 01

) 2

�

G# (�, � )(M1) having compact support. Now if ✓ 2

�

G# (�, � )(M1) and has compact support, then ✓(x1)
P
k0

10

P
I 01

µ1(I
0

1)
ffD1k0

1
(g)(xI 01

) ·

D1
k0

1
(x1, xI 01

) converges in the topology of C�0 (M1). If we choose ✓ = 1 on a
large enough set which contains the support of f1, then, by the standard esti-
mate on the kernel of T1,

⌦
(1 � ✓)

P
k0

10

P
I 01

µ1(I
0

1)
ffD1k0

1
(g)(xI 01

)D1
k0

1
(·, xI 01

), T1 f1
↵
=

P
k0

10

P
I 01

µ1(I
0

1) ·

ffD1k0

1
(g)(xI 01

)h(1 � ✓)D1
k0

1
(·, xI 01

), T1 f1i. This implies the equality

(2.10). For fixed k 0

1 we can do the same thing to f1 to obtain the second equality.
Repeating the same things above twice, first on M1 and then on M2, gives (2.9).

As described in Section 1, we decompose the bilinear form hg, T f i as

hg, T f i = hg, T f iCase 1 + hg, T f iCase 2 + hg, T f iCase 3 + hg, T f iCase 4,
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where case 1: k 0

1 � k1 and k
0

2 � k2; case 2: k
0

1 � k1 and k
0

2 < k2; case 3: k
0

1 < k1
and k 0

2 � k2; case 4: k
0

1 < k1 and k
0

2 < k2.More precisely,

hg, T f iCase 1=
X
k1k

0

1

X
k2k

0

2

X
I 01

X
I 02

X
I1

X
I2

µ1(I
0

1)µ1(I1)µ2(I
0

2)µ2(I2)

⇥

ffD1k0

1

ffD2k0

2
(g)(xI 01

, xI 02
)

⇥

ffD1k1ffD2k2( f )(xI1, xI2)⌦D1k0

1
D2
k0

2
, T D1k1D

2
k2
↵
(xI 01

, xI 02
, xI1, xI2)

and similarly for other three terms.
Since the estimates for hg, T f iCase 1 and hg, T f iCase 2 are similar to

hg, T f iCase 4 and hg, T f iCase 3, respectively, so we only prove that the first two
terms are bounded by some constant times k f k2kgk2. This will conclude the proof
of the sufficiency of Theorem 1.

To deal with the first term hg, T f iCase 1, as mentioned in Section 1, for k1  k 0

1
and k2  k 0

2 we first decompose⌦
D1
k0

1
D2
k0

2
, T D1k1D

2
k2
↵
(xI 01

, xI 02
, xI1, xI2)

=

Z
D1k0

1
(xI 01

, u1)D2k0

2
(xI 02

, u2)K (u1, u2, v1, v2)[D1k1(v1, xI1) � D1k1(xI 01
, xI1)]

⇥ [D2k2(v2, xI2) � D2k2(xI 02
, xI2)]dµ1(u1)dµ2(u2)dµ1(v1)dµ2(v2)

+

Z
D1k0

1
(xI 01

, u1)D2k0

2
(xI 02

, u2)K (u1, u2, v1, v2)D1k1(xI 01
, xI1)

⇥ D2k2(v2, xI2)dµ1(u1)dµ2(u2)dµ1(v1)dµ2(v2)

+

Z
D1k0

1
(xI 01

, u1)D2k0

2
(xI 02

, u2)K (u1, u2, v1, v2)D1k1(v1, xI1)

⇥ D2k2(xI 02
, xI2)dµ1(u1)dµ2(u2)dµ1(v1)dµ2(v2)

�

Z
D1k0

1
(xI 01

, u1)D2k0

2
(xI 02

, u2)K (u1, u2, v1, v2)D1k1(xI 01
, xI1)

⇥ D2k2(xI 02
, xI2)dµ1(u1)dµ2(u2)dµ1(v1)dµ2(v2)

=: I (xI 01
, xI 02

, xI1, xI2) + II(xI 01
, xI 02

, xI1, xI2) + III(xI 01
, xI 02

, xI1, xI2)

+ IV(xI 01
, xI 02

, xI1, xI2).

We then write

hg, T f iCase 1 = hg, T f iCase 1.1+hg, T f iCase 1.2+hg, T f iCase 1.3+hg, T f iCase 1.4,
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where

hg, T f iCase 1.1 =

X
k1k

0

1

X
k2k

0

2

X
I 01

X
I 02

X
I1

X
I2

µ1(I
0

1)µ1(I1)µ2(I
0

2)µ2(I2)

⇥

ffD1k0

1

ffD2k0

2
(g)(xI 01

, xI 02
)

⇥

ffD1k1ffD2k2( f )(xI1, xI2)I (xI 01, xI 02, xI1, xI2).
The other terms hg, T f iCase 1.i, i = 2, 3, 4, are defined similarly.

For the case 2 with k 0

1� k1 and k
0

2< k2, we similarly decompose hg, T f iCase 2
as

⌦
D1
k0

1
D2
k0

2
, T D1k1D

2
k2
↵
(xI 01

, xI 02
, xI1, xI2)

=

Z
D1k0

1
(xI 01

, u1)[D2k0

2
(xI 02

, u2) � D2k0

2
(xI 02

, xI2)]

⇥ K (u1, u2, v1, v2)[D1k1(v1, xI1) � D1k1(xI 01
, xI1)]

⇥ D2k2(v2, xI2)dµ1(u1)dµ2(u2)dµ1(v1)dµ2(v2)

+

Z
D1k0

1
(xI 01

, u1)D2k0

2
(xI 02

, u2)K (u1, u2, v1, v2)D1k1(xI 01
, xI1)

⇥ D2k2(v2, xI2)dµ(u1)dµ2(u2)dµ1(v1)dµ2)v2

+

Z
D1k0

1
(xI 01

, u1)D2k0

2
(xI 02

, xI2)K (u1, u2, v1, v2)D1k1(v1, xI1)

⇥ D2k2(v2, xI2)dµ1(u1)dµ2(u2)dµ1(v1)dµ2(v2)

�

Z
D1k0

1
(xI 01

, u1)D2k0

2
(xI 02

, xI2)K (u1, u2, v1, v2)D1k1(xI 01
, xI1)

⇥ D2k2(v2, xI2)dµ1(u1)dµ2(u2)dµ1(v1)dµ2(v2)

=: V (xI 01
, xI 02

, xI1, xI2) + VI(xI 01
, xI 02

, xI1, xI2) + VII(xI 01
, xI 02

, xI1, xI2)

+ VIII(xI 01
, xI 02

, xI1, xI2),

and then write

hg, T f iCase 2 = hg, T f iCase 2.1+hg, T f iCase 2.2+hg, T f iCase 2.3+hg, T f iCase 2.4,
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where

hg, T f iCase 2.1 =

X
k1k

0

1

X
k2>k

0

2

X
I 01

X
I 02

X
I1

X
I2

µ1(I
0

1)µ1(I1)µ2(I
0

2)µ2(I2)

⇥

ffD1k0

1

ffD2k0

2
(g)(xI 01

, xI 02
)

⇥

ffD1k1ffD2k2( f )(xI1, xI2)V (xI 01
, xI 02

, xI1, xI2).

Similarly for other terms hg, T f iCase 2.i, i = 2, 3, 4. The details of proofs will be
given in next subsections.

2.2.1. Almost orthogonal estimate on eM = M1 ⇥ M2

in this subsection we deal with hg, T f iCase 1.1 and hg, T f iCase 2.1. Themain method
is the almost orthogonality argument on eM = M1 ⇥ M2. Indeed, we will show that
there exists a constant C such that for k0

1 > k1 and k0

2 > k2,

|I (xI 01
, xI 02

, xI1, xI2)|

=

����
Z
D1k0

1
(xI 01

,u1)D2k0

2
(xI 02

,u2)K (u1,u2,v1,v2)[D1k1(v1,xI1) � D1k1(xI 01
,xI1)]

⇥ [D2k2(v2, xI2) � D2k2(xI 02
, xI2)]dµ1(u1)dµ2(u2)dµ1(v1)dµ2(v2)

����
 C2(k1�k0

1)"12�(k2�k0

2)"2

⇥

1
V2�k1 (xI 01

) + V2�k1 (xI1) + V (xI 01
, xI1)

2�k1"1

(2�k1 + d1(xI 01
, xI1))"1

⇥

1
V2�k2 (xI 02

) + V2�k2 (xI2) + V (xI 02
, xI2)

2�k2"2

(2�k2 + d2(xI 02
, xI2))"2

.

(2.11)

We would like to remark that the cancellation condition on the kernel K is not re-
quired in the above almost orthogonality estimate and only size, smoothness on K
and the weak boundedness property on T are needed. To show the above estimate,
we first consider the one parameter case. The estimate for two parameter case will
follow from the iterative methods. As mentioned in Section 1, let S be a singu-
lar integral operator associated with the kernel L defined on M1 having the weak
boundedness property. Then for k1 < k0

1 there exists a positive constant C such that
the following orthogonal estimate holds���

ZZ
D1k0

1
(x1, u1)L(u1, v1)[D1k1(v1, y1) � D1k1(x1, y1)]dµ1(u1)dµ1(v1)

���
 C|L|CZ2(k1�k0

1)"1
1

V2�k1 (x1) + V2�k1 (y1) + V (x1, y1)
2�k1"1

(2�k1 + d1(x1, y1))"1
.
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The proof of the above estimate is similar to the classical case. See [14] for the
details of the proof in our setting. Now we turn to the proof of the estimate in
(2.11). To see that this can be done by the iteration, we write
Z

D1k0

1

⇣
xI 01

, u1
⌘
D2k0

2

⇣
xI 02

, u2
⌘
K (u1, u2, v1, v2)

h
D1k1

�
v1, xI1

�
� D1k1

⇣
xI 01

, xI1
⌘i

⇥

h
D2k2

�
v2, xI2

�
� D2k2

⇣
xI 02

, xI2
⌘i
dµ1(u1)dµ2(u2)dµ1(v1)dµ2(v2)

=

D
D2k0

2

⇣
xI 02

, u2
⌘

,
D
D1k0

1

⇣
xI 01

, ·
⌘

, K2(u2, v2)
h
D1k1

�
·, xI1

�
� D1k1

⇣
xI 01

, xI1
⌘i E

⇥ [D2k2(v2, xI2) � D2k2(xI 02
, xI2)]

E
,

where, by definition of the product singular integral operator given in Section 1, for
fixed points u2, v2 2 M2, K2(u2, v2) is a Calderón-Zygmund operator on M1 with
the operator norm kK2(u2, v2)kCZ(M1) which is a singular integral operator on M2.
By the estimate for one parameter case provided above, for k 0

1 > k1,

��� DD1k0

1

⇣
xI 01

, ·
⌘

, K2(u2, v2)
h
D1k1

�
·, xI1

�
� D1k1

⇣
xI 01

, xI1
⌘iE ���

 CkK2(u2, v2)kCZ(M1)2
(k1�k0

1)"1

⇥

1

V2�k1
⇣
xI 01

⌘
+ V2�k1

�
xI1
�
+ V

⇣
xI 01

, xI1
⌘ 2�k1"1⇣

2�k1 + d1
⇣
xI 01

, xI1
⌘⌘"1 .

