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An over-determined boundary value problem arising
from neutrally coated inclusions in three dimensions

HYEONBAE KANG, HYUNDAE LEE AND SHIGERU SAKAGUCHI

Dedicated to the memory of Professor Kenjiro Okubo

Abstract. We consider the neutral inclusion problem in three dimensions: prove
that if a coated inclusion consisting of a core and a shell is neutral to all uniform
fields, then the core and the whole inclusion must be concentric balls, if the matrix
is isotropic, or confocal ellipsoids if the matrix is anisotropic. We first derive an
over-determined boundary value problem in the shell of the neutral inclusion,
and then prove in the isotropic case that if the over-determined problem admits
a solution, then the core and the whole inclusion must be concentric balls. As a
consequence it is proved that the structure is neutral to all uniform fields if and
only if it consists of concentric balls provided that the coefficient of the core is
larger than that of the shell.

Mathematics Subject Classification (2010): 35N25 (primary); 35Q60 (sec-
ondary).

1. Introduction

The purpose of this paper is to prove that the coated inclusions neutral to all uniform
fields in the isotropic medium have structures consisting of concentric balls in three
dimensions. The coated inclusion is denoted by (D,�)where D and� are bounded
domains with Lipschitz boundaries in Rd for d = 2, 3, such that D ⇢ �. Here,
D represents the core and � \ D the shell. The conductivity (or the dielectric
constant) is �c in the core and �s in the shell (�c 6= �s). If the structure (D,�)
is inserted into the free space Rd with conductivity �m where there is a uniform
field �r(a · x) = �a for some constant vector a, then, in general, the field is
perturbed. But for certain inclusions the field is not perturbed, in other words,
the field does not recognize the existence of the inclusion. In particular, if the
coated inclusion is made of concentric balls with specially chosen conductivities
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(respectively, confocal ellipsoids if �m is anisotropic), one can see that the uniform
field is not perturbed. An inclusion with this property is called a neutral inclusion
(or neutrally coated inclusion) and the neutral inclusion problem is to show that the
inclusions of concentric balls (or confocal ellipsoids) are the only coated inclusions
neutral to all uniform fields.

Let � denote the conductivity distribution of the medium so that

� =

8><
>:
�c in D
�s in � \ D
�m in Rd

\�.

(1.1)

Here we assume that �c and �s are constants (or isotropic matrices), but �m is
allowed to be an anisotropic symmetric matrix. We consider the following problem:(

r · �ru = 0 in Rd

u(x) � a · x = O(|x|1�d) as |x| ! 1,
(1.2)

where a is a constant vector. The term u(x) � a · x describes the perturbation of
the potential due to insertion of the coated inclusion (D,�). If the potential is not
perturbed, namely,

u(x) � a · x ⌘ 0 in Rd
\�, (1.3)

the coated inclusion (D,�) is said to be neutral to the field a. If (D,�) is neutral
to the field e j for j = 1, . . . , d, where e j is the standard basis of Rd , then (D,�)
is neutral to all uniform fields.

Great interest in neutrally coated inclusions was aroused by the work of Hashin
and Shtrikman [7] and Hashin [6]. They showed that since the insertion of neutral
inclusions does not perturb the outside uniform field, the effective conductivity of
the assemblage filled with coated inclusions of many different scales is �m . We refer
to [14] for developments on neutral inclusions in relation to the theory of compos-
ites. Interest in neutral inclusions has been aroused also in relation to invisibility
cloaking. The neutral inclusion is invisible to uniform probe fields as observed
in [12]. Recently, the idea of neutrally coated inclusions has been extended to
multi-coated circular structures which are neutral not only to uniform fields but also
to fields of higher order up to N for a given integer N [2]. It was proved there that
the multi-coated structure combined with a transformation dramatically enhances
the near cloaking of [13]. Cloaking by transformation optics was proposed in [17]
(and [5]).

