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Criterion of the L2 boundedness and sharp endpoint estimates
for singular integral operators
on product spaces of homogeneous type

YONGSHENG HAN, J1 L1 AND CHIN-CHENG LIN

Abstract. The purpose of this paper is to introduce a class of general singular
integral operators on spaces M = M x --- x M,. Each factor space M;, 1 <
i < n, is a space of homogeneous type in the sense of Coifman and Weiss. These
operators generalize those studied by Journé on the Euclidean space and include
operators studied by Nagel and Stein on Carnot-Carathéodory spaces on which
the basic geometry is given by a control, or Carnot-Carathéodory, metric induced
by a collection of vector fields of finite type. We provide the criterion of the
L2(1\7 ) boundedness for these general operators. Thus this result extends the
product 7’1 theorem of Journé on Euclidean space and recovers the L?, 1 < p <
oo, boundedness of those operators on Carnot-Carathéodory space obtained by
Nagel and Stein. We also prove the sharp endpoint estimates for these general
operators on the Hardy spaces HP (M) and BMO(M).

Mathematics Subject Classification (2010): 42B20 (primary); 42B25 (sec-
ondary).

1. Introduction and statement of main results

Classical Calderén-Zygmund theory centers around singular integrals associated
with the Hardy-Littlewood maximal operator that commutes with the usual dilations
onR",8 - x = (8xy, ..., 8x,) for § > 0. On the other hand, the product theory on
R" began with Zygmund’s study of the strong maximal function in [16] given by

1
Ms(£)(x) = sup — / FOIdy,
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where the supremum is taken over the family of all rectangles R with sides parallel
to the axes.

And it continued with Marcinkiewicz’s proof of his famous multiplier theo-
rem. The product theory is invariant with respect to n-fold dilation on R”,§ - x =
(81X1,...,8,x,) for § = (81,...,8,) € R’. In the product setting, one con-
siders operators of the form 7Tf = K x f, where K is homogeneous, that is,
81...6,K(5 - x) = K(x), or, more generally, K (x) satisfies certain differential
inequalities and cancellation conditions such that the kernels 61 ...§, K (6 - x) also
satisfy the same conditions with the same bounds uniformly for all §; > 0,1 <
i < n. Such operators have been studied for example in Gundy and Stein [11],
R. Fefferman and Stein [10], R. Fefferman [8,9], Chang and R. Fefferman [2,3],
Journé [17,18], Pipher [25], Pott and Villarroya [26], where both the L? theory for
1 < p < oo and the product H? theory for 0 < p < 1 were developed. More
precisely, R. Fefferman and Stein [10] studied the L” boundedness (1 < p < o0)
for the product convolution singular integral operators. Journé in [17] introduced
a non-convolution product singular integral operators, established the product 7'1
theorem (see [26] for a new version of such operators) and proved the L>*° — BMO
boundedness for such operators. The product Hardy space H? (R" x R™) was first
introduced by Gundy and Stein [11]. Chang and R. Fefferman [2, 3] developed
the theory of atomic decomposition and established the dual space of Hardy space
H' (R" x R™), namely the product BMO (R" x R™) space. Carleson disproved by
a counter-example a conjecture that the product atomic Hardy space on R"” x R™
could be defined by rectangle atoms. This motivated Chang and R. Fefferman to
replace the role of cubes in the classical atomic decomposition of H? (R") by arbi-
trary open sets of finite measures in the product H? (R” x R™). Subsequently, R.
Fefferman in [9] established the criterion of the H” — L? boundedness of singu-
lar integral operators in Journé’s class by considering its action only on rectangle
atoms by using Journé lemma. However, R. Fefferman’s criterion cannot be ex-
tended to three or more parameters without further assumptions on the nature of 7
as shown in Journé [18]. In fact, Journé provided a counter-example in the three-
parameter setting of singular integral operators such that R. Fefferman’s criterion
breaks down. The H” to L? boundedness for Journé’s class of singular integral
operators with arbitrary number of parameters was established by J. Pipher [25]
by considering directly the action of the operator on (non-rectangle) atoms and an
extension of Journé’s geometric lemma to higher dimensions. The criterion of the
HP? — HP boundedness of singular integral operators in Journé’s class on the
Euclidean space was established in [12].

To study fundamental solutions of [, on certain model domains in several
complex variables, Nagel and Stein [22] developed L?-boundedness for a class of
product singular integral operators. It was well known that any analysis of singular
integrals on a product space M = M| x --- X M, must be based on a formulation
of standard singular integrals on each factor M;. To carry this out, the important
geometric objects used by Nagel and Stein are: (i) a class of equivalent control
distances constructed on M;, 1 < i < n, via the vector fields {Xy, ..., X,} where
each X;,1 < i < r, depends on i; (ii) the volumes of balls satisfy the doubling
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property and the certain low bound estimates. More precisely, one variant of the
control distance on M is defined as follows. For each x,y € M, let AC(x, y, §)
denote the collection of absolutely continuous mapping ¢ : [0,1] — M with

9(0) = x, (1) = y, and for almost every ¢ € [0, 1], ¢'(¢) = Z?‘:l a;X;(p(1))
with |a;| < §. The control distance p(x, y) from x to y is the mnfimum of the
set of § > 0 such that AC(x,y,§) # . See [22] and [24] for more details. It
was shown in [22] that there is a pseudo-metric d ~ p such that d(x, y) is C* on

M x M\{diagonal}, and for x # y
0% oyd(x, )| Sdx, 'K

Here 8)’(( are products of K vector fields {X1, - - - X} acting as derivatives on the x
variable, and 8% are corresponding K vector fields acting on the y variable.

The volume measure on M is defined in [22] as follows. One takes Lebesgue
measure and denotes the measure of a set E by |E|. The ball is defined by
B(x,8) ={y € M,d(x,y) < 8} and the volume function is defined by V (x, y) =
|B(x,d(x,y))|. Nagel and Stein proved that the volumes of the balls B(x, §) satis-
fies the doubling property (see [22] for the details)

|B(x,28)| < C|B(x,§)] for all § > 0 and some constant C (1.1)

and, moreover, it also satisfies the low bound condition, namely for s > 1, | B(x, s§)|
> s4|B(x, 8)| and for s < 1, |B(x, s8)| ~ s*|B(x, §)|.

We point out that the doubling condition (1.1) implies that there exist positive
constants C > 0 and w > O (o is said to be the upper dimension of M) such that
forallx e Mand A > 1,

|B(x, Ar)| S CA®|B(x, 1)l

And the low bound condition implies the reverse doubling condition, that is, there
are constants ¥ € (0, w] and ¢ € (0, 1] such that

cA|(B(x,r))| < |B(x, Ar)|

forallx e M,0 <r < sup d(x,y)/2and 1 <A < sup d(x,y)/2r.
x,yeM x,yeM

As it was pointed out in [22] there are two paths to formulate standard singular
integrals on each factor M;, 1 < i < n. One is to generalize the class of operators
on each factor M;, 1 < i < n, to the extended class of the T'1 theorem of David
and Journé [6] and then pass from this to a corresponding product theory. This was
carried out in [17] for the setting where each factor is a Euclidean space. However,
because of the inherent complications, Nagel and Stein [22] considered the class of
singular integrals of NIS type; that is, non-isotropic smoothing operators of order 0.
These operators may be viewed as Calder6n-Zygmund operators whose kernels are
C®° away from the diagonal and its cancellation conditions are given by their action
on smooth bump functions. More precisely, on each factor M, these operators are
defined by the following properties:
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(I-1) If @, ¥ € C3°(M) have disjoint supports, then

(T, ¥) = / K (. y)p ()% (¥)dydx.
MxM

(I-2) If ¢ is a normalized bump function associated to a ball of radius r, then
10§ To| S r~ for each integer a > 0.

(I-3) If x #y, then for every integer a >0, |05 , K (x, y)| S <d(x,y)*V(x,y)~ 1

(I-4) Properties (I-1) through (I-3) also hold w1th x and y interchanged. That is,
these properties also hold for the adjoint operator 77 defined by (T' ¢, ) =
(T, ¢).

To pass the above one factor case to the product theory, Nagel and Stein first con-
sider two factors case M M1 x M. The product operator 7 on M is then defined
from C °°(M )to C Oo(M ). The distribution K (xl, Y1, X2, y2), the Schwartz kernel
of T, is a C* function away from the “cross” = {(x, y) = (x1, x2, ¥1, 2) : X] =
y1 and x» = y»} and satisfies the following additional properties:

A1-1) (T (01 ®@¢2), v1Q¥2)=[K (x1,y1,x2, y2)01 (YD) @2 (y2) Y1 (x) Y2 (x2)dydx
whenever ¢;, V; € Cgo (M;) and have disjoint supports fori = 1, 2.

(IT-2) For each bump function ¢ on M5 and each x, € M>, there exists a singular
integral operator 7'%2-*2 (of one parameter) on My, so that

(T(@1 ® 92, ¥1 ® ¥2) = /M (T2, Y1) (x2)dxs.
2

Moreover, xp > T%2*2 is smooth and uniform in the sense that 7%2:*2, as
well as ,oLaL (T%2*2) for each L > 0, satisfy the conditions (I-1) to (I-4)
unlformly

(IT-3) If ¢; is a bump function on a ball Bi(r;) in M;, then

0% 00T (@1 @ @2)| Sry 'y,

In (II-2) and (II-3), both inequalities are taken in the sense of (I-2) whenever
@ isa bump function for B%(r;) in M5.

di(x1, yD) " "dp(x2, y2)~
< a1(x1, Y1 2 Y
(I-4) |3X' 7 0% K @y x2,3)| £ Vi(xr, y1) Valxz, y2)

(II-5) The same conditions hold when the index 1 and 2 are interchanged; that is,
whenever the roles of M and M are interchanged.

(II-6) The same properties are assumed to hold for the 3 “transposes” of T, i.e.,
those operators which arise by interchanging x| and y, or interchanging x;
and y,, or doing both interchanges.

The key to prove the L?and LP,1 < p < 00, boundedness of these operators
in [22] is the existence of the Littlewood-Paley theory on M, which is itself a con-
sequence of the corresponding theory on each factor M;, 1 < i < 2. The square
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function used in [22] is constructed in terms of the heat equation. See [22] for the
details.

Recently, in [14], inspired by the works of Nagel and Stein [21-23], the authors
developed a satisfactory theory of multiparameter Hardy spaces in the framework
of the product spaces of homogeneous type. Such a quasi-metric measure space of
homogeneous type includes the model case of Carnot-Carathédory spaces intrinsic
to a family of vector fields satisfying Hormander’s condition of finite rank. To
be more precise, in [14] they consider (M, d, i) to be a space of homogeneous
type in the sense of Coifman and Weiis, that is, d is a quasi-metric satisfying (i)
d(x,y) =0iff x = y; (i) d(x, y) = d(y, x); (iii) d(x, 2) = Ald(x, y) +d(y,2)]
for some A > 1. Moreover, d(x, y) has the following regularity property

ld(x,y) —d(x', y)| < Cod(x,x")’[d(x, y) +d(x', 1" (12)

for some regularity exponent % : 0 < & < landallx, x, y € M. And u
is a nonnegative measure satisfying the following doubling and reverse doubling
properties:

p(B(x,Ar)) < CA°n(B(x,r)) (1.3)

and
A u((B(x,r))) < u((B(x, Ar)) (r.4)

where B(x,r) = {y : d(x, y) < r}is the quasi-metric ball centered at x with radius
randx e M,0 <r < sup d(x,y)/2and 1 <A < sup d(x,y)/2r.
x,yeM x,yeM

In [14] they introduced multiparametr Hardy spaces H? (M ), provided the dual
spaces of H” (M) in terms of multlgglrameter Carleson measure spaces CMO? (M ),
in particular, BMO(M ) = CMO' (M) and proved the endpoint estimates for those
operators considered by Nagel and Stein in [22] on H?P(M). See [14] for more
details.

The main purpose of this paper is that under the same geometrical conditions as
used in [14], we introduce a class of product operators, which generalizes Journé’s
class on the product Euclidean space in [17] and covers those studied by Nagel and
Stein in [22]. Our goals are

(1) providing the criterion of the L2(M ) boundedness for these general operators;

(2) proving the sharp endpoint estimates for these general operators on the multi-
parameter Hardy spaces H” (M) and the generalized Carleson measure spaces
CMO?(M).

We now set our work in context. We begin with recalling H” (M ) and CMO” (M )
introduced in [14]. The crucial tool for developing H” (M) and CMO? (M ) is the
existence of a suitable approximation to the identity on one factor M. The con-
struction of such an approximation to the identity is due to Coifman (see [7]). More
precisely, take a smooth function 4 defined on [0, c0),equal to 1 on [1, 2], and equal
to 0 on [0, 1/2] and on [4, 00). Let T} be the operator with kernel 2% (2%d (x, y))
and M} and W be the operators of multiplication by 1/T; (1) and {T;[1/ T P!
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respectively. Set Sy = M Ty Wy Ty M;. The property (1.2) on the quasi-metric
d(x, y) and the conditions (1.3) and (1.4) on the measure p imply that S (x, y), the
kernel of S, satisfy the following conditions: for some constants C > 0,

1

(i) Se(x,y) = 0 ford(x, y) = C27%, and |S¢(x, )| < C ,
Y Y =Y 00 + Ve )

(11) |S (X )_ S (x/ )l <C 2k§d(x’x/)z9
e = Vi (x) + Voi (y)

(ii1) the above property (ii) also holds with x and y interchanged,

) , , ., 22k19d(x’x/)19d(y’y/)19
(iv) [[Sk(x, y) = Sk (x, YD1 =[S (¥, y) — Se (', y)1| <C V) Vo)

V) /Xskoc,y)du(y)=/Xsk<x,y>du<x>=1,

where ¥ is same as in (1.2) and V, (x) := u(B(x, r)).

The above sequence {Si}rcz of operators is said to be an approximation to
the identity. To define the Littlewood-Paley-Stein square function, we also need to
recall the spaces of test functions and distributions on M.

Definition 1.1 ([15]). Let0 < y, 8 < @ where ¥ is the regularity exponent on M
given in (1.2) and r > 0. A function f defined on M is said to be a test function of
type (xo, 7, B, y) centered at xg € M if f satisfies the following conditions

. 1 v,
O [f)] = CV,(xo) + V(x, x0) (r +d€x,XO)) ’

.. d(x,y) 1 4
() 1fx) = fOl = C<r +d(x,XO)> Vi (xo0) + V(x,XO)<r +d€x,XO)> for
allx,y € M withd(x, y) < 55 (r +d(x, x0)).

If f is a test function of type (xo,7, B, ¥), we write f € G(xp,r, B, y) and the
norm of f € G(xg,r, B, y) is defined by

| fIlG(xg.r.p.y) = Inf{C > 0 : (i) and (ii) hold}.

Now fix xg € M we denote G(B, y) = G(xp, 1, 8, ) and by Go(8, y) the collec-
tion of all test functions in G(8, y) with fM fx)du(x) = 0. It is easy to check
that G(x1,r, B,y) = G(B, y) with equivalent norms for all x; € M and r > O.
Furthermore, it is also easy to see that G(f, y) is a Banach space with respect to
the norm in G(B, ).

Let (Ci?ﬁ (B, y) be the completion of the space Go(¥, ¥) in the norm of G(8, y)

when 0 < B,y < 9.1 f € Go(B. y). we then define /1l = G-
o \P,

((0;79(,3, y))/, the distribution space, is defined by the set of all linear functionals
L from &9(,8 , ¥) to C with the property that there exists C > 0 such that for all

£ eGPy,

IL(HI = CIIfIIéM’V).
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Now we return to the product setting and recall the space of test functions and
distributions on M = M| x M;.

Definition 1.2 ([14]). Let (xo, yo) € 1\~4,0 <y, y2,B1,8 <d%andr;,rn >0. A
function f(x, y) defined on M is said to be a test function of type (xo, yo; 71, 72;
B1, B2; y1, y2) if for any fixed y, y' € M, f(x,y), as a function of the variable of
x, is a test function in G (xo, 1, B1, v1) on M. Similarly, for any fixed x, x" € M,
f(x,y), as a function of the variable of y, is a test function in Gz(yo, ra, B2, ¥2) on
M>. Moreover, the following conditions are satisfied:

M 1/l =c : (2555)
! ) G (xo,rl,ﬂl;)/l) = V0o + Vo, y) \r2+ d(y, yo)
(11) ”f(’ )’) - f(’ y )”Gl(x(),rl,ﬁl,yl)

d(y,y) B2 1 ) 72
<C
- (rz—l-d(y,YO)) Vi, (o) + V(yo,y)<r2+d(y,yo))

forall y, y" € My with d(y, y") < (r2 +d(y, y0))/2A2;
(iii) Both properties (i) and (ii) also hold with x, y and G', G? interchanged.

If f is a test function of type (xo, Yo; 71, 2; B1, B2; Y1, ¥2), we write f € G(xo, yo;
1, r2; B1, B2; v1, y2) and the norm of f is defined by

111G o, s05r1 72261 iy = INFIC = (), (i) and (iii) hold}.