Similarly,
��� DD1k0

1

⇣
xI 01

, ·
⌘

,
⇥
K2 (u2, v2) � K2

�
u2, v0

2
�⇤ h

D1k1
�
·, xI1

�
� D1k1

⇣
xI 01

, xI1
⌘iE ���

 C
���K2(u2, v2) � K2(u2, v0

2)]
���
CZ(M1)

2(k1�k0

1)"1

⇥

1

V2�k1
⇣
xI 01

⌘
+ V2�k1

⇣
xI1) + V (xI 01

, y1
⌘ 2�k1"1⇣
2�k1 + d1

⇣
xI 01

, xI1
⌘⌘"1

and the same estimate holds with interchanging u2 and v2.
This together with the fact that kK2(u2, v2)kCZ(M1) is a singular integral opera-

tor on M2 having the weak boundedness property implies that hD1k0

1
(xI 01

, ·),

K2(u2, v2)[D1k1(·, xI1) � D1k1(xI 01
, xI1)]i is a singular integral on M2 having the
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weak boundedness property. Moreover,��� DD1k0

1

⇣
xI 01

, ·
⌘

, K2(u2, v2)
h
D1k1

�
·, xI1

�
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�
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⇣
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, xI1
⌘ 2�k1"1⇣

2�k1 + d1
⇣
xI 01

, xI1
⌘⌘"1 .

Applying the estimate for one parameter case again yields that for k 0

2 > k2,���DD2k0

2

⇣
xI 02

, u2
⌘

,
D
D1k0

1

⇣
xI 01

, ·
⌘
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�
·, xI1

�
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, xI1
⌘iE

⇥

h
D2k2

�
v2, xI2

�
� D2k2

⇣
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, xI2
⌘i E

C
���DD1k0
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, ·
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D1k1

�
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�
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⌘i E���
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2)"2
1

V2�k2
⇣
xI 02

⌘
+ V2�k2 (y2) + V

⇣
xI 02

, y2
⌘ 2�k2"2⇣

2�k2 + d2
⇣
xI 02
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⌘⌘"2

C2(k1�k0

1)"22(k2�k0

2)"2
1

V2�k1 (xI 01
)+V2�k1 (xI1)+V (xI 01

, y1)
2�k1"1

(2�k1+d1(xI 01
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⇥

1

V2�k2
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xI 02

⌘
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�
xI2
�
+V

⇣
xI 02
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⌘ 2�k2"2⇣
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⇣
xI 02

, xI2
⌘⌘"2 ,

which concludes the proof of (2.11).
Applying the Cauchy-Schwartz inequality implies that |hg, T f iCase 1.1| is

bounded by⇢ X
k1k

0

1

X
k2k

0

2

X
I 01

X
I 02

X
I1

X
I2

µ1(I
0

1)µ1(I1)µ2(I
0

2)µ2(I2)

·

���ffD1k0
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⇣
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X
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X
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X
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X
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0

1)µ1(I1)µ2(I
0

2)µ2(I2)

·

���ffD1k1ffD2k2( f ) �xI1, xI2�
���2���I ⇣xI 01, xI 02, xI1, xI2

⌘ ���
� 1
2
.
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Note that by the estimates for |I (xI 01, xI
0

2
, xI1, xI2)| in (2.11) we haveX

I 01

X
I 02

µ1(I
0

1)µ2(I
0

2)I (xI 01
, xI 02

, xI1, xI2)|  C2(k1�k0

1)"12(k2�k0

2)"2

and similarlyX
I1

X
I2

µ1(I1)µ2(I2)|I (xI 01
, xI 02

, xI1, xI2)|  C2(k1�k0

1)"12(k2�k0

2)"2 .

Therefore,X
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X
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X
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X
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0
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0
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1
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2
(g)(xI 01

, xI 02
)
���2 |I (xI 01

, xI 02
, xI1, xI2)|
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X
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1

X
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0

2

2(k1�k0

1)"12(k2�k0

2)"2
X
I 01

X
I 02

µ1(I
0

1)µ2(I
0

2)
���ffD1k0

1

ffD2k0

2
(g)(xI 01

, xI 02
)
���2

 C
X
k0

1

X
k0

2

X
I 01

X
I 02

µ1(I
0

1)µ2(I
0

2)
���ffD1k0

1

ffD2k0

2
(g)(xI 01

, xI 02
)
���2 .

The last series above, by a result established in [14], is dominated by the constant
times kgk22. Similarly,X

k1k
0

1

X
k2k

0

2

X
I 01

X
I 02

X
I1

X
I2

µ1(I
0

1)µ1(I1)µ2(I
0

2)µ2(I2)

⇥

���ffD1k1ffD2k2( f )(xI1, xI2)
���2 |I (xI 01

, xI 02
, xI1, xI2)|  Ck f k22.

We thus conclude that |h g, T f iCase 1.1|  C k f k2 kgk2. The estimate for
|h g, T f iCase 2.1| is the same.

2.2.2. Carleson measure estimate on eM = M1 ⇥ M2

in this subsection we handle bilinear form hg, T f iCase1.4. The estimate of this term
will be achieved by applying the Carleson measure estimate on eM = M1 ⇥ M2. To
see this, we first write

I V
⇣
xI 01

, xI 02
, xI1, xI2

⌘
=

Z
D1k0

1

⇣
xI 01

, u1
⌘
D2k0

2

⇣
xI 02

, u2
⌘

⇥ K (u1, u2, v1, v2) D1k1
⇣
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, xI1
⌘

⇥ D2k2
⇣
xI 02

, xI2
⌘
dµ1(u1)dµ2(u2)dµ1(v1)dµ2(v2)

= D1k0

1
D2k0

2
(T1)

⇣
xI 01

, xI 02

⌘
D1k1

⇣
xI 01

, xI1
⌘
D2k2

⇣
xI 02

, xI2
⌘

.



880 YONGSHENG HAN, JI LI AND CHIN-CHENG LIN

Thus we rewrite hg, T f iCase 1.4 by

X
k0

1

X
k0

2

X
I 01

X
I 02

µ1
⇣
I

0

1

⌘
µ2
⇣
I

0

2

⌘ ffD1k0

1

ffD2k0

2
(g)
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xI 01

, xI 02

⌘

⇥ D1k0

1
D2k0

2
(T1)

⇣
xI 01

, xI 02

⌘
Sk0

1
Sk0

2
( f )

⇣
xI 01

, xI 02

⌘
,

where for x1, y1 2 M1, Sk0

1
(x1, y1) =

P
k1k

0

1

P
I1

µ(I1)D1k1(x1, xI1)
ffD1k1(xI1, y1)

and similarly for Sk0

2
(x2, y2) on M2.

In order to apply the Carleson measure estimate to hg, T f iCase 1.4, we claim
that Sk0

1
(x1, y1), the kernel of Sk0

1
, satisfies the following estimate

|Sk0

1
(x1, y1)|  C

1
V
2�k

0

1
(x1) + V

2�k
0

1
(y1) + V (x1, y1)

 
2�k0

1

2�k0

1 + d1(x1, y1)

!# 0

.

Similarly, Sk0

2
(x2, y2), the kernel of Sk0

2
, satisfies the same estimate above with in-

terchanging k 0

1, k
0

2; x1, x2 and y1, y2, respectively.
Assuming the claim for the moment, then applying the Cauchy–Schwartz in-

equality yields

|hg, T f iCase 1.4|


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>;
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.

Thus the first series above, by the discrete Littlewood-Paley L2 estimate, is
bounded by a constant times kgk2. And the second series is bounded by Ck f k2
by applying the Carleson measure estimate on eM since T1 2 BMO(eM) and hence
µ1(I

0

1)µ2(I
0

2)|D
1
k0

1
D2k0

2
(T1)(x1, x2)|2 is a Carleson measure on eM ⇥ {Z ⇥ Z}.
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We now show the claim. To do this, we first consider the case when d1(x1, y1) <

2�k0

1 . Then����
X
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1, d1(x1,y1)<2
�k01

X
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(2.12)
where (#1)0 is the order of

ffD1k1(x1, y1). Next, we consider the case when d1(x1, y1)
� 2�k0

1 . Note first thatX
k1k

0

1

X
I1

µ1(I1)D1k1(x1, xI1)
ffD1k1( f )(xI1)

+

X
k1>k

0

1

X
I1

µ1(I1)D1k1(x1, xI1)
ffD1k1( f )(xI1) = f (x1)

for all f 2 L2(M1) and the series converge in the norm of L2. This implies thatX
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where we use � to denote the Dirac function. Consequently, when d1(x1, y1) �
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where the last inequality follows from similar estimates in (2.12) and hence the
claim is proved.

2.2.3. Almost orthogonal estimate on M1 and Carleson measure estimate on M2

In this subsection we only estimate hg,T f iCase 1.2 since all proofs for hg,T f iCase 1.3,
hg, T f iCase 2.2 and hg, T f iCase 2.3 are similar to the proof of hg, T f iCase 1.2.We first
write

II(xI 01
, xI 02

, xI1, xI2)

=

Z
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1
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, u1)D2k0
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1
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Now we set
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where Sk0

1
is defined as in Subsection 2.3.2.

As in Subsection 2.3.2, summing up for k0

1 and I 0

1 and using the notation
Jk0

2,k2(u2, v2), we can rewrite hg, T f iCase 1.2 as
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I 02
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, xI2)] + hg, T f iCase 1.4.

