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Identifying neighbors of stable surfaces

GIANCARLO URZÚA

Abstract. We identify the stable surfaces around the stable limit of the examples
of Y. Lee and J. Park [15], and H. Park, J. Park and D. Shin [19], using the explicit
3-fold Mori theory of [8]. These surfaces belong to the Kollár-Shepherd-Barron-
Alexeev compactification of the moduli space of simply connected surfaces of
general type with pg = 0 and K 2 = 1, 2, 3.

Mathematics Subject Classification (2010): 14J29 (primary); 14J10, 14E30
(secondary).

1. Introduction

Amain application of [8] is to have an explicit 3-fold Mori theory to find stable lim-
its ofQ-Gorenstein one-parameter degenerations of surfaces with only log terminal
singularities. The aim of this paper is to run [8, Section 5] on the singular exam-
ples of Y. Lee and J. Park [15], and H. Park, J. Park and D. Shin [19] to identify
stable surfaces around them. These surfaces belong to the Kollár-Shepherd-Barron-
Alexeev (KSBA) compactification of the moduli space of (simply connected) sur-
faces of general type with pg = 0 and K 2 = 1, 2, 3 [1, 11, 12]. This moduli
space has no explicit description for any K 2. It is not even known whether it is
irreducible. Moreover, the only explicit surfaces with those invariants are Barlow
surfaces [2, VII.10]1, where K 2 = 1, and for the rest we only know existence via
the Q-Gorenstein smoothing method pioneered in [15].

We work out one example for each K 2, and state results for the others. We find
their stable (KSBA) models (see Lemma 3.1 for the general picture), and the smooth
minimal model of the stable singular surfaces around them. Lee-Park examples

1 It has recently been proved that the Craighero-Gattazzo surface is also simply connected [22].
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represent points of the moduli space of stable surfaces2, with local dimension 10�
2K 2, and each of its Wahl singularities 1

n2 (1, na � 1) defines a boundary divisor
D

�n
a
�
. In this way, we will be identifying general points on these divisors. This is

done in Sections 5, 6 and 7.
In Section 2, we summarize the results we need from [8], passing through the

necessary notations and facts. Then, in Section 3 we describe in detail the strategy
to identify stable surfaces around a given one. We would like to remark that the
techniques used in Section 3 can be applied to surfaces with other invariants. The
choice of invariants in this paper reflects the interest of the author.

Before working out the examples, in Section 4 we describe how pg = 0 elliptic
surfaces can be constructed viaQ-Gorenstein smoothings. Apart from putting these
elliptic surfaces in perspective with the general type constructions, this description
will be used in the next sections to identify stable surfaces.

The identification in Sections 5, 6 and 7 shows the presence of various special
surfaces in the KSBA boundary. For example, there are singular stable surfaces
whose smooth minimal models are pg = 0 surfaces of general type which con-
tain certain configurations of curves. There are also stable surfaces whose smooth
minimal models are Dolgachev surfaces (i.e., simply connected elliptic fibrations
with pg = 0 and Kodaira dimension 1, see Corollary 4.3), and special rational sur-
faces. In some cases, these rational examples are distinct from the type of examples
in [15, 19] and related papers, where the construction depends on rational elliptic
fibrations with certain singular fibers. Hence this brings a new type of construction;
see [24] for concrete examples.

Finally some conventions. We write the same letter to denote a curve and its
strict transform under a birational map. We use Kodaira’s notation [2, page 201] for
singular fibers of elliptic fibrations. A (�n)-curve in a smooth surface is a curve
C ' P1 with C2 = �n. The symbol D will be used for a smooth analytic germ
of a curve. A surface in the Kollár-Shepherd-Barron-Alexeev moduli space will be
called either stable or KSBA surface. The ground field is C.

ACKNOWLEDGEMENTS. I am grateful to the anonymous referee for very helpful
suggestions which have significatively improved the presentation of the paper. I
have also benefited from many conversations with Paul Hacking and Jenia Tevelev.

2. Preliminaries

The purpose of this section is to give a summary of some results from [8] which
will be used in the next sections. We first recall some terminology and facts from
various sources.

2 A local model of the coarse moduli space at these surfaces is the space of Q-Gorenstein defor-
mations, which is smooth at all of the Lee-Park examples [7, Section 3], modulo a finite group of
automorphisms.
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2.1. Cyclic quotient singularities

A cyclic quotient singularity Y , denoted by 1
m (1, q), is a germ at the origin of the

quotient of C2 by the action of µm given by (x, y) 7! (µx, µq y), where µ is a
primitive m-th root of 1, and q is an integer with 0 < q < m and gcd(q,m) = 1;
cf. [2, III Section 5]. Let � :

eY ! Y be the minimal resolution of Y . Figure 2.1
shows the exceptional curves Ei = P1 of � , for 1  i  s, and the strict transforms
E0 and Es+1 of (y = 0) and (x = 0) respectively.

E0 E1

E2 Es – 1 Es Es + 1

Figure 2.1. Exceptional divisors over 1m (1, q), E0 and Es+1.

The numbers E2i = �bi are computed using the Hirzebruch-Jung continued frac-
tion

m
q

= b1 �
1

b2 � 1
. . .� 1

bs

=: [b1, . . . , bs].

A configuration of curves [b1, . . . , bs] in a nonsingular surface will mean the cor-
responding exceptional divisor of the singularity 1

m (1, q).
We use the same notation for continued fractions [b1, . . . , bs] even when some

bi are 1. This will happen in Subsection 2.4 for example.
The continued fraction [b1, . . . , bs] defines the sequence of integers

0 = �s+1 < 1 = �s < . . . < q = �1 < m = �0

where �i+1 = bi�i � �i�1. In this way, �i�1
�i

= [bi , . . . , bs]. The partial fractions
↵i
�i

= [b1, . . . , bi�1] are computed through the sequences

0 = ↵0 < 1 = ↵1 < . . . < q�1 = ↵s < m = ↵s+1,

where ↵i+1 = bi↵i � ↵i�1 (q�1 is the integer such that 0 < q�1 < m and qq�1 ⌘
1 (modm)), and �0 = �1, �1 = 0, �i+1 = bi�i ��i�1. We have ↵i+1�i �↵i�i+1 =

�1, �i = q↵i � m�i , and m
q�1 = [bs, . . . , b1]. These numbers appear in the pull-

back formulas

� ⇤
�
(y = 0)

�
=

s+1X
i=0

�i
m
Ei , and � ⇤

�
(x = 0)

�
=

s+1X
i=0

↵i
m
Ei ,

and KeY ⌘ � ⇤(KY ) +

Ps
i=1(�1+

�i+↵i
m )Ei .
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2.2. Q-Gorenstein deformations

The following terminology and facts are come [11].
Definition 2.1. Let Y be a normal surface with only quotient singularities, and let
D be a smooth analytic germ of a curve. A deformation (Y ⇢ Y) ! (0 2 D) of
Y is called a smoothing if its general fiber is smooth. It is Q-Gorenstein if KY is
Q-Cartier.
Definition 2.2. A germ of a normal surface Y is called a T-singularity if it is a
quotient singularity and admits a Q-Gorenstein smoothing.

A T -singularity is either a du Val singularity or a cyclic quotient singularity
1
dn2 (1, dna � 1) with gcd(n, a) = 1 [11, Proposition 3.10]. A T -singularity with
a one-dimensional Q-Gorenstein versal deformation space is either a node A1 or a
Wahl singularity 1

n2 (1, na � 1).
Definition 2.3. Let (Q 2 Y ) be a germ of a two-dimensional quotient singularity.
A proper birational map f : X ! Y is called a P-resolution if f is an isomorphism
away from Q, X has T -singularities only, and KX is ample relative to f [11, Defi-
nition 3.8].

By [11, Subsection 3.9], there is a natural bijection between P-resolutions
X+
! Y and irreducible components of the formal deformation space Def(Y ).

Namely, let DefQG(X+) denote the versal Q-Gorenstein deformation space of X+.
Recall that for any rational surface singularity Z and its partial resolution X ! Z ,
there is an induced map Def(X)! Def(Z) of formal deformation spaces [25, Sub-
section 1.4], which we refer to as blowing down deformations. In particular, we
have a map DefQG(X+) ! Def(Y ). The germ DefQG(X+) is smooth, the map
DefQG(X+) ! Def(Y ) is a closed embedding, and it identifies DefQG(X+) with
an irreducible component of Def(Y ). All irreducible components of Def(Y ) arise
in this fashion (in a unique way).

2.3. Extremal neighborhoods

Now some definitions from [13].
Definition 2.4. An extremal neighborhood (C ⇢ X ) ! (Q 2 Y) is a proper
birational morphism between normal 3-folds F : X ! Y such that:
(1) The canonical class KX is Q-Cartier and X has only terminal singularities;
(2) There is a distinguished point Q 2 Y such that F�1(Q) consists of an irre-

ducible curve C ⇢ X ;
(3) KX · C < 0.

Let Exc(F) be the exceptional loci of F . An extremal neighborhood is flipping if
Exc(F) = C . Otherwise, Exc(F) is two-dimensional, and F is called divisorial.