Similarly, we denote by G(B1, B2: y1,v2) the class of G(xo, yo; 1, 1; B1, B2;
Y1, v2) for any fixed (xo,yo) € M. Set that f(x,y) € Go(B1, B2 v1,72)

if [ fe,y)du'(x)= [ f(x,y)du*(y) = 0. We can check that G (xo, yo; 1, 2;
M, M

Bi. B2 v1,v2) = G(B1, B; v, y2) with equivalent norms for all (xo, yo) € M and
r1,r2 > 0. Furthermore, it is easy to see that G(B1, B2; ¥1, 2) is a Banach space
with respect to the norm in G (81, B2; y1, ¥2)-

Let éﬁlyﬁz (B1, B2; ¥1, 2) be the completion of the space Go(v1, ¥7; V1, ¥2)
in G(B1, B2; v1, v2) with 0 < B;, yi < ¥, where ¥; is the regularity exponent on

M;,i=1,21f f € Gﬁl’ﬂz(ﬁl,ﬁz; Y1, ¥2), we then define || f|| - ) =
G5, (B1,B2;v1,72)

1flG61.B2:71.72) -
We define the distribution space (Gg,,9,(B1, B2; 1, ¥2)) by all linear func-

tionals L from &7}] 9, (B1, B2 71, y2) to C with the property that there exists C > 0
such that for all f € Gy, 9,(B1. B2; Y1, ¥2),

ILOI=CISl,

91,05 (B, B2 YV1 VD)

We now recall the Littlewood-Paley-Stein square function, the Hardy space and the
generalized Carleson measure space on M = M| x M.
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Definition 1.3 ( [14]). Let {S,ii }k;cz be approximations to the identity on M; and

D =S, — S _.i=12Forfe (G buyi.y)) with0 < By <
Vi, i =1,2,5(f), the Littlewood-Paley-Stein square function of f, is defined by

1/2

S(f)(x, y)= Z Z DO DL DL (), »)Px e Xm0
ki=—o0ky=—00 T1 T2

where [ ki+Ni ,i = 1,2, are “dyadic cubes” in M; in the sense of Christ [4] (see

Theorem é 1 below and also [27]).

Definition 1.4 ([14]). Let max(wl_H91 w;‘fﬁz) <p <10 < B,y < v for

i = 1,2, and Ny, N; are fixed large integers. Let {S,ii }k; ez be an approximation to
the identity on M; and for k; € 7Z, set D,ii = S,ii - Slic,-—l ,i =1, 2. The Hardy space

HP(ZVI) is defined by the set of all f € (&91,@2 B1, B2; 1, )/2))/ such that
HP (M) ={fe(Gﬁl,02<ﬂl, By, v2)) 1 0<pi,yi<vi,i=1,2, S(f)eLP(M')}

andif f € HP(M), the norm of f is defined by ||f||H,,(A71) =[SO p-

Definition 1.5 ([14]). Let max(zwzlf‘_)irlz91 sz;fﬁz) <p=<10 < Bi,yvi < v for

= 1,2, and Ny, N; are fixed large integers. Let {S,’C }k; ez be an approximation
to the identity on M; and for k; € Z, set D = S, — S _;,i = 1,2. The
generalized Carleson measure space CMOP (A7I ) is defined by the set of all f €

(Go1.0,(B1. B2 v1. v2)) such that

||f||CM0p(1\7[)

1
2

1
_Sup{ /QZ > |D1£1D/%z(f)(x»y)|2X11(X)XIZ(y)dul(x)dMZ(y)

IQI kiky [ x LCQ

<00,

where 2 ranges over all open sets in M with finite measures and for each k| and k3,
11, I range over all the dyadic cubes in M| and M, with length £(11) = 2-ki=N
and €(1>) = 27%2=N2 respectively.

To see why these definitions are well posed, and in particular, why fixed large
integers N1 and N, are needed, the crucial tool is the following Carlder6n repro-
ducing formula on M.
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Let {S,ii }k; ez be approximations to the identity on M; and D,ii = S,ii — Sli,-—l’
i =1, 2. Then the Calderén reproducing formula is given by

o0 o
ki+N ky+N
fe= > 3 3 Uy a2
ki=—c0ky=—0c0 TI T
x D1y, (x, Y5V D2, (v, y2 V) DL D () (8N, ylatha)

DD YD mUnuah)

k1:—00k2=—00 I I

(1.5)

x Dy (x1, x1,)Dg, (x2, x1,) D', D2ty (f) (x1,. X1y),

where the series converges in both the norm of (0}91 9, (B1s Bys ¥1» vy) With 0 <
ﬂ < Bi < z?,,yl,y, < 9,0 = 1,2, andthenormopr(Ml X Mp),1 < p < oo.

See [14] for the existence of operators D! ki > D2 ko> D! k> D2k2 and the choice of
fixed N1 and N;.

It was well known that this kind of identities is a powerful tool in classical
harmonic analysis. See [1] and [20] for the classical case and [5] for spaces of
homogeneous type. Applying the above Carlderén reproducing formula, in [14] it
was proved that for max (2(02%01 Za?z%ﬂz) <p<l,

(HP(M)) = CMOP (M).

In particular,
~ \/ ~ ~
(HI(M)) — CMO' (M) = BMO(I).
Now we are ready to introduce a class of general singular integral operators on

M = M| x M, and state our main results.
Let Cg (M7) denote the space of continuous functions f with compact support

such that
oy = sup LOZION
171 xyeMiazy  dix, y)T

and Cg(Mz) is defined similarly. And let Cg (1\7 ),n > 0, denote the space of
continuous functions f with compact support such that

) | f(x1,x2) — f(y1, x2) — f(x1, y2) + f(y1, y2)l
||f||n = sup d < 00
X1EYLX2EY 1(x1, yD)da(x2, y2)"

We first consider one factor case. A continuous function Kj(xy, y;) defined on
Mi\{(x1, y1) : x1 = y1} is called a Calderon-Zygmund kernel if there exist constant
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C > 0 and a regularity exponent &1 € (0, 1] such that

@ |Ki(x1, y1)| <CV(x,yn™h

di(yr, yPD\*! _
(b) |K1<x1,y1>—K1<x1,y;)|50(71 Vi, yn™!
i : di(x1, y1)
if d ’/<1x1,y1;
if di(y1,y)) < 72141
/ dl('xlv-xi) & -1
© IKi(x1,y1) — K1,y = Cl ———< ) V(x1,y1)
» : di(x1, y1)
i d (e x) < 1001, y1)-
if di(xy,x)) < “2A,

The smallest such constant C is denoted by |K1|cz. We say that an operator 77 is
a singular integral operator associated with a Calder6n-Zygmund kernel K if the
operator 77 is a continuous linear operator from Cg (My) into its dual such that

(Tif.g) = / / G K G, yn) £ Ot )i (1)

for all functions f, g € Cg (M) with disjoint supports. 77 is said to be a Calderén-
Zygmund operator if it extends to be a bounded operator on L2(M;). If T} is a
Calder6n-Zygmund operator associated with a kernel K1, its operator norm is de-
fined by [|Tillcz = IT1ll 212 + [Kilcz- _

Now we introduce a class of the product singular integral operators on M. Let
T : Cg M) — [C(‘)’O(M )]’ be a linear operator. T is said to be a singular integral
operator if there exists a pair (K1, K) of Calder6n-Zygmund valued operators on
M, and M1, respectively, such that

(g®k,Tf®h) = / / gk, Ky (xr, ynh) fndu (endp! (vr)

forall f, g € Cg(Ml) and i, k € Cg(Mz), with supp f N supp g = & and

k®g.Th® f) = / / () (k. Ka(xz, yo)h) f )d i (x2)d i (32)

forall f,g € CJ(M>) and h,k € CJ(M,), with supp f N supp g = &. More-
over, || K;(xi, yi)llcz,i = 1,2, as functions of x;, y; € M;, satisfy the following
conditions:

Q) I1Ki(xi, yi)llcz < CV(xi, y)~ "
() 1K (xi, yi) — Ki(xi, y)llcz < C(
di(xi, yi)

if di()’i,yi,) =< T;

di (yi, y})

&
Vxi, y) ™!
di(xi,yi)> i
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di (xi, )\ _
(iii) ||Ki(xi,yi>—Ki<y;,yi)||cz56(—‘ Lo ) V(xi, i)t
di (x;, yi)
di (x;, yi)
2A; )

We remark, as mentioned, that the above class of the product singular integral op-
erators includes those introduced by Journé in [17] and studied by Nagel and Stein
in [22]. _

Suppose that T is such a product singular integral operator on M. T is said
to be a product Calderon-Zygmund operator on M if T extends to be a bounded
operator on L2

We now describe how a product singular integral operator 7 acts on bounded

'7(M ) functions (denote by C;/ » (M)). Following Journé in [17], we first define the
operator 7 by the following

(81 ®82.TH® fr) =g, (g1, T1fL) f2)

for fi,g1 € CJ(M)) and f», g» € CJ(M>). Note that when g; € Cg,(M;) and
f1 € Cg(Ml), the inner product (g1, 71 f1) is well defined. Moreover, (g1, 71 f1)
is a singular integral operator on M, with a Calder6n- Zygmund kernel
(g1, T1 f1)(x2, y2) = (g1, K2(x2, y2) f1). Therefore, for g» € Cg(M>) and f> €
CZ(MZ), (g2, (g1, T1 f1) f2) is well defined. One defines (g», T2f2 similarly for
g € CgO(Mz) and f», € C Z (M>). Using these definitions, we can give a meaning
of the notation 71 = 0. More precisely, 71 = 0 means (g1 ® g2, T'1) = 0 for all
g1 € COO(M1) and g € C o(M2), that is,

if di(x;,y)) <

f / g(x1)g(x2) K (x1, x2, y1, y2)dp' (x1)dp* (x2)dp! (y1)dp? (y2) = 0.

Similarly, 77(1) = 0 is equivalent to (g1, (g2, T2 f2)1) = 0 for all g1 € CgO(Ml)
and f>, g € C (M>), that is, for g; € C 0(Ml) g € C o(M>) and almost every-
where y; € Mg,

f / g(x)g(x2) K (x1, x2, y1, y2)dp (x1)dp* (x2)dp! (y1) = 0.

While T71*(1) = 0 means (g, T» f2)*1 = 0 in the same conditions. Interchanging
the role of indices one obtains the meaning of 7>(1) = 0 and 7>*(1) = 0.

We also need to introduce the definition of weak boundedness property (denote
by WBP). We begin with the one factor case. Let T be a singular integral operator
on M; and let Ay, (8,x?,r1), 6 € (0, ﬁl],x? € M; and r; > 0, be a set of all

fe Cg(Ml) supported in B(x(l), r1) satisfying || flloco < 1 and || fls < rl_‘s. We say

that 7 has the weak boundedness property if there exist 0 < § < ¥ and a constant
C > 0 such that for all x(l) € My,r1 >0,and all ¢, ¥y € Ay, (8, x(l), r),

(T1¢, ¥)| < CVr (x).
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Similarly we can define the set Ay, (8, xg, r2),6 € (0, 2], xg € M, and the weak
boundedness property for a singular integral operator on M.
In the following, we define the weak boundedness property in the product set-

ting.
Definition 1.6. Let T be a product singular integral operator on M. T has the WBP
if
KTig" v licz S Vi (67) forall ', y' € Ay, (8,27,r1),  (1.6)
(T26%, ¥ cz S Vi, (63) forall %,y € Ay, (8, %3,72).  (1.7)

It is easy to see that if T satisfies (1.6) and (1.7), then
(T' ® % ¥ @ Y| S Vi ) Vi (39)

for all q§1, wl € Ay, (8, x?, r1) and ¢2, wz € AMZ(S,xg, rp).

We point out that if 7" is a product Calderén-Zygmund operator on M ,then T
has the weak boundedness property. We denote T by the partial adjoint operator of
T with the kernel K (y1, x2, x1, y2).

Main results of this paper are the following:

Theorem 1.7. Let T be a product singular integral operator on M.Then T and.] T
are both bounded on L*(M) if and only if T1, T*1 T1, and (T)*l lie in BMO(M)
and T has the weak boundedness property.

Theorem 1.8. Let T be a product Calderon-Zygmund operator on M and

max (w1 o wz‘f 192) < p < 1.Then T extends to a bounded operator from H? (M )

to itself if and only if (T*)1(1) = (T*)2(1) = 0.

Theorem 1.9. Let T be a product Calderén-Zygmund operator on M and

2w 1 2&)2
max (2w1 T Tt 192) < p < 1. Then T extends to a bounded operator from

CMOP (M) to itself, particularly from BMO(M) to itself, if and only if T1(1) =
T,(1) = 0.

Before ending this section, we would like to describe our strategy of the proofs.
To show the necessity of Theorem 1, we will employ an approach which is differ-
ent from the one given by Journé [17]. Note that Journé obtained this implication
by showing that the L? boundedness implies the L> — BMO boundedness. For
this purpose, he established a fundamental geometric covering lemma. As a conse-
quence of this implication, together with an interpolation theorem and the duality
argument, Journé proved that the L2 boundedness implies the LP, 1 < p < oo,
boundedness. We will prove this implication by applying the Hardy space theory
developed in [14]. More precisely, we first show that the L? boundedness implies
the H' — L' boundedness. We would like to point out that the H' — L' bound-
edness was obtained in [14] under the cancellation conditions used in [22]. How-
ever, this is not available for the current situation. To show that the L2 boundedness
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implies the H' — L' boundedness without assuming any cancellation conditions,
we will apply an atomic decomposition for H”(M). For this purpose, following
Pipher’s idea [25], we first establish Journé-type covering lemma and develop an
atomic decomposition in our setting. Applying an atomic decomposition and a
similar idea as in [9], we conclude that L? boundedness implies the H? — L”
boundedness, partlcula.rly, H' - L boundedness. From this together with the
duality between H'(M) and BMO(M ) we obtain the L°° — BMO boundedness
and hence the desired necessary condition of Theorem 1 follows. Moreover, by an
interpolation theorem proved in [14], we also conclude that the L? boundedness
implies the L”, 1 < p < 0o, boundedness.

In [17] the proof of the sufficiency of the classical product 7'1 theorem was
decomposed in three steps. In the first step, Journé claimed that if 7 satisfies
Ti(1) = T;*(1) = 0 and has the weak boundedness property, then it can be viewed
as a classical vector valued singular integral operator acting on C;°(R) x H and the
L2-boundedness of such an operator follows from the classical case. The second
step is the decomposition of an operator T having the weak boundedness properties
and T(1) = T*(1) = T (1) = T*(1) = 0 as the sum of two operators S and T — S
with both the weak boundedness properties and S>(1) = S5(1) = (T — 8)1(1) =
(T — 8)7(1) =0. The L? boundedness of T is then a consequence of the first step.
The last step is, as in the classical one parameter case, to construct the para-product
operator Wp, for b € BMO(R x R) so that W1 = b, W1 = Wbl = Wbl =0.1If

onesets § = T—Wr1— Wi, — Wz, — W%, , then S(l) = S*(l) = S(l) = S*(l) =

T*1°
0. Moreover, all para-product operators W, Wb, Wb and Wb are in Journé’s class
and bounded on L2(R x R). See [17] for all details. We will develop a new ap-
proach to prove the sufficiency of Theorem 1. To describe ideas of this approach,
we first outline a new proof for the classical 7'1 theorem on Mj. As in the classical
case, we consider the following bilinear form

(g, Tf)=< Y DiDje). T Z Dka(f)> Y (Dj(s). D;T Dy Di(£)).
J.k

j=—00 k=—00

The original proof of the classical 7'1 theorem includes two steps. In the first step, if
T is a singular integral operator having the weak boundedness property and 7' (1) =
T*(1) = 0, then D;T Di(x, y), the kernel of the operator D;T Dy, satisfies the
almost orthogonal estimate. From this together with the Littlewood-Paley estimate
on L? implies [(g, Tf)| < C| fll2llgll2 and hence the L? boundedness of T follows.
The second step is to reduce the general case to the first case in terms of the para-
product operator. Observing that without assuming any cancellation condition on
K the following almost orthogonal estimate for j < k still holds

’//[DJ-(x, u) — Dj(x, y)IK (s v) Dy (v, y)dpt (e (v)
1 2-Je

< 2k . ,
Bl Vo-i () + Vo () + V(x, y) @77 +d(x, y))*
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and similarly for k& < j. This leads to the following decomposition:

(8. Tf) = /D (g)(X)//[D (x,u) = Dj(x, y)]1K (u, v)
J<k

x Di(v, y)du' )du' ) Dy (f)(y)du! (n)du' (x)

/D (g)(x)//D (e, ) K (u, v)
k</

x [Dy (v, y) — Di(x, Y)ldp' yd ' () Dy (f) (y)dp (v)dp (x)

fD (g)(x)//D (e, VK (u, v)
J<k

x Di(v, y)du' )du' ) Dy (f)(du! (du' (x)

/D (&) (x) //D (x, u)K (u, v)
k<J

x Dy (x, y)dp' ydp' ) Dy () (y)dp' (v)dp' (x).