Therefore, it suffices to estimate the above series since the estimate |hg,Tf iCase 1.4|
Ck f k2kgk2 has been proved in Subsection 2.3.1. To this end, we claim that for
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fixed k0

2 and k2, Jk0

2,k2(u2, v2) is a Calderón-Zygmund kernel on M2 and the corre-
sponding operator has the weak boundedness property. Moreover,
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Assuming the claim for the moment, by the almost orthogonality argument as in
Subsection 2.3.1 we obtain
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which, by a similar estimate as in Subsection 2.3.1, implies that the above series is
dominated by a constant times
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Now we prove the claim for Jk0

2,k2(u2, v2). We first denote by Jk0

2,k2 the operator
on M2 associated with the kernel Jk0

2,k2(u2, v2). We verify that Jk0

2,k2 satisfies the
weak boundedness property. In fact, using the weak boundedness property of T on
M2, i.e. (1.7), and the one-parameter discrete Carleson measure estimate, we have
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for all �2, 2 2 AM2(�, x02 , r2), where the set AM2(�, x
0
2 , r2) is defined in Sec-

tion 1. Next we verify that Jk0

2,k2(u2, v2) satisfies the size and smoothness properties
as defined in Subsection 3.1. Using the one-parameter discrete Carleson measure
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estimate again we can obtain that
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ffD2k0

2
( f )(·, xI 02

)kL2(M1).

Similarly,

|Jk0

2,k2
(u2, v2) � hk0

2,k2
(u

0

2, v2)|

 CkK2(u2, v2)(1) � K2(u
0

2, v2)(1)kCZk

ffD2k0

2
(g)(·, xI 02

)kL2(M1)

⇥ k

ffD2k0

2
( f )(·, xI 02

)kL2(M1)

 C
⇣d2(u2, u 0

2)

d2(u2, v2)

⌘"2 1
V (u2, v2)

k

ffD2k0

2
(g)(·, xI 02

)kL2(M1)k
ffD2k0

2
( f )(·, xI 02

)kL2(M1)

for d2(u2, u
0

2) 
1
2A2 d2(u2, v2). The same estimate holds with u2 and v2 inter-

changed. Combining the estimates above, we get that Jk0

2,k2(u2, v2) is a Calderón-
Zygmund kernel on M2 and hence (2.14) holds. The claim is concluded.

2.2.4. Littlewood-Paley estimate on M1 and Carleson measure estimate on M2

In this subsection we deal with hg, T f iCase 2.4. We first write

VIII(xI 01
, xI 02

, xI1, xI2) = �

Z
D1k0

1
(xI 01

, u1)D2k0

2
(xI 02

, xI2)

⇥ K (u1, u2, v1, v2)D1k1(xI 01
, xI1)

⇥ D1k2(v2, xI2)dµ1(u1)dµ2(u2)dµ1(v1)dµ2(v2)

= �D1k0

1
D2k2

�
(eT )⇤1

�
(xI 01

, xI2)D
1
k1(xI 01

, xI1)D
2
k0

2
(xI 02

, xI2).

We would like to point out that the partial adjoint operator eT appears and will play
a crucial role in the estimate for hg, T f iCase 2.4. This is why eT and eT ⇤ have to be
taken into account in the proof of the sufficient conditions of Theorem 1.
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To estimate hg, T f iCase 2.4 we rewrite

hg, T f iCase 2.4

= �

X
k1k

0

1

X
k2>k

0

2

X
I 01

X
I 02

X
I1

X
I2

µ1(I
0

1)µ1(I1)µ2(I
0

2)µ2(I2)

⇥ D2k0

2

⇣
xI 02

, xI2
⌘
D1k1

⇣
xI 01

, xI1
⌘ ffD1k1ffD2k2( f ) �xI1, xI2�

⇥ D1k0

1
D2k2

⇣�eT �⇤ 1⌘ ⇣xI 01, xI2
⌘

= �

X
k0

1

X
k2

X
I 01

X
I2

µ1
⇣
I

0

1

⌘
µ2(I2)

ffD1k0

1
Sk2(g)

⇣
xI 01

, xI2
⌘
Sk0

1

ffD2k2( f )
⇣
xI 01, xI2

⌘

⇥ Dk0

1
Dk2

⇣�eT �⇤ 1⌘ ⇣xI 01, xI2
⌘

,

where the operators Sk0

1
and Sk2 are defined as in Subsection 2.3.2.

In order to estimate the last series above, for a BMO(eM) function b we intro-
duce an operator Wb by the bilinear form hg,Wb f i which equalsX

k0

1

X
k2

X
I 01

X
I2

µ1(I
0

1)µ2(I2)
ffD1k0

1
Sk2(g)

⇣
xI 01

, xI2
⌘
Sk0

1

⇥

ffD2k2( f )
⇣
xI 01, xI2

⌘
D1k0

1
D2k2

�
b
� ⇣
xI 01

, xI2
⌘

.

It is easy to see that when b = (eT )⇤1 2 BMO(eM) and hg,Wb f i=�hg, T f iCase 2.4.
Thus, we only need to show that for each b 2 BMO(eM) the operatorWb is bounded
on L2, which would imply that |hg, T f iCase 2.4|  Ck f k2kgk2. For this purpose,
following an idea in [17] and interchanging the positions of functions f and b we
define the operator V f (b) = Wb( f ) and will prove that for each fixed f 2 L1

the operator V f is a singular integral operator and bounded on L2.Moreover, there
exists a constant C independent of f such that for all b 2 L2,

kV f (b)k2  Ck f k1kbk2.

Furthermore, we will show that V f satisfies the conditions in Theorem 3 and thus,
V f is also bounded on BMO(eM) satisfying

kV f (b)kBMO  Ck f k1kbkBMO.

We can rewrite the above estimate by

kWb( f )kBMO  Ck f k1kbkBMO

for each b 2 BMO(eM) and all f 2 L1(eM).
This means that for each b 2 BMO(eM) the operator Wb is a bounded operator

from L1 to BMO(eM). Similarly, the operator W ⇤

b , the adjoint operator of Wb,
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is a bounded operator from L1 to BMO(eM) since Wb and W ⇤

b satisfy the same
conditions. Finally, by the duality argument and interpolation,Wb is bounded on L2
and hence, as mentioned, the bilinear form hg, T f iCase 2.4 is bounded by a constant
times k f k2kgk2.

To achieve this goal, we will show that for each fixed f 2 L1, V f is a singular
integral operator as defined in Section 1 and moreover, there exists a constant C
independent of f and b 2 L2 such that

kV f (b)k2  Ck f k1kbk2.

We first prove that V f is bounded on L2. To this end, for g 2 L2, we write

hg, V f (b)i =

X
k0

1

X
k2

X
I 01

X
I2

µ1(I
0

1)µ2(I2)
ffD1k0

1
Sk2(g)

⇣
xI 01

, xI2
⌘
Sk0

1

⇥

ffD2k2( f )
⇣
xI 01, xI2

⌘
D1k0

1
D2k2

�
b
� ⇣
xI 01

, xI2
⌘

.

Note that if f 2 L1 then Sk0

1
( f )(xI 01

, ·) is also a bounded function on M2 for fixed

k 0

1 and I
0

1 with
kSk0

1
( f )

⇣
xI 01

, ·
⌘

k1  Ck f k1.

Thusµ2(I2)|eeDk2
�
Sk0

1
( f )(xI 01

, ·)
�
(xI2)|2 is a Carleson measure on M2⇥k2 uniformly

for all k 0

1 and xI 01 2 M1. Therefore,
��
hg, V f (b)i

��
=

����
X
k0

1

X
I 01

µ1(I
0

1)

X
k2

X
⌧2

µ2(I2)Sk2
⇣ffD1k1(g)

⇣
xI 01

, ·
⌘⌘ �

xI2
�

⇥ D2k2

✓
D1
k0

1
(b)

⇣
xI 01

, ·
⌘◆ �

xI2
� ffD2k2

⇣
Sk0

1
( f )

⇣
xI 01

, ·
⌘⌘

(xI2)
�����



X
k0

1

X
I 01

µ1
⇣
I

0

1

⌘ ���ffD1k1(g)
⇣
xI 01

, ·
⌘ ���

L2(M2)

⇥

����D1k0

1
(b)

⇣
xI 01

, ·
⌘ ����

L2(M2)

����Sk0

1
( f )

⇣
xI 01

, ·
⌘ ����

L1(M2)

 Ck f kL1(eM)

0
B@X

k0

1

X
I 01

µ1(I
0

1)

����ffD1k1(g)
⇣
xI 01

, ·
⌘ ����

2

L2(M2)

1
CA
1/2

⇥

0
B@X

k0

1

X
I 01

µ1(I
0

1)

����D1k0

1
(b)

⇣
xI 01

, ·
⌘ ����

2

L2(M2)

1
CA
1/2

 Ck f kL1(eM)kgkL2(eM)kbkL2(eM),
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which, by taking the supremum for all kgk2  1, implies that V f is bounded on
L2(eM) with kV f kL2!L2  Ck f kL1 .

To verify that V f is a singular integral operator as defined in Section 1, we can
consider V f as a pair

�
(V f )1, (V f )2

�
of operators on M2 and M1, respectively, such

that

hg1 ⌦ g2, V f h1 ⌦ h2i =

ZZ
g1(x1)hg2, (V f )1(x1, y1)h2ih1(y1)dµ1(x1)dµ1(y1)

for all g1, h1 2 C⌘0 (M1) and g2, h2 2 C⌘0 (M2) with supp g1 \ supp h1 = ? and

hg1 ⌦ g2, V f h1 ⌦ h2i =

ZZ
g2(x2)hg1, (V f )2(x2, y2)h1ih2(y2)dµ2(x2)dµ2(y2)

for all g1, h1 2 C⌘0 (M1) and g2, h2 2 C⌘0 (M2) with supp g2 \ supp h2 = ?.
It suffices to show that (V f )i (xi , yi ), i = 1, 2, satisfies properties (i), (ii)

and (iii) of singular integral operator given in Section 1. We need only to verify
(V f )1(x1, y1) since the estimates for (V f )2(x2, y2) are similar.