In the flipping case, KY is not Q-Cartier. Then one attempts another type of
birational modification. A flip of a flipping extremal neighborhood

F : (C ⇢ X )! (Q 2 Y)
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is a proper birational morphism

F+

: (C+

⇢ X+)! (Q 2 Y)

where X+ is normal with terminal singularities, Exc(F+) = C+ is a curve, and
KX+ is Q-Cartier and F+-ample. A flip induces a birational map X 99K X+ to
which we also refer as flip. When a flip exists then it is unique (cf. [14]). Mori [16]
proves that (3-fold) flips always exist.

2.4. Explicit semi-stable MMP

In [8] we focus on two particular types of extremal neighborhoods, which appear
naturally when working on the Kollár-Shepherd-Barron-Alexeev compactification
of the moduli of surfaces of general type.
Definition 2.5. Let (Q 2 Y ) be a two-dimensional cyclic quotient singularity germ.
Assume there is a partial resolution f : X ! Y of Y such that f �1(Q) is a smooth
rational curve C with one (two) Wahl singularity(ies) of X on it. Suppose KX ·C <
0. Let (X ⇢ X ) ! (0 2 D) be a Q-Gorenstein smoothing of X over a smooth
analytic germ of a curve D. Let (Y ⇢ Y) ! (0 2 D) be the corresponding
blowing down deformation of Y . The induced birational morphism (C ⇢ X ) !
(Q 2 Y) is called extremal neighborhood of type mk1A (mk2A); we denote it by
mk1A (mk2A).

These extremal neighborhoods are of type k1A and k2A (cf. [13,17]), and they
are minimal with respect to the second Betti number, which is equal to 1, of the
Milnor fiber of (Y ⇢ Y) ! (0 2 D) (see [8, Proposition 2.1] for more discussion
on this).
Definition 2.6. A P-resolution f +

: X+
! Y of a two-dimensional cyclic quotient

singularity germ (Q 2 Y ) is called extremal P-resolution if f +�1(Q) is a smooth
rational curve C+, and X+ has only Wahl singularities (thus at most two; cf. [11,
Lemma 3.14]).

Proposition 2.7. Let (C ⇢ X ) ! (Q 2 Y) be a flipping mk1A or mk2A, where
(C ⇢ X) ! (Q 2 Y ) is the contraction of C between the special fibers. Then
there exists an extremal P-resolution (C+

⇢ X+) ! (Q 2 Y ), such that the
flip (C+

⇢ X+) ! (Q 2 Y) is obtained by the blowing down deformation of a
Q-Gorenstein smoothing of X+. The commutative diagram of maps is

(C ⇢ X )

��;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;

&&LLLLLLLLLL

flip //__________ (C+
⇢ X+)

wwppppppppppp

����
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(Q 2 Y)

✏✏
(0 2 D),
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and restricted to the special fibers we have

(C ⇢ X)

&&MMMMMMMMMM

//__________ (C+
⇢ X+)

wwppppppppppp

(Q 2 Y ).

Proof. [13, Section 11 and Theorem 13.5]. (See [8, 17] for explicit equations of
the surfaces and 3-folds involved.)

Proposition 2.8. If an mk1A or mk2A is divisorial, then (Q 2 Y ) is a Wahl sin-
gularity. The divisorial contraction X ! Y induces the blowing down of a (�1)-
curve between the smooth fibers of X ! D and Y ! D.
Proof. Since KX · C < 0 and X has only Wahl singularities, the divisorial con-
traction X ! Y induces the blowing down of a (�1)-curve between the smooth
fibers of X ! D and Y ! D; see [8, Proposition 3.16(b)]. Since it is the diviso-
rial contraction of an extremal ray, the 3-fold Y is Q-Gorenstein, and so (Q 2 Y )
is a T-singularity. If X 0 and Y 0 are smooth fibers of X ! D and Y ! D, then
K 2X = K 2X 0 = K 2Y 0 � 1 = K 2Y � 1. Hence, since the second Betti number of the
smoothing (X ⇢ X ) ! (0 2 D) is one, we have that the Milnor number of the
smoothing Y ! D of (Q 2 Y ) is zero. A T-singularity with a smoothing which has
Milnor number zero is a Wahl singularity (see for example [9, Lemma 2.4]).

The following is the numerical description of X in an mk1A or in an mk2A
(Definition 2.5), and of X+ in an extremal P-resolution (Definition 2.6). This de-
scription only requires toric computations on surfaces, the 3-folds X and X+ do
not play a role. See more details in [8, Section 2].

(X ! Y for mk1A)
Fix an mk1Awith Wahl singularity 1

m2 (1,ma � 1). Let
m2

ma�1 = [e1, . . . , es] be
its continued fraction. Let E1, . . . , Es be the exceptional curves of the minimal
resolution eX of X with E2j = �e j for all j . Notice that KX · C < 0 and C · C < 0
imply that the strict transform of C in eX is a (�1)-curve intersecting only one
component Ei transversally at one point. This data will be written as

[e1, . . . , ei , . . . , es]

so that 1
� = [e1, . . . , ei � 1, . . . , es] where 0 < � < 1, and (Q 2 Y ) is

1
1(1,�). Let �i ,↵i , �i be the numbers defined in Subsection 2.1 for the singularity
1
m2 (1,ma � 1). Then

1 = m2 � �i↵i � = ma � 1� �i�i

and, if � :=
�i+↵i
m , we have KX · C =

��
m < 0 and C · C =

�1
m2 < 0.
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(X ! Y for mk2A)
Consider now an mk2A with Wahl singularities 1

m2j
(1,m ja j � 1) ( j = 1, 2). Let

E1, . . . , Es1 and F1, . . . , Fs2 be the exceptional divisors over
1
m21

(1,m1a1 � 1) and

1
m22

(1,m2a2 � 1) respectively, such that m21
m1a1�1 = [e1, . . . , es1] and

m22
m2a2�1 =

[ f1, . . . , fs2] with E2i = �ei and F2j = � f j . We know that the strict transform of
C in the minimal resolution eX of X is a (�1)-curve intersecting only one Ei and
one Fj transversally at one point, and these two exceptional curves are at the ends
of these exceptional chains. The data for mk2A will be written as

[ fs2, . . . , f1]� [e1, . . . , es1]

so that the (�1)-curve intersects F1 and E1, and
1

�
= [ fs2, . . . , f1, 1, e1, . . . , es1]

where 0 < � < 1 and (Q 2 Y ) is 11(1,�).
We define � := m1a2 + m2a1 � m1m2, and so

1 = m21 + m22 � �m1m2, � = (m2 � �m1)(m2 � a2) + m1a1 � 1.

We have KX · C =
��

m1m2 < 0 and C · C =
�1

m21m
2
2

< 0.

(X+
! Y )

In analogy to an mk2A, an extremal P-resolution has data [ fs2, . . . , f1] � c �
[e1, . . . , es1], so that

1

�
= [ fs2, . . . , f1, c, e1, . . . , es1]

where �c is the self-intersection of the strict transform of C+ in the minimal res-
olution of X+, 0 < � < 1, and (Q 2 Y ) is 1

1(1,�). As in an mk2A, here
m021

m01a01�1 = [e1, . . . , es1] and
m022

m02a02�1 = [ f1, . . . , fs2]. If a Wahl singularity (or
both) is (are) actually smooth, then we set m0i = a0i = 1. We define

� = cm01m02 � m01a02 � m02a01,

and so 1 = m021 + m022 + �m01m02 and, when both m0i 6= 1,

� = �m021(c � 1) + (m02 + �m01)(m02 � a02) + m01a01 � 1.

(One easily computes � when one or both m0i = 1.) We have

KX+ · C+

=

�

m01m02
> 0 and C+

· C+

=

�1

m021m0
2
2

< 0.
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Remark 2.9. Notice that for 0 < a < m with gcd(m, a) = 1, we have m2
ma�1 =

[e1, . . . , es] and m2
m(m�a)a�1 = [es, . . . , e1], since

(m(m � a)a � 1)(ma � 1) ⌘ 1 (modm2).

When we give the data of the Wahl singularities in an mk2A or an extremal P-
resolution, we are giving the way the strict transform of the curve C or C+, respec-
tively, intersects the exceptional divisor of the corresponding minimal resolution.

We now show how to carry out explicit computations. First we recall Mori’s al-
gorithm to compute the numerical data of either the flip or the divisorial contraction
for any mk2A; cf. [17].

Let us consider an arbitrary extremal neighborhood E of type mk2A with nu-
merical data (m, b), (n, a), so that the Wahl singularities are

1
m2

(1,mb � 1),
1
n2

(1, na � 1),

� = ma + nb � mn > 0, and 0 < � < 1 as above. Without loss of generality, we
assume n > m. (Using the formulas for � and1, it is easy to see thatm 6= n.) From
this data, Mori constructs other extremal neighborhoods E0 of type mk2A such
that both E and E0 are of the same type (either flipping or divisorial), and after
the birational modification the corresponding central fibers are the same. We now
explain how to find these E0, and Mori’s criterion to know when E is flipping or
divisorial.