As mentioned before, concentric balls (or disks) are made neutral to all uniform
fields by choosing �c, �s and �m properly (�m is isotropic). Confocal ellipsoids (or
ellipses) are also neutral to all uniform fields if �m is anisotropic [12] (see also
Section 3). Then a question naturally arises: are there any other shapes which are
neutral to all uniform fields? In two dimensions there are no other shapes: if a
coated inclusion (D,�) is neutral to all uniform fields in two dimensions, then D
and � are concentric disks (confocal ellipses if �m is anisotropic). This is proved
when �c = 0 or 1 in [15] and when �c is finite in [10]. In this paper we consider
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the neutral inclusion problem in three dimensions. We emphasize that the methods
in [10, 15] use powerful tools from complex analysis such as conformal mappings
and harmonic conjugates, which cannot be applied to three dimensions. It is worth
mentioning that there are many different shapes of coated inclusions neutral to a
single uniform field as shown in two dimensions in [8, 15].

We first show that if (D,�) is neutral to all uniform fields in three dimensions
and if �c > �s , then the following problem admits a solution:8><

>:
1w = k in � \ D
rw = 0 on @�
rw(x) = Ax+ d on @D,

(1.4)

where k(6= 0) is a constant, A is a symmetric matrix, and d is a constant vector.
We emphasize that this is an over-determined problem because rw is prescribed
on the boundaries. The problem, which is of independent interest, is to prove that if
(1.4) admits a solution in three dimensions, then D and � are confocal ellipsoids.
If D and � are confocal ellipsoids, then (1.4) admits a solution and A should be
either positive or negative-definite depending on the sign of k (see Section 3). So
a part of the problem is to show that A is either positive or negative-definite. In
two dimensions it is proved in [10] that if (1.4) admits a solution then D and � are
confocal ellipses (concentric disks if A is isotropic). However, the proof there is
based on the powerful result that there is a conformal mapping from � \ D onto
an annulus. So it cannot be extended to three dimensions. The condition �c > �s ,
which is not natural, is required because of a technical reason for the derivation of
(1.4) in Subsection 2.2. Even though we do not know how to do so, it is likely that
the condition can be removed.

In this paper we solve the problem partially as the following theorem shows:

Theorem 1.1. Let D and � be bounded domains with Lipschitz boundaries in R3
with D ⇢ �. Suppose that�\D is connected. If (1.4) admits a solution for A = cI
for some constant c where I is the identity matrix in three dimensions, then D and
� are concentric balls whose radii, denoted by re (for �) and ri (for D), satisfy

k(r3e � r3i ) = �3cr3i . (1.5)

We emphasize that formula (1.5) can be generalized to anisotropic cases: if (1.4)
admits a solution, then

k|� \ D| = �TrA|D|, (1.6)
where |D| indicates the volume of D. In fact, (1.6) can be obtained by integrating
the first equation in (1.4) over � \ D and applying the divergence theorem.

As a consequence of Theorem 1.1, we obtain the following theorem:

Theorem 1.2. Let D and � be bounded domains with Lipschitz boundaries in R3
with D ⇢ �. Suppose that @D is connected and R3 \ D is simply connected. If �m
is isotropic, �c > �s and (D,�) is neutral to all uniform fields, then D and � are
concentric balls.
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This paper is organized as follows. In Section 2 we show that if (D,�) is neu-
tral to all uniform fields then (1.4) admits a solution. In Section 3 we construct a
solution to (1.4) when D and � are confocal ellipsoids. Section 4 is to prove The-
orem 1.1. In Section 5 we formulate the problem (1.4) using Newtonian potentials
and relate the problem with a known characterization of ellipsoids.

2. Derivation of the over-determined problem

In this section we derive (1.4) from the neutral inclusion problem. We will do so
only in three dimensions since (1.4) has already been derived in two dimensions
[10]. Here we assume that @D is connected and R3 \ D is simply connected.

Suppose, after diagonalization, that

�m = diag[�m,1, �m,2, �m,3]. (2.1)

Let u j for j = 1, 2, 3 be the solution to
⇢

r · �ru j = 0 in R3
u j (x) � x j = O(|x |�2) as |x | ! 1.