The almost orthogonal estimates, as mentioned above, together with the Littlewood-
Paley estimate on L? imply that the first two series are bounded by some con-
stant C|| f|l21Ig|l2. To see that the last two series are also bounded by C|| f2]Igll2,
we only consider the third series and rewnte it as f Yk Sk(g)(y)Dk(T*l)(y)

Dk( f )(y)du (y), where Sk =y . i<k D; D The Carleson measure estimate to-
gether with Littlewood-Paley estlmate yields

' / Z§k<g)(y>Dk<T*1)(y)5k<f>(y>du1(y)‘
k

5{ / Z|§k(g)()’)|2|Dk(T*1)()’)|2dﬂl(Y)}2: / Z|5k(f)()’)|2dﬂl()’)}2
k k
<ClIfl2Nglz.

This new approach can be carried out to the product case. Indeed, by the Calderon’s
reproducing formula in (1.5) on the product M, we begin with the following bilinear
form

(&, Tf) = ZZZZZZZZM((U)MU)u((l))u(l)

N
x D k;D k;(g)(x(ll)’ax(ﬂ)/)

1 n2 1 12 1 A0
X (Dk; Dk;’ T Dy, Dkz)(x(ll)’v X2y xp1,x72) Dl D2, (F) (g1, xp2).
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We would also like to point out that
(D;; D]i, TD; Di) = (Dlli, <D]f;, Ki(x1, y0)DR,) Dy,

2 1 1 2
= (Dk;, (Dk; 5 KZ(-x27 Y2)Dkl>Dk2)’

which will be crucial for this new approach.

Our strategy of the proof of the sufficiency of Theorem 1 uses a similar de-
composition as one parameter case. However, some new mixed situations have to
be taken into account. More precisely, except applying the almost orthogonal es-
timate and Carleson measure estimate on M; x M>, one also needs to consider
two more mixed cases: the almost orthogonal estimate on one factor, say M1, and
Carleson measure estimate on M3, and the Littlewood-Paley estimate on one fac-
tor, say Mj, and Carleson measure estimate on M. See more details in Subsec-
tion 2.2.

Note that in [17] Journé proved that if T is a convolution operator and bounded
on L2, then T admits a bounded extension from BMO(R x R) to itself. He men-
tioned without proof that if 7' is a Calder6n-Zygmund operator and 77 (1) =7>(1) =
0, then THy, T H; and T H H, are Cadelr6n-Zygmund operators, where H;, Hj
and H| H, are the Hilbert transforms and double Hilbert transform. From this to-
gether with the characterization of the product BMO(R x R) in terms of the bi-
Hilbert transform, the boundedness of T on BMO(R x R) follows. In our setting,
however, his method is not available. In this paper, the L? theory and the duality
argument between H ”(M) and CMO”(M) will play a crucial role in_the proofs
of Theorems 2 and 3. More precisely, it is known that L2(M YN H? (M ) is dense
in HP (M ). Therefore, to show that T f is bounded on H? (M), it suffices to con-
sider f € L2(M) N HP(M) This argument for space CMOP (M) is no long true.
However, L2(M ) N CMO? (M ) is dense in the weak topology (H”, CMO?). Then
applying this density argument together with the duality argument implies the suf-
ficiency of Theorem 3. We will show the necessity of Theorem 3 first and the same
conclusion for Theorem 2 follows from the density argument and the duality argu-
ment. This approach is new even for the classical case.

The paper is organized as follows. In Section 2, we we prove Theorem 1. In
Subsection 2.2, we prove the necessity. Journé-type covering lemma and atomic
decomposition are provided in Subsections 2.2.1 and 2.2.2. We prove that if T is
bounded on L? then T extends to a bounded operator from H” to L?, from L>®
to BMO, and from L? to itself in Subsections 2.2.3, 2.2.4 and Subsection 2.2.5,
respectively. The sufficiency of Theorem 1 is proved in the Subsection 2.3. The
proofs of Theorem 2 and 3 will be given in Section 3. In the last section, we will
point out that all results in this paper can be carried out to the case with arbitrarily
many parameters. We, however, state these results only and omit the details of the
proofs.

Throughout the paper, A ~ B means that the ratio A/B is bounded and
bounded away from zero by constants that do not depend on the relevant variables
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in Aand B. A < B means that the ratio A/B is bounded by a constant independent
of the relevant variables.

2. Proof of Theorem 1

In this section we prove Theorem 1.

2.1. Necessity of Theorem 1

To show the necessity of Theorem 1, we will employ the Hardy space theory on M
developed in [14]. As mentioned in Section 1, we first show that if 7" is a Calder6n-
Zygmund operator on M then T extends to a bounded operator from H p(M ) to
LP(M) for p < 1 and is close to 1. This, particularly for p = 1, together with the
duality (L', L) and (H'!, BMO), implies that T is bounded from L> to BMO. To
achieve this goal, the main tool we need is an atomic decomposition for H?” (M ). To
this end, as in the classical case, we shall first provide Journé-type covering lemma
on M, for which we turn to next subsection.

2.1.1. Journé-type covering lemma

We first need a result of Christ.

Theorem 2.1 ([4]). Let (M, p, 1) be a space of homogeneous type, then, there ex-
ists a collection {I(iC CM:kelZ,uace Ik} of open subsets, where 1% is some index
set,and C1, Cy > 0, such that

(i) n(M\ U, 15) = 0 for each fixed k and I (" 1y = @ if @ # B;
(ii) for any a, B, k, L with | > k, either Iy C 1§ or I (15 =

(iii) for each (k, ) and eachl < k there is a unique B such that I(ff C Ifl; ;
(iv) diam(I¥) < C127%;

(v) each I(ff contains some ball B(z’é, C27K), where zg eM.

Note that Carnot-Carathéodory spaces are spaces of homogeneous type. Therefore,
we can think of ¥ as being a dyadic cube with diameter rough 2% centered at z£ .
As aresult, we consider C I to be the cube with the same center as I} and diameter
Cdiam(lé‘). To simplify notations, we will call / dyadic cubes and denote the side
length of 1 by £(1).

Let {Iff C M; : ki € Z,v; € I} be the same as in Theorem 2.1. We call
R = Ifl] X 1522 a dyadic rectangle in M.Let2 C Mbean open set of finite measure
and M, (R2) denote the family of dyadic rectangles R C € which are maximal in the
ith “direction”, i = 1,2. Also we denote by M (L) the set of all maximal dyadic
rectangles contained in 2. For the sake of simplicity, we denote by R = I x I
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any dyadic rectangles on M| x M,. Given R = I} x I € M (), let E = 72(11)
be the biggest dyadic cube containing /; such that

- 1 -
u((h x [)NQ) > 5#(’1 x D),

where ;1 = 11 X uy is the measure on M. Similarly, Given R = I} x I € M»(),
let I1 = I (1) be the biggest dyadic cube containing /1 such that

~ 1~
u (1 x [)NK) > 5#(’1 x Ip).

For I; = Ifi" C M;, we denote by (I;), k € N, any dyadic cube Iglf'_k containing
Ifi" ,and (l;)o = I;, where i = 1, 2. Moreover, let w(x) be any increasing function
such that Z;.O:o jw(Co277) < oo, where Cy is any given positive constant. In
applications, we may take w(x) = x? for any 8 > 0.

The Journé-type covering lemma on M is the following:

Lemma 2.2. Let 2 be any open subset in M with finite measure. Then there exists
a positive constant C such that

> (52) < cu@ @)
D)

R=1I, XIzEMl(Q)

and

(1))
R — | < Cu(R2 2.2
E w(R)w (Z( ) n(€2). (2.2)

R=1 XleMz(Q)

Proof. 1t suffices to prove (2.2) since (2.1) follows similarly. Following [25], let
R =1 x I, € M(Q) and for k € N let

Ak =U{hL: N x I € Ma(Q) and Ty = (I)x1}

where we use (/1)1 to denote the father of /; in the setting of dyadic cubes in M.
Hence, (I1);—1 means the ancestor of I at (k — 1)-level. We also denote the set

A(Q)={I; C M, : dyadic, and 3 adyadic I € M;, such that I} x I e M,(Q)}.

We rewrite the left side in (2.2) as

(1) o)
u(R)w (—A) = mi1(dh) 2 ()w < >
R=1I, X;MZ(Q) €(1y) Z Z Z o)

11€eA(2) =1 Ip: [2€A1 k
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Note that from the definition of Ay, x, we have that for k € N and Tl = (IDk-1,

) < c2=k_ This yi
W = C27%. This yields

) M(R)w<%)§ Y mmY wezt Y

R=11><12€M2(Q) I]GA(Q) k=1 12: I2EA[ k
! (2.3)

< Y mUn Y w(C2 (A b,

L eA(Q) k=1

where the second inequality follows from the fact that all 1> in Ay, ; are disjoint
since I, are the maximal dyadic cubes and I = (I1)— for each fixed k € N. We
now estimate o (Ay, x). For any x € Ay, x, by the definition of Ay, i, there exists

some dyadic cube I, such that I} x I, € M7 (), xp € I, and Tl = (I1)k_ for
some k € N. Thus, by the definition of 7y, ((I)k—1 x LNKQ) > Fu((I)k-1 x I)

and ((INk x LN Q) < (e x ). Now set Ef(Q) =U{L : I) x I, C Q},
then from the last inequality above, we have

1
pw(UDk x (N Eqy,)) < EM((Il)k x D),

which implies that py (I N E,) < %Mz([z) and hence (I N (E(]l)k)c) >
%,uz(lz), where we denote (E(j,),)" = Ej,\E(,), . This gives

Mpr2(xe, \E(,l)k)(m) > 5

and hence Ay,  C {xz e M, : MHL’Z(XEII\E(Il)k)(XZ) > %},Which implies that

1
w2 (Ap k) < Mz({m €My Mypp» (XE,I\E(Il)k) (x2) > —}) 2.4)

2
< Cu2(ER\Eu,),

where we use My > to denote the Hardy—Littlewood maximal function on M>.
Thus, combining the estimates of (2.3) and (2.4), we obtain

13104 s
,u(R)w( i ”) <C Y )Y wC2 ™ pua(ER\Eq,),)-

R=I x Le My (Q) e () LEeAR) k=1
Next, we point out that for each k € N,
P2(En\E)) = m2(Ep\Eqmy,) + -+ w2(Eay \Euyy,)
<C > 12 (ER\E 5,

N T dyadic
I gg(ll Vs Ix(ET\E(T)l )Q
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where the last inequality follows from the definition of (/1)x. As a consequence,

am)
R - ——
2 R (wo

R=I1 xLeM3(R2)

(o)
<C Y ) wc2™ > ma(EP\E 5,)-
11eA(R2) k=1 5 IN:gyadic
LISy, [x(ET\E(T)l)CQ

Now interchanging the order of the sums we can obtain that the above inequality is
bounded by

(o)
- 7 pi (1)
cy we2™ Y mumENER) Y 1
k=1 T: dyadic 1y dyadic wi(l)
1~><(EI~\E(1~)1)CQ nerGuyy.

) k
_ ~ mi (1)
<Cy wC2™Y Y m(DuaEN\E,) =
k=1 I~:dyadic j=1 1j:dyadic lu“l(l)

7x<El~\E(7)l)c9 nelgap;,

Note that for each j = 1,...,k, Z ‘;1—((%1 < C, where C is a constant
11 : dyadic 1

nelgap;,

independent of /1, I. Hence,

o - e
3 u(R)w( 1(A1;>§C2kw(c2_’“k) Y mDwa(EREg,)
k=1 I

R=I1 xLeM;,(2) El(ll I dyadic

I~><(EI~\E(7)1 )

o
< C ) kw(C2H)u(Q) < Cu(Q).
k=1
since I X (ET\E(T)I) are contained in {/ dyadic, I x (E,N\E(,N)l) C 2} and are
disjoint. O

The proof of Lemma 2.2 is concluded. This covering lemma will be a key
tool to obtain an atomic decomposition for H? (M), which will be given in next
subsection.

2.1.2. Atomic decomposition

In this subsection we will apply Journé-type covering lemma to provide an atomic
decomposition for H? (M). We point out that the atomic decomposition provided
in this subsection is different from the classical ones. More precisely, we will prove
an atomic decomposition for LY(M) N HP (M) for any 1 < g < oo, where the
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decomposition converges in both L4 (M )and H? (M ) norms. In particular, the con-
vergence in both L*(M) and HP (M ) norms will be crucial for proving the bound-
edness of Calderén—-Zygmund operators from H?” (M ) to LP (M ).

Suppose that max (wl“jrlﬁl w;’fﬁz) <p<1land1 < g < co. We first define a

(p, g)-atom for the Hardy space H? (M ) as follows.

Definition 2.3. A function a(x,x7) defined on M is called a (p,q)-atom of H P(M )
if a(xy, x») satisfies:

(1) supp a C €2, where Q2 is an open set of M with finite measure;

Q) llalle < p)/a=1/r;

(3) a can be further decomposed into rectangle (p, g)-atoms ag associated to dyadic
rectangle R = I x I, satisfying the following

(i) there exist two constants C; and C7 such that supp agr C C111 x Ca1p;
(ii) fMl ar(x1, x3)dx; = 0 forae. x € M and sz agr(x1, x2)dx, = 0 for a.e.
X1 € Ml;
1
(iii-a) for 2 < ¢ < 00, a = Ypemar ad  (Crerme larli)”? <
w()a-1r,

(iii-b) for 1 < ¢ < 2,a = D ReM (@) 4R t D Rer,(s) @R and for some § > 0,
there exists a constant C, 5 such that

1/q
M2(12)> (“1(11)> 1/g—1/p
larll?, lagll? <Cyq,51(2) .
(Re/\;(sz)(m(b) o Re/\;z(ﬂ) wi(lp) R ) a0l

We remark that, when M = R" x R™, a (p,2)-atom with the conditions (i), (ii)
and (iii-a) (¢ = 2) was introduced by R. Fefferman [9]. Note that the condition in
(iii-b) is new.

The main result in this subsection is the following:

Theorem 2.4. Suppose that max(wlw1 ots;) < p <1 <q < oo Then

feld (M YN HP (M ) if and only if f has an atomic decomposition, that is,

o0
f= Z YSTOR

i=—o00

where a; are (p, q)-atoms,y_; |A;|P < 0o, and the series converges in both H”(M)
and L9 (M). Moreover,

1
p
1Lf W gz iy A inf {Zw} f=) hai g,
i i

where the infimum is taken over all decompositions as above and the implicit con-
stants are independent of the LY(M) and HP (M) norms of f .
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Proof of Theorem 2.4. Let f € L1 (1% YN HP (1\71 ). We prove that f has an atomic
decomposition. The key tool to do this is the following Calderén reproducing for-
mula in (1.5).

[, x) = Z Z D0 mnpa(h)
kl_—ookz_—oo I| 12 (25)

x Dy, (x1,x1,) D}, (x2, xb)D‘k1 DZkz(f)(xIpsz)

where the series converges in the norm of L? (M ),1 <g <ooand H p(l\} ). Note
that as a function of xp, D,il (x1, xg,) is supported in {x; : dj(x1, x1,) < C2~kit+Ny

and similarly for D,%z (x2, x1,). For each k € Z, let

Q= {(x1, x2) € My x Ma : S(f)(x1,x2) > 28,

where §(f) is similar to S(f) but with D,ll D,fz replaced by l~)1kl l~)2k2. More pre-
cisely,

N o o o 1/2

S(H@L D=1 > 3 YN DN D2y (f) Gt x2) 1 Xy (1) iy (x2)
klz—ookzz—oo Il 12

By a result in [14], ||S(f)||p A ||S(f)||p for max(wﬁﬂl w;‘fﬂz) < p < oo and

therefore, || 1l ;70 ity ~ I1SCH - ~
Set = {(x1,x2) € My x My : M (xq)(x1, x2) > C}, where M is the
strong maximal function on M and C is a constant to be decided later. Let

1 1
Bi={R=1 xL:u(QNR) > EM(R)’ and u(S2+1 N R) < E'M(R)}'

o0 o0 o0
Rewrite the summation »_ Y > > in(2.5)as Y > . Then we
ki=—oc0ky=—00 I} I k=—00 R=I|xI,€By,
have
o0
fOnx) = Y ha(x, x),
k=—00
where
a(x1, x2)

1
= >, mUnuab)Dy (., xp) Dy, (xo. %) Dk, D2y (£ 1)
k R=Ixl,€By

and

M(ﬁk)l/P—l/q
q

= = 2 172
}\kZC { Z ‘lelDzkz(f)(-xll’xlz)XR('a')‘ }

R:Il X]zEBk
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when?2 < g < oo,andfor 1 < g < 2,

() /P12,
2

= = 2)1/2
)\'k:C‘{ Z ‘lelDzkz(f)(xllvxlz)XR('a')‘ }

R:Il X12€Bk

Next, using the duality argument we obtain that || Z|k|> ¢ Mak(xr, x2)llg — 0 as
¢ — oo, which yields that the atomic decomposition Y o
verges to f in the LY norm.

To see that gy has compact support by choosing c sufficiently small, we can
conclude that suppay C €2 since D (x1 xy,) and Dk (x2, x1,), as functions of
x1 and xj, respectively, have compact supports with diameters being equivalent
to 27%1 and 27%2, respectively. This implies that a; satisfies the condition (1) of
Definition 2.3.