Assume � > 1, the case � = 1 will be treated separately.
Let us define the recursion ⇣1 = 0, ⇣2 = 1,

⇣i+1 + ⇣i�1 = �⇣i ,

for i � 2. One can show that�
⇣i+1n � ⇣im, ⇣i+1a � ⇣i (m � b)

�
(2.1)

is a pair of positive integers for all i � 1. But one can prove that there exists an
integer i0 � 1 such that �

⇣i+1m � ⇣i n, ⇣i+1b � ⇣i (n � a)
�

(2.2)

is a pair of positive integers only for 1  i  i0 � 1. Precisely, we have ⇣i0+1m �
⇣i0n  0. Two consecutive pairs of positive numbers of the form (2.1) or (2.2)
above define the two Wahl singularities of an E0, with associated numbers �,�, and
1 (same numbers as for E). Below we will show precisely the E0. Mori proves that
E is of flipping type if ⇣i0+1m � ⇣i0n < 0. Otherwise (i.e., ⇣i0+1m � ⇣i0n = 0) E is
of divisorial type.

Notice that this procedure gives an initial E0, right before reaching the index
i0. We call it the initial mk2A associated to a given E.
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Example 2.10. Let us consider anE of type mk2Awith data (37, 24), (14, 5). Here
m = 14, b = 5 and n = 37, b = 24. Ones computes in this case 1 = 11, � = 3,
and � = 3. The sequence of pairs that stops is: (14, 5), (5, 2), (1, 1). The last
(1, 1) means that the corresponding mk2A is an mk1A, i.e., it has only one Wahl
singularity. After that, one has 3 ·1�5 < 0, and so E is of flipping type. The initial
E0 has one Wahl singularity 1

25 (1, 9). This example will continue in Example 2.14.

We now give the computation of the numerical data (as presented above) of all
the E0, and the corresponding flip or divisorial contraction from an initial mk2A.

Consider an initial mk2A E1 with Wahl singularities defined by pairs (m1, a1)
and (m2, a2) with m2 > m1, and numbers �, 1 and �, where �m1 � m2  0. We
also allow the mk1A special case m1 = a1 = 1.

For i � 2, we have the Mori recursions (see [8, Subsection 3.3])

d(1) = m1, d(2) = m2, d(i � 1) + d(i + 1) = �d(i)

and c(1) = a1, c(2) = m2 � a2, c(i � 1) + c(i + 1) = �c(i) with i � 3.
When � > 1, for each i we have an mk2A Ei with Wahl singularities defined

by the pairs
(mi , ai ), (mi+1, ai+1)

where mi+1 = d(i + 1), ai+1 = d(i + 1)� c(i + 1) and mi = d(i), ai = c(i). We
have mi+1 > mi . The numbers �, 1 and �, and the flipping or divisorial type of
Ei are equal to the ones associated to E1. We call this sequence of mk2A a Mori
sequence.

If � = 1, then the initial mk2A must be flipping (by Mori’s criterion), and the
Mori sequence above gives only one more mk2A with datam3 = d(2)�d(1), a3 =

d(2)� d(1) + c(1)� c(2) and m2 = d(2), a2 = c(2).

From the numerical data of E1, we have according to �m1 � m2
(=0) (see [8, Proposition 3.13]) Divisorial type: then m1 = �, m2 = �2 = 1,

� = �a1 � 1, and a2 = �2 � �. As in Proposition 2.8, the corresponding
contraction (X ⇢ X ) ! (Y ⇢ Y) has the effect of blowing down a (�1)-
curve E 0 ⇢ X 0 ! Y 0 between smooth fibers X 0 and Y 0.

(<0) (see [8, Proposition 3.15 and Theorem 3.20]) Flipping type: the extremal
P-resolution X+ has m02 = m1, a02 = m1� a1, and m01 = m2� �m1, a01 ⌘
(m2 � a2) � �a1 (modm01). If m1 = a1 = 1, then we set a02 = 1. The
self-intersection of C+ can be found using the formula for � for an extremal
P-resolution, see the numerical description above.

Remark 2.11. For a given Wahl singularity 1
�2

(1, �a � 1) we have one Mori se-
quence of divisorial type starting with the data in (=0). For a given extremal P-
resolution X+, we have at most two corresponding Mori sequences, one for each of
the Wahl singularities in X+. This is in [8, Corollary 3.23], and the precise proce-
dure can be read from either above or from the last part of the proof of [8, Corol-
lary 3.23]. We do not give details here because we will not use it.
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In [8] we show how to compute for all extremal neighborhoods of type mk1A.
More precisely, we prove that a given exceptional neighborhood of type mk1A de-
generates to two mk2A sharing the type, and the central fiber of the resulting bira-
tional operation.

Proposition 2.12 ([8, Subsections 2.3 and 3.4]). Let [e1, . . . , ei , . . . , es] be the
data of an mk1A with m2

ma�1 = [e1, . . . , es]. Let �,1,� be as in the above
numerical description of an mk1A. Let m2

m2�a2 = [e1, . . . , ei�1] and m1
m1�a1 =

[es, . . . , ei+1], if possible (this is, for the first i > 1, for the second i < s). Then,
there are mk2A with data

[ fs2, . . . , f1]� [e1, . . . , es] and [e1, . . . , es]� [g1, . . . , gs1],

where m22
m2a2�1 = [ f1, . . . , fs2],

m21
m1a1�1 = [g1, . . . , gs1], such that the correspond-

ing cyclic quotient singularity 1
1(1,�) and � are the same for the mk1A and the

mk2A. Moreover, each of the mk2A deforms (over a smooth analytic germ of a
curve) to the mk1A by Q-Gorenstein smoothing up 1

m2i
(1,miai � 1) while keeping

1
m2 (1,ma � 1), and there are two possibilities: either these three extremal neigh-
borhoods are

(1) flipping, with the same extremal P-resolution for the flip, or
(2) divisorial, with the same (Q 2 Y ).

Therefore Proposition 2.12 allows us to compute the flip or the divisorial contrac-
tion for any mk1A through the Mori algorithm [17] for extremal neighborhoods of
type k2A described above. In [8] we show that this gives a complete description
of the situation, which provides a universal family for both flipping and divisorial
contractions; see [8, Section 3]. Below we show a complete example in each case.
Example 2.13 (Divisorial family). Consider the Wahl singularity (Q 2 Y ) =

1
4 (1,1). So 1 = 4 and � = 1, and � = 2. Then the numerical data of any
mk1A and any mk2A of divisorial type associated to (Q 2 Y ) can be read from

[4]� [2, ¯2, 6]� [2, 2, 2, ¯2, 8]� [2, 2, 2, 2, 2, ¯2, 10]� · · ·

Notice that � = 2. For example, [2, 2, 2, 2, 2, ¯2, 10] is an mk1A , and [2, ¯2, 6] �
[2, 2, 2, ¯2, 8] is an mk2A.
Example 2.14 (Flipping family). Let 1

11 (1, 3) be the cyclic quotient singularity
(Q 2 Y ). So 1 = 11 and � = 3. Consider the extremal P-resolution X+

! Y
defined by [4] � 3. Here m01 = a01 = 1, m02 = 2, a02 = 1, � = 3, and the
“middle” curve is a (�3)-curve. Then the numerical data of any mk1A and any
mk2A associated to X+ can be read from

[
¯2, 5, 3]� [2, 3, ¯2, 2, 7, 3]� [2, 3, 2, 2, 2, ¯2, 5, 7, 3]� · · ·
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and

[4]� [2, ¯2, 5, 4]� [2, 2, 3, ¯2, 2, 7, 4]� [2, 2, 3, 2, 2, 2, ¯2, 5, 7, 4]� · · ·

These two Mori sequences provide the numerical data of the universal antiflip [8,
Section 3] of [4] � 3. For particular examples, we have that [2, 3, ¯2, 2, 7, 3] and
[2, ¯2, 5, 4] are mk1A whose flips have X+ as central fiber.

A flip which appears frequently in calculations is the following

Proposition 2.15. Let [e1, . . . , es�1, es] be a flipping mk1A. Let i 2 {1, . . . , s} be
such that ei � 3 and e j = 2 for all j > i . (If es > 2, then we set i = s.)

Then the data for X+ is e1 � [e2, . . . , ei � 1].

Proof. Write m2
ma�1 = [e1, . . . , es]. Notice that according to our numeric descrip-

tion for mk1A we have �s = 1, ↵s = m(m � a) � 1, and �s = a(m � a) � 1.
Therefore � = n � a, 1 = na + 1, and � = a2, following the formulas above.
Notice also that in this case the mk1A we are considering can be seen as an initial
mk2A by taking m2 = n, a2 = n � a, m1 = 1, and a1 = 1. One can recompute
that � = n � a, 1 = na + 1, and � = a2 following the formulas above, and that
�m1�m2 = �a < 0, and so it is indeed of flipping type. To compute the numerical
data of X+, we use the formulas in (<0) above: m02 = 1, a02 = 1, m01 = a, and
0 < a01 < a such that a01 ⌘ �n (mod a).

Notice that if a = 1, then we have our claim. So we assume that a > 1. Then,
by definition, 1

� = [e1, . . . , ei � 1], and so na+1
a2 = [e1, . . . , ei � 1]. This gives

a2

a(ae1 � n)� 1
= [e2, . . . , ei � 1].

But e1 is the integral part of n2
na�1 plus 1, and so 0 < ae1� n < a. Therefore, when

a > 1, we have precisely a01 = ae1 � n, and our claim follows.