Note that for any fixed x1, y1 on M1, (V f )1(x1, y1) is an operator on M2 as-
sociated with the kernel (V f )1(x1, y1)(x2, y2) which is equal to V f (x1, x2, y1, y2).
We recall that

k(V f )1(x1, y1)kCZ = k(V f )1(x1, y1)kL2(M2)!L2(M2) + |(V f )1(x1, y1)|CZ(M2),

where |(V f )1(x1, y1)|CZ(M2) is the smallest constant such that the inequalities (a),
(b) and (c) in Section 1 hold for the kernel (V f )1(x1, y1)(x2, y2) when x1, y1 are
fixed and x2, y2 2 M2. Therefore, to verify that (V f )1(x1, y1) satisfies properties
(i), (ii) and (iii) of singular integral operator, all we need to do is to show the fol-
lowing estimates:

(I) k(V f )1(x1, y1)kL2!L2  Ck f kL1

1
V (x1, y1)

;

(II) k(V f )1(x1, y1) � (V f )1(x1, y0

1)kL2!L2

 Ck f kL1

✓d1(y1, y0

1)

d1(x1, y1)

◆"1 1
V (x1, y1)

if d1(y1, y0

1)  d1(x1, y1)/2A1.
Similarly for interchanging x1 and y1;

(III) |(V f )1(x1, y1)(x2, y2)|  Ck f kL1(eM)

1
V (x1, y1)

1
V (x2, y2)

;

(IV) |(V f )1(x1, y1)(x2, y2) � (V f )1(x1, y1)(x 0

2, y2)|

 Ck f kL1(eM)

1
V (x1, y1)

✓d2(x2, x 0

2)

d2(x2, y2)

◆"2 1
V (x2, y2)

if d2(x2, x 0

2)  d2(x2, y2)/2A2.
Similarly for interchanging x2 and y2;
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(V) |(V f )1(x1, y1)(x2, y2) � (V f )1(x 0

1, y1)(x2, y2)|

 Ck f kL1(eM)

✓d1(x1, x 0

1)

d1(x1, y1)

◆"1 1
V (x1, y1)

1
V (x2, y2)

if d1(y1, y0

1)  d1(x1, y1)/2A1.
Similarly for interchanging x1 and y1;

(VI)
��⇥(V f )1(x1, y1)(x2, y2) � (V f )1(x 0

1, y1)(x2, y2)
⇤

�

⇥
(V f )1(x1, y1)(x 0

2, y2) � (V f )1(x 0

1, y1)(x
0

2, y2)
⇤��

 Ck f kL1(eM)

✓d1(x1, x 0

1)

d1(x1, y1)

◆"1 1
V (x1, y1)

✓d2(x2, x 0

2)

d2(x2, y2)

◆"2 1
V (x2, y2)

if d1(x1, x 0

1)  d1(x1, y1)/2A1 and d2(x2, x 0

2)  d2(x2, y2)/2A2.
Similarly for interchanging x2 and y2, or interchanging x1 and y1.

To see (I), for fixed x1, y1 2 M1 we have

k(V f )1(x1, y1)kL2!L2 = sup
g2: kg2kL2(M2)1

sup
h2: kh2kL2(M2)1

|hh2, (V f )1(x1, y1)g2i|

= sup
g2: kg2kL2(M2)1

sup
h2: kh2kL2(M2)1

����
X
k0

1

X
I 01

µ1(I
0

1)
ffD1k0

1

⇣
x1, xI 01

⌘
D1k0

1

⇣
xI 01

, y1
⌘

⇥

hX
k2

X
I2

µ2(I2)Sk2(h2)
�
xI2
�
D2k2(g2)

�
xI2
�
Sk0

1

ffD2k2( f )
⇣
xI 01, xI2

⌘ i����
 Ck f kL1 sup

g2: kg2kL2(M2)1
sup

h2: kh2kL2(M2)1
kh2kL2(M2)kg2kL2(M2)

⇥

X
k0

1

X
I 01

µ1
⇣
I

0

1

⌘ ���ffD1k0

1

⇣
x1, xI 01

⌘ ��� ���D1k0

1

⇣
xI 01

, y1
⌘ ���

 Ck f kL1

1
V (x1, y1)

,

where in the first inequality we first apply Schwartz’s inequality and then use the
Littlewood-Paley estimate on L2 for g2 and the fact that if f 2 L1 then µ2(I2) ·

|D2k2(Sk0

1
f )(xI 01

, xI2)|2 is a Carleson measure on M2⇥k2 uniformly for all k0

1 and all
xI 01

2 M1. Moreover, the Carleson measure norm of µ2(I2)|D2k2(Sk0

1
f )(xI 01

, xI2)|2

is bounded by some constant times k f kL1 . The last inequality follows from the
standard estimate.
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To verify (II), for d1(y1, y0

1)d1(x1, y1)/2A1 and kg2kL2(M2), kh2kL2(M2) 1,

|hh2, [(V f )1(x1, y1) � (V f )1(x1, y0

1)]g2i|

=

����
X
k0

1

X
I 01

µ1(I
0

1)
ffD1k0

1
(x1, xI 01

)[D1k0

1
(xI 01

, y1) � D1k0

1
(xI 01

, y0

1)]

⇥

hX
k2

X
I2

µ2(I2)Sk2(h2)(xI2)D
2
k2(g2)(xI2)Sk0

1

ffD2k2( f )(xI 01, xI2)
i����.

Applying the smoothness property of D1k0

1
(xI 01

, y1) and the same proof above for the
second series yields

|hh2, [(V f )1(x1, y1) � (V f )1(x1, y0

1)]g2i|  Ck f kL1

✓d1(y1, y0

1)

d1(x1, y1)

◆"1 1
V (x1, y1)

,

which, by taking the supremum over all kg2kL2(M2), kh2kL2(M2)  1 implies

k(V f )1(x1, y1) � (V f )1(x1, y0

1)kL2!L2

 Ck f kL1

✓d1(y1, y0

1)

d1(x1, y1)

◆"1 1
V (x1, y1)

.
(2.15)

Similarly, (2.15) holds with interchanging x1 and y1.
We now turn to estimate (III). This follows directly from the following standard

estimate.

|(V f )1(x1, y1)(x2, y2)|



X
k0

1

X
k2

X
I 01

X
I2

µ1
⇣
I

0

1

⌘
µ2(I2)

���ffD1k0

1

⇣
x1, xI 01

⌘
Sk2

�
x2, xI2

� ���

⇥

���Sk0

1

ffD2k2( f )
⇣
xI 01, xI2

⌘ ��� ���D1k0

1
(xI 01

, y1)D1k2
�
xI2, y2

� ���


X
k0

1

X
k2

X
I 01

X
I2

µ1(I
0

1)µ2(I2)
���ffD1k0

1

⇣
x1, xI 01

⌘
D1k0

1

⇣
xI 01

, y1
⌘ ���

⇥

���Sk2 �x2, xI2� D2k2 �xI2, y2�
���

 Ck f kL1(eM)

1
V (x1, y1)

1
V (x2, y2)

.

(2.16)
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To estimate (IV), for d2(x2, x 0

2)  d2(x2, y2)/2A2 we write

��(V f )1(x1, y1)(x2, y2) � (V f )1(x1, y1)(x 0

2, y2)
��



X
k0

1

X
k2

X
I 01

X
I2

µ1(I
0

1)µ2(I2)
���ffD1k0

1

⇣
x1, xI 01

⌘ ⇥
Sk2

�
x2, xI2

�
� Sk2

�
x 0

2, xI2
�⇤ ���

⇥

���Sk0

1

ffD2k2( f )
⇣
xI 01, xI2

⌘ ��� ���D1k0

1

⇣
xI 01

, y1
⌘
D2k2

�
xI2, y2

� ���.
We claim that Sk2(x2, xI2), which is defined in Subsection 2.3.2, satisfies the fol-
lowing smoothness estimate.

|Sk2(x2, xI2) � Sk2(x
0

2, xI2)|

 C

 
d2(x2, x

0

2)

2�k2 + d2(x2, xI2)

!"2 1
V2�k2 (x2) + V (x2, xI2)

✓
2�k2

2�k2 + d2(x2, xI2)

◆"2 (2.17)

for "2 < #2 and d2(x2, x 0

2) < (2�k2
+d2(x2, xI2))/2A2. We assume (2.17) first and

then obtain
��(V f )1(x1, y1)(x2, y2) � (V f )1(x1, y1)(x 0

2, y2)
��

 Ck f kL1(eM)

1
V (x1, y1)

✓d2(x2, x 0

2)

d2(x2, y2)

◆"2 1
V (x2, y2)

.

(2.18)

Similarly, (2.18) holds with interchanging x2 and y2. The estimates in (2.16) and
(2.18) imply

|(V f )1(x1, y1)|CZ  Ck f kL1(eM)

1
V (x1, y1)

. (2.19)

Next, we turn to verify the estimate in (V). For d1(x1, x 0

1)  d1(x1, y1)/2A1 We
write

(V f )1(x1, y1)(x2, y2) � (V f )1(x 0

1, y1)(x2, y2)

=

X
k0

1

X
k2

X
I 01

X
I2

µ1(I
0

1)µ2(I2)
hffD1k0

1
(x1, xI 01

) �

ffD1k0

1
(x 0

1, xI 01
)
i

⇥ Sk2(x2, xI2)Sk0

1

ffD2k2( f )(xI 01, xI2)D1k0

1
(xI 01

, y1)D2k2(xI2, y2).
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As in the proof of (2.18), instead of using the smoothness estimate for Sk2(x2, xI2),
applying the smoothness condition of fD1k0

1
, we get

��(V f )1(x1, y1)(x2, y2) � (V f )1(x 0

1, y1)(x2, y2)
��

 Ck f kL1(eM)

✓d1(x1, x 0

1)

d1(x1, y1)

◆"1 1
V (x1, y1)

1
V (x2, y2)

.

(2.20)

Similarly, (2.20) holds with interchanging x1 and y1.
Finally, to see (VI), for d2(x2, x 0

2)  d2(x2, y2)/2A2 we have

���⇥(V f )1(x1, y1)(x2, y2) � (V f )1(x 0

1, y1)(x2, y2)
⇤

�

⇥
(V f )1(x1, y1)(x 0

2, y2) � (V f )1(x 0

1, y1)(x
0

2, y2)
⇤���

=

���X
k0

1

X
k2

X
I 01

X
I2

µ1(I
0

1)µ2(I2)
hffD1k0

1
(x1, xI 01

) �

ffD1k0

1
(x 0

1, xI 01
)
i

⇥ [Sk2(x2, xI2) � Sk2(x
0

2, xI2)]

⇥ Sk0

1

ffD2k2( f )(xI 01, xI2)D1k0

1
(xI 01

, y1)D2k2(xI2, y2)
���

 Ck f kL1(eM)

✓d1(x1, x 0

1)

d1(x1, y1)

◆"1 1
V (x1, y1)

✓d2(x2, x 0

2)

d2(x2, y2)

◆"2 1
V (x2, y2)

,

(2.21)

where in the last inequality we use the smoothness property of ffD1k0

1
and (2.17).