We now verify that a; satisfies (2) of Definition 2.3. By the duality argument,
we have

—oo Meak(x1, x2) con-

> wR)DY (. x1) D}, (. x1,) Dl D2y (f)(xry. x1,)
R:IIXIQEBk 4

=c|{ ¥ BBl aeeo) ]

R=I1xeBy

This yields that when 2 < g < oo, [laklly < ,u( ) Ya=1/p apq forl < g < 2,
since ay is supported in Qk, applying Holder’s inequality yields

1/g—1
lakllg < Nlallap () /971 < Cpa () V177,
As a consequence, we get that gy satisfies (2) of Definition 2.3.

It remains to check that ay, satisfies the condition (3) of Definition 2.3. To see
this, we can further decompose a; as a;y = Zﬁe ME) W R where

1
@ 7 (x1,32) = — > 11 () p2(I2) Dy, (x1, x1) DR, (x2, x1,)
R=I,xLeBy, RCR

x D, D2, (f) (X1, X1,)-

Similar to ay, we can verify that suppa, x C C R and by the facts that

/ Dy, (x1, xp)dpt (x1) = / D, (x2, x1,)d i (x2) = 0,

/ akﬁ(x],xz)dul(xl):0 forae. xp € M,
M,
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and
/ a, ﬁ(xl,xz)d,uz(xz) =0 forae. x| € M,
My,

which yield that the conditions (i) and (ii) of (3) in Definition 2.3 hold. Now it’s
left to show that ay satisfies the conditions (iii-a) and (iii-b) of (3).

For 2 < g < oo, applying the same argument for the estimates of |a|l; with
2 < g < oo yields

1/q

> lazlip  =w@otetr,
ﬁEM(ﬁk)

which concludes that the condition (iii-a) holds. For 1 < g < 2, by applying
Holder’s inequality and Journé-type covering lemma with §' = %, we can get
that (iii-b) holds. This implies that we obtain a desired atomic decomposition for f.

To prove the converse, it suffices to verify that there is a positive constant C
such that

”S(‘l)”Lp(/V[) <C (2.6)

for each (p, ¢)-atom a of HP(M) with 1 < g < oco.
To this end, fix an (p, g)-atom a with suppa C and a = ZRGM(Q) ag.

Set @ = {(x1,x2) € M : Mi(xa)(x1, x2) > 1/2} and Q = {(x1,x) € M
M (xg)(x1, x2) > 1/2}. Moreover, for any R =1 x 12 € M(), set R

LhixhcC /\/11(52) Then w(RNQ) > & . Similarly, set R=T1 xbhc MxQ).

Then u(R N ) > M

Now let C be a constant to be chosen later. We decompose || S(a) k4 Lo (i) as

/ L S@ (1 x)Pdu () d ()
Urem () 100CR

+ /  S@0n, x)Pdp )dp(n) = A+ B,
(URGM(Q)IOOCR)C

Applying Holder’s 1nequahty, the estimate of A then follows from the L? bound-
edness of S and the L2 norm of the atom a as in (2) of Definition 2.3. Using the
decomposition of a as in (3) of Definition 2.3 and the fact p < 1, B is bounded by

/ . SGar)(xr, x2)Pdp! (e)dpt ().
ReEM(Q) (100CR )¢

Then we split (1006??\)6 into two parts (1006}\1)6 x M, and M| x (10067\2)6 and
denote these two parts by By and B,, respectively. It suffices to estimate B since
the estimate for B, is similar by the symmetry. To estimate Bj, we continue to split
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it into two cases (1006?1)0 x 100C I, and (100671)6 x (100C I,)€ and denote these
two cases by B11 and By,. Applying Holder’s inequality on the second variable and
the vector-valued Littlewood-Paley estimate, B is bounded by

e S el £
Z Ha() x1¢100CT, Mz[ Z | M, fa (10 31)

ReM(Q) kj=—00

1 2% 2 r/e 1
x ar(n, xdp' )] dn (xz>] dp (x1).

Using the cancellation condition of the atom ag and writing | f M D,il (x1, y1) X

arOy1, x2)du (y0)| = | [3,IDg, 1, y1) = Dy (x1, z0lar (yi, x2)d ' (y1)], where
z1 is the center of I, and then applying the smoothness conditions on D,l] imply

that | [y, Dy, (¥1, yDar(y1, x2)d' (y1)| is bounded by

1
Cc2k 01 p 10 ( )/ a . x0)|d 1 .
(I1) Vot (x1) + Vot (1) + V(x1,21) ) I lar(y1, x2)ldp” (y1)

Inserting this estimate back yields that B is dominated by

o~ l—p
- AN\ (V(zy, €(1y))
C R)\—r/a P (_A) '
RE;(Q)M( ) ”CZRHLQ(M) ) ( wi(Ih) )

4 01(1-p)
Note that ( M) <C (M> 1 . The above quantity is bounded by

n1(l) - o)
B N p1—01(1—p)
C > u®'"Pag)?, - (—A 27
REM(R) Laan \ e(1y)
This yields that when 2 < g < oo,
_ (1)
B <C lagl?, = w(®)! f’/‘fw(—A :
Re%:(ﬂ) La) (1)
where w(x) = x* with o = p; — Q1(1 — p). Note that « > 0 since p > QTG—)i-lﬂl'

Then, applying Holder’s inequality and the Journé-type covering lemma gives

r/q o) I=p/q
anC< > ||aR||‘;q(M)) ( > M(R)w<ﬁ))

ReM(2) ReM(Q2)
< Cp ()PP < C.
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_4q_ q

. — L~ _ =~ — .
For1 < g < 2,settingw = w2, w = wi» and w = wr and applying the same
estimate as above imply that

- )
Bu<C ) llarlly, ;R Ww(—)

RV e(h)
__(eh) 1= pra— ( €1)
<C lagll?, ~ (—A> (R)!=P/4 (—A>
Re;(m “Kleadn® ey ) - e

Applying Holder’s inequality and Journé-type covering lemma implies
rlq l=p/q
~ (L) ~ (€1)
By <C ( > larld, o w (T)> ( Y wRT (T))
REM(Q) LD\ e ReM(Q) e
< Cp@P 1 @) < C.

We now estimate Bp,. Using the cancellation condition of the atoms ag, we write
B 12 as

Lk
/ _A/ ~ 3 ]/N[D,;(xl,yl)—D,;(xl,zm
ReM(R) Y x1€100C T Jxa 100Ch | |\ "o jy=—00 ' /M
q r/q
x [DE, (2. y2) — D} (x2, 22)lar (31, yz)dul(yﬂd,uz(yz)‘ dxydxa,

where the constants 751 and 752 satisfy 27k~ E(Tl) and 27%2 ~ ¢(I), respectively.
Applying smoothness properties of D,il (x1, y1) and D,%z (x2, y2) yields that By, sat-
isfies the same estimate as By as in (2.7). This concludes the proof of Theorem 2 4.
For more details of the proof, we refer the readers to the long version of this pa-
per [13]. O

21.3. HP — LP boundedness

In this subsection applying the atomic decomposition provided in the previous sub-
section, we prove that if T' is a product Calder6n-Zygmund operator, then T’ can be
extended to a bounded operator from H” (M) to L?(M). Note that if T is a product
Calder6n-Zygmund operator then K (x1, y1, X2, y2), the kernel of T, satisfies the
following estimates

d; (yi, y))
d;i (xi, yi)
if d; (y;, ylf) <d;(xj, yi)/2A;,fori = 1, 2. From this it is easy to see that

&
| Ki (xi, yi) — Ki(xi, y)lp2 < C( ) V(xi, yi) !

|K (x1,y1,X2,y2) — K (x1,y].X2,y2) — K (x1, y1, X2, ¥5) + K (x1, ], X2, ¥5)|

dl(yl,yi))"’” _1<dz(yz,y§))€" 1
<Cl———X) V@, y) | —= | V(x2, »)
<d1(x1,Y1) ek dr(x2, y2) Y

if di(y1, y)) < di(x1, y1)/2A1 and da(y2, y5) < d2(x2, y2)/2A;.
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The main result of this subsection is the following:
_w

wH—lZJ wr+s

erator from HP? (M) to LP(M). Moreover, there exists a constant C such that

||Tf||Lp(M) = C||f||Hp(M)

Proof Fix max(wl_wl wzafﬁz) < p < 1. Since HP(IVI) N LZ(J\7I) is dense in

HP (M ), it suffices to prove that there exists a positive constant C such that for
every f € HP (M) N L2(M),

Theorem 2.5. For max( ) < p < 1, T extends to a bounded op-

0T ity < CUF o 2.8)

The proof of the estimate of (2.8) is similar to the proof of Theorem 2.4 with ¢ = 2.
Indeed, we only need to show that there exists a positive constant C such that for
any (p, 2)-atom a of H? (M),

”Ta”Lp(]V[) <C.

And the proof of this estimate is similar to the proof of (2.6) with ¢ = 2. To see

this, we decompose || T (a)||” Lp (il by

/ _T(a)(x1, x2)Pdpt (x1)du? (x2)
UReM(Q) 100CR

__ T(ar)(x1, x2)Pdp! (x1)d i (x2)
ReM(Q) 100CR )¢

= A+ B.

Furthermore, similarly decompose B = B+ B; and By = Bj11+ B12. Applying the
similar estimates, it is easy to verify that By; and By, satisfy the estimate in (2.7)
with ¢ = 2 and hence repeating the same proof concludes the Theorem 2.5. For
more details of the proof, we refer the readers to the long version of this paper [13].

O

2.1.4. L>® — BMO boundedness

As a consequence of Theorem 2.5 with p = 1, together with the duality that
(H'(M))* = BMO(M) we obtain the followmg

Theorem 2.6. Suppose that T is a Calderén-Zygmund operator. Then T extends to
a bounded operator from L°°(M ) to BMO(M ). Moreover, there exists a constant C
such that

”Tf”BMo(]f/}) < Cll fllco-

We point out that Theorem 2.6 gives the necessary condition of Theorem 1 as fol-
lows.
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Corollary 2.7, Suppose that T and T are Calderon-Zygmund operators. Then
T(1), T*(1), T(1) and (T)*(1) lie in BMO(M).

Proof of Theorem 2.6. Suppose that T' is a Calderén-Zygmund operator defined in
Subsection 3.1. We have to define 7f for f € L°(M). To this end, we first
observe that if f € L°°(M) N L2(M) then T f is well defined, and moreover,
for g € H! (M) N L2(M) (Tf, g f T*g) ThlS together with the fact that,
by Theorem 2.5, T* is bounded from H! (M )t to L! (M ) and the duality arguments
(L', L°°) and (H1 BMO) givesTf € BMO(M) since T*g € L'(M) and H'(M)N
LZ(M) is dense in H'(M). To define Tf for f € L, we define functions f;(x, y)
by fj(x,y) = f(x,y), when d(x,x0) < j,d(y,y) = jand fij(x,y) = 0,
otherwise, where xo € M| and yo € M, are any fixed points. Then f; € L°(M) N
L2(M) and thus for g € H'(M) N L2(M),

(Tfj. &) =(fjT*8) —> (£, T"g)

Indeed, || fjll ooty < I/l iy 7 — f almost everywhere,and T*g € L' (M),
so that we can apply Lebesgue’s dominated convergence theorem. This implies that
functions T f; form a bounded sequence in BMO(M) and this sequence converges

to Tf in the topology (H', BMO). It remains to show the estimate 1n Theorem 2.6.
To do this, we first consider f € L2(M) N L°°(M) Then for g € H' (M) N L2(M)
as mentioned,

(TF. &)1 < CILE N oo it 1811 1 iy

This together with the fact that H! (M )N L2(M) 1s dense in H! (M ) implies that
(T f, g) defines a continuous linear functional on H' (M ) and its norm is dominated
by C||f||Loo(M) By the duality argument between H'! (M) and CMOI(M) these

exists h € CMO! (M) such that (T f, g) = (h, g) forall g € G@l,gz(ﬁl, B2 v1, 12)
and ||h||CM0|(A7,) < C||f||LOO(M). Now we point out that as a function of

(1, ¥2) D, Dy (¥1,y1, %2, 2) € Gy, (B1, B2 v1, v2). Taking g(xi, x2) =
D,EZD1 (x1, y1, X2, y2) in the above equality yields that D2 D1 (Tf)(x1 X2) =
D,%le (h)(x1, x2) and hence for f € LZ(M) N L‘X’(M)

||Tf||CM01(M) ||h||CM01(M) = C”f”LOO(M)
For f € L™, by the definition for T f, we have

%Wﬂﬂmm—%%@ﬂmmm

since Dk Dk (x1,x2) € Go,,0,(B1, B2; V1, ¥2) 80 Dk2 Dk (x1,x2) € H'(M) N
L2(M). Thus

”Tf”CMOl([f/[') = li;n Tfj ||CM01(M) =< hmjinf ||Tfj ||CM01(M)

Note that CMO! (M )= BMO(M ). The proof of Theorem 2.6 is concluded. O
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2.15. L?,1 < p < 00, boundedness
In this subsection we prove the L?, 1 < p < 0o, boundedness, namely the following:

Theorem 2.8. Suppose T is a Calderon-Zygmund operator. Then T extends to a
bounded operator from LP,1 < p < 00, to itself. Moreover, there exists a constant
C such that

ITfllp = ClIfp-

Indeed, in [14] the following Calder6n-Zygmund decomposition was obtained.

Theorem 2.9. Let max (wlcilﬁl w2+02) < p2<p<pl<oo,a > 0begiven and

fe HP(M) Then we may write f = g +bwhereg e HP! (M) and b € HPZ(M)

P1—p 14 p2—p
such that ||g||"! = CaP Pl Iy iy and ||b||?? < Cu [Fdle

HPL(M)
where C is an absolute constant.

HP2(M) HP (M)’

As a consequence of Theorem 2.9, the following interpolation theorem was
proved in [14].

Theorem 2.10. Let max(wlw1 wz“f%) < p» < p1 < oo and T be a linear

operator which is bounded from HP>(M) to LP? (1\7[) and from HP! (1\71) to LP1 (1\71),
then T is bounded on HP (M) for p» < p < p1.

Note that H? (1\7) =Lr (1\7[) for 1 < p < co. Now the proof of Theorem 2.8
with 1 < p < 2 follows from Theorem 2.5 and 2.10 directly by taking p» = 1 and
p1 = 2. The duality argument gives the proof of Theorem 2.8 for2 < p < oo.

2.2. Sufficiency of Theorem 1

In this section, we prove the sufficiency of Theorem 1. It suffices to prove that for

f, g€ &91,% (B1, B2; 1, y2) with compact supports, there exists a constant C such
that [(g, Tf)| < C|lfllz2llgll2- This is because, by Calderén’s reproducing formula

in (1.5), the collection of functions in 8,9, .9,(B1, B2; Y1, ¥2) having compact sup-

ports is dense in L?. As described in Section 1, we write with changing the notation
fromI'to I;,i =1,2,

(8. Tf) = ZZZZZZZZm(h)u (huP (L) ()
poRT g kR

’ (2.9)
X le; D2ké(g)(x11/,x12/)(Dk; Dk;, TDlekz)(xll/,xlz/,x11,x12)

X lel Dzkz(f)(xll, x12).

To see the above equality, we first consider one parameter case. Let fi, g €

Co;,y(ﬂ, y)(M7) with compact supports and 77 be a singular integral operator on



CRITERION OF THE L2 BOUNDEDNESS AND SHARP ENDPOINT ESTIMATES 873

M. Then by the Carlderén reproducing formula on My,

(81. Ty f1) ZZm(le (@G Dy x0T fi)

ky I

= ZZZZm(l Y1 (1) (2.10)
1{

ki L
1

x Dl (@)D 11Dk ey 1) Dl (£ e
1

For the equality (2.10), we use the fact that Z Z,ul(l )D1 /(g)(x r)D (x1 x /)
k >0 I

o
converges in the test function space Gy (8, y) (M) with compact support, so that

<ZZM1(11)D (@D Cxp), T1f1>

kOI

ZZm(le (@)D Cxp) T fu).

k1>0 ]

This, however, is not true for the term Z Z,ul(l )D1 /(g)(x /)D (xl X /) since
K <0 1y
the support of D! ,(x1 X, ) gets bigger as k tends to —oo, even though Z Z m(l )
k<01,

5,1 /(g)(x /)D1 (x1, x, /) € &19(,3 y)(M7) having compact support. Now if 6 €

G,;(ﬂ y)(M)) and has compact support, then 6(x;) Z Z/,L](I )D1 /(g)(x /)
k<0 1]

Dll,l (x1, x Ilr) converges in the topology of Cg (My). If we choose 8 = 1 on a
large enough set which contains the support of fl, then, by the standard esti-
mate on the kernel of 71, {(1 — ) D Zm(l )D! K (@) /)Dl G, T f1) =

k <0 I
Z Zﬂl(l ) - D1 /(g)(x /)((1 — G)D1 (-, x /) T\ f1). This implies the equality
K <0 1

(2.10). For fixed k1 we can do the same thing to f] to obtain the second equality.
Repeating the same things above twice, first on M7 and then on M», gives (2.9).
As described in Section 1, we decompose the bilinear form (g, Tf) as

& Tf)=(g,Tf)case1 + (& Tf)case 2 + (& T f)case 3 + (&, Tf)Case 4
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where case 1: k/l > k; and k/2 > kp; case 2: k/l > ki and k/2 < kp; case 3: l’c/1 < ky
and k/2 > ky; case 4: k,1 < k; and k/2 < ko. More precisely,

(8 Tflcase1= D Y. D Y > 3 wUDuin) pa(lppa(lz)

ki<kiko<ky 1, 1, T D
X D]k; Dzk;(g)(xlf,xlé)
< 1 2 1 2
x D'y D2, (f)(xr,, xzz)(Dk; D . TDy, Do )Ceyrs %5 X1y X1,)
and similarly for other three terms.
Since the estimates for (g, Tf)case1 and (g, Tf)case2 are similar to
(g, Tf)case 4 and (g, T f)case 3, respectively, so we only prove that the first two
terms are bounded by some constant times || f||2|/gl|2. This will conclude the proof
of the sufficiency of Theorem 1.