(2.2)

The structure being neutral to all three fields means that u j (x) � x j = 0 in R3 \�
for j = 1, 2, 3. Let

w j =

1
� j
u j (2.3)

where
� j :=

�m, j

�s
� 1 for j = 1, 2, 3,

and w = (w1, w2, w3)T (T stands for transpose). Set also

B = diag [1/�1, 1/�2, 1/�3]. (2.4)

We will show the following:

(i) rw is symmetric and divw is constant, and hence there is a function  in
� \ D such that

w = r and 1 = TrB+ 1 in � \ D; (2.5)

(ii) w(x) = c0x + d, for x 2 @D, some constant c0 and constant vector d (under
the assumption that �c > �s).

We emphasize that it is in (ii) where the condition �c > �s is required. Once we
have (i) and (ii), then we can show that (1.4) has a solution. In fact, since u j = x j
on @�, we have

r (x) = Bx on @�.
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Note that r (x) = c0x+ d on @D. Now define

w(x) :=  (x) �

1
2
x · Bx. (2.6)

Then w satisfies (1.4) with k = 1 and A = c0I � B. We emphasize that if �m is
isotropic, so are B and A.

2.1. Proof of (i)

Let us first deal with the case where 0 < �c < 1. Denote by ⌫ = (n1, n2, n3)T
the outward unit normal vector field to @� or @D. Note that the solution u j for j =

1, 2, 3 to (2.2) satisfies the following transmission conditions on the two interfaces:

u j |+ � u j |� = 0,
3X
i=1

�m,i ni
@u j
@xi

���
+

� �s
@u j
@⌫

���
�

= 0 on @� (2.7)

and
u j |+ � u j |� = 0, �s

@u j
@⌫

���
+

� �c
@u j
@⌫

���
�

= 0 on @D (2.8)

where + denotes the limit from the outside and � that from the inside of � or D.
If (D,�) is neutral to e j , then u j (x) � x j = 0 in R3 \�, so we see from (2.7) that

u j |� = x j , �s
@u j
@⌫

���
�

= �m, j n j on @�. (2.9)

In other words, u j is the solution to the following over-determined problem:8<
:

r · �ru j = 0 in �

u j = x j ,
@u j
@⌫

=

�m, j

�s
n j on @�.

(2.10)

Let v j 2 C2(�). Then we see from the divergence theorem and (2.8) that
Z
@�

@u j
@⌫

����
�

v j � u j
@v j

@⌫
= �

Z
�\D

u j1v j +

Z
@D

@u j
@⌫

����
+

v j � u j
@v j

@⌫

= �

Z
�\D

u j1v j +

✓
�c
�s

� 1
◆Z

@D

@u j
@⌫

����
�

v j

+

Z
@D

@u j
@⌫

����
�

v j � u j
@v j

@⌫

= �

Z
�\D

u j1v j +

✓
�c
�s

� 1
◆Z

D
ru j · rv j �

Z
D
u j1v j

= �

Z
�
u j1v j +

✓
�c
�s

� 1
◆Z

D
ru j · rv j .
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On the other hand, we see from (2.9) thatZ
@�

@u j
@⌫

���
�

v j � u j
@v j

@⌫
=

Z
@�

�m, j

�s
n jv j � y j

@v j

@⌫

=

✓
�m, j

�s
� 1

◆Z
�

@v j

@y j
�

Z
�
y j1v j .

Equating two identities above we obtainZ
�
(y j � u j )1v j + ↵

Z
D

ru j · rv j � � j

Z
�

@v j

@y j
= 0 for j = 1, 2, 3 (2.11)

for v j 2 C2(�), where ↵ and � j are defined for ease of notation to be

↵ =

�c
�s

� 1 and � j =

�m, j

�s
� 1. (2.12)

Let w j be defined by w j :=
1
� j
u j as in (2.3). Then (2.11) can be rephrased as

Z
�

✓
1
� j
y j � w j

◆
1v j + ↵

Z
D

rw j · rv j �

Z
�

@v j

@y j
= 0 for j = 1, 2, 3. (2.13)