A corollary is the following useful fact (to be used in the next sections):

Proposition 2.16 ([9, page 188]). Let eY be a smooth surface with a chain of ratio-
nal smooth curves E1, . . . , Es , which is the exceptional divisor of a Wahl singular-
ity. LetC1,C2 be (�1)-curves in eY such thatC1 ·C2 = 0, C1 ·E1 = 1, andC2 ·Es =

1, and C1,C2 do not intersect any other Ei ’s. Let � :
eY ! Y be the contraction

of the chain E1, . . . , Es (to a Wahl singularity), and let C0 = � (C1) [ � (C2). As-
sume there is a Q-Gorenstein smoothing (Y ⇢ Y) ! (0 2 D). Then there is a
(�1)-curve Ct in the smooth fiber over t 2 D \ {0} which degenerates to C0.

Proof. Notice that C := � (C2) defines an mk1A of flipping type as in Proposition
2.15. After we perform the flip, we obtain a surface Y+ (from the corresponding ex-
tremal P-resolution) and the strict transform of � (C1) in Y+ does not pass through
the singularity. Therefore the Q-Gorenstein smoothing of Y+, which gives the flip,
would have a (�1)-curve Ct in the general fiber that deforms to � (C2). It is clear
that in (Y ⇢ Y)! (0 2 D) this (�1)-curve degenerates to C0.
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3. Method of identification

We now explain the method to identify stable surfaces around the stable model of
a given Lee-Park surface, i.e., a normal projective surface with only Wahl singular-
ities, and no local-to-global obstructions (any local deformation of its singularities
may be globalized).

3.1. Stable model of a Lee-Park surface

Let W be a normal projective surface with only Wahl singularities, and
H2(W, TW ) = 0. Then W has no local-to-global obstructions; see [15, Section 2].
We remark that the vanishing of H2(W, TW ) is commonly achieved by the vanish-
ing of H2( eW , TeW (� log E)), where E is the exceptional divisor of the minimal res-
olution eW ! W ; see [15, Theorem 2]. Assume that KW is nef, and that K 2W > 0.
Let (W ⇢ W) ! (0 2 D) be a Q-Gorenstein smoothing of W (Definition 2.1).
Then we know that the general fiber W 0 has KW 0 nef (see [15, page 499]), and
K 2W = K 2W 0

> 0. Thus W 0 is a minimal surface of general type.
The canonical class KW may not be ample. To find the stable model W of

W , one considers the relative canonical model of (W ⇢ W) ! (0 2 D). The
following lemma tells us what type of singularities we can expect in W .

Lemma 3.1. The relative canonical model (W ⇢ W) ! (0 2 D) of the (W ⇢

W)! (0 2 D) above has as central fiber a normal projective surface W with only
T-singularities (Definition 2.2).

Proof. We know there is (W ⇢W)! (0 2 D); cf. [14]. We have a birational mor-
phismW ! W over D such that KW is Q-Cartier and ample. Notice that W has
log terminal singularities because W does [14, pages 102–103]. The singularities
of W must be T-singularities by [11, Subsection 5.2].

Thus W can have only du Val singularities, and cyclic quotient singularities
1
dn2 (1, dna� 1) with gcd(n, a) = 1. In addition, locally around each singularity of
W , we have that W ! W is aM-resolution; see [3]. We will use that interpretation
below.

The surface W is a point in the KSBA compactification of the moduli space of
surfaces of general typeMK 2W ,�(OW ) with fixed topological invariants K

2
W , �(OW );

cf. [7]. We know thatMK 2W ,�(OW ) at W is locally a finite quotient of the smooth
germ DefQG(W ) of dimension 10�(OW )�2K 2W , where Def

QG(W ) is the versalQ-
Gorenstein deformation space of W . The smoothness follows from H2(W , TW ) =

0 (which follows from H2(W, TW ) = 0); see [7, Section 3]. The local dimension is
a Riemann-Roch calculation: see the proof of [21, Proposition 2.2] for example.

The following lemma will be used to identify W in Sections 5, 6 and 7.



IDENTIFYING NEIGHBORS OF STABLE SURFACES 1105

Lemma 3.2. Let Z ! P1 be an elliptic fibration, where Z is a rational smooth
projective surface. Assume it has two fibers F1, F2 of type I1, and two sections
P, Q. Let Z 00 be the surface obtained by blowing-up the nodes of both F1 and F2
in Z , and blowing down P and Q. Then Z 00 is a Halphen surface [4, Section 2] of
index 2, i.e., Z 00 has an elliptic fibration with a unique multiple fiber of multiplicity
2. The curve F1 + F2 in Z 00 is a non-multiple fiber of type I2.

Proof. Let ⇡ : Z ! P2 be a blow-down to P2 starting with the sections P, Q (see
proof of [4, Proposition 2.2] for example). Then, the elliptic fibration Z ! P1
comes from the pencil of cubicsn

a f1 + bf2 : (a : b) 2 P1
o

,

where f1, f2 are the cubic polynomials of the images of F1, F2 under ⇡ . Notice
that the node of Fi is not in Fj for i 6= j . Hence there exists a unique cubic 3
passing through the node of F1, the node of F2, and the 7 base points of the pencil
above not including the ones corresponding to P and Q. This gives the existence
of the Halphen pencil of index 2n

c f1 f2 + d�2 : (c : d) 2 P1
o

where � = 0 is the equation of 3. The associated Halphen surface is the Z 00
described in the statement of this lemma.

3.2. Partial Q-Gorenstein smoothings

Each of the non du Val T-singularities 1
dn2 (1, dna� 1) of W defines a divisorD

�n
a
�

inMK 2W ,�(OW ). A general point in this divisor represents a normal KSBA surface
with one Wahl singularity 1

n2 (1, na � 1). Our main goal is to identify as much as
possible the smooth minimal model of that surface.
Remark 3.3. Du Val singularities have simultaneous resolutions in deformations.
Thus we know that a Q-Gorenstein smoothing of all the non du Val T-singularities
of W has as general fiber the canonical model of a smooth projective surface of
general type with invariants K 2W and �(OW ). There is no identification problem in
this case.

The divisorD
�n
a
�
is defined in the following way. We haveW with no local-to-

global obstructions. We consider a Q-Gorenstein deformation of W which locally
deforms a given T-singularity 1

dn2 (1, dna � 1) into
1
n2 (1, na � 1) (see [3, Subsec-

tion 2.1] or [9, Proposition 2.3]), and smooths up all other singularities of W . The
general fiber of this deformation is a KSBA surface with one Wahl singularity. This
surface defines the divisorD

�n
a
�
; see [7, Section 4]. To identify it, we will run MMP.

But we will use another suitable family to run it, because we want to use only bi-
rational operations to type mk1A and mk2A; cf. [8, Section 5]. We explain that
below.
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Locally at each T-singularity, the birational map W ! W is an M-resolution.
In particular, du Val singularities are resolved, and over a singularity of type
1
dn2 (1, dna � 1) we have d Wahl singularities of type

1
n2 (1, na � 1).

Lemma 3.4. Any Q-Gorenstein deformation of W is induced by blowing down a
Q-Gorenstein deformation of W .

Proof. See proof of [8, Lemma 5.2]. We use the local picture of M-resolutions, and
the blowing-down deformation result of [3].

Therefore, to identify the general surface in D
�n
a
�
we consider a Q-Gorenstein

deformation ofW which is locally trivial on one of theWahl singularities 1
n2 (1, na�

1) above the given T-singularity 1
dn2 (1, dna�1), and smooths up all other singulari-

ties inW . It does not matter whichWahl singularity we choose over 1
dn2 (1, dna�1),

we will always land in the same divisor D
�n
a
�
. This is because locally the blowing-

down deformation includes a transitive action on the d Wahl singularities; see [3,
Section 2].

Let X0 ! W be the resolution of the chosen Wahl singularity 1
n2 (1, na �

1). Since the above Q-Gorenstein deformation of W is trivial around this Wahl
singularity, we can and do resolve it simultaneously. With this, we obtain a Q-
Gorenstein smoothing (X0 ⇢ X0) ! (0 2 D) such that the general fiber X 00
is the minimal resolution of the surface we want to identify (and so contains the
exceptional divisor of 1

n2 (1, na � 1)).

3.3. Running MMP explicitly

If KX0 is not nef, then we run the explicit MMP in [8, Section 5] on the extremal
neighborhood defined by

(X0 ⇢ X0)! (0 2 D).

Our purpose is to find the relative minimal model of X0! D. The general fiber of
the minimal model will be the minimal model of X 00.

There will be several flips and divisorial contractions over X0, all of them of
type mk1A or mk2A; cf. [8, Theorem 5.3]. For each birational operation, we denote
the corresponding Q-Gorenstein smoothing by (Xi ⇢ Xi ) ! (0 2 D), whose
general fiber is X 0i .