To deal with the first term (g, 7 f)case 1, @s mentioned in Section 1, for k; < k/1
and ky < k/2 we first decompose

1 n2 1 n2
(Dk; Dk;, TD;, Dk2>(xll/,x12r, X1 X1,)

= / Dy ey un) D (v un)K (. wa. i, v2)[Dy, (w1, x1y) = Dy (e x)]
2 2 1 2 1 2
X Dy (2, %) = Diy (x s xp)ld e (un)d ™ ua)d e (v1)d i (v2)

+ / Dlli s Ml)D,fé(x,zf, u) K (ui, uz, vi, UZ)Dlll(x[l,’xll)
x D, (v2, xp)d ! (uy)dp? (up)d ' (v1)dp? (v2)
+ f D’ii (x,l/, ul)D,fé(x,z/, u2) K (uy, uz, vy, Uz)Dil(vhxll)

X Df, (o x,)d i (un)d i (ua)d ! (v)dp (v2)

1 2 1
_/Dk; (xll’,l/ll)Dké(xlz’,MZ)K(ul,uz, vi, v2) Dy, (x,l/,xh)
X D, (¢, x)d i (un)d i (un)d ' (v1)dp (v2)
=: 1(x,1f, xlz/,xll,xlz) +11(X,1/, Xy X1, X1,) +III(x11/, Xy X1, X1,)
+1V(xll/,x,£,xh,x12).
We then write

(& Tf)case 1 = (& Tf)case 1.1+(&, T f)case 1.2+(g: T f)Case 1.3+(&: T f)Case 1.4
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where

(& Tf)case 1.1 = Z Z ZZZZ,ul(ll)/u(11)M2(12)M2(12)
I 163

ki <k ko<ky I} I,
X lejDzk;(g)(le”xzz’)

X lelDzkz(f)(xIl’ xlz)l(xllf, xlé,)C[l, XIZ).

The other terms (g, T f)case 1.i, I = 2, 3, 4, are defined similarly.
For the case 2 with k; >k and k,2 < kp, we similarly decompose (g, T f)case?2
as

1 n2 1 n2
(Dk; Dk;, TDy, D,Q)(x,{,x,é, X1 X1,)
— 1 2 2
- / Dki(xll/’ ul)[Dké(xlé’ MZ) - Dké(-x12/7 -x12)]
x K(uy, ua, vy, Uz)[Dll, (1, xpy) — D;ll(xll/,xll)]
2 1 2 1 2
x D, (v2, xp)dp (u1)dp”(u2)dp (vi)dp”(v2)
+/D,ii(x,l/,ul)D,fé(X,zuuz)K(ul,uz,vl,vz)D;il(X,l/,xh)
2 ( 2 1 2
X Dy, (2, xp)dpup)d ™ (u2)dp (vi)dn~)vs
+/D,1§ s ul)Dié(xlz’,xlg)K(ul, ua, v1, v2) D}, (v1, x1,)
2 1 2 1 2
X Dy, (2, xp)dp (u)dp”(u2)dp (vi)dp”(v2)
— / Dy (e u) Djg (xyrs x1,) K ez, w1, v2) Dy, (xpr, x1,)

x D, (v2, xp)dp (ui)dp? u)dp' (v)dp® (v2)
=V xp, X, xp) + VIG, xp, x, X)) + VI, x Xy, )
VIII(x,/,x,, X1, X[,),
+ VIII( JRRTAR! L)
and then write

(& Tf)case 2 = (& T f)Case 2.1 +(&, T f)case 2.2+(8g, T f )Case 23+ (&> T f)Case 2.4
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where

(8 Tf)case 2.1 = Z Z Y3 U m U)o pa(l)

ki<k,ko>ky, 1, 1, T DI
Y
x D k;D k;(g)(xllf,xlé)

X lelDzkz(f)(xll,XIZ)V(XII/,XIZ', X1, X1).

Similarly for other terms (g, T f)case 2.i, I = 2, 3, 4. The details of proofs will be
given in next subsections.

2.2.1. Almost orthogonal estimate on M=M 1 X M»p

in this subsection we deal with (g, T f)casg 1.1 and (g, T f) Case 2.1- The main method
is the almost orthogonality argument on M = M| x M;. Indeed, we will show that
there exists a constant C such that for k| > kj and k) > k,

[ Ceprx s Xy X))

=‘ /Dllg (x,l’,ul)D,é(xlé,m)K(ul,uz,vl,vz)[Dll, (v1.x1,) — Dy, o)l

x [Df, (v, x1,) = D, (x . XIZ)]dMI(m)dMZ(uz)dMl(vl)duz(vz)‘

S C2(k1*ki)5]2*(k2*ké)€2 (211)
1 2—kigl
X
VZ*kl (xll/) + VQ{*kl (-xll) + V(-xll/a xl]) (2_k1 + dl (-xll/a -xll ))81
1 2—kag2

X .
Varka (0)) 4 Vamky (81,) + V (x . x1) 2% + dy(xy, xp))"

We would like to remark that the cancellation condition on the kernel K is not re-
quired in the above almost orthogonality estimate and only size, smoothness on K
and the weak boundedness property on 7" are needed. To show the above estimate,
we first consider the one parameter case. The estimate for two parameter case will
follow from the iterative methods. As mentioned in Section 1, let S be a singu-
lar integral operator associated with the kernel L defined on M; having the weak
boundedness property. Then for k1 < kj there exists a positive constant C such that
the following orthogonal estimate holds

| [[ Pk st L, wD), w1 30) = Dl 0l e w)

1 27k
Vyiq (1) + Vot (1) + V(x1, y1) Q75 +dy(xp, y1)#1

< C|L|cz2%1 7
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The proof of the above estimate is similar to the classical case. See [14] for the
details of the proof in our setting. Now we turn to the proof of the estimate in
(2.11). To see that this can be done by the iteration, we write

/Dlli (xllu u1> D,%; (xlz/’ uz) K (u1, uz, v, v2) [Dlll (vi.x1,) — Dy, (xll”xh)]
X [D,%2 (vz, x12) - D,fz (xlé, x12>] dp (u)dp? w2)dp' (v)du? (v2)
=(D? (x,,u D! (x,,- Ko(u v)D](~x)—D] X, X
ké Ly 2/ ka 1 » A2 U2, U2 ky \» AL ky 1 I

X [D]%Z(UZs xXp) — D,%z(xlz/, xlz)]>,

where, by definition of the product singular integral operator given in Section 1, for
fixed points us, vo € Mp, K»(u2, vp) is a Calderén-Zygmund operator on M| with
the operator norm || K2 (u2, v2)|lcz(m,) Which is a singular integral operator on M.

By the estimate for one parameter case provided above, for k; > ki,

(P (x02) Kt o0 [ D Coxn) = D4, (1))

< ClIK2(u2, v2)llczemy 217K
1 2—kie1
X . -
Vo, (xll/) + Vo (x1l) +V (xll/, xll) (2_ I+ d (x[l/, x11)>
Similarly,

1 1 1

HD 4 (xll” )  [K2 (ua, v2) = K (u2, )] |:Dkl (xn) = Dy, (xll/’x11>:|>‘
< €| Katuz, v2) — Katwo, 01| 20a=ke
cz(My)
1 2~k
X

el
Vi <x11> + Voi (xll) + V(xllf, y1> (2"‘1 + di (xll/, x11>)

and the same estimate holds with interchanging u, and v;.
This together with the fact that || K2 (12, v2)|lcz(m,) is a singular integral opera-
tor on M, having the weak boundedness property implies that <D11’ (x,7, ),
1 1

Ky (us, U2)[D111("x11) — D,ll (xl/,xll)]) is a singular integral on M; having the
1
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weak boundedness property. Moreover,

(2 (x-2) - Kot o9 [P Coxn) = (w0 )

1 27hiel
€1
Vi <x11/> + Vot (x1) +V (xllf,x11> (2"‘1 +d (xlf’ x1,>>

Applying the estimate for one parameter case again yields that for k/ > ky,

(DF, (vigez) (0 () Ko o) [ D (oxn) = D, ()]
X [D;%Z (vz, xlz) - Dlzz (xlé’ x12>]>
<c (b, (5y.) - Katus, v [ (1) = 0, (550 )

< c2ki—kpe

CcZ
1 2—kaer

« 2k2—ky)e2 .
2
V27k2 (xlzl) + V27k2 (y2) + V (xlz/v y2) (271{2 + d2 <x12’1 y2>)

1 2~k

< C2ki—kDe2n(ka—ky)er
B Vami () 4 Voot () +V (xr y1) 27*1+d, (s X))t

1 P

£
Vy—k, (xé) + Vst (x12)—|—V (xlé, x12) (2"‘2 +d> (xlz/, x12))

which concludes the proof of (2.11).

Applying the Cauchy-Schwartz inequality implies that |[{(g, Tf)case 1.1] 1S
bounded by

{ 2. ) ZZZZﬂl(11)M1(11)M2(12)M2(12)
I 163

ki<ky ko<ky I, I,

X

‘DI/D2/(g)<xr X, )) ‘I( x[é’xll,xh)‘}z
{ > 2 ZZZZMl(ll),ul(ll)ﬂz([z)l/vz(lz)
2

ki<kj ko<ky, 1, 1, I

1

2 2
(s

. ‘I;kl&kz(f) (xll’ xlz)
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Note that by the estimates for [ Cxpr,xpr,xry, X))l in (2.11) we have
1 2
’ ! ’ !
SN U puaUI ey, x . xp,. x| < C2% ke te—kye
7 7 1 2

and similarly

YD IDpa (I (xyr, xpr, x0y, x1)| < c2tki—kepta=io)er,

I b
Therefore,
2. 2 ZZZZMl(ll)m(ll)uz(lz)m(lz)
ki<kiko<k, 1, 1, T I

x \Dl /Dzk/(g)(x X o) 11y X1y 31,)

’ 2
<C Z Z o (ki—k))e1o(ka—k) )82ZZM1(11)M2(12) ‘Dl D2 ,(g)(x xl/)
2

k1<k k2<k 11 12
, = = 2
<C 1 I ’DI,D% x,,x,),
< ZZZZMI( Dia(l) | DYy D2 (@) xp)
kl k2 [1 [2

The last series above, by a result established in [14], is dominated by the constant
times ||gl|3. Similarly,

Z Z ZZZZm(11)u1<11)uz<12>u2(12>
2

/

ki< <k k2<k I 2 I

| DYy D2 (o) 11y 5] = P

We thus conclude that |[(g, Tf )case 1.1l < CIfl2 ligll2. The estimate for
[{g, Tf)cCase 2.1] is the same.

2.2.2. Carleson measure estimate on M = M| x M,

in this subsection we handle bilinear form (g, T f)Case1.4- The estimate of this term
will be achieved by applying the Carleson measure estimate on M = M| x M. To
see this, we first write

1 2
¥ (gengmne) = [ 24 (sgo) 2 (50
x K (uy, uz, vy, v2) Dlil <XI;,JC11)
D? du (u)d? w2)dp' (v)du?
X D \x . xn, ) die (u)dpu”(u2)dp (v)dp” (v2)

= D}, D} (Tl)(xr X, )Dk1 (x 1) D}, (xlz/,xlz).
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Thus we rewrite (g, T f)case 1.4 bY

E:E:EZE:Hd(h>ua<Q)D /Dk(g)Gn,ﬁ)

/ /

1 k2 Il 12
(Tl)(x/ X, ) (f)(xf x/),

where for x1, y1 € M, Sy (e, y1) = 3o e 22 w0 Dy, (xr, ) Dy (g, y1)
<k, £

and similarly for Sk; (x2, y2) on Mj.

In order to apply the Carleson measure estimate to (g, 7 f)case 1.4, We claim
that Sk’ (x1, y1), the kernel of S,/ , satisfies the following estimate
1 1

19/

1 2k
IS, (x1, yDl =C ( ; )
! Vz,k’l (x1) + V2,k; O+ V&L YD \ 2=k 4 d,(xq, y1)

Similarly, Sk/ (x2, y2), the kernel of S,/, satisfies the same estimate above with in-
2 2

terchanging k/l, k/2; x1, x2 and y1, y2, respectively.
Assuming the claim for the moment, then applying the Cauchy—Schwartz in-
equality yields

I(g. T'f)case 1.4]

§<ZZZZM1(I1)M2(12)‘D] DZ/(g)(x/ 1, )‘2

kK, I

2 1

1

2

x ZZZZM(Il)Mz(Iz)’Dk/ 2 ) (e ) I8 000 (e )[ -

/ ’

1 k2 ]1

Thus the first series above, by the discrete Littlewood-Paley L2 estimate, is
bounded by a constant times || g[l2. And the second series is bounded by C|| fl2
by applying the Carleson measure estimate on M since 71 € BMO(M) and hence

/L](]{)/Lz([é)u)l, D]%, (T'1)(x1, x2)|? is a Carleson measure on M x {Z x 7.}.
1 2
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We now show the claim. To do this, we first consider the case when d;(x1, y;) <
27%1. Then

' > > mnDy, (i 1) Dl (. 1)

’ 2« h
ky<ky, dy(x1,y1)<2""1
1 2—k1 A
> (i)
Vot (x1) + Voiy (y1) + V(x1, y1) \27% +di(x1, y1)
ky<ky, dy(x. <2
’ b
—k
S C 1 ( 4 2 1 ) b
vz”‘/l (1) + Vz*k; O+ Ve y) \2-k 4 g (x1, y1)
(2.12)

~

where (1)’ is the order of le, (x1, y1). Next, we consider the case when d; (x1, y1)
> 27K Note first that

3 S wi@D} (e x) D () ey

ki<k; D

+ 3 S D) (i, x)Dl (N Gx) = f(x)

>k, 1

forall f € L?(M) and the series converge in the norm of L2. This implies that

Z ZM](Il)D;il(xl,Xll)lel(x/l,yl)

ky<k; N

+ Z Z/M(h)Dé, (x1, x1) DV, (xpys y1) = 8(x1, y1),
>k D

(2.13)

where we use § to denote the Dirac function. Consequently, when dj(x1, y;) >
27k,

’ Z Zm(ll)l);ll(xl,xh)lel (xr, y1)

’

ki <k dy (x1 =2

= ‘ > > DDy (x1, x1) Dy (1)
1

’
ki >k; Jdy (xr,y=27"

,,9/

1 ( 2k )
S C 7 )
Vz,,/1 (x1) + Vz*"; O+ V&L y) \ 275 + ) (x1, y1)
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where the last inequality follows from similar estimates in (2.12) and hence the
claim is proved.

2.2.3. Almost orthogonal estimate on M| and Carleson measure estimate on M,

In this subsection we only estimate (g,7 f)case 1.2 since all proofs for (g,7T f)case 1.3
(g, Tf)case2.2 and (g, T f)case 2.3 are similar to the proof of (g, T'f)case 1.2. We first
write

”(xlf’ Xy X1, X1,)

= /D,lg(xll/,ul)D,fé(szuuz)K(ul,uz’Ul’UZ)
x [DR, (v2. x1,) = Di, ey xp)ld ! (un)d i a)dp! (v)d () Dy, (v )
—|—IV(xll/,x12r,x11,x12)

= <D£é(x]2/, us), <D113 (x g ), Ka(uz, v2)(1))
x [Dg, (v2, x1,) — D,Ez(x,zu xp)) Dy, (s xn)

+ IV(X,I/ X Xy Xp,).
Now we set

Jig a2, 02) = D Y i ()DY (D2 () ) ()

/ ’
Kk} I

X (D}, (51, ), Kaluz, v2) (1) Sy (D2, () ¥1) ),

where Sk, is defined as in Subsection 2.3.2.