Summing (2.13) over j = 1, 2, 3 we have
Z
�

3X
j=1

✓
1
� j
y j � w j

◆
1v j + ↵

Z
D

3X
j=1

rw j · rv j �

Z
�

3X
j=1

@v j

@y j
= 0

for v j 2 C2(�). If we use vector notation w= (w1, w2, w3)T and v= (v1, v2, v3)T

(T stands for transpose), then the above identity can be rewritten asZ
�
(By� w) ·1v+ ↵

Z
D

rw : rv�

Z
�
div v = 0. (2.14)

Here and afterwards A : B denotes the contraction of two matrices A and B, i.e.,
A : B =

P
ai j bi j = Tr(ATB).

Let 0 be the fundamental solution of the Laplace operator in R3, i.e.,

0(x) := �

1
4⇡ |x|

for x 6= 0. (2.15)

Let v j (y) = 0(x� y) for a fixed x 2 �. Since1v j (y) = �(x� y), by applying the
divergence theorem over � \ B✏(x) for sufficiently small ✏ (where B✏(x) is the ball
of radius ✏ centered at x) we see from (2.13) that

w j (x) =

1
� j
x j+↵

Z
D
rw j (y)·ry0(x�y)dy+

@

@x j
N�(x), for x2�, and j=1,2,3,

(2.16)
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where N� is the Newtonian potential on a domain �, i.e.,

N�(x) :=

Z
�
0(x� y)dy for x 2 R3. (2.17)

Let
f j (x) :=

Z
D

rw j (y) · ry0(x� y)dy for j = 1, 2, 3,

and let f = ( f1, f2, f3)T . Note that f j is harmonic in R3 \ D, and (2.16) can be
rewritten as

w(x) = ↵f(x) + r

✓
1
2
x · Bx+ N�(x)

◆
for x 2 �. (2.18)

For any fixed x 2 R3 \�, let

v j (y) =

@

@x j
0(x� y) for j = 1, 2, 3.

Then div v(y) = �1y0(x � y) = 0 and 1v(y) = 0 for y 2 �. So we see from
(2.14) that Z

D
rw : rv = 0,

and hence
div f(x) =

Z
D

X
j

rw j (y) · r

@

@x j
0(x� y)dy

=

Z
D

rw : rv = 0 for x 2 R3 \�.

(2.19)

Since f j is harmonic in R3 \ D, (2.19) holds for all x 2 R3 \ D.
Again fix x 2 R3 \�. Let {i, j, k} be a permutation of {1, 2, 3} and let

vi (y) =

@

@x j
0(x� y), v j (y) = �

@

@xi
0(x� y), vk = 0 for y 2 �.

Then, 1v = 0 and div v = 0 in �. So we have from (2.14)Z
D

rwi (y) · r

@

@x j
0(x� y)dy�

Z
D

rw j (y) · r

@

@xi
0(x� y)dy = 0,

which implies that
@i f j (x) = @ j fi (x) (2.20)

for all x 2 R3 \� and hence for all x 2 R3 \ D. Moreover, since R3 \ D is simply
connected, by the Stokes theorem there is ' such that

f(x) = r'(x) for x 2 R3 \ D. (2.21)
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Because of (2.19), we have

1'(x) = 0 for x 2 R3 \ D. (2.22)

Let
 (x) = ↵'(x) +

1
2
x · Bx+ N�(x) for x 2 � \ D. (2.23)

Then, we have from (2.18) and (2.21)

w(x) = r (x) for x 2 � \ D. (2.24)

Since 1N�(x) = 1 for x 2 �, we have from (2.22) that

1 (x) = TrB+ 1 for x 2 � \ D. (2.25)

So far we have shown thatrw is symmetric, divw is constant, and (2.5) holds when
�c is finite.

We now assume that �c = 0. In this case the problem (2.10) becomes8>>>><
>>>>:

1u j = 0 in � \ D,

@u j
@⌫

= 0 on @D,

u j = x j ,
@u j
@⌫

=

�m, j

�s
n j on @�.