After certain finite n steps, two situations may arise: we have that (Xn ⇢
Xn) ! (0 2 D) has either KXn nef, or the surface Xn is smooth. In the latter, we
have a smooth deformation, and so the Kodaira dimension of Xn and X 0n coincide.
In this case we will be able to identify the minimal model of X 0n , since any possible
(�1)-curve in Xn lifts to a (�1)-curve in X 0n; cf. [2, Chapter IV, Section 4]. If,
on the other hand, we have Xn singular but KXn nef, then the general fiber is the
minimal model we wanted to find.
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We construct Xi from Xi�1 via the following procedure: if we are not in one
of the above situations, then in Xi�1 there is a a smooth rational curve Ci ⇢ Xi�1
such that Ci · KXi�1 < 0 and Ci · Ci < 0, which is as in Subsection 2.4. Hence
Ci becomes a (�1)-curve in the minimal resolution of the Wahl singularities it
contains. After we perform the birational operation, we have two possibilities for
the new (Xi ⇢ Xi ) ! (0 2 D): it is the result of either a divisorial contraction,
and so between general fibers we have the blow-down of a (�1)-curve X 0i�1! X 0i
(Proposition 2.8), or a flip, so that the general fibers X 0i�1, X

0

i are isomorphic. We
find Xi as the X+

i�1 of the flip, see Subsection 2.4.
Notice that in both cases the surface Xi is birational to Xi�1. The operations

roughly are: minimally resolve Xi�1 at the Wahl singularities in Ci , then contract
the strict transform of Ci and all other (�1)-curves coming from the exceptional
divisor, then perform certain other blow-ups required to find the corresponding ex-
tremal P-resolution (this is not required in case of divisorial contraction), and fi-
nally contract the configurations corresponding to the Wahl singularities we need
for X+

= Xi . These birational operations modify curves only over Ci . In particular
the transformations on Xi�1 do not affect singularities outside of Ci .

Also, since the amount of information is big, we will codify all birational op-
erations in dots diagrams, which are explained in detail in [8, Notation 5.5]. They
basically show the transformation of relevant curves under flips and divisorial con-
tractions in the minimal resolution of Xi . In the next sections we will do this using
Lee-Park surfaces.

One may wonder at this point what sort of surfaces with onlyWahl singularities
one can expect in the KSBA boundary. The following proposition, due to Kawamata
[10], says that at least there is a hierarchy with respect to K 2 and the Kodaira
dimension.

Proposition 3.5. Let (W ⇢ W) ! (0 2 D) be a Q-Gorenstein smoothing of a
normal singular projective surface W with only Wahl singularities. Let eW be the
minimal resolution of W , and let Z be the smooth minimal model of eW . Assume
that KW is relatively nef. If Z is of general type, then the general fiber W 0 is of
general type and K 2W 0

= K 2W > K 2Z .

Proof. By Kawamata [10, Lemma 2.4], there exist positive integersm1 andm2 such
that the inequalities ofm-plurigenera Pm(W 0) > Pm(Z) hold for positive integersm
withm1 dividingm andm2 < m. This implies thatW 0 is of general type. Moreover,
this inequality becomes [2, Chapter VII, Corollary (5.4)] m(m�1)

2 K 2W 0
+ �(W 0) >

m(m�1)
2 K 2Z + �(Z) for those m, and so we have the claim.

Remark 3.6. We will show examples where the final family (Xn ⇢ Xn) ! (0 2
D) has Xn singular with KXn nef, and the general fiber X 0n is of general type (see
Proposition 6.1 for the simplest). In this way, the resulting surface Xn represents,
after going to KSBA model (Lemma 3.1), a stable surface in the KSBA moduli
space which contains X 0n . Notice that by Proposition 3.5, this KSBA moduli space
is not the one we started with.
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4. Elliptic surfaces via Q-Gorenstein smoothings

This is a complementary section which will be used in the identification of some
KSBA surfaces in Sections 5, 6 and 7.

The exceptional divisor of any T-singularity 1
dn2 (1, dna � 1) can be obtained

from an Id elliptic singular fiber by blowing-up over a node. We blow-up a node
of Id and subsequent nodes coming from the new (�1)-curves. The exceptional
divisor appears as the chain of curves of the total transform of Id which does not
contain the (last) (�1)-curve (see [11, Proposition 3.11]). We call this construction
a T-blow-up of Id . This way of looking at T-singularities is essentially in Kawa-
mata’s paper [10]3.

If g : Z ! B is an elliptic fibration over a smooth curve B with a singular
fiber Id , then we denote by � :

eZ ! Z the composition of blow-ups used in a
T-blow-up of Id . Let {E1, . . . , Es} be the corresponding T-configuration where
1
dn2 (1, dna�1) = [e1, . . . , es], and E2i = �ei . Write � ⇤(Id) =

Ps+1
i=1 ⌫i Ei , where

Es+1 is the (�1)-curve, and ⌫i � 1 are integers.

Lemma 4.1. In a situation as above, we have n = ⌫s+1, a = ⌫s+1 � ⌫s , and the
discrepancy of Ei is �1+

⌫i
⌫s+1

for all i = 1, . . . , s.

Proof. The proof is based on [23, Lemma 3.4] and induction on the number of
blow-ups. If we have only one blow-up, i.e. the T-singularity is either [4] or
[3, 2, . . . , 2, 3], then the discrepancies are all �1

2 , which agrees with our claim.
Hence, using the hypothesis of induction for a length s T-singularity, one can easily
see by [23, Lemma 3.4] that for a length s+ 1 T-singularity we have our claim.

Theorem 4.2. Let g : Z ! P1 be a relatively minimal elliptic fibration with a
section, such that Z is a rational smooth projective surface.

(�1): Assume g has a fiber of type Id . Consider a T-blow-up of Id with the
notation above. Let eZ ! W be the contraction of the T-configuration. Then there
are Q-Gorenstein smoothings W 0 of W , and any such W 0 is rational.

(0): Assume g has two fibers Id1 and Id2 . Let eZ be the blow-up of Z at one
node of Id1 and at one node of Id2 . Hence we have two T-configurations of type
1
4di (1, 2di � 1). Let

eZ ! W be the contraction of these configurations. Then there
are Q-Gorenstein smoothings W 0 of W , and any such W 0 is an Enriques surface.

(1): Assume it has two fibers Id1 and Id2 . We apply T-blow-ups to each of
them. Assume that for one of them we blew-up at least twice. Let eZ ! W be the
contraction of both T-configurations. Then there are Q-Gorenstein smoothings W 0

of W , and any such W 0 has Kodaira dimension 1.

3 He writes 1r2 (a, r �a) instead of
1
r2 (1, ra

�1
� 1), where 0 < a�1 < r and aa�1 ⌘ 1 (mod r).
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Proof. For the proof, we assume g has the singular fibers Id1 and Id2 . This situation
adjusts to prove all cases simultaneously. Let � :

eZ ! Z be the composition of
blow-ups for both T-blow-ups, so that eZ contains the T-configurations {E1, . . . , Es}
and {F1, . . . , Fr } of types 1

d1n21
(1, d1n1a1� 1) = [e1, . . . , es] and 1

d2n22
(1, d2n2a2�

1) = [ f1, . . . , fr ], where E2i = �ei and F2i = � fi . We also have the (�1)-curves
Es+1 and Fr+1, so that � ⇤(Id1) =

Ps+1
i=1 ⌫i Ei , and � ⇤(Id2) =

Pr+1
i=1 µi Fi . Let

h :
eZ ! W be the contraction of both T-configurations.
Through arguments as in [15] (see [21, Section 4]), we know that

H2(eZ , TeZ (� log(E1 + . . . + Es + F1 + . . . + Fr ))) = 0,

and so there are no local-to-global obstructions to deform W .
Let C be the general fiber of g. Then,

KeZ ⇠ �� ⇤C +

s+1X
i=1

(⌫i � 1)Ei +

r+1X
i=1

(µi � 1)Fi

and KeZ ⌘ h⇤KW �
Ps

i=1 discr(Ei )Ei �
Pr

i=1 discr(Fi )Fi , where discr stands for
minus the discrepancy. Then, we know by Lemma 4.1 that discr(Ei ) = 1� ⌫i

n1 and
discr(Fi ) = 1� µi

n2 . In this way, we have

h⇤(KW ) ⌘ �
1
n1

s+1X
i=1

⌫i Ei ⌘ �
1
n1

� ⇤C

for the case (�1), and

h⇤(KW ) ⌘
n1 � 2
2n1

s+1X
i=1

⌫i Ei +

n2 � 2
2n2

r+1X
i=1

µi Fi ⌘
✓
1�

1
n1
�

1
n2

◆
� ⇤C

for cases (0) and (1).
Since we are Q-Gorenstein smoothing-up T-singularities over D, we have that

±KW nef implies ±KW 0 nef, and KW ⌘ 0 implies KW 0 ⌘ 0. Then, in case (�1)
we have that �KW is nef and not ⌘ 0, and so W 0 is a rational surface. We recall
that in any case, K 2W 0

= 0, q(X) = pg(X) = 0. (See [6] for the irregularity,
which is constant in families, and then pg(W 0) follows.) For the case (0) we see
that KW ⌘ 0 and so for KW 0 . It follows that W 0 is an Enriques surface. For the last
case (1), KW is nef and not trivial, and so W 0 is a minimal surface with Kodaira
dimension 1.

We recall that a Dolgachev surface of type n1, n2 is a simply connected el-
liptic fibration with exactly two multiple fibers of multiplicities n1 and n2; cf. [2,
page 383].
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Corollary 4.3. If in case (1) we have gcd(n1, n2) = 1, then a smooth fiber of any
Q-Gorenstein smoothing is a Dolgachev surface of type n1, n2.

Proof. In Subsection 2.1, we define sequences of integers {↵ j }
s
j=1, {� j }

s
j=1,

{� j }
s
j=1 for any Hirzebruch-Jung continued fraction

m
q = [b1, . . . , bs]. In par-

ticular, we saw that the discrepancy of the E j exceptional curve is �1 +

↵ j+� j
m .