Similarly, (2.21) holds with interchanging x2 and y2 or x1 and y1.
All the estimates of (2.20) and (2.21) give

��⇥(V f )1(x1, y1)(x2, y2) � (V f )1(x 0

1, y1)(x2, y2)
⇤��
CZ

 Ck f kL1(eM)

✓d1(x1, x 0

1)

d1(x1, y1)

◆"1 1
V (x1, y1)

.

(2.22)

Similarly, (2.22) holds with interchanging x1 and y1.
As a consequence, (2.19) and (2.22) yield that (V f )1(x1, y1) satisfies the prop-

erties (i), (ii) and (iii) given in Section 1 for the kernel K1. It remains to show
the claim, that is, the estimate in (2.17). Indeed, when d2(x2, xI2) < 2�k2 and
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d1(x2, x 0

2) < (2�k2
+ d2(x2, xI2))/2A2, we have

|Sk2(x2, xI2) � Sk2(x
0

2, xI2)|

=

��� X
k0

2k2, d2(x2,xI2 )<2
�k2

X
I 02

µ(I
0

2)D
2
k0

2
(x2, xI 02

)
ffD2k0

2
(xI 02

, xI2)

�

X
k0

2k2, d2(x2,xI2 )<2
�k01

X
I 02

µ(I
0

2)D
2
k0

2
(x 0

2, xI 02
)
ffD1k1(xI 02, xI2)

���

 C
X

k0

2k2, d2(x2,xI2 )<2
�k2

 
d2(x2, x 0

2)

2�k0

2 + d2(x2, xI2)

!"2

⇥

1
V
2�k

0

2
(x2) + V (x2, xI2)

 
2�k0

2

2�k0

2 + d2(x2, xI2)

!"2

 C

 
d2(x2, x

0

2)

2�k2 + d2(x2, xI2)

!"
1

V2�k2 (x2) + V (x2, xI2)

✓
2�k2

2�k2 + d2(x2, xI2)

◆"
.

Next, we consider the case when d2(x2, xI2) � 2�k2 and d2(x2, x 0

2) < (2�k2
+

d2(x2, xI2))/2A2. In this case, using the identity (2.13), we obtain��� X
k0

2k2,d2(x2,xI2 )�2
�k2

X
I 02

µ(I
0

2)D
2
k0

2
(x2, xI 02

)
ffD2k0

2
(xI 02

, xI2)

�

X
k0

2k2,d2(x2,xI2 )�2
�k2

X
I 02

µ(I
0

2)Dk0

2
(x 0

2, xI 02
)
ffD2k0

2
(xI 02

, xI2)
���



��� X
k0

2>k2,d2(x2,xI2 )�2
�k2

X
I 02

µ(I
0

2)D
2
k0

2
(x2, xI 02

)
ffD2k0

2
(h)(xI 02

, xI2)

�

X
k0

2>k2,d2(x2,xI2 )�2
�k2

X
I 02

µ(I
0

2)Dk0

2
(x 0

2, xI 02
)
ffD2k0

2
(h)(xI 02

, xI2)
���

 C

 
d2(x2, x

0

2)

2�k2 + d2(x2, xI2)

!"2 1
V2�k2 (x2) + V (x2, xI2)

✓
2�k2

2�k2 + d2(x2, xI2)

◆"2
,

which implies the claim.
Now we have proved that V f is a product Calderón-Zygmund operator with

kV f kL2!L2  Ck f kL1 . In order to apply Theorem 3 given in next section to
show that V f is bounded on BMO(eM), we only need to verify that (V f )1(1) =

(V f )2(1) = 0. To do this, we would like to recall the definition of T1(1) = T2(1) =
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0 and (T ⇤)1(1) = (T ⇤)2(1) = 0 as defined in Section 1. T1(1) = 0 is equivalent
to hg1, hg2, T2 f2i1i = 0 for all g1 2 C⌘00(M1) and f2, g2 2 C⌘0 (M2), that is, for
g1 2 C⌘00(M1), g2 2 C⌘00(M2) and almost everywhere y2 2 M2,

ZZ
g(x1)g(x2)K (x1, x2, y1, y2)dµ1(x1)dµ2(x2)dµ1(y1) = 0.

While T1⇤(1) = 0 means hg2, T2 f2i⇤1 = 0 in the same conditions; that is, for
g1 2 C⌘00(M1), g2 2 C⌘00(M2) and almost everywhere x2 2 M2,

ZZ
g(y1)g(y2)K (x1, x2, y1, y2)dµ1(x1)dµ1(y1)dµ2(y2) = 0.

To verify (V f )1(1) = 0, for g1 2 C⌘00(M1), g2 2 C⌘00(M2) and almost everywhere
y2 2 M2 we haveZZ

g(x1)g(x2)V f (x1, x2, y1, y2)dµ1(x1)dµ2(x2)dµ1(y1)

=

ZZ
g(x1)g(x2)

X
k0

1

X
I 01

X
k2

X
I2

µ1(I
0

1)µ2(I2)
ffD1k0

1
(x1, xI 01

)Sk2(x2, xI2)

⇥ Sk0

1

ffD2k2( f )(xI 01, xI2)D1k0

1
(xI 01

, y1)D2k2(xI2, y2)dµ1(x1)dµ2(x2)dµ1(y1) = 0,

where the last equality follows from the fact that
R
D1k0

1
(xI 01

, y1)dy1 = 0. Similarly
for (V f )2(1) = 0. As mentioned, we conclude that |hg, T f iCase2.4|  Ck f k2kgk2.

The proof of the sufficient conditions for Theorem 1 is complete and hence the
proof of Theorem 1 is concluded.

3. Proofs of Theorems 2 and 3

In this section we prove Theorems 2 and 3. We first prove the “if” part of Theorem
2 by applying Theorem 2.5 for the vector-valued product Calderón-Zygmund op-
erators. The “if” part of Theorem 3 then follows from the “if” part of Theorem 2
by the duality argument. To show the converse, we will prove the “only if” part of
Theorem 3 first and the “only if” part of Theorem 2 then follows from the duality
argument directly.

3.1. “If” part of Theorem 2

To show the “if” part of Theorem 2, note first that L2(eM) \ H p(eM) is dense in
H p(eM), see [14] for this result, and thus it suffices to prove that if T is the L2
bounded product Calderón-Zygmund operator on eM with a pair kernel (K1, K2)
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satisfying the conditions (i) � (iii) and (T ⇤)1(1) = (T ⇤)2(1) = 0 then there exists
a positive constant C independent of f such that

kT f kH p  Ck f kH p

for all f 2 L2(eM) \ H p(eM).
By a result in [14], this is equivalent to showing that

k
eS(T f )kp  Ck f kH p , (3.1)

where eS(T f ) is defined by
eS( f )(x1, x2) =

(
1X

`1=�1

1X
`2=�1

|D1`1D
2
`2

( f )(x1, x2)|2
)1/2

. (3.2)

The crucial idea for (3.1) is that by using the discrete Calderón reproducing formula
for f 2 L2(eM), we can write the term D1`1D

2
`2

(T f )(x1, x2) in (3.2) as

1X
k1=�1

1X
k2=�1

X
I1

X
I2

µ1(I1)µ2(I2)(D1`1D
2
`2
T D1k1(·, xI1)D

2
k2(·, xI2))(x1, x2)

⇥

ffD1k1ffD2k2( f )(xI1, xI2),
where the fact that T is bounded on L2(eM) is used. This leads to considering the
Hilbert spaceH defined by

H =

⇢
{h`1,`2}`1,`22Z : kh`1,`2kH :=

 
1X

`1=�1

1X
`2=�1

|h`1,`2 |
2

!1/2
< 1

�
.

We then rewrite the operator eS � T as the H-valued operator L`1,`2 , whose kernel
is defined as
L`1,`2(x1, x2, y1, y2)

=

1X
k1=�1

1X
k2=�1

X
I1

X
I2

µ1(I1)µ2(I2)D1`1D
2
`2
T D1k1D

2
k2(x1, x2, xI1, xI2)

⇥

ffD1k1(xI1, y1)ffD2k2(xI2, y2).

(3.3)

Therefore, the estimate in (3.1) is equivalent to

kL`1,`2( f )kL pH  Ck f kH p , (3.4)

Note first that L`1,`2 is bounded from L2 to L2H sinceeS and T are both bounded on
L2. The idea to show (3.4) is to apply Theorem 2.5 with vector-valued version. For
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this purpose, it suffices to verify the following conditions:

(I)
��(L`1,`2)1(x1, y1) � (L`1,`2)1(x1, y0

1)
��
L2(M2)!L2H(M2)

 C
✓d1(y1, y0

1)

d1(x1, y1)

◆("1)
0

1
V (x1, y1)

if d1(y1, y0

1)  d1(x1, y1)/2A1;

and similar result holds for (L`1,`2)2(x2, y2) for the variable y2;

(II)
���⇥L`1,`2(x1, y1, x2, y2) � L`1,`2(x1, y0

1, x2, y2)
⇤

�

⇥
L`1,`2(x1, y1, x2, y0

2) � L`1,`2(x1, y0

1, x2, y
0

2)
⇤���
H

 C
✓d1(y1, y0

1)

d1(x1, y1)

◆("1)
0

1
V (x1, y1)

✓d2(y2, y0

2)

d2(x2, y2)

◆("2)
0

1
V (x2, y2)

if d1(y1, y0

1)  d1(x1, y1)/2A1 and d2(y2, y0

2)  d2(x2, y2)/2A2.

To show (I), note that��(L`1,`2)1(x1, y1) � (L`1,`2)1(x1, y0

1)
��
L2(M2)!L2H(M2)

= sup
f : k f kL2(M2)1

✓Z
M2

����
Z
M2

⇥
L`1,`2(x1, x2, y1, y2)

� L`1,`2(x1, x2, y0

1, y2)
⇤
f (y2)dy2

����
2

H
dx2

!1/2
.