As in Subsection 2.3.2, summing up for k| and / ], and using the notation
Jké,kz(”% v2), we can rewrite (g, T f)case 1.2 aS

(8, Tf)Case 1.2

=33 maUppa()dp® (uz)dp* (v2)
ko<ky, 1, 12

x / D2y (x 1, u2) Jig sy (2, v2) D, (v2, x1,) = Dy, (7 X1)1 + (8 Tf )case 1.4-

Therefore, it suffices to estimate the above series since the estimate | (g, 7f ) case 1.4]/<
Cll fll2llgll2 has been proved in Subsection 2.3.1. To this end, we claim that for
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fixed k’2 and k», Jké’ k, (U2, v2) is a Calderon-Zygmund kernel on M, and the corre-
sponding operator has the weak boundedness property. Moreover,

|, 1, (U2, 02)|cZ < CIIDZku(g)(-, x,;)”Z”Dzkz(f)(', xp) 2. (2.14)

Assuming the claim for the moment, by the almost orthogonality argument as in
Subsection 2.3.1 we obtain

Y30 maUpua(h)

ko<ky I, 12

~ 2 2 2 2
X/Dzk; <x,£,u2> T ky (U2,02) [Dk2(vz,XI2)—Dk2 <x1£,x12>] du(u)d s (v2)

<C YN Uy eI i, (w2, vz

ko<k, 1, 12

1 27k

% 2—(k2—k§)82
Vy—ky <x12;> + Vy—ky (x;z) +V (xlé, xlz) <2_k2—|— dp <x12/, x;z))

)

which, by a similar estimate as in Subsection 2.3.1, implies that the above series is
dominated by a constant times

Z Z Z MZ(IE)M2(12)2_("2—"§)82 1

ko<ky I, 12 Voky <X12/> + Vo—ty (x12) +V (xlz/, x12>
2—/{282 =~ =
x 5| D% @ () 1D () (ox) |
(2_"2 +d> (xl/, x12)>
2
= Cllflligll

Now we prove the claim for Jk;, Ky, (U2, v2). We first denote by Jké, k, the operator
on M, associated with the kernel Jké, k, (U2, v2). We verify that Jké, k, satisfies the

weak boundedness property. In fact, using the weak boundedness property of 7" on
M>,i.e.(1.7), and the one-parameter discrete Carleson measure estimate, we have

(0 %) = €V (8) [ D20 ()| oy 192000 ()

L2(My) L2 (M)
for all ¢)2, 1//2 € Ap, (8, xg, r2), where the set Ay, (8, x(z), rp) is defined in Sec-
tion 1. Next we verify that Ji; . (u2, v2) satisfies the size and smoothness properties
as defined in Subsection 3.1. Using the one-parameter discrete Carleson measure
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estimate again we can obtain that

|Jk;,k2(l/l2, v2)|
< CllK2(u2, U2)(1)||BM0(M1)||D1k;(g)(" x,2')||L2(M1)||D2k;(f)(~, XN L2y

D2 D2
= CWHD k;(g)(" xlé)”L2(M1)”D k;(f)(‘,xlé)”LZ(Ml)-
Similarly,

1k, W2, 02) — By (g, 02
< CllK2 (2, v2)(1) — K2 (uy, Uz)(l)llczllDzk;(g)(-, X2

X ||D2k;(f)(" XIZ’)||L2(M1)

< C(Cl'z(uz, us)

& I~ =
Dz/ . / D2/ . /
d2<u2,v2)> oo P2 @6 ¥l 102 (NG 8l

for dy(us, u/z) < ﬁdz(uz, v2). The same estimate holds with u, and v, inter-
changed. Combining the estimates above, we get that Jké, Ky (U2, v2) is a Calder6n-
Zygmund kernel on M; and hence (2.14) holds. The claim is concluded.

2.2.4. Littlewood-Paley estimate on My and Carleson measure estimate on M

In this subsection we deal with (g, T f)case 2.4. We first write
VI (x,, x,,x1,,x1,) = — | D) (x,/,u))D? (x,,
Oy X X1y, X1p) / w 0y u) Dy G xy)
x K(uy, uz, vy, vz)Dlll(xll/,xn)
D} du (u)dp? w2)dp' (v)du?
X Dy, (2, xp)dp (u)dp”(u2)dp (vi)dp”(v2)
1 12 (T 1 2
= _Dki DkZ((T)*l)(xll/’ xlz)Dkl (-xll/rx[])Dké(-sz/’ -x]2)-

We would like to point out that the partial adjoint operator T appears and will play
a crucial role in the estimate for (g, T f)case 2.4. This is why T" and T* have to be
taken into account in the proof of the sufficient conditions of Theorem 1.
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To estimate (g, T f )Case 2.4 We rewrite

<g’ Tf>Case 2.4

= - Z Z ZZZZMl(ll)m(h)uz(lz)uz(lz)
2

/

k1<k k2>k I I, I
% Dké (xlz/’ x12> Dy, (xlf’xh) D]kl Dzkz(f) (x1> x1)
<ol (1) (o)

N _ZZZZM <11> M(IZ)ElkiS"Z(g)< x12> Sk, D kg(f) (xp X12>
Kokeoqo b

1
X Dki Dy, ((T)* 1) (xll/, x12> ,

where the operators Sys and S, are defined as in Subsection 2.3.2.

In order to estimate the last series above, for a BMO(M ) function b we intro-
duce an operator W}, by the bilinear form (g, W, f) which equals

S YYD mUDua() D g Sia(@) (1 x1 ) Sig
k; ko 11’ I

x D% () (g, ¥1,) DY DR (8) (7 %1 )

Itis easy to see that when b = (T)*1 € BMO(M) and (g, Wj, f) = —(g, Tf ) Case 2.4-
Thus, we only need to show that for each b € BMO(M) the operator W}, is bounded
on L2, which would imply that |{g, T f)case 2.4] < C|| fll2llgll2- For this purpose,
following an idea in [17] and interchanging the positions of functions f and b we
define the operator Vy(b) = Wj(f) and will prove that for each fixed f € L™
the operator V is a singular integral operator and bounded on L?. Moreover, there
exists a constant C independent of f such that for all b € L2,

VD)2 = Cll fllsollBll2-

Furthermore, we will show that V¢ satisfies the conditions in Theorem 3 and thus,
V' is also bounded on BMO(M) satisfying

IVe®)llsmo = Cli fllsollbliBymo-

We can rewrite the above estimate by

IWo(liBmo = ClI flleo 1Bl BMO

foreach b € BMO(M) and all f € LOO(AZ).
This means that for each b € BMO(M) the operator W), is a bounded operator
from L* to BMO(M). Similarly, the operator W, the adjoint operator of Wp,
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is a bounded operator from L°° to BMO(IVI) since Wy, and W' satisfy the same

conditions. Finally, by the duality argument and interpolation, W}, is bounded on L?
and hence, as mentioned, the bilinear form (g, 7 f ) case 2.4 1S bounded by a constant

times || f{l2[[gll2-
To achieve this goal, we will show that for each fixed f € L, V is a singular

integral operator as defined in Section 1 and moreover, there exists a constant C
independent of f and b € L? such that

IVe®)ll2 = Cll fllsollbll2-
We first prove that Vy is bounded on L?. To this end for g € L?, we write

(8. Vy (b)) = Z Z 3 Z 1 ()2 () Dy Sy (@) (o xn.) 8
20

x D%(f) (w1 1,) D D, (B) (31,
Note that if f € L* then S ¥ (fHx g -) is also a bounded function on M> for fixed
k, and I, with
1, (F) (x772) oo = Cllf oo

Thus 2 (12)| Dy, (S (N)Cx s ) (xny) |? is a Carleson measure on M, x k> uniformly
1 1
for all k/l and x / € M;. Therefore,

Zm(h [ZZMz(lz)SIQ (ﬁkl (€9) (x,lu )) (xp)

ot (Ph 0 () ) Do (3,00 () x|
=22 (1) [P (x|
kl Il

(g, V(D)

L2(M>)
1
ph (s )| 5o (o)
L2(Mp) L (M)
12
~ 2
< Cll ity | 20D mD | Do) (%27
P ! L2(My)
1 1
172
2
> > mUp|ph ) (x.-)
k; 11’ ! L2(M>)

=< C”f”LOO(M)”g“LZ(M)”b”LZ(M)a
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which, by taking the supremum for all | g|l> < 1, implies that V is bounded on
L*(M) with [Vl 2,12 < C|l fllzoe.

To verify that V is a singular integral operator as defined in Section 1, we can
consider V as a pair ((Vf)l, (Vf)z) of operators on M> and M|, respectively, such
that

(g1 ® g2, Vihi ® hy) = / / g1(x1) (g2, (Ve (xr, yDhaYh (y)dp! (en)d ' (y1)

forall g1, hy € Cg(Ml) and g2, hy € Cg(Mz) with supp g1 Nsupph; = & and

(g1 ® g2, Vrhi ® hp) = / / g2(x2) (g1, (V)2 (x2, y2)h1)ha(y2)du? (x2)d 2 (y2)

forall g1, hy € Cg(Ml) and g7, ho € Cg (M>) with supp g2 Nsupphy = .

It suffices to show that (V¢); (x;, yi), i = 1,2, satisfies properties (i), (ii)
and (iii) of singular integral operator given in Section 1. We need only to verify
(V¢)1(x1, y1) since the estimates for (V)2 (x2, y2) are similar.

Note that for any fixed x1, y; on My, (Vy)1(x1, y1) is an operator on M as-
sociated with the kernel (V)1 (x1, y1)(x2, y2) which is equal to V¢ (x1, x2, y1, y2).
We recall that

(Vo1 (xen, yollez = 1V, YOl 2y — 20y + 1V 161 yD ez,

where |(Vy)1(x1, y1)lcz(m,) is the smallest constant such that the inequalities (a),
(b) and (c) in Section 1 hold for the kernel (Vy)1(x1, y1)(x2, y2) when x1, y; are
fixed and x;, y» € M. Therefore, to verify that (V) (x;, y1) satisfies properties
(1), (i1) and (iii) of singular integral operator, all we need to do is to show the fol-
lowing estimates:

M NIV, yOllpep2 < CIIfIIme;
AD (Ve y1) — (Vi G, yDllpa g2
dl(yl,yi))’?1 1

< C 0
=Clrl (dl(xlaYI) V(x1, y1)
if di(y1, y)) < di(x1,y1)/2A;.

Similarly for interchanging x; and y;;

1 1
D [V, yD &2, y2)I < ClLfll oo iny Vo Vi y2)§

AV) [(Vp)1(xr, y) (2, y2) — (Vo) (xr, y1) (x5, y2)l
dz(xz,x§)>82 1

< Cllfllpoocit (
Ny 3y \ @t ) Vo, v
if dy(x2, x}) < da(x2, y2)/2As.

Similarly for interchanging x» and y»;
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V) (Ve i(xr, y1)(x2, y2) = (Vo)1 (x, y) (x2, y2)
di(xr, x)\" 1 1
< Cllfllpooiz <
ey di(x1,y1) /) V(xi, y1) Vixz, y2)
if dy(y1, yp) < di(x1, y1)/2A;.
Similarly for interchanging x| and y;
(VD {[(Vf)l(m, yD&x2, y2) = (V) (x), y1)(x2, y2)]

— [V G, yD G5, ¥2) — (V)]s y) (65, 32) ]|

< Cllfl e (dl(xl,xi)>81 1 (dz(xz,x§)>82 1
- L=\ dy(x1,y1) ) V(xi,y) \da(xa, y2) ) V(xa, y2)

if dy(x1, x]) < di(x1, y1)/2A1 and da(x2, x}) < da(x2, 2)/2A;.

Similarly for interchanging x, and y,, or interchanging x; and y;.

To see (1), for fixed x1, y; € M| we have

Ve, yollpao 2 = sup sup [{h2, (VF)1(x1, y1)€2)1

821 l82ll 2py,) <1 h2i h2ll 2y =<1

ZZM(G)D K, (X1 X '> Dk; (xll',y1>

= sup sup
821 182l 2pgy) =1 h2t 2l 2y, =<1

[0 3 a8 o) (x1,) D3, (80 (x1) Sy D20, () (s v, ]‘

ky I

= Cllfllree sup sup A2l 22 pap) 18211 2 (1)
82: 18211 2pp) =1 h2t B2l 2,y =1

"\ | ~1 1
<X (1) [P (1o, ) | [l (o) |
ko

< C”f”LOOV(TyD’

where in the first inequality we first apply Schwartz’s inequality and then use the
Littlewood-Paley estimate on L? for g» and the fact that if f € L™ then pa () -
|D,%2 (Skr ) (x Xp) |2 is a Carleson measure on M; X k uniformly for all k/ and all

I
is bounded by some constant times || f||zo. The last inequality follows from the
standard estimate.

X, € Mj. Moreover the Carleson measure norm of ,uz(Iz)lez(Sk/ f)(x )c12)|2
1
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To verify (II), for d (y1, y}) <di(x1, y1)/2A1 and (g2l 12 (ayy» 12l 201y < 1

[{ho, [(Vo1(x1, y1) — (V)1 (xr, y)1g2)|

= [ 22 D mUDDYy G x )LDy (e y1) = Dy (1. 7))

ke o 1

x [ 0D 1a12) Sy (h2) (k1) D, (82) (k1) Sy D2ty () iy ) | '

ky I

Applying the smoothness property of Dll, (x,7, y1) and the same proof above for the
1 1
second series yields

d1(y1,y§)>8‘ 1

ha, [(V ,y1) —(V .V <C o0 ,
[¢ha, [(V)1(xn, y) — (Ve (xn, yplg2)l = Cllflie <d1(x1,y1) Vo

which, by taking the supremum over all [|g2| ;2 (az,)» 121l L2(pr,) < 1 implies

Vo1, y1) — (Ve yD e 2

d](yl,y;)>81 1 (215)
di(xi,yn)) Vx,y)

= Cliflir (

Similarly, (2.15) holds with interchanging x; and y;.

We now turn to estimate (III). This follows directly from the following standard
estimate.

(V)i (x1, y1)(x2, y2)l

=< kZZIZMl (11) MZ(IZ)‘B]/C: (xl,xll/> Sky (xz,xlz)
2 2

/ !’

k) 1

X |S/a1 D%, (f) (x]{, x12> ‘ )D,li (xI;, yl)Dll2 (x5, y2) |

< YOS mpmn| Dy (s1x,) oY (o) [ O

"k o
ko f2on 2

X |S/<2 (x2.x1,) D, (x1. 2) ‘

1 1
< C oo (M )
= Cllf I Lo (it V(x1, y1) V(x2, y2)
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To estimate (IV), for da(x2, x}) < da(x2, y2)/2A> we write

(Vo1 (e, yD (2, y2) — (Vo)1 (xr, yD (x5, y2) |

< ZZZ’“U;)M(@‘E]H (Xl, xlf) [Sky (x2, x1,) — Sk, (x5, x1,) ] |
K ko 163

/ !

I

X ‘Ski D2, (f) (XI;,Xlz) ‘ ‘Dlii (X,If, yl) D/%Z (x1, ¥2) )

We claim that S, (x2, x,), which is defined in Subsection 2.3.2, satisfies the fol-
lowing smoothness estimate.

|Sk, (X2, X1,) — Sk, (X}, X1,)]

(2.17)

—c da(x2, xy) : 1 ( 2k )62
- 270 + da(x2, x1,) | Vot (x2) + V(x2, x1,) \27%2 + ds(x2, x1,)

for ey < ¥ and dp(x7, xé) < (2’]‘2 +da(x2, x1,))/2A>. We assume (2.17) first and
then obtain

(VO yD (2, y2) — (VO yD) (5, v2)|

< Cllf i — L (o2 DN? 1
= LXMDY (x1, y0) \da(x2, y2) ) Vixa, y2)°

(2.18)

Similarly, (2.18) holds with interchanging x; and y;. The estimates in (2.16) and
(2.18) imply

1
(Ve yDlez < C||f”L°°(A7)V(Ty1)' (2.19)

Next, we turn to verify the estimate in (V). For dj (x1, xi) < di(x1,y1)/2A; We
write

(Vi Ger, yD) (2, y2) — (Vo)1 (xp, y1)(x2, y2)

~
_~

=y ZZMl(I{)Mz(Iz) [;k;(xl’xll’)_leq(xi’le’)]

"k I
ky 21 12

~
=

X Sk (42, X1,) Sy D2y (1) (epg x1) Dy (xyr. y1) D, (613 32)-
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As in the proof of (2.18), instead of using the smoothness estimate for Sg, (x2, x1,),
applying the smoothness condition of D! K, » We get

(Ve yD (2, y2) — (Vo1 (xp, yD (2, y2) |

< Cllfll oo iz (dl(xlv XD)S‘ 1 ! 220
- FEOD N di (v ) Vi, y) Vi, y)
Similarly, (2.20) holds with interchanging x; and y;.
Finally, to see (VI), for da (x2, xé) < dy(x2, y2)/2A; we have
[V G yD G2, 32) = (V] ) @2, 32)]
— [(Vor(xen, yD (5, y2) — (V)1 (x], yD (x5, yz)]‘
= [ > U [ Dl ey, x) = Dl x|
T w T h 1 1
1 1
(2.21)

X [Sk, (X2, X1,) — Sk, (x5, X1,)]

x S D%, (f) (s Xlz)D,ii s YD, (xp,. yz)‘

dl(xl,xi))gl 1 (dz(xz,xé)>82 1

< Clfll oo ( :
st di(x1,y1)) V(i) \da(xa, y2) ) V(xa, y2)

~

where in the last inequality we use the smoothness property of 51 K, and (2.17).
Similarly, (2.21) holds with interchanging x; and y; or x; and y;.
All the estimates of (2.20) and (2.21) give

[V 1, yD (2, y2) — (Vo) (g, yD (2, y2) ]| ¢
(2.22)

dl(xl,x{))g1 1

< Cllfllpoociz ( )
XN dy(xy, y) ) Vi, yn)
Similarly, (2.22) holds with interchanging x; and y;.
As a consequence, (2.19) and (2.22) yield that (V) (x1, y1) satisfies the prop-
erties (i), (ii) and (iii) given in Section 1 for the kernel K;. It remains to show
the claim, that is, the estimate in (2.17). Indeed, when d)(x2, x1,) < 2% and
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di(x2, x5) < (2752 4+ dy(x2, x1,))/2 A2, we have

|Sk2 (XZ, xlz) - Sk2 (.)Cé, x12)|

= i 2 ’ le ’ ’
=l X DD (2, ) D2 ey xr)
kzikz, d2(X2,)C12)<2_k2 12
/ 2 =
B Z ZM(12)Dk;(xé’x]£)le| (xlé’ xlz)

’ !
Ky<ka, dy(a,xpy) <271 T2

da(x2, x3) .
<C
O = o),

K
ky<ka, dy(x.x1,)<27F2 2+ da(x2, xp

1 ( 27k )82
X /
Vg, (2) + V@2, x5) \ o~k 4 dy (x, x7,)

- da(x2, x5) 1 ( 2~k >£
- 27k 4 dy(x2,x1) | Vyiy (x2) + V(x2, x1,) \27R2 +do(x2, xp,) )

Next, we consider the case when da(x3, x7,) > 27k2 and ds(x7, xé) < Q7R 4
dr(x2, x1,))/2A;. In this case, using the identity (2.13), we obtain

| Y D D ey k)

ky<kp.dy(x2,x1,)=27%2 I}

_ Z Z,u(lz)Dk;(xé,xlé)Dzk;(Xlé,xh)

ky<kp.da(x2,x1,)=27%2 I}

<| 3 > WU DY (2, x,) D (D1, x1,)
2

ky>ka,dy(x2,x1,)=27%2 1,

- > > ) Dy (3. x,) D2y (W) (. x1)

ky>ka.dy(x2,x1y)=2752 1,

3 Ay xy) \” 1 ( 2k )82
T\, xn) )] Vo (2) + V(x2, xp) \27R +da(x2, xp,) )

which implies the claim.