We now give some facts from [18]. The fundamental group of a neighborhood
of the complement of the exceptional divisor

Ss
i=1 Ei is cyclic of order m, and

it is generated by a loop ⇠ around E1 (or Es). For any j , a loop ⇠ j around E j
is a conjugate to ⇠↵ j (or ⇠� j ) [18, page 20]. We now specialize to the case of
T-singularities. For m = dn2 and q = dna � 1 with gcd(n, a) = 1, we have
� j + ↵ j = ⌫ j n by Lemma 4.1. On the other hand, in Subsection 2.1 we have the
formula � j = (dna � 1)↵ j � dn2� j , and so

⌫ j = a↵ j � n� j . (4.1)

Following the strategy in [15, page 493], we now compute the fundamental group
of a smooth fiber of a Q-Gorenstein smoothing. The computation is done on the
minimal resolution eW ! W of the singular fiber W . It is enough to show that
⇡1( eW \ E) is trivial, where E is the exceptional divisor. We consider two small
loops ⇠ and ⇢ around the two components of E which intersect a given section
(we do have sections) of the elliptic fibration. We notice that for those components
the multiplicities ⌫ j (i) (i = 1, 2) are both equal to 1. Then, by equation (4.1), we
obtain gcd(� j (i), ni ) = 1 for i = 1, 2. In this way, by the facts in the previous
paragraph, these loops generate the fundamental groups of the neighborhoods of
the complements of each component of E . The chosen section, which is a P1, gives
that ⇠ is conjugated to ⇢. We now use that gcd(n1, n2) = 1 to conclude that ⇠ and
⇢ become trivial in ⇡1( eW \ E). This implies that ⇡1( eW \ E) = 1.

Therefore, the smooth fiber W 0 is a simply connected elliptic fibration with
exactly two coprime multiple fibers; cf. [5, Chapter II, Section 3]. The Kodaira
dimension of W 0 is 1. By [10, Theorem 4.2], the elliptic fibration W 0

! P1 degen-
erates to the elliptic fibration W ! P1, so that the general fiber F 0 of W 0

! P1
deforms to the general fiber F of W ! P1. Since this is a Q-Gorenstein smooth-
ing, we know that there exists m so that the line bundle mKW 0 deforms to the line
bundle mKW . Let n01, n

0

2 be the coprime multiplicities of W
0
! P1. Then by the

canonical formula
n01n

0

2KW 0 ⇠ (n01n
0

2 � n01 � n02)F
0,

and so, by choosing m = n01n
0

2k for some suitable k, we have n
0

1n
0

2kKW ⇠ (n01n
0

2�
n01 � n02)kF in W . But on W we also have a canonical formula (see [10, Theo-
rem 4.4]) which numerically gives n1n2KW ⌘ (n1n2�n1�n2)F , and this implies�
n01n

0

2(n1n2�n1�n2)�n1n2(n
0

1n
0

2�n
0

1�n
0

2)
�
F ⌘ 0, and so n01n

0

2(n1n2�n1�n2) =

n1n2(n01n
0

2� n
0

1� n
0

2). But the pairs (n1, n2) and (n01, n
0

2) are coprime. Then, up to
permutation, they must be equal.
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5. K 2 = 1

We begin with the example corresponding to Figure 5 in [15]. Consider the pencil
of cubics in P2x0,x1,x2

↵x30 + �x1(x20 + x21 � x22) = 0

with (↵ : �) 2 P1↵,� . We have base points p = (0 : 1 : 1), q = (0 : 1 : �1), and
r = (0 : 0 : 1). We blow-up three times each of them, to obtain an elliptic fibration
g : Z ! P1 with a configuration of singular fibers I V ⇤, 2I1, I2. Let A = {x0 = 0},
B = {x1 = 0}, and C = {x20 + x21 = x22}. Let P and Q be the last exceptional
divisors over p and q. More notation is shown in Figure 5.1.

P

BA C

Q

G1
G2

G3 G4

G5 G6

F1 F2

Figure 5.1. Elliptic fibration with I V ⇤, 2I1, I2.

We now blow-up Z 11 times as in Figure 5 of [15] (see Figure 5.2). Let eZ 0 be the
corresponding surface, and let X be the singular normal projective surface obtained
by contracting the configurations of curves [2, 2, 2, 7], [4], [6, 2, 2], and [2, 6, 2, 3].

– 2
– 2

– 2
– 2 – 2 – 2

– 2
– 2

– 2
– 2

– 2
– 2– 1

– 1

– 1
– 1

– 1

– 1

– 1

– 6

– 6

– 7

– 3

– 4
G

Figure 5.2. The blow-up eZ 0 of Z 11 times.
We have that KX is not nef: the intersection of the image of G (see Figure 5.2) in
X with KX is �1+

3
7 +

1
2 = �

1
14 . However, a Q-Gorenstein smoothing of these 4

singularities indeed has the properties claimed in [15]. To see this, we perform a flip
of type mk2A (Definition 2.5) on a Q-Gorenstein smoothing of X over D. We are
flipping the curve G, which passes through the singularities 14 (1, 1) and

1
49 (1, 20).

The flip of G produces a surface X+, and a curve G+ (the flip of G) which passes
through two Wahl singularities. A dot diagram of this transformation is shown
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in Figure 5.3. For the computation of the Wahl singularities in X+ see (<0) in
Subsection 2.4 (before Remark 2.11). In this case the mk2A is actually an initial
mk2A. More precisely, we take m1 = 2, a1 = 1 for [4], and m2 = 7, a2 = 4 for
[2, 6, 2, 3], and so � = 1,1 = 39, and� = 16. Then we obtain that �m1�m2 < 0,
and the data for X+ is m02 = 2, a02 = 1 and m01 = 5, a01 = 2.

– 4 – 2 – 6 – 2 – 3 – 2 – 5 – 3 – 4
Figure 5.3. A flip.

After this flip, the minimal resolution of X+, denoted by eZ , is a blow-up of Z
10 times. The new configuration of relevant curves is shown in Figure 5.6. Let
W := X+ be the contraction of the configurations [4] (C), [2, 2, 6] (E4+ E3+ F1),
[2, 2, 2, 7] (A+G5+G6+Q), and [2, 5, 3] (E7+F2+P). A standard computation
of cohomology groups as in [15] (see also [21, Section 4] for a concise treatment)
shows that W has no local-to-global obstructions; see Subsection 3.1.
Remark 5.1. In general, if we start with a Lee-Park surface X with no local-to-
global obstructions, then (after any birational operation of type mk1A or mk2A ) we
end up with X+ with no local-to-global obstructions (including also the divisorial
case). This again can be seen via the standard computations in [15].

We have the Q-numerical equivalence

KeZ ⌘ �
1
2
F1 �

1
2
F2 +

1
2
E2 +

1
2
E3 +

3
2
E4 +

5
2
E5 +

1
2
E7 +

3
2
E8 + E9 + E10,

and so, by subtracting the discrepancies of the singularities in W , we verify that the
pull-back of KW can be written as aQ-Cartier divisor with positive coefficients, and
it is nef. This is done using the same strategy as in [15, page 498]. Therefore, the
general fiber of a Q-Gorenstein smoothing is a smooth minimal projective surface
of general type with K 2 = 1, pg = 0, and trivial ⇡1.

Let us consider its KSBA model W (see Subsection 3.1). Notice first that W
is not W since G4 · KW = 0. Let ⇡ :

eZ ! W be the minimal resolution. The
strategy to find W will be to identify all curves 0 in eZ not contracted by ⇡ , such
that 0 ·⇡⇤(KW ) = 0. In this case we have 0 · KeZ = 0, because of the actual curves
in the (effective) support of ⇡⇤(KW ). Also, since 0 · Ei 6= 0 may only happen for
i = 1 and i = 6, we have that 0 · KZ 0 = 0, where Z 0 is the blow-up of Z at the
nodes of F1 and F2. Notice that 0 does not intersects P and Q as well.

Now contract P and Q to obtain a Halphen surface Z 00 of index 2 as in Lemma
3.2. In Z 00 we have 0 · KZ 00 = 0. But this means that 0 does not intersect a general
fiber, and so it is contained in a singular fiber. In this way, the curve 0 must be
a smooth rational curve with self-intersection (�2). The elliptic fibration on Z 00
has three singular fibers: one I ⇤2 and two I2. The two I2 are F1 + F2 and B + D,
where D = {x20 + 3x21 = 3x22}. The two conics M = {x20 + 3x21 = 3x1x2} and
N = {x20 + 3x21 = �3x1x2} are part of I ⇤2 , together with G4, G3, A, G1, and G5.
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Then, we conclude that 0 can only be G4, and the KSBA model W of W is the
contraction of G4.

LetM1,1 be the KSBA moduli space that contains W . As explained in Sub-
section 3.2, locally at W , this moduli space is the finite quotient of a smooth germ
of dimension 8, and it has 4 divisors passing through W whose general point repre-
sents a KSBA singular normal surface with one of the Wahl singularities: 14 (1, 1),
1
16 (1, 11),

1
25 (1, 19), and

1
25 (1, 9). As before, we denote the corresponding divi-

sors by D
�2
1
�
, D

�4
1
�
, D

�5
1
�
, and D

�5
2
�
. The goal is to identify the smooth minimal

model of the surface represented by a general point in D
�n
a
�
using Section 3. For

this purpose, we will run MMP on W (instead of W , see Subsection 3.3).