We write Z
M2

����
Z
M2

[L`1,`2(x1, x2, y1, y2) � L`1,`2(x1, x2, y0

1, y2)] f (y2)dy2
����
2

H
dx2

!1/2

=

✓Z
M2

1X
`1=�1

1X
`2=�1

����D2`2
✓Z

1X
k1=�1

X
I1

µ1(I1)D1`1(x1, u1)K (u1, ·, v1, v2)

⇥ D1k1(v1, xI1)
⇥ffD1k1(xI1, y1) �

ffD1k1(xI1, y0

1)
⇤

⇥ f (v2)dµ1(u1)dµ1(v1)dµ2(v2)

◆
(x2)

����
2
dµ2(x2)

◆1/2

C
✓

1X
`1=�1

Z
M2

����
Z

1X
k1=�1

X
I1

µ1(I1)D1`1(x1, u1)K (u1, x2, v1, v2)

⇥ D1k1(v1, xI1)
⇥ffD1k1(xI1, y1) �

ffD1k1(xI1, y0

1)
⇤

⇥ f (v2)dµ1(u1)dµ1(v1)dµ2(v2)

����
2
dµ2(x2)

◆1/2
,

(3.5)
where the last inequality follows from the Littlewood-Paley estimate on M2.
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We claim that for any fixed `1 and ("1)0 with ("1)0 < "1 there exists positive a
constant C such that for d1(y1, y0

1)  d1(x1, y1)/2A1 and k f k2  1,

✓Z
M2

����
Z

1X
k1=�1

X
I1

µ1(I1)D1`1(x1, u1)K (u1, x2, v1, v2)D1k1(v1, xI1)

⇥

⇥ffD1k1(xI1, y1)�ffD1k1(xI1, y0

1)
⇤
f (v2)dµ1(u1)dµ1(v1)dµ2(v2)

����
2
dµ2(x2)

◆1/2

 C
✓d1(y1, y0

1)

2�`1

◆("1)0 1
V2�`1 (x1) + V (x1, y1)

✓
2�`1

2�`1 + d1(x1, y1)

◆("1)0

.

(3.6)
Assuming (3.6) and inserting (3.6) into (3.5) together with the following standard
estimate

X
`1

✓d1(y1, y0

1)

2�`1

◆2("1)0 ✓ 1
V2�`1 (x1) + V (x1, y1)

◆2 ✓ 2�`1

2�`1 + d1(x1, y1)

◆2("1)0

 C
⇣d1(y1, y0

1)

d1(x1, y1)

⌘2("1)0 1
V 2(x1, y1)

yields that for d1(y1, y0

1)  d1(x1, y1)/2A1 and k f k2  1,

 Z
M2

����
Z
M2

[Lk0

1,k
0

2
(x1, x2, y1, y2) � Lk0

1,k
0

2
(x1, x2, y0

1, y2)] f (y2)dy2
����
2

H
dx2

!1/2

 C
✓d1(y1, y0

1)

d1(x1, y1)

◆("1)0 1
V (x1, y1)

,

which implies (I).
In order to show the estimate in (3.6), we will apply the almost orthogonal argu-

ment. For this purpose, we write the left-hand side of (3.6) by suph: khkL2(M2)1
��H ��,

where

H =

Z
1X

k1=�1

X
I1

µ1(I1)D1`1(x1, u1)hh, K1(u1, v1) f iD
1
k1(v1, xI1)du1dv1

⇥

⇥ffD1k1(xI1, y1) �

ffD1k1(xI1, y0

1)
⇤
.

As in Subsection 2.3.1, for fixed `1 we decompose the summation over k1 by k1 >
`1 and k1  `1 and denote them by E and F, respectively.
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Note that, as in Subsection 2.3.1, for k1 > `1, k f k2  1 and kgk2  1, the
condition that (T )⇤1(1) = 0 implies the following almost orthogonal estimate
���
Z

D1`1(x1, u1)hh, K1(u1, v1) f iD
1
k1(v1, xI1)du1dv1

���

 C2�(k1�`1)("1)
0 1
V2�`1 (x1) + V2�`1 (xI1) + V (x1, xI1)

2�`1("1)
0

(2�`1 + d1(x1, xI1))("1)
0
,

which, together with the smoothness property of ffD1k1(xI1, y1), yields that |E | is
bounded by

C
X
k1>`1

X
I1

µ1(I1)2�(k1�`1)("1)
0 1
V2�`1 (x1) + V2�`1 (xI1) + V (xI1, x1)

⇥

✓
2�`1

2�`1 + d1(x1, xI1)

◆("1)
0 ✓ d1(y1, y0

1)

2�k1 + d1(xI1, y1)

◆("1)0

⇥

1
V2�k1 (xI1) + V (xI1, y1)

✓
2�k1

2�k1 + d1(xI1, y1)

◆("1)0

,

which gives the right-hand side of (3.6).
Similarly, we decompose F as

F =

Z X
k1`1

X
I1

µ1(I1)D1`1(x1, u1)hh, K1(u1, v1) f i

⇥ [D1k1(v1, xI1) � D1k1(x1, xI1)]dµ1(u1)dµ1(v1)

⇥

⇥ffD1k1(xI1, y1) �

ffD1k1(xI1, y0

1)
⇤

+

Z X
k1`1

X
I1

µ1(I1)D1`1(x1, u1)hh, K1(u1, v1) f i

⇥ D1k1(x1, xI1)dµ1(u1)dµ1(v1)

⇥

⇥ffD1k1(xI1, y1) �

ffD1k1(xI1, y0

1)
⇤

= F1 + F2.

Note that when k1  `1 we have the following almost orthogonal estimate that for
k f k2  1 and kgk2  1,���
Z

D1`1(x1, u1)hh, K1(u1, v1) f i[D
1
k1(v1, xI1) � D1k1(x1, xI1)]dµ1(u1)dµ1(v1)

���

 C2�(`1�k1)("1)
0 1
V2�k1 (x1) + V2�k1 (xI1) + V (x1, xI1)

2�k1("1)
0

(2�k1 + d1(x1, xI1))("1)
0
.
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Therefore, F1 satisfies the same estimate as E . To estimate F2, we rewrite it as

F2 =

X
k1`1

X
I1

µ1(I1)D1k1(x1, xI1)
⇥ffD1k1(xI1, y1) �

ffD1k1(xI1, y0

1)
⇤

⇥

Z
D1`1(x1, u1)hh, K1(u1, ·) f i(1)dµ1(u1)

=

⇥
S`1(x1, y1) � S`1(x1, y

0

1)
⇤ Z

D1`1(x1, u1)hh, K1(u1, ·) f i(1)dµ1(u1),

where for x1, y1 2 M1, S`1(x1, y1)=
P

k1`1
P

I1 µ1(I1)D1k1(x1, xI1)
ffD1k1(xI1, y1)

and similarly for S`1(x1, y0

1). Note that S`1(x1, y1) and S`1(x1, y
0

1) satisfy the size
and smoothness properties as proved in Subsections 2.3.2 and 3.3.4, respectively.
Similar to the argument in Subsection 3.3.3, hh, K1(u1, ·) f i(1), as a function of
u1, lies in BMO(M1) with khh, K1(u1, ·) f i(1)kBMO(M1)  Ck f kL2(M2)khkL2(M2).
Hence

��� R D1`1(x1, u1)hh, K1(u1, ·) f i(1)dµ1(u1)
��� Ck f kL2(M2)khkL2(M2), where

the constant C is independent of `1 and x1 since for any `1 and x1, D1`1(x1, u1) is in
H1(M1) with kD`1(x1, ·)kH1(M1) uniformly bounded. As a consequence, we have

|F2|  C
��S`1(x1, y1) � S`1(x1, y

0

1)
��
k f kL2(M2)khkL2(M2).

Thus, applying the size properties of S`1(x1, y1) and S`1(x1, y0

1) for the case `1 :

2�`1
 2A1d1(y1, y0

1) and the smoothness properties of S`1(x1, y1) for the case
`1 : 2�`1 > 2A1d1(y1, y0

1), we conclude that F2 satisfies the same estimate as F1
and hence (3.6) holds.

To verify (II), it suffices to show that there exist positive constants C , " and "0
with "0 < ", such that

(II0) |L`1,`2(x1, x2, y1, y2) � L`1,`2(x1, x2, y0

1, y2)
� L`1,`2(x1, x2, y1, y0

2) + L`1,`2(x1, x2, y0

1, y
0

2)|

 C
⇣ d1(y1, y0

1)

2�`1 + d1(x1, y1)

⌘("1)0 1
V2�`1 (x1) + V2�`1 (y1) + V (x1, y1)

⇥

2�`1("1)
0

(2�`1 + d1(x1, y1))("1)
0

⇣ d2(y2, y0

2)

2�`2 + d2(x2, y2)

⌘("2)0

⇥

1
V2�`2 (x2) + V2�`2 (y2) + V (x2, y2)

2�`2("2)
0

(2�`2 + d2(x2, y2))("2)
0

for d1(y1, y0

1)
1
2A1 (2

�`1
+d1(x1, y1)) and d2(y2, y0

2)
1
2A2 (2

�`2
+d2(x2, y2)).
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Note that from (3.3), we can write the left-hand side of (I I 0) as
1X

k1=�1

1X
k2=�1

X
I1

X
I2

µ1(I1)µ2(I2)D1`1D
2
`2
T D1k1D

2
k2(x1, x2, xI1, xI2)

⇥

⇥ffD1k1(xI1, y1) �

ffD1k1(xI1, y0

1)
⇤⇥ffD2k2(xI2, y2) �

ffD2k2(xI2, y0

2)
⇤

=: L`1,`2 .

Then, to estimateL`1,̀ 2 , it suffices to estimate the term D1`1D
2
`2
TD1k1D

2
k2(x1,x2,xI1,xI2),

which is exactly the same as what we have done in Subsection 3.3. To be more
precise, for any fixed integers `1 and `2 we consider the following four cases: `1 �

k1 and `2 � k2; `1 � k1 and `2 < k2; `1 < k1 and `2 � k2; `1 < k1 and
`2 < k2. Then we write L`1,`2 = L1`1,`2 + L2`1,`2 + L3`1,`2 + L4`1,`2 , where each
Li
`1,`2

corresponds to each case. We now only consider L1`1,`2 and L2`1,`2 since the
other two terms follow symmetrically.