Now we have proved that Vy is a product Calderén-Zygmund operator with
IVillz2sr2 < CllfllL<. In order to apply Theorem 3 given in next section to
show that V¢ is bounded on BMO(ZVI ), we only need to verify that (V¢)(1) =
(Vy)2(1) = 0. To do this, we would like to recall the definition of T7(1) = T>(1) =
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0 and (T*)1(1) = (T*)2(1) = 0 as defined in Section 1. T1(1) = 0 is equivalent
0 (g1, (g2, Tof2)1) = O forall g| € Cgo(Ml) and f>, g € Cg(Mz), that is, for
g1 € CgO(Ml), g2 € CgO(Mg) and almost everywhere y, € Mj,

/ / g(x1)g(x2) K (x1, x2, y1, y2)dp (x1)dp* (x2)dp' (y1) = 0.

While T1*(1) = 0 means (g2, T» f>)*1 = 0 in the same conditions; that is, for
g1 € CgO(Ml), g € CgO(Mz) and almost everywhere x, € M3,

// gONE)K (x1, x2, y1, ydp (x)du! (y1)dp®(y2) = 0.

To verify (V¢)1(1) =0, for g; € C o(M1), g2 € C o(M2) and almost everywhere
Y2 € M> we have

/ / g(x1g(x2) V(x1, X2, y1, y2)dp' (x1)du* (x2)d ' (y1)

/ / (x1)g(x2) Z YIS )Mz(lz)le/ (x1, 2,8, (42, 21,)

11’ ky I

X S D%Q(f)(x,{ 2 X) Dy (21, YD) DR, (1, y2)dpt! (x1)dp® () (31) = 0,

where the last equality follows from the fact that | Dli, (x,7, yndyr = 0. Similarly
1 1

for (V¢)2(1) = 0. As mentioned, we conclude that |(g, T f)case2.4] < CIll fl21Igll2.
The proof of the sufficient conditions for Theorem 1 is complete and hence the
proof of Theorem 1 is concluded.

3. Proofs of Theorems 2 and 3

In this section we prove Theorems 2 and 3. We first prove the “if” part of Theorem
2 by applying Theorem 2.5 for the vector-valued product Calderén-Zygmund op-
erators. The “if” part of Theorem 3 then follows from the “if”” part of Theorem 2
by the duality argument. To show the converse, we will prove the “only if” part of
Theorem 3 first and the “only if” part of Theorem 2 then follows from the duality
argument directly.

3.1. “If” part of Theorem 2

To show the “if”” part of Theorem 2, note first that LZ(M) N H”(M) is dense in
Hr (M ), see [14] for this result, and thus it suffices to prove that if T is the L?
bounded product Calderén-Zygmund operator on M with a pair kernel (K1, K3)
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satisfying the conditions (i) — (iii) and (7*){(1) = (T*),(1) = O then there exists
a positive constant C independent of f such that
ITfllar < ClIfllur

forall f € L2(M) N HP (M).
By a result in [14], this is equivalent to showing that

IS < Clf e, 3.1)
where S(Tf) is defined by
00 00 1/2
S(f)(x1,x2) = KZ e > 1Dy D ()P (32)
e,

The crucial idea for (3.1) is that by using the discrete Calderdn reproducing formula
for f € L*(M), we can write the term D; D} (T f)(x1, x2) in (3.2) as

[e.¢] o0

S0 3T mUDua(h) (DY, DT DY (- x1) DR (- x1,) (1, X2)
ki=—ocoky=—00 I} I

X lelDzkz(f)(xllsxlz)a

where the fact that 7' is bounded on L2(1l71 ) is used. This leads to considering the
Hilbert space ‘H defined by

0 00 1/2
H={{h£.,€2}z],zzezi||h£.,£2||H :=( ooy Ihzl,@Iz) <oo}.

(1:—00 @22—00

We then rewrite the operator S o T as the H-valued operator Ly, ¢,, whose kernel
is defined as

L, 0, (X1, X2, Y1, ¥2)

o0 o0
= 3 > D3 mW)ma)Dy DT DL DY (x1, %2, %1y, %1)  (3.3)

ki=—ooko=—00 I} I,

X DV, (x1,, y1) D%y (x 1y ¥2).

Therefore, the estimate in (3.1) is equivalent to
||£[1,f2(f)||Lf”_l <Cllfllar, (34)

Note first that L¢, ¢, is bounded from L? to L%i since S and T are both bounded on
L?. The idea to show (3.4) is to apply Theorem 2.5 with vector-valued version. For
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this purpose, it suffices to verify the following conditions:
M || (Ley.e)1(xr, y) = (Leyex)1 (1, y;)||L2(M2)—>L%_L(M2)

c <d1 1, ¥p)
dy(x1, y1)
and similar result holds for (Ly, ¢,)2(x2, y2) for the variable y,;

(e1)
if di(y1, y}) < di(x1,y1)/2A1;
) V@ yn) b /

"y ‘[L’e.,ez(m, Y1, X2, ¥2) — Loy 5 (X1, ¥1, X2, y2) ]

—[Lere(x1, 1, X2, ¥5) = Loy 6, (x1, ¥, X2, yé)]‘H

<C<d1(y1,y;))“'> 1 (dz(yz,y§)>(82) 1
- di(x1, y1) V(x1, y1) \da(x2, y2) V(x2, y2)

if di(y1, y)) < di(x1, y1)/2A1 and d2(y2, ¥5) < da(x2, ¥2)/2As.
To show (I), note that

H(Cel,ﬁz)l(xls )’1) (Efl Zz)l(xl )’1)”L2(M2)_>L (M)

= sup (/ f [Le,,0,(x1, X2, y1, ¥2)
Folf 2y =t N M2 1L My

) 12

— Ley0,(x1, %2, 1, y2) | f (2)dy2 dX2) .
H
We write

I o

:< Z Z ‘D&(/ Z Zﬂl(ll)Dél(xl,Ml)K(ul,',vl,vz)

M g = —ooéz——oo kl——oo I,

(Lo, 0,(x1, X2, ¥1, ¥2) — Loy .0, (X1, X2, Y1, y)1f (v2)dy2
M,

XDkl(vl7x[1)[ kl(xllayl)_Dkl(xllay])]

2 12
dﬂz(m))

x f)dp! (u)dp! (vl)duz(v2)> (x2)

< / Z > ) Dy (x1, 1)K (ur, x2, v1, v2)
Kl—foo M2 kl—foo 11
X Dkl(vl’xll)[ kl(xlls )’1) - kl(xllvy])]

x f(v)du! (u)du! (v1)d ()

12
dﬂz(xz)) ,
3.5)

where the last inequality follows from the Littlewood-Paley estimate on M.
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We claim that for any fixed £; and (g1)" with (g1)" < & there exists positive a
constant C such that for d; (yy, yi) <di(x1,y1)/2A;and || f]2 < 1,

(L.

[ Ly Gy y1) — szl(xh,y1 )] f )dp! wdp! (v)du? (v2)

/ Z > i) Dy (x1, w) K (uy, X2, v1, v2) D} (01, x1,)
k1=

=—00 I|
2 12
dMZ(xz))

3 C(d](yl,yi)>(sl)/ | ( 2—(1 )(81)/
- 2-t Ve, (x1) + V(x1, y1) \ 274 +di(x1, y1) .

(3.6)
Assuming (3.6) and inserting (3.6) into (3.5) together with the following standard
estimate

di (51, YD\ 1 2 2t 26
;( 2-4 ) <V2—61(x1)+V(X1,y1)> <2—€1+d1(x1,y1)>

_ C<d1(}’1,y{)>2<51)’ 1
di(x1, y1) V2(x1, y1)

yields that for di (y1, y;) < di(x1, y1)/2A1 and || fll2 < 1,

(L

Ny (e
SC(cil(yl,y1)> 1 ’
di(x1, y1) V(x1, y1)

5 12
[Ly g (1s %2, y1,32) = Ly o (x1, x02, Y1 y1f (v2)dy2 dxz)
H

which implies (I).
In order to show the estimate in (3.6), we will apply the almost orthogonal argu-

ment. For this purpose, we write the left-hand side of (3.6) by sup,,. | Bl 240y <1 | {

where

H= | S S w0 DY e, un)th, Kitur, vi) £, 1, x1,)durdo
ki=—o0 I

~

[lel(xll»)’l) kl(x[17y1)]

As in Subsection 2.3.1, for fixed £; we decompose the summation over k; by k; >
£1 and k| < £ and denote them by FE and F, respectively.
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Note that, as in Subsection 2.3.1, for k| > £1, || fll> < 1 and ||g]l2 < 1, the
condition that (T)T(l) = 0 implies the following almost orthogonal estimate
\/D}l (et ), KiGer, o) £) DY, o1, 1 dundwy

: ~t1(e1)
< 2~ k=t (en) 1 27

Voty (1) + Vot (x1) + V (X1, X1) 2= + dy (x1, xll))(sl)’ ’

which, together with the smoothness property of Elkl (x1,, ¥1), yields that |E| is
bounded by

! 1
C Ml(ll)zf(kﬁ@l)(ﬂ)
k12>;1 ; Voo (x1) + Voo (xp) + Vxyy, x1)

y ( 2~4 >(8‘) < di(y1, y)) )(8')/
274 4 dy(x1, xp,) 270+ dy (xpy, y1)

1 2 kl (8])
X b
Vo (x1) + V(xp, y1) <2k' +di(xy,, yl))

which gives the right-hand side of (3.6).
Similarly, we decompose F as

2/ > Y mUnD G unh, Ky, v) f)

ki<t I
X [Dimv] xn) — D;il(xl,xh)]dul(ul)dul(vl)

~

kl(xll,)’l)— kl(xll,)ﬁ)]

/ Y Dy (xr, un)h, Ky, v1) f)

ki<t I

x Dy, (xr et wndp! o)

[lel(xllvyl)_ k](-x117y1)]
=F + F>.

Note that when ki < £; we have the following almost orthogonal estimate that for
[ fll2 = 1and |gll2 <1,

\fDél(xl,m)(h,Kl(ul,voan,ll(vl,xh)—D,;(xl,le)]dul(m)dul(vl)

1 2—ki(er)

< co— i~k .
- Vot (X1) + Vi (1) + V(1. X1) 2k 4 dy (x1, xp,)) €D
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Therefore, F satisfies the same estimate as E. To estimate F,, we rewrite it as

~ ~
=

Fy= "3 " u(n)Dy, (1, x1)[ DY, (xry y1) = Dl (1, 3]
ki<t I

X /D}I(xl,ul)(h, Ki(up, ) fY(Ddu' (uy)

= [Se, Cx1, y1) = Se, 1, yD] | Dy, Gers un) (b, Ko (ur, ) f)(Ddp! (uy),
1

where for x1, y1 € My, Se, (x1, 1) =4, <¢, 21, ,U«1(11)D;11 (x1, x1) D, (xp, y1)
and similarly for S, (x1, y{). Note that S¢, (x1, y1) and S, (x1, y{) satisfy the size
and smoothness properties as proved in Subsections 2.3.2 and 3.3 .4, respectively.
Similar to the argument in Subsection 3.3.3, (h, K1(uy, ) f)(1), as a function of
uy, lies in BMO(M,) with ||, Ky (a1, ) f)(Dllamoany < ClLE 2 1Al 20 -
Hence ‘ fDél(xl, ur)(h, Ki(ui, ‘)f)(l)dﬂl(ul)‘ < Cllfllz2mo 12Nl 22(pgy) » Where
the constant C is independent of £; and x| since for any £; and x1, Dl}l (x1,up) isin

H'(M;) with | D¢, (x1, )l g1 (1, uniformly bounded. As a consequence, we have

|Fa| < C|Se, (x1. y1) = Se, 1. YD I 2 aay 12 22 as) -

Thus, applying the size properties of S¢, (x1, y1) and Sg, (x, y}) for the case ¢ :
270 < 2A,d; (1, yi) and the smoothness properties of Sy, (x1, y1) for the case

0270 > 2A1d(y1, yi), we conclude that F, satisfies the same estimate as F|
and hence (3.6) holds.

To verify (IT), it suffices to show that there exist positive constants C, ¢ and &’
with ¢’ < ¢, such that

A1) |Le, e, (x1, X2, Y1, ¥2) — Loy 05 (X1, X2, Y1, ¥2)
— L, 0, (x1,x2, y1, ¥) + Ly e, (X1, X2, Y7, ¥5)|
- C( di(y1, y)) >(€1)' 1
— O \27b +di(x1, 1) Vomty (x1) + Vo (y1) + V(x1, y1)
7—tien)

y ( dr(y2. ¥5) )0‘?2)/
Q=0+ dy (x1, y1))E 272 + da(x2, y2)

1 2—(e2)

X ’
Vot (x2) + Vo6, (32) + V(x2, ¥2) 2= + dy(x2, y2))(€2)

for di(y1, y)) < 5= @714 (x1, y1) and da (y2, ¥5) < 545 2724 (x2, y2).
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Note that from (3.3), we can write the left-hand side of (/1’) as

o o
YY" D mUnpa() Dy, D}, T D} D}, (x1, %2, X1y, %1,)

k1:—ook2:—oo ]1 12

~ ~

x [DV, (1 y1) = Dl ey YD [ D%, (510 32) — D2y (X1, ¥5)] =1 Ly e,

Then, to estimate Ly, ¢, , it suffices to estimate the term D (} 1D%zTDé ng (X1,X2,X1,,X1,),
which is exactly the same as what we have done in Subsection 3.3. To be more
precise, for any fixed integers €1 and £, we consider the following four cases: £1 >
ki and €y > kp; 1 > ky and €y < kp; £ < ky and €y > kp; €1 < k| and
ly < k. Then we write Ly, ¢, = ]L}l’e2 + L%I,Kz + ]L%l’(82 + Lﬁ.,ez’ where each
L@l ¢, corresponds to each case. We now only consider IL}I 1, and ]L%L ¢, since the
other two terms follow symmetrically.
For ]Lél’ 0 following the Case 1 in Subsection 2.3, we decompose

1 2 1 2
D kaéTDkl Dkz(xl, X2, X1y, X1)

=: I (xy, x2, X1, xp,) + 1 (x1, x2, xp,, Xp)

+ I (x1, x2, xp,, Xp,) + 1V (x1, x2, X1y, X1,)

. 1 7 1.1 1.2 1.3 1.4
and then write Lel,zz = Lﬁl,fz + Lel,ez + Lh,fz + Lzl,zz’ where

Lite, =D D0 > > mUDpa() (x1, x2, X1y, X1,)
kistika<ts I I

x [lel (1. 1) — Dy, (x1,. yi)] [Dzkz (1. y2) — D2y (x1,. yg)]

and similar for the other three terms.
For ]L%l’ 0y since (T*),(1) = 0, the Case 2 in Subsection 2.3 gives

1 n2 1 n2
Dk/lD éTDkl Dkz(xl,-XZa xlla-xlz) = V(-x17x27 xlla-xlz) + Vl(x]ax2a -xlly-xlz)

1
1s

For Lzlz}l,ez and ]L%}l,(z’ applying the almost orthogonality estimates for
I(x1,x2, xll,x!L) and V(x1, x2, Xp,) as in Subsection 2.3.1, the smoothness

T2 T2 22 i
and hence we can write Ly , =Ly, +Lj7, similarly.