(2.26)

So, we see in a way similar to (2.11) thatZ
�
y j1v j �

Z
�\D

u j1v j �

Z
@D

u j
@v j

@⌫
� � j

Z
�

@v j

@y j
= 0 (2.27)

for all v j 2 C2(�). So we obtain a representation of the solution similar to (2.16):

w j (x) =

1
� j
x j�

Z
@D

w j (y)
@

@⌫
0(x�y)d� (y)+

@

@x j
N�(x) for x 2 �\D. (2.28)

So, we infer in exactly the same way as in the previous sections that rw is symmet-
ric and divw is constant, and there is a function  such that (2.5) holds. Suppose
that �c = 1. In this case the problem (2.10) becomes8>><

>>:
1u j = 0 in � \ D
u j = � j (constant) on @D

u j = x j ,
@u j
@⌫

=

�m, j

�s
n j on @�.

(2.29)

The constant � j is determined by the conditionZ
@D

@u j
@⌫

���
+

= 0.
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We then obtain similarly to (2.11)Z
�
y j1v j �

Z
�\D

u j1v j +

Z
@D

@u j
@⌫

v j � � j

Z
D
1v j � � j

Z
�

@v j

@y j
= 0 (2.30)

for all v j 2 C2(�). We then obtain a representation of the solution similar to (2.16):

w j (x) =

1
� j
x j +

Z
@D

@w j

@⌫
(y)0(x�y)d� (y)+

@

@x j
N�(x) for x 2 �\D. (2.31)

So, we infer that rw is symmetric, divw is constant, and there is a function  such
that (2.5) holds.

2.2. Proof of (ii)

The transmission conditions (2.8) on @D can be rephrased as

w|+ = w|�, �srw|+⌫ = �crw|�⌫. (2.32)

Let t1 and t2 be two orthonormal tangent vector fields to @D. Then, we have

(divw)� = h(rw)�⌫, ⌫i + h(rw)�t1, t1i + h(rw)�t2, t2i,

and
(divw)+ = h(rw)+⌫, ⌫i + h(rw)+t1, t1i + h(rw)+t2, t2i.

Here (divw)� denotes the limit of divw to @D from the inside D, and (divw)+
denotes that from the outside D. Since

h(rw)�t j , t j i = h(rw)+t j , t j i for j = 1, 2,

we have
(divw)� � (divw)+ = h(rw)�⌫, ⌫i � h(rw)+⌫, ⌫i.

It then follows from the second identity in (2.32) that⌧✓
(rw)T

�
�

�c
�s

(rw)�

◆
⌫, ⌫

�
= (divw)� � (divw)+. (2.33)

On the other hand, since (rw)+ is symmetric, we obtain⌧✓
(rw)T

�
�

�c
�s

(rw)�

◆
⌫, t j

�
= h⌫, (rw)�t j i �

�c
�s

h(rw)�⌫, t j i

= h⌫, (rw)+t j i � h(rw)+⌫, t j i = 0. (2.34)

We then infer from (2.33) and (2.34) that✓
(rw)T

�
�

�c
�s

(rw)�

◆
⌫ = (divw)�⌫ � (divw)+⌫. (2.35)
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Recall that divw is constant in � \ D. Let

v(x) = w(x) �

(divw)+

2+
�c
�s

x for x 2 D. (2.36)

Then one can see from (2.35) that✓
(rv)T �

�c
�s

(rv)
◆
⌫ � (div v)⌫ = 0 on @D. (2.37)

Let g be a smooth vector field on D. It follows from (2.37) and the divergence
theorem that

0 =

Z
@D
⌫ ·

✓
(rv)g�

�c
�s

(rv)T g� (div v)g
◆
d�

=

Z
D
div

✓
(rv)g�

�c
�s

(rv)T g� (div v)g
◆
dx.