For L1`1,`2 , following the Case 1 in Subsection 2.3, we decompose

D1k0

1
D2k0

2
T D1k1D

2
k2(x1, x2, xI1, xI2)

=: I (x1, x2, xI1, xI2) + II(x1, x2, xI1, xI2)

+ III(x1, x2, xI1, xI2) + IV(x1, x2, xI1, xI2)

and then write L1`1,`2 = L1.1`1,`2 + L1.2`1,`2 + L1.3`1,`2 + L1.4`1,`2 , where

L1.1`1,`2 =

X
k1`1

X
k2`2

X
I1

X
I2

µ1(I1)µ2(I2)I (x1, x2, xI1, xI2)

⇥

hffD1k1(xI1, y1) �

ffD1k1(xI1, y0

1)
i hffD2k2(xI2, y2) �

ffD2k2(xI2, y0

2)
i

and similar for the other three terms.
For L2`1,`2 , since (T ⇤)2(1) = 0, the Case 2 in Subsection 2.3 gives

D1k0

1
D2k0

2
T D1k1D

2
k2(x1, x2, xI1, xI2) = V (x1, x2, xI1, xI2) + VI(x1, x2, xI1, xI2)

and hence we can write L2`1,`2 = L2.1`1,`2 + L2.2`1,`2 similarly.
For L1.1`1,`2 and L2.1`1,`2 , applying the almost orthogonality estimates for

I (x1, x2, xI1, xI2) and V (x1, x2, xI1, xI2) as in Subsection 2.3.1, the smoothness
properties for ffD1k1(xI1, y1) and ffD2k2(xI2, y2), and then following the same proof
as in Case 1.1 in Subsection 2.3.1, we conclude that L1.1`1,`2 and L2.1`1,`2 satisfies the
estimate in (II0).

For L1.4`1,`2 , applying the Carleson measure estimate for IV(x1, x2, xI1, xI2) as

in Case 1.4 in Subsection 2.3.2 and the smoothness properties forffD1k1(xI1, y1) andffD2k2(xI2, y2) implies that L1.4`1,`2 is bounded by the right-hand side of (II0).
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Similarly, the almost orthogonality estimates on M1 and the Carleson measure
estimates on M2 as in Case 1.2 in Subsection 2.3.3 and the smoothness properties offfD1k1(xI1, y1) and ffD2k2(xI2, y2) gives the estimate in (II0) for L1.2`1,`2 . Similarly for
the estimate of L1.3`1,`2 . For more details of the proof, we refer the readers to the long
version of this paper [13]. This finishes the proof of the “if” part of Theorem 2.

3.2. “If” part of Theorem 3

Note that if f 2 CMOp(eM), in general, T ( f )may not be well defined because f is
a distribution in

� �

G#1,#2(�1,�2; �1, �2)
�
0. The same problem appears in the proof of

Theorem 2.5. The key fact used in the proof of Theorem 2.5 is that L2(eM)\H p(eM)
is dense in H p(eM). It turns out that to establish the boundedness of T on H p(eM),
it suffices to show the H p boundedness of T for f 2 L2(eM) \ H p(eM). This
method does not work for the present proof of the “If” part of Theorem 3 because
L2(eM) \ CMOp(eM) is not dense in CMOp(eM). However, as a substitution, we
have the following:

Lemma 3.1. For max
� 2!1
2!1+#1 ,

2!2
2!2+#2

�
< p  1, L2(eM) \CMOp(eM) is dense in

CMOp(eM) in the weak topology (H p(eM),CMOp(eM)). More precisely, for each
f 2 CMOp(eM), there exists a sequence { fn} ⇢ L2(eM) \ CMOp(eM) such that
k fnkCMOp(eM)  Ck f kCMOp(eM), where C is a positive constant independent of n
and f , and moreover, for each g 2 H p(eM), h fn, gi ! h f, gi as n ! 1.

See [19] for the proof.

We now prove the “if” part of Theorem 3. We first define T on CMOp(eM)
as follows. Given f 2 CMOp(eM), by Lemma 3.1, there is a sequence { fn} ⇢

L2(eM) \ CMOp(eM) such that k fnkCMOp(eM)  Ck f kCMOp(eM), and for each g 2

L2(eM) \ H p(eM), h fn, gi ! h f, gi as n ! 1. Thus, for f 2 CMOp(eM), we
define

hT ( f ), gi := lim
n!1

hT ( fn), gi

for each g 2 L2(eM) \ H p(eM).

To see that this limit exists, we note that hT ( f j � fk), gi = h f j � fk, T ⇤(g)i
since both f j � fk and g belong to L2 and T is bounded on L2. T ⇤ is bounded
on L2 and the kernel of T ⇤ satisfies the conditions in Theorem 2. Moreover,
((T ⇤)1)⇤(1) = T1(1) = 0 and ((T ⇤)2)⇤(1) = T2(1) = 0. Therefore, by the “if” part
of Theorem 2 which has been proved in Subsection 3.1, T ⇤(g) 2 L2(eM)\H p(eM).
Thus, by Lemma 3.1, h f j � fk, T ⇤(g)i tends to zero as j, k ! 1. It is also easy to
see that this limit is independent of the choice of the sequence fn that satisfies the
conditions in Lemma 3.1.
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To finish the proof of “if” part of Theorem 3, we claim that for each f 2

L2(eM) \ CMOp(eM),

kT ( f )kCMOp(eM)  Ck f kCMOp(eM),

where the constant C is independent of f .
To see the above claim implies the “if” part of Theorem 3, by the definition of

T on CMOp(eM), for each g 2 L2(eM)\H p(eM), hT ( f ), gi = limn!1hT ( fn), gi,
where fn satisfies the conditions in Lemma 3.1. Particularly, taking g(x, y) =

D2k2D
1
k1(x, y) 2

�

G#1,#2(�1,�2; �1, �2) and applying the claim yield

kT ( f )kCMOp(eM) = k lim
n!1

T ( fn)kCMOp(eM)  lim inf
n!1

kT ( fn)kCMOp(eM)

 Ck fnkCMOp(eM)  Ck f kCMOp(eM).

Thus, it remains to show the claim. The proof of the claim follows from the duality
between H p(eM) and CMOp(eM), and the “if” part of Theorem 2. To be more
precise, let f 2 L2 \ CMOp(eM) and g 2 L2 \ H p(eM). By the duality first and
then the “if” part of Theorem 2, we have

|hT ( f ), gi| = |h f, T ⇤(g)i|
 k f kCMOp(eM)kT

⇤(g)kH p(eM)  Ck f kCMOp(eM)kgkH p(eM).

This implies that for each f 2 L2(eM) \ CMOp(eM), ` f (g) = hT ( f ), gi defines a
continuous linear functional on L2(eM) \ H p(eM). Note that L2(eM) \ H p(eM)
is dense in H p(eM). Thus, ` f (g) = hT ( f ), gi belongs to the dual of H p(eM)
and the norm of this linear functional is dominated by Ck f kCMOp . By the du-
ality of H p(eM) with CMOp(eM), again, there exists h 2 CMOp(eM) such that
hT ( f ), gi = hh, gi for each g 2

�

G#1,#2(�1,�2; �1, �2) and khkCMOp  Ck` f k 

Ck f kCMOp(eM). The crucial fact we will use is that, taking g(x, y) = D2k2D
1
k1(x, y),

we obtain that hT ( f ), D2k2D
1
k1i = hh, D2k2D

1
k1i. Therefore, by the definition of

CMOp(eM), we have

kT ( f )kCMOp(eM)

= sup
�

(
1

|�|

2
p�1

X
k1,k22Z

X
I1,I2:I1⇥I2⇢�

|D2k2D
1
k1(T ( f ))(xI1, xI2)|

2
|I1||I2|

)1/2

= sup
�

(
1

|�|

2
p�1

X
k1,k22Z

X
I1,I2:I1⇥I2⇢�

|D2k2D
1
k1(h)(xI1, xI2)|

2
|I1||I2|

)1/2

= khkCMOp(eM)  Ck f kCMOp(eM).

The proof of the claim is concluded and hence the proof of “if ” part of Theorem 3
is complete.
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3.3. “Only if” parts of Theorems 2 and 3

We first show the “only if” part of Theorem 3. Suppose that T is a Calderón-
Zygmund operator defined in Section 1 and bounded on CMOp(eM). For each
f2(x2) 2 C⌘0 (M2), we define the function f (x1, x2) on eM by f (x1, x2) :=

�1(x1) f2(x2), where �1(x1) = 1 on M1. It is clear that f is in CMOp(eM) with
k f kCMOp(eM) = 0. Consequently, we have T f 2 CMOp(eM) and kT f kCMOp(eM) =

0. Therefore,Z
M2

Z
M1

Z
M2

Z
M1
g1(x1)g2(x2)K (x1, y1, x2, y2)

⇥ f2(y2)dµ1(x1)dµ2(x2)dµ1(y1)dµ2(y2) = 0

for all g12C⌘0 (M1)with
R
g1(x1)dµ1(x1)=0, g22C⌘0 (M2)with

R
g2(x2)dµ2(x2)=

0 and all f2 2 C⌘0 (M2). Note that the above equality is equivalent toZ
M2

Z
M1
T ⇤(g1 ⌦ g2)(y1, y2) f2(y2)dµ1(y1)dµ2(y2) = 0.

Since T is bounded on L2(eM), T ⇤ is also bounded on L2(eM). Therefore, T ⇤(g1 ⌦

g2) 2 L1(eM) \ L2(eM) since (g1 ⌦ g2) 2 H1(eM). Note that C⌘0 (M2) is dense in
L2(M2). This impliesZ

M1
T ⇤(g1 ⌦ g2)(y1, y2)dy1 = 0

=

Z
M1

Z
M2

Z
M1
g1(x1)g2(x2)K (x1, y1, x2, y2)dµ1(x1)dµ2(x2)dµ1(y1)

for all g12C⌘0 (M1)with
R
g1(x1)dµ1(x1)=0, g22C⌘0 (M2)with

R
g2(x2)dµ2(x2)=

0 and for y2 2 M2 almost everywhere. Thus, T1(1) = 0. Similarly we can prove
that T2(1) = 0.

We now prove the “only if” part of Theorem 2. We claim that if T is bounded
on L2 and H p(eM), then the adjoint operator T ⇤ extends to a bounded operator from
CMOp(eM) to itself, where T ⇤ is defined originally by hT f, gi = h f, T ⇤gi for all
f, g 2 L2(eM).