The general point of D
�2
1
�
. Since there are no local-to-global obstructions to

deform W , we consider a one-parameter Q-Gorenstein smoothing of all singular-
ities of W except 14 (1, 1). In this family, we simultaneously resolve the singular-
ity 1

4 (1, 1), obtaining a Q-Gorenstein smoothing (X0 ⇢ X0) ! (0 2 D) of X0,
which is W with the singularity 1

4 (1, 1) resolved. The minimal resolution of X0 isfX0 :=
eZ . In this case we will need only flips, they are shown in Figure 5.4.

We use the dot diagram description in [8, Notation 5.5], where in particular  
represents the negative curve of the extremal neighborhood, and � represents the
flipping positive curve in X+. We remark that in a dot diagram the operations occur
in the minimal resolution fXi of the Xi (see Subsection 3.3), showing how curves
are affected after applying a flip or divisorial contraction.

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 6

– 2

– 2

– 6

– 2

– 2

– 6

– 2

– 2

– 3

– 5
– 5

– 2 – 4 – 2

– 2

– 3

– 2

– 5

– 2 – 2

– 2

– 2

– 2

– 2

– 6

– 2

– 2
– 5

– 2– 5

– 5

– 5

– 7 – 7 – 6

Figure 5.4. Flips for D
�2
1
�
.

Let (X4 ⇢ X4) ! (0 2 D) be the final deformation (see Subsection 3.3). The
minimal resolution fX4 of X4 is the blow-up of Z at four points: the nodes of F1
and F2, the intersection of P and F1, and the intersection between Q and F2. The
surface X4 is obtained by contracting P+F2 and Q+F1 in fX4. By Lemma 3.2, we
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can see fX4 as the blow-up at four points of a Halphen surface of index 2, and then
by Lemma 4.3 with a configuration [3, 3], which comes from [2, 5]�1� [2, 5], we
obtain that any Q-Gorenstein smoothing of X4 is a Dolgachev surface of type 2, 3.

Proposition 5.2. The minimal resolution of a surface representing the general
point in D

�2
1
�
is a Dolgachev surface of type 2, 3. It contains a smooth rational

curve with self-intersection (�4).

Remark 5.3. Because of the simplicity of 14 (1, 1), the previous proposition can
also be proved as follows. Let Y be a smooth projective surface containing a (�4)-
curve 0 and K 2Y = 0. Let f : Y ! X be the contraction of 0. If KX is nef, then
Y is not rational. Indeed, if Y is rational, then by Riemann-Roch h0(Y,�KY ) � 1
and so �KY ⇠ E � 0. Since KY · 0 = 2, we have 0 ⇢ E . We know that
f ⇤(2KX ) ⇠ �2E + 0. But E 6= 0, and so f ⇤(2KX ) cannot be nef. In this way,
in Proposition 5.2 we cannot have that the resolution of 14 (1, 1) is rational. Also,
the Kodaira dimension cannot be 0 because of 0, and it cannot be 2 because of
Proposition 3.5. Therefore it is 1, and so it has an elliptic fibration. Since it is
simply connected, it must have exactly two coprime multiple fibers of multiplicities
a and b [5, Chapter II, Section 3]. But now it is easy to check using the canonical
class formula and 0 that the only possibility is a = 2 and b = 3, i.e., a Dolgachev
surface of type 2, 3.
The general point of D

�4
1
�
. We work as we did with D

�2
1
�
, but now with the

singularity 1
16 (1, 11). We perform 7 flips as shown in Figure 5.5. Let X7 be the

central singular fiber of the corresponding deformation after the 7th flip. It has only
a 1
4 (1, 1) singularity. The minimal resolution of X7 is the blow-up of Z at two

points, which are disjoint from the (�4)-curve. This situation is as in Theorem 4.2
part (�1). The general fiber of the Q-Gorenstein smoothing is rational.

– 4

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 6

– 2
– 6 – 6

– 2

– 2

– 3 – 3 – 3 – 3

– 5

– 2

– 5

– 2

– 5

– 2
– 5

– 2– 4 – 4 – 4 – 4

– 7 – 6 – 5 – 4

– 2

– 2

– 2

– 2

– 2
– 2

– 2

– 2

– 2

– 2

– 2
– 2

– 4

– 4 – 3 – 2

– 4 – 3 – 3– 4
– 4

– 4– 4– 4
– 2 – 2 – 2 – 2

– 5 – 5 – 5

– 2

Figure 5.5. Flips for D
�4
1
�
.

Proposition 5.4. The minimal resolution of a surface representing the general
point in D

�4
1
�
is a rational surface with K 2 = �2. It contains the configuration
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of rational smooth curves [6, 2, 2], and a (�1)-curve intersecting the (�6)-curve
transversally at two points.

The (�1)-curve intersecting the (�6)-curve transversally at two points comes from
the (�1)-curve E1 (see Figure 5.6) having the same property in X0. We point out
that this (�1)-curve does not contain any singularity of X0, and so it lifts in any
deformation [2, Chapter IV, Section 4].

– 3
– 2

– 2
– 2 – 2 – 2

– 2
– 2

– 2
– 2

– 2
– 2

– 1
– 1

– 1
– 1

– 1 – 1

– 1

– 6
– 5

– 7

– 4
– 1

P

BA C

G2

G3 G4

G5 G6

F1

F2G1
E2 E1

E3
E4

E5

E6

E7

E8

E9

E10
Q

Figure 5.6. Self-intersection (left) and notation (right) for relevant curves in the blow-
up eZ of Z 10 times.

The general point of D
�5
1
�
. We now perform the sequence of 3 flips shown in

Figure 5.7. Notice that the situation after the last flip is very similar to the previous
case.

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 6

– 2

– 2

– 3 – 3 – 3 – 3

– 5

– 2

– 5

– 2– 4 – 4 – 4

– 7

– 5 – 5 – 5

– 4 – 4

– 4 – 2

– 3

Figure 5.7. Flips for D
�5
1
�
.

Proposition 5.5. The minimal resolution of a surface representing the general
point in D

�5
1
�
is a rational surface with K 2 = �3. It contains the configuration

of rational smooth curves [7, 2, 2, 2], and two disjoint (�1)-curves intersecting the
(�7)-curve transversally at two points each.
The existence of the (�1)-curves intersecting the (�7)-curve is an application of
Proposition 2.16, which is applied several times via partial smoothings. We now
explain this with no much detail, for a more precise procedure we refer to [24,
Section 4]. We start with X0, which is W with 1

52 (1, 4) resolved. For notation
on curves we refer to Figure 5.6. We first Q-Gorenstein smooth-up 1

42 (1, 3), and
preserve the other singularities of X0 together with the configuration [7, 2, 2, 2].
Then the curves E2 and E5 in X0 produce a (�1)-curve Et in the general fiber Y1,
intersecting the (�7)-curve at one point; we are using Proposition 2.16. Notice
that Y1 has two singularities, the configuration [7, 2, 2, 2], and the curves Et , E8,
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E9, and E10. We now consider a Q-Gorenstein smoothing of 14 (1, 1) keeping the
other singularities of Y1 and the configuration [7, 2, 2, 2]. By the same proposition
we obtain a (�1)-curve E 0t in the general fiber Y2 from E10 and E9. Finally we
Q-Gorenstein smooth up 1

52 (1, 9) in Y2 to obtain a smooth surface Y3 with the two
claimed (�1)-curves. Each of them is defined by the pairs Et , E8, and E 0t , E8,
applying again Proposition 2.16. These (�1)-curves are preserved together with
their intersection properties with respect to the (�7)-curve, and so we obtain the
two (�1)-curves in the Q-Gorenstein smoothing of X0.

The general point of D
�5
2
�
. In this case we perform the flips shown in Figure

5.8. At the end, the special fiber is not singular anymore, and so we know that the
general fiber of the deformation is a rational surface.

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 6

– 2
– 6

– 5 – 5

– 2

– 2

– 3 – 2

– 3 – 3
– 5

– 2
– 5

– 2

– 5

– 2– 4 – 3

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 2

– 5 – 4 – 3

– 3 – 3 – 2 – 2
– 4 – 4 – 4

– 7 – 7 – 7 – 6

– 5

– 2 – 2 – 2

– 2

– 5 – 5 – 5 – 4

Figure 5.8. Flips for D
�5
2
�
.

Proposition 5.6. The minimal resolution of a surface representing the general
point in D

�5
2
�
is a rational surface with K 2 = �2. It contains the configuration

of rational smooth curves [2, 5, 3], and a (�1)-curve intersecting the (�5)-curve
transversally at two points.