One can easily show that

div
✓

(rv)g�

�c
�s

(rv)T g� (div v)g
◆

= rvT : rg�

�c
�s

rv : rg� (div v)(div g),

and so we obtainZ
D

rvT : rg�

�c
�s

rv : rg� (div v)(div g) = 0. (2.38)

Using the notation

b
rv :=

1
2
(rv+ rvT ) and r̆v :=

1
2
(rv� rvT ),

it can be rewritten as✓
1�

�c
�s

◆Z
D
b
rv :

b
rg�

✓
1+

�c
�s

◆Z
D

r̆v : r̆g�

Z
D
(div v)(div g) = 0. (2.39)

If �c > �s , then we take g = v so that✓
1�

�c
�s

◆Z
D

|
b
rv|2 � (1+

�c
�s

)

Z
D

|r̆v|2 �

Z
D
(div v)2 = 0. (2.40)

Thus, we infer that v is constant in D and hence

w(x) =

(divw)+

2+
�c
�s

x+ a constant vector, x 2 D. (2.41)

If �c = 1, then by (2.29) u is constant on @D, and hence by (2.3) w is constant on
@D. So, we can see that (ii) holds with c0 = 0.
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3. Existence of solutions on confocal ellipsoids

We first mention that the solution w to (1.4) is unique in the sense that if w1 and
w2 are two solutions (with different k, A’s, and d’s), then w1 = Cw2+ E for some
constants C and E . In fact, if w j is a solution to (1.4) with k = k j 6= 0, A = A j
and d = d j (for j = 1, 2), then w = w1 �

k1
k2w2 satisfies 1w = 0 in � \ D and

rw = 0 on @�, so we have that w must be a constant. We now construct a solution
to (1.4) when D and � are confocal ellipsoids. To do so, assume that @D is given
by

x21
c21

+

x22
c22

+

x23
c23

= 1. (3.1)

We then use the confocal ellipsoidal coordinates ⇢, µ, ⇠ such that

x21
c21 + ⇢

+

x22
c22 + ⇢

+

x23
c23 + ⇢

= 1,

x21
c21 + µ

+

x22
c22 + µ

+

x23
c23 + µ

= 1,

x21
c21 + ⇠

+

x22
c22 + ⇠

+

x23
c23 + ⇠

= 1,

subject to the conditions �c23 < ⇠ < �c22 < µ < �c21 < ⇢. Then the confocal
ellipsoid @� is given by ⇢ = ⇢0 for some ⇢0 > 0. Let

g(⇢) = (c21 + ⇢)(c22 + ⇢)(c23 + ⇢), (3.2)

and define
' j (⇢) =

Z
1

⇢

1
(c2j + s)

p

g(s)
ds for j = 1, 2, 3. (3.3)

Then the function w defined by

w(x) =

1
2

Z
1

⇢

1
p

g(s)
ds �

1
2

3X
j=1

' j (⇢)x2j +

1
2

3X
j=1

' j (⇢0)x2j (3.4)

is a solution of (1.4). In fact, we can see that

@

@xi

"
1
2

Z
1

⇢

1
p

g(s)
ds �

1
2

3X
j=1

' j (⇢)x2j

#
=

 
�

1
p

g(⇢)
�

3X
j=1

'0

j (⇢)x2j

!
@⇢

@xi
�'i (⇢)xi .

Since
3X
j=1

'0

j (⇢)x2j = �

3X
j=1

x2j
(c2j + ⇢)

p

g(⇢)
= �

1
p

g(⇢)
,
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we have
@

@xi

"
1
2

Z
1

⇢

1
p

g(s)
ds �

1
2

3X
j=1

' j (⇢)x2j

#
= �'i (⇢)xi ,

from which we see that

rw(x) = �('1(⇢)x1,'2(⇢)x2,'3(⇢)x3)+('1(⇢0)x1,'2(⇢0)x2,'3(⇢0)x3). (3.5)

Using the relation

@⇢

@xi
=

2xi
c2i + ⇢

"
x21

(c21 + ⇢)2
+

x22
(c22 + ⇢)2

+

x23
(c23 + ⇢)2

#
�1

, (3.6)

we obtain that 1w is constant. Note that rw = 0 on @� (⇢ = ⇢0) and rw = Ax
on @D where

A = diag['1(⇢0) � '1(0),'2(⇢0) � '2(0),'3(⇢0) � '3(0)]. (3.7)

We emphasize that A is negative-definite.