To see this, let f 2 L2(eM) \ H p(eM) and g 2 L2(eM) \ CMOp(eM), then, by
the duality between H p(eM) and CMOp(eM),

|hT ⇤g, f i| = |hg, T f i|  Ck f kH p(eM)kgkCMOp(eM).

This implies that hT ⇤g, f i defines a continuous linear functional on H p(eM) be-
cause L2(eM) \ H p(eM) is dense in H p(eM). Moreover, applying the same proof
given in Subsection 4.2 yields

kT ⇤gkCMOp(eM)  CkgkCMOp(eM).

Then, applying the “only if” part of Theorem 3 for the operator T ⇤ implies that
(T ⇤)1(1) = (T ⇤)2(1) = 0.
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4. The case of n factors

In this section we first consider the case of 3 factors; that is, eM = M1 ⇥ M2 ⇥ M3.
We recall the definition of the Littlewood-Paley square function on eM .

Definition 4.1. Let {Siki }ki2Z be approximations to the identity on Mi and Di
ki =

Siki �Siki�1, i = 1, 2, 3. For f 2

� �

G#1,#2(�1,�2,�3; �1, �2, �3)
�
0 with 0 < �i , �i <

#i , i = 1, 2, 3,eSd( f ), the discrete Littlewood-Paley square function of f, is defined
by

S( f )(x1, x2, x3)

=

⇢
1X

k1=�1

1X
k2=�1

1X
k3=�1

X
I 11

X
I 22

X
I 33

|D1k1D
2
k2D

3
k3( f )(x1, x2, x3)|

2

⇥ �I 11
(x1)�I 22 (x2)�I 33 (x3)

�1/2
,

where for each ki , I ii ranges over all the dyadic cubes in Mi with side-length `(I ii ) =

2�ki�Ni , and Ni are large fixed positive integers, for i = 1, 2, 3.
We recall the Hardy spaces H p and Carleson measure spaces CMOp on eM as

follows.
Definition 4.2 ([14]). Let max

� !1
!1+#1

, !2
!2+#2

, !3
!3+#3

�
< p  1 and 0 < �i , �i <

#i for i = 1, 2, 3.

H p(eM) :=

�
f 2

� �

G#1,#2(�1,�2,�3; �1, �2, �3)
�
0

: S( f ) 2 L p(eM)
 

and if f 2 H p(eM), the norm (or quasi-norm) of f is defined by k f kH p(eM) =

kS( f )kp.
Definition 4.3 ([14]). Let max

� 2!1
2!1+#1 ,

2!2
2!2+#2 ,

2!3
2!3+#3

�
< p  1 and 0 < �i ,

�i < #i for i = 1, 2, 3. Let {Siki }ki2Z be approximations to the identity on Mi

and for ki 2 Z, set Di
ki = Siki � Siki�1, i = 1, 2, 3. The generalized Carleson

measure space CMOp(eM) is defined, for f 2

� �

G#1,#2(�1,�2,�3; �1, �2, �3)
�
0

, by

k f kCMOp(eM) = sup
�

⇢
1

µ(�)
2
p�1

Z
�

X
k1,k2,k3

X
I 11⇥I 22⇥I 33✓�

��D1k1D2k2D3k3( f )(x1, x2, x3)
��2

⇥ �I 11
(x1)�I 22 (x2)�I 33 (x3)dµ1(x1)dµ2(x2)dµ3(x3)

� 1
2

< 1,

where � are taken over all open sets in eM with finite measures and for each ki , I ii
ranges over all the dyadic cubes in Mi with length `(I ii ) = 2�ki�Ni , i = 1, 2, 3.
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To consider singular integral operators on eM, we first introduce the space
C⌘0 (eM) by induction. Note that we have introduced C⌘0 (M1 ⇥ M2) in Section 1.
A function f (x1, x2, x3) is said to be in C⌘0 (eM) if f has compact support and

k f (x1, x2, ·)kC⌘0 (M1⇥M2) 2 C⌘0 (M3).

Now we introduce a class of product singular integral operators on eM .
Let T : C⌘0 (eM) !

�
C⌘0 (eM)

�
0 be a linear operator with an associated dis-

tribution kernel K (x1, y1, x2, y2, x3, y3), which is a continuous function on eM \

{(x1, y1, x2, y2, x3, y3) : xi = yi , for some i, 1  i  3}. Moreover,

(i) hT ('1 ⌦ '2 ⌦ '3), 1 ⌦  2 ⌦  3i

=

Z
K (x1, y1, x2, y2, x3, y3)

⇥

3Y
1
'i (xi ) i (yi )dµ1(x1)dµ1(y1)dµ2(x2)dµ2(y2)dµ3(x3)dµ3(y3)

whenever 'i and  i are in C⌘0 (Mi ) with disjoint supports, for 1  i  3.
(ii) There exists a Calderón-Zygmund valued operator K3(x3, y3) on M1 ⇥ M2

such that

hT ('1 ⌦ '2 ⌦ '3), 1 ⌦  2 ⌦  3i

=

Z
hK3(x3, y3)('1 ⌦ '2), 1 ⌦  2i'3(x3) 3(y3)dµ3(x3)dµ3(y3)

whenever 'i and  i are in C⌘0 (Mi ) for 1  i  3 and supp'3 \ supp 3 = ?.
Moreover, kK3(x3, y3)kCZ(M1⇥M2) as a function of x3, y3 2 M3, satisfies the
following conditions:

(ii-a) kK3(x3, y3)kCZ ,1,2  C 1
V (x3, y3) ;

(ii-b) kK3(x3, y3) � K3(x3, y0

3)kCZ ,1,2  C
⇣d3(y3,y0

3)
d3(x3,y3)

⌘"3 1
V (x3,y3)

if d3(y3, y0

3) 
d3(x3,y3)
2A3 ;

(ii-c) kK3(x3, y3) � K3(x 0

3, y3)kCZ ,1,2  C
⇣d3(x3, x 0

3)

d3(x3, y3)

⌘"3 1
V (x3, y3)

if d3(x3, x 0

3) 
d3(x3,y3)
2A3 .

Here we use k·kCZ(M1⇥M2) to denote the Calderón-Zygmund norm of the prod-
uct Calderón-Zygmund operators on M1⇥M2.More precisely, kTkCZ(M1⇥M2)
= kTkL2!L2 + |K |CZ(M1⇥M2), where |K |CZ ,1,2 = min(|K1|CZ , |K2|CZ ) by
considering K as a pair (K1, K2) as in Section 1.
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(iii) There exists a Calderón-Zygmund valued operator K1,2(x1, y1, x2, y2) on M3
such that

hT ('1 ⌦ '2 ⌦ '3), 1 ⌦  2 ⌦  3i

=

Z
hK1,2(x1, y1, x2, y2)('3), 3i

⇥

2Y
i=1

'i (xi ) i (yi )dµ1(x1)dµ1(y1)dµ2(x2)dµ2(y2)

whenever 'i and  i are in C⌘0 (Mi ) for 1  i  3, and 'i and  i have
disjoint supports for i = 1, 2. Moreover, as a function of (x1, y1, x2, y2),
K1,2(x1, y1, x2, y2) satisfies the following conditions:

(iii-a) kK1,2(x1, y1, x2, y2)kCZ  C
1

V (x1, y1)
1

V (x2, y2)
;

(iii-b) kK1,2(x1, y1, x2, y2) � K1,2(x 0

1, y1, x2, y2)kCZ

 C
⇣d1(x1, x 0

1)

d1(x1, y1)

⌘"1 1
V (x1, y1)

1
V (x2, y2)

if d1(x1, x 0

1)
d1(x1, y1)
2A1

;

(iii-c) the condition (iii-b) also holds for interchanging x1, x2 with y1, y2;
(iii-d) kK1,2(x1, y1, x2, y2) � K1,2(x 0

1, y1, x2, y2)
� K1,2(x1, y1, x 0

2, y2) + K1,2(x 0

1, y1, x
0

2, y2)kCZ

 C
⇣d1(x1, x 0

1)

d1(x1, y1)

⌘"1 1
V (x1, y1)

⇣d2(x2, x 0

2)

d2(x2, y2)

⌘"2 1
V (x2, y2)

if d1(x1, x 0

1) 
d1(x1,y1)
2A1 and d2(x2, x 0

2) 
d2(x2,y2)
2A2

(iii-e) the condition (iii-d) also holds for interchanging x1, x2 with y1, y2.
(iv) The same conditions (ii) and (iii) hold for any permutation of the indices

1, 2, 3. That is, we can consider T as a pair of (K1,3, K2), as well as a pair
of (K1, K2,3). Both K1 and K2 satisfy (ii). Similarly, both K1,3 and K2,3
satisfy (iii).

To state the result on eM, we need to deal with the partial adjoint operators eT . We
have the following two classes of partial adjoint operators. For the first class, eT1,
the partial adjoint operator of T, is defined as

h
eT1('1 ⌦ '2 ⌦ '3), 1 ⌦  2 ⌦  3i = hT ( 1 ⌦ '2 ⌦ '3),'1 ⌦  2 ⌦  3i,

and similarly for eT2 and eT3. For the second class, eT1,2, the partial adjoint operator
of T, is defined as

h
eT1,2('1 ⌦ '2 ⌦ '3), 1 ⌦  2 ⌦  3i = hT ( 1 ⌦  2 ⌦ '3),'1 ⌦ '2 ⌦  3i,

and similarly eT1,2 and eT2,3. Thus, there are totally 6 partial adjoint operators.
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We also define the weak boundedness property. Let T be a product singular
integral operator on eM .We say that T has the WBP if

khK1('2 ⌦ '3), 2 ⌦  3ikCZ(M1) . Vr2(x
0
2)Vr3(x

0
3)

for all '2, 2 2 AM2(�, x
0
2 , r2), '3, 3 2 AM3(�, x

0
3 , r3)

and

khK1,2('3), 3ikCZ(M1⇥M2) . Vr3(x
0
3) for all '3, 3 2 AM3(�, x

0
3 , r3),

and the same conditions hold for K1, K2 and K1,3, K2,3, respectively.
Now we can state the result on eM = M1 ⇥ M2 ⇥ M3.

Theorem 10. Let T be a product singular integral operator on eM . Then T is
bounded on L2(eM) if and only if T1, T ⇤1, eT11, eT21, eT31, eT1,21, eT1,31 and eT2,31 lie
in BMO(eM) and T has the weak boundedness property.

The general case eM = M1 ⇥ · · · ⇥ Mn of n factors will follow by induction.
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