X1,
properties for le, (x7,, y1) and D2k2 (x1,, ¥2), and then following the same proof
as in Case 1.1 in Subsection 2.3.1, we conclude that L}z}l, 0 and L%i & satisfies the
estimate in (II').

For Léfez, applying the Carleson measure estimate for IV(xL X2, X1y, XL,) as

ig Case 1.4 in Subsection 2.3.2 and the smoothness properties for lel (x7,,y1) and

lf)vzk2 (x1,, y2) implies that IL} 1452 is bounded by the right-hand side of (II').



900 YONGSHENG HAN, J1 L1 AND CHIN-CHENG LIN

Similarly, the almost orthogonality estimates on M| and the Carleson measure
eitimates on M as in Case 1.2 in Subsection 2.3.3 and the smoothness properties of
k1 (x7,, y1) and D2k2 (x1,, y2) gives the estimate in (/I) for L},izez' Similarly for

the estimate of Ll 3 "¢, - For more details of the proof, we refer the readers to the long
version of this paper [13]. This finishes the proof of the “if” part of Theorem 2.

3.2. “If” part of Theorem 3

Note that if f € CMOP (M ), in general, T'(f) may not be well defined because f is

a distribution in (éﬁl 9, (B1, B2; Y1, )/2))/. The same problem appears in the proof of
Theorem 2.5. The key fact used in the proof of Theorem 2.5 is that L2(M )NHP (M )
is dense in HP (M ). It turns out that to establish the boundedness of 7 on H? (M),
it suffices to show the H?” boundedness of T for f € L2(M) N H? (M) This
method does not work for the present proof of the “If”” part of Theorem 3 because
LZ(M) N CMOP(M) is not dense in CMO”(M) However, as a substitution, we
have the following:

Lemma 3.1. For max (55, . ;) < P < 1, L2(M) N CMOP (M) is dense in

CMO? (M) in the weak topology (Hp(M) CMO? (M)) More precisely, for each
f € CMOp(M) there exists a sequence { f,} C L2(M) N CMOP (M) such that
Il fn ”CMOI’(M) < C||f||CM0,,(M), where C is a positive constant independent of n

and f, and moreover, for each g € HP(M), (fn,8) — (f, g) asn — oo.

See [19] for the proof.

We now prove the “if” part of Theorem 3. We first define T on CMO? (M )
as follows. Given f € CMOP (M) by Lemma 3.1, there is a sequence {f,} C
LQ(M) N CMOP(M) such that ||fn||CM0p(M) < C||f||CMOp(M), and for each g €
L2(M) N HP (M), {f,, g) — (f,g) asn — oo. Thus, for f € CMOP (M), we
define

(T(f),8) = lim (T(f). g)

for each g € L2(M) N HP (M).

To see that this limit exists, we note that (T (f; — f), &) = (fj — fx, T*(g))
since both f; — fi and g belong to L? and T is bounded on L%. T* is bounded
on L? and the kernel of T* satisfies the conditions in Theorem 2. Moreover,
(T**(1) =T1(1) =0and ((T*)2)*(1) = T>(1) = 0. Therefore, by the “if” part
of Theorem 2 which has been proved in Subsection 3.1, T*(g) € LZ(M) NHP(M).
Thus, by Lemma 3.1, ( f; — fi, T*(g)) tends to zero as j, k — oo. Itis also easy to
see that this limit is independent of the choice of the sequence f, that satisfies the
conditions in Lemma 3.1.
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To finish the proof of “if”” part of Theorem 3, we claim that for each f €
L*(M) N CMOP (M),
“T(f)”CMO/ﬂ(M) = CHf”CMop(M),

where the constant C is independent of f.

To see the above claim implies the “if” part of Theorem 3, by the definition of
T on CMO”(M) foreach g € LZ(M) NHP (M), (T(f), g) =limy_oo{T (f), &),
where f, satisfies the conditions in Lemma 3.1. Particularly, taking g(x, y) =

D,%z D,ll (x,y) € Go,,9,(B1. B2; v1, v2) and applying the claim yield
||T(f)||CM0P(/171) = nlgrolo T(fn)||CM0P(/\7[) =< 1£ﬂ£f||T(fﬂ)||CM01’(M)

=< C||fn||CM01>(A71) = C”f”c/wop(/ﬁ)-

Thus, it remains to show the claim. The proof of the claim follows from the duality
between H? (M ) and CMO?P (M ), and the “if” part of Theorem 2. To be more
precise, let f € L2 N CMOP(M) and g € L2 N HP(M). By the duality first and
then the “if” part of Theorem 2, we have

KT (). &) = I{f. T* ()]

= ||f||CMop(M)”T*(g)”Hp(M) = C||f||CMO!’(1\7)“g”HP(M)‘

This implies that for each f € L2(M) N CMOP (M) Lr(g) = T(f) g) defines a
continuous linear functional on LZ(M YN H p(M ). Note that L2(M YN H p(M )
is dense in HP(M) Thus, £7(g) = (T(f), g) belongs to the dual of HP(M)
and the norm_of this linear functional is dominated by C|| f|lcmor. By the du-
ality of H? (M) with CMO? (M) again, there exists h € CMOP (M) such that

(T(f),8) = (h, g) foreach g € Gm 9, (B1, B2 v1, v2) and |[hllemor = Cllffll <
C ||f||CM0p(M) The crucial fact we will use is that, taking g(x, y) = Dk2 Dk. (x,y),
we obtain that (T (f), D2 D1 ) = (h, D,%z D111>‘ Therefore, by the definition of
CMO? (M), we have

||T(f)||CM0p(A7])

1/2
1
=supl—s— > Y |D£ZD,£1<T<f>)(x11,x,2>|2|11||12|}

=—1
Q |Q|P ki,ky€Z 11,1: 11 xI,CQ

12
1
= sup PR Z Z |D£2Dlil(h)(x11’x12)|2|11||12|}
Q QP ki kel I b:Lx LS

= 12l epor iny = CILf lemor ity

The proof of the claim is concluded and hence the proof of “if ” part of Theorem 3
is complete.
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3.3. “Only if” parts of Theorems 2 and 3

We first show the “only if” part of Theorem 3. Suppose that T is_a Calder6n-
Zygmund operator defined in Section 1 and bounded on CMOP (M ). For each
f(x2) € C (M3), we define the function f(x,x2) on M by f(xl,xz) =

x1(x1) f2(x2), where x1(x1) = 1 on Mj. It is clear that f is in CMOI’(M) with
||f||CM0p(A71) = 0. Consequently, we have Tf € CMO? (M) and ”Tf”CMoP(M) =
0. Therefore,

////81(X1)gz(x2)K(x1,Y1,X2,y2)
My Iy Iy I

X fr(y)du! (x))dp? (x2)du! (y1)dp*(y2) =0

forall g1 € Cg (M) with [g1 (x))du! (x1)=0, g2 € CJ (M>) with [ g2 (x2)dpu?(x2) =
Oandall f> € Cg (M3). Note that the above equality is equivalent to

/ / T*(g1 ® g2) V1, y2) L(n)dp' (y1)dp? (v2) = 0.
My J M,

Since T 1s bounded on LZ(M) T* is also bounded on L2(M) Therefore, T*(g1 ®
g2) € L! (M) N L2(M) since (g1 ® g2) € H! (M) Note that C (M>) is dense in
L?(M5). This implies

/ T*(g1 ® g2)(y1, y2)dy; =0
M,

= / / / g1(x1)g2(x2) K (x1, y1, x2, y2)dp! (x)dp* (x2)d ' (y1)
M, J My J M,

forall g € Cg (M) with [g1(x1)d ! (x1) =0, g, € CJ (M) with [ g>(x2)d p*(x2) =
0 and for y, € M, almost everywhere. Thus, 77(1) = 0. Similarly we can prove
that 75(1) = 0.

We now prove the “only if”” part of Theorem 2. We claim that if 7" is bounded
on L? and H” (M), then the adjoint operator 7* extends to a bounded operator from
CMOP (M) to itself, where T* is defined originally by (T f, g) = (f, T*g) for all
f.g € LX(M).

To see this, let f € LQ(M) N Hp(Mland g€ LZ(M) N CMOP(M) then, by
the duality between H? (M) and CMOP? (M),

(T™g, )l = K T = ClILf g inl8lcmor iiy-

This implies that (T*g, f) defines a continuous linear functional on H” (M) be-
cause L2(M) N HP (M) is dense in H” (M). Moreover, applying the same proof
given in Subsection 4.2 yields

“T*g”CMOP(M) <C ”g“CMO”(M)'

Then, applying the “only if”” part of Theorem 3 for the operator 7* implies that
(T")1 (D) = (T%)2(1) =0.
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4. The case of n factors

In this section we first consider the case of 3 factors; that is, M=M L X My x Ms3.
We recall the definition of the Littlewood-Paley square function on M.

Definition 4.1. Let {S,ii };ez be approximations to the identity on M; and D,ii =

S,’;l. —S,ii_l,i =1,2,3.For f € (Gv,.9,(B1. B2, B3: 1. V2. )/3))/With0 <Bi,vi <
vi,1 =1,2,3,84(f), the discrete Littlewood-Paley square function of f, is defined
by

S(f)(x1, x2, x3)

{3 ¥ ¥ EESimhokoltm

ki=—00kpy=—00 kz=—00 Ill 122 133

12
X X[ll (xl)X122(x2)X133(x3)} )

where for each k;, 1 l.i ranges over all the dyadic cubes in M; with side-length Z(Iii )=
2=ki=Ni and Nj are large fixed positive integers, fori = 1, 2, 3.

We recall the Hardy spaces H” and Carleson measure spaces CMO? on M as
follows.

Definition 4.2 ([14]). Let max (
W fori =1,2,3.

W] w) w3
w1+’ o+’ w3+3

)<p§1and0<,3,',y,-<

HP (M) := {f € (Goy.00(Brs Bos B3: v1, 120 v9)) + S(F) € LP(H))

and if f € HP(M), the norm (or quasi-norm) of f is defined by ||f||HP(1171) =
ISCOIp-

Definition 4.3 ([14]). Let max (3%, 722, 5o%-) < p < 1 and 0 < B,

yp < v fori = 1,2,3. Let {S,ii }k;ez be approximations to the identity on M;
and for k; € 7Z, set D,ii = S,ii — S,ii

_1» i = 1,2,3. The generalized Carleson

measure space CMOP(M) is defined, for f € (éﬁ,,ﬁz (B1, B2, B3: Y1, v2s )/3))/, by

1 2
||f||CM0p(A~4)=sup{—2_lf Y. Y DLDEDL() G, X2, x3)]
@ Lu(@r ks 1) < 2x 3 ce
1

2
X X ()2 ()3 (x3)dul(xl)duz(X2)dM3(X3)} < oo,

where €2 are taken over all open sets in M with finite measures and for each ;, Il.i
ranges over all the dyadic cubes in M; with length £(/ ii) =2"k=Ni j=1,2,3.
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To consider singular integral operators on M, we first introduce the space
Cg (M) by induction. Note that we have introduced Cg (M, x M>) in Section 1.

A function f(x1, x2, x3) is said to be in Cg (]\7[ ) if f has compact support and
| f (x1, x2, ')”Cg(MlxMz) € Cg(M3)-

Now we introduce a class of product singular integral operators on M.
Let T : CJ(M) — (CJ(M))' be a linear operator with an associated dis-

tribution kernel K (x1, y1, X2, ¥2, X3, ¥3), Which is a continuous function on M \
{(x1, y1, X2, ¥2, X3, y3) : x; = y;, forsomei, 1 <i < 3}. Moreover,

D (T(1 ® 2 ®@3), V1 QY2 ® ¥r3)

:/‘K(xl,)’l,xbyz,)%,)@)

3
x [ e Govi Godu' Goydu! (n)du® ()dp? (v2)d i (x3)d e (33)
1

whenever ¢; and ; are in Cg (M;) with disjoint supports, for 1 <i < 3.
(i) There exists a Calderén-Zygmund valued operator K3(x3, y3) on M| x M>
such that

(T(p1 ® 02 @ @3), V1 @ Y2 ® Yr3)

= / (K3(x3, 3) (@01 ® 92), Y1 ® W¥2)3(x3)¥3(v3)d e’ (x3)d i (y3)

whenever ¢; and ; are in Cg (M;) for 1 <i < 3 and supp ¢3 Nsupp Y3 = <.
Moreover, || K3(x3, y3)llczm, xM,) as a function of x3, y3 € M3, satisfies the
following conditions:

.. 1 ;
(ii-2) 1K3(x3, y9)llez12 = €y —ys

" d3(y3,y5) \ %3
(1l'b) ||K3(JC3, )’3) - K3(X3, Y§)||CZ,1,2 < C(d;(x;yg)) V(X;,yg,)
- d3(x3,y3) .
if d3(y3, y3) < B3

d3(x3, x3) )83 1

(ii-c) |K3(x3, y3) — K3(x3, y3)llcz.1.2 < C(
3 d3(x39 )’3) V(X3,y3)
if d3(x3, x}) < dS(;T?;m-

Here we use |||l c z(m, x M,) to denote the Calderén-Zygmund norm of the prod-
uct Calder6én-Zygmund operators on M| x M. More precisely, || T ||c z(m, x My)
= Tl 212 + |K|czm xMy), Where |K |cz,1,2 = min(|K1|cz, |K2|cz) by
considering K as a pair (K1, K3) as in Section 1.
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(iii) There exists a Calderén-Zygmund valued operator K 2(x1, y1, X2, y2) on M3
such that

(T(p1 @ 2@ ¥3), V1 V2 @ Yr3)

= /(Kl,z(xl, Vi, X2, y2)(93), ¥3)

2
x [ Jorcovi Godu' Geoydp! (du® (x2)d e (32)
i=1

whenever ¢; and ; are in Cg (M;) for 1 < i < 3, and ¢; and ; have

disjoint supports for i = 1,2. Moreover, as a function of (xi, y1, x2, y2),
Ki2(x1, y1, x2, ¥2) satisfies the following conditions:
1

(iii-a) ||K1,2(x1, y1, X2, y2)llcz =< C ;
Vxi, y1) V(xz, y2)

(iii-b) || K1,2(x1, y1, X2, y2) — K12(x], y1, %2, y2)llcz
di(x1, x))\¢ 1 1 di(xq,
§C< 1(x1 1)>1 ifdy (1, x)) < 1(x] )’1);
di(x1,y1)/ V(x1,y1) V(x2, y2) 24,
(iti-c) the condition (iii-b) also holds for interchanging xp, xo with y1, y;;
(iii-d) [|K12(x1, y1, X2, y2) — K1,2(x], y1, %2, y2)
— Ki2(x1, y1, x5, y2) + K1 2(x], y1. x5, y2)llcz
C(dl(m, %))81 1 (dz(Xz, %))82 1
di(x1,y1)/ V(x1,y1) \da(x2, y2)/  V(x2, y2)
if d) (x1, x]) < D510 and da (o, xp) < L5522
(iii-e) the condition (iii-d) also holds for interchanging xp, xo with y1, y;.

(iv) The same conditions (ii) and (iii) hold for any permutation of the indices
1,2,3. That is, we can consider T as a pair of (K3, K2), as well as a pair
of (K1, K23). Both K and K satisfy (ii). Similarly, both K3 and K23
satisfy (iii).

To state the result on M, we need to deal with the partial adjoint operators T. We
have the following two classes of partial adjoint operators. For the first class, 77,
the partial adjoint operator of 7, is defined as

(T (@1 @ 92 ® 93), Y1 @ Y2 ® ¥3) = (T(Y1 ® 92 ® 3), 91 @ Y2 @ ¥3),

and similarly for T, and 7. For the second class, ﬁ,z, the partial adjoint operator
of T, is defined as

(T12(01 @ 92 ® 93), Y1 ® Y2 @ ¥3) = (T (Y1 ® Y2 ® 93), 91 @ 92 @ ¥3),

and similarly ﬁ,z and T2,3. Thus, there are totally 6 partial adjoint operators.
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We also define the weak boundedness property. Let T be a product singular
integral operator on M. We say that T has the WBP if

(K1 (02 ® 93), ¥2 @ ¥3)llczaay) S Vi G Viy (1)

for all g2, Y2 € App, (8,3, 72), @3, 93 € Apy (8, x3,73)
and

(K1 2(@3), U3)lczo, xaty) S Viy (1) for all g3, Y3 € Ap, (8, x5, 73),

and the same conditions hold for K, K> and K 3, K> 3, respectively.
Now we can state the result on M = M| x M> x M3.

Theorem 1'. Let T be a product singular_integral operator on M. Then T is
bounded on L?(M) if and onlyif T1,7*1,T11,T1,T31,T1 21, T 31 and 7> 31 lie
in BMO(M) and T has the weak boundedness property.

The general case M = My x --- x My, of n factors will follow by induction.
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