The (�1)-curve comes from the (�1)-curve E6 intersecting the (�5)-curve
transversally at two points. This finishes the description of the “general” KSBA
neighbors of W .
Remark 5.7. We can construct a stable surface T with the same Wahl singularities
as W by using a more general elliptic rational surface, which has singular fibers
I4 + 6I1 + I2. This elliptic fibration has moduli dimension 4. From the 4 Wahl
singularities 14 (1, 1),

1
16 (1, 3),

1
25 (1, 4), and

1
25 (1, 9) of T , we obtain the other 4

dimensions for the moduli space around T , completing the 8 dimensions needed
(see Subsection 3.1).
Remark 5.8. For the other example with K 2 = 1 in [15, Figure 6], we have a
surface with Wahl singularities and canonical class nef. This example is related
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to the previous in the following way. Take a (�1)-curve from [15, Figure 6] be-
tween the configuration [2, 2, 6] and [4] (there are two choices). The configuration
[2, 2, 6] � 1 � [4] represents the data of an extremal P-resolution (Definition 2.3)
of 1

36 (1, 13). But this singularity admits another extremal P-resolution, which is
[3, 5, 2]� 2. (We recall that [8, Section 4] is a section devoted to singularities hav-
ing two extremal P-resolutions.) Now consider the corresponding Q-Gorenstein
smoothing of the new surface (which has only Wahl singularities). The canoni-
cal class of the central fiber is not nef, because there is a (�1)-curve intersecting
the (�8)-curve at one point. So we perform one flip of type mk1A. After that,
the resulting surface is the previous example. Therefore, we have a sort of dual
families related by 1

36 (1, 13). These two families are different, they are located
around two different stable surfaces of the moduli space. This is a common “worm-
hole” phenomena in Lee-Park type of examples, which comes from the fact that
a given cyclic quotient singularity may have two extremal P-resolutions (and no
more, see [8, Subsection 4.2]).

The analog results for partial smoothings of the Wahl singularities in the exam-
ple [15, Figure 6] are: for both 1

4 (1, 1) we obtain Dolgachev surfaces of type 2, 3
(for 18 (1, 3) we also have Dolgachev surfaces of the same type), and for the other
singularities we obtain rational surfaces.

By Proposition 3.5, we know that the KSBA boundary appearing (in this way)
for K 2 = 1 consists of surfaces whose minimal resolution is not of general type.
This is not the case for K 2 > 1, as we will see in the next sections.

6. K 2 = 2

In this section and the next, the proof that Xn (final surface after certain birational
operations, see Subsection 3.3) has nef canonical class can be done explicitly, using
the strategy in [15, page 498]. As we did in Section 5, we will omit those computa-
tions.

– 5

– 1

– 2

– 1

– 4
– 1

– 1

– 1

– 1
– 1

– 1

– 2– 2
– 2 – 2

– 2
– 2

– 2
– 2

– 2

– 2
– 2

– 2

– 2

– 3
– 7 – 7

– 3

– 10

– 2

Figure 6.1. The example [15, Figure 2].
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Let us take the example in Figure 2 of [15]. It starts with the same elliptic fibration
used in Section 5. The corresponding surface W with only Wahl singularities has
KW nef. One can use Lemma 3.2 to show that KW is ample in this case, soW = W
is already a stable surface. The fiveWahl singularities define five boundary divisors.
We label them as before: D

�2
1
�
for [4], D

�3
1
�
for [2, 5], D

�5
1
�
for [7, 2, 2, 2], D

�9
4
�

for [2, 7, 2, 2, 3], and D
�15
7
�
for [2, 10, 2, 2, 2, 2, 2, 3].

The general point of D
�2
1
�
. We proceed as in Section 5. We perform the 4 flips

shown in Figure 6.2. The first two are mk1A flips, the last two are mk2A flips. The
last singular surface X4 has five Wahl singularities. The canonical divisor KX4 is
nef, and K 2X4 = 1.

Figure 6.2. Flips for D
�2
1
�
.

Proposition 6.1. The minimal resolution of a surface representing the general
point in D

�2
1
�
is a simply connected surface of general type with pg = 0 and

K 2 = 1. It contains a (�4)-curve.

This proposition gives a new example X4 with K 2 = 1 (Lee-Park type).
Its minimal resolution has T-configurations [4], [4], [2, 6, 2, 3], [7, 2, 2, 2], and
[3, 2, 2, 2, 8, 2] (see Remark 3.6).

The general point ofD
�3
1
�
. Here we perform the 10 flips shown in Figure 6.3. One

can verify that X10, the last surface, has K 2X10 = 0 and KX10 nef. Therefore, the
general fiber of the Q-Gorenstein smoothing is a Dolgachev surface of some type
n1, n2, since we already know that it is simply connected. One way to find n1, n2 is
by arguing that a Q-Gorenstein smoothing of X10 was used in the second example
with K 2 = 1 (Remark 5.8). There we knew that the Dolgachev surface contained a
(�4)-curve, and so one obtains n1 = 2, n2 = 3. So we have same multiplicities for
our current example (although we do not know if there is a (�4)-curve inside).

Proposition 6.2. The minimal resolution of a surface representing the general
point in D

�3
1
�
is a Dolgachev surface of type 2, 3 which contains a configuration

[2, 5].
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Figure 6.3. Flips for D
�3
1
�
.

For the other 3 divisors we perform certain flips to deduce that its general point is
rational, and the minimal resolution has:

D
�5
1
�
: K 2 = �2 with a configuration [2, 2, 2, 7] inside;

D
�9
4
�
: K 2 = �3 with a configuration [3, 2, 2, 7, 2] inside;

D
�15
7
�
: K 2 = �6 and a configuration [3, 2, 2, 2, 2, 2, 10, 2] inside.

For the other example in [15], i.e., [15, Figure 4], we find the following. For each
of the 1

4 (1, 1) singularities we obtain a simply connected surface of general type
with K 2 = 1 and pg = 0. If we keep both singularities 14 (1, 1), then one obtains a
Dolgachev surface 2, 3 with two disjoint (�4)-curves. Finally, for each of the other
Wahl singularities one obtains rational surfaces.

7. K 2 = 3

In [19] there are five examples producing simply connected surfaces of general
type with pg = 0 and K 2 = 3. We take the one in [19, Figure 8] because, as
explained in [20], it contains a negative curve which makes the canonical divisor of
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the singular surface not nef. This curve gives the data of a flipping mk2A. The flip
is shown in Figure 7.1.

– 5 – 2 – 3 – 5 – 5 – 3 – 2 – 2 – 3 – 2 – 3 – 4 – 5 – 5– 3 – 2 – 3 – 2 – 2

Figure 7.1. Flip for [19, Figure 8].

We can show that after this flip, the resulting surface W has nef canonical divisor
via the [15] strategy. Hence this example has indeed the claimed properties in [19].
The minimal resolution eW of W is in Figure 7.2. Let F be the general fiber of the
induced elliptic fibration on eW . Then, following the notation in Figure 7.2, we have

K eW ⇠
15X
i=1

Ei + E7 + 2E8 + E11 + E13 + E15 � F

and so K eW ⌘ �1
2F1�

1
2F2 + E1 + E2 +

1
2E4 +

1
2E5 +

1
2E7 + E8 +

1
2E9 + E10 +

2E11 + E12 + 2E13 + E14 + 2E15. After we subtract the discrepancies, we obtain
an effective Q-divisor for � ⇤(KW ). It is easily verified that it is nef by intersecting
it with the curves in its support.

– 3
– 3– 3

– 2 – 2
– 2

– 2 – 2

– 2
– 2
– 2

– 2
– 2

– 1

– 1
– 1

– 1
– 1

– 1
– 1

– 1

– 1
– 2– 1– 5 – 8

– 5

– 5– 4

– 4

P

Q
R

E2E1 E3F1 F2

G5G1
G2

G3
G4

E4
E9 E8

E6
E7 E12

E13

E15
E14

E11

E10

G0
G7

G6

G9
G8

Figure 7.2. eW and relevant curves.

Moreover, this support contains E5, F2, E6, E7, E8, and E9 which is the support
of a fiber. This implies that the only curves which could have intersection 0 with
KW are components of fibers. Then, the only one is E13. Let W be the contraction
of E13, so KW is ample and W is a stable surface. The corresponding point in the
moduli space is a finite quotient of a smooth germ of dimension 4. The singularities
of W are 1

302 (1, 30 · 11 � 1), 1
2·32 (1, 2 · 3 · 1 � 1), and 1

162 (1, 16 · 11 � 1). Their
Q-Gorenstein smoothings give precisely the dimension 4 = 1+2+1. In that sense,
this surface W is a “maximal degeneration”.

The loci in the moduli space defined by keeping the singularity 1
18 (1, 5) has

codimension 2. We have that the minimal model of a resolution of general point in
this loci is a simply connected surface of general type with K 2 = 1 (and pg = 0),
with a configuration [4, 3, 2] inside. If we Q-Gorenstein deform the singularity
1
18 (1, 5) into

1
9 (1, 2), and Q-Gorenstein smooth up all the other singularities, then

we obtain a surface of general type with K 2 = 1. Finally, for each of the other two
singularities we have divisors parametrizing rational surfaces. This describes the
general points of the associated divisors D

�30
11

�
, D

�3
1
�
, and D

�16
11

�
.
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Remark 7.1. With the example [19, Figure 9] we can show that there are K 2 = 2
surfaces of general type with pg = 0 in the boundary of the moduli space for K 2 =

3. We keep in aQ-Gorenstein deformation the singularity 14 (1, 1) and smooth up the
other two. After some flips we obtain a singular surface with 4 Wahl singularities
whose exceptional configurations are [2, 3, 2, 3, 5, 4, 3], [2, 5], [2, 5], and [6, 2, 2].
Its canonical class is nef and K 2 = 2.
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