4. Proof of Theorem 1.1

Let w be the solution to (1.4) with A = cI. We notice that c 6= 0. Indeed, if c = 0,
then we have

0 6= k|�\D| =

Z
�\D

1w dx =

Z
@�

@w

@⌫
d��

Z
@D

@w

@⌫
d� = 0�

Z
@D
⌫ ·d d� = 0,

which is a contradiction. Since c 6= 0, by introducing new variables

y = x+

1
c
d,

we may assume that d = 0. Set

Ai j = x j
@

@xi
� xi

@

@x j
for i 6= j. (4.1)

It is worth mentioning that Ai j is the angular derivative. Observe that Ai j commutes
with 1, namely, Ai j1 = 1Ai j . So, we have 1Ai jw = 0 in � \ D. Note that
Ai jw = 0 on @�. Since rw(x) = cx on @D, we see that Ai jw = 0 on @D. Then
the maximum principle yields that

Ai jw = 0 in � \ D. (4.2)
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Since 1w = k in � \ D, we see that w satisfies the ordinary differential equation

@2w

@r2
+

2
r
@w

@r
= k in � \ D (4.3)

for r = |x|. Choose a ball B with B ⇢ � \ D. By (4.3), w is of the form

w(r) =

k
6
r2 +

k1
r

+ k2 in B (4.4)

for some real constants k1 and k2. Since � \ D is connected and

1

✓
w �

k
6
r2 �

k1
r

� k2
◆

= 0 in � \ D,

we have, from (4.4),

w(r) =

k
6
r2 +

k1
r

+ k2 in � \ D. (4.5)

Since @w@r = 0 on @�, we must have

k
3
r �

k1
r2

= 0 on @�,

and hence
r3 =

3k1
k

on @�.

This means that @� = @BR(0) for some R > 0. Therefore we have

rw(x) =

k
3
x�

kR3

3
x
r3

, x 2 � \ D.

Since rw(x) = cx for all x 2 @D, we must have

k
3

�

kR3

3
1
r3

= c on @D,

or r = constant for all x 2 @D. It means that @D is a sphere centered at 0. This
completes the proof.

5. Newtonian potential formulation

In this section we reformulate the problem (1.4) in terms of the Newtonian poten-
tials and relate it with the known characterization of ellipsoids using the property of
the Newtonian potential. Here, as in Theorem 1.1, we assume this D ⇢ � and that
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� \ D is connected. We emphasize that under the assumptions @D is connected,
though @� is not necessarily connected.

Suppose that (1.4) admits a solution, which we denote by w. By the second
equation of (1.4) one can see that w is constant on each connected component of
@�. Since @D is connected, one can also infer from the third equation of (1.4) that

w(x) =

1
2
x · Ax+ d · x+ C for x 2 @D, (5.1)

for some constant C .
Fix x /2 � \ D. We obtain from the divergence theorem that

k
Z
�\D

0(x� y)dy

=

Z
�\D

⇥
1w(y)0(x� y) � w(y)1y0(x� y)

⇤
dy

= �

Z
@D


@w

@⌫
(y)0(x� y) � w(y)

@

@⌫y
0(x� y)

�
d� (y)

�

Z
@�

w(y)
@

@⌫y
0(x� y)d� (y) (5.2)

= �

Z
@D


(⌫ · Ay+ ⌫ · d)0(x� y)

�

✓
1
2
y · Ay+ d · y+ C

◆
@

@⌫y
0(x� y)

�
d� (y)

�

Z
@�

w(y)
@

@⌫y
0(x� y)d� (y).

Since w is constant on each connected component of @�, we see from the diver-
gence theorem that the integral

Z
@�

w(y)
@

@⌫y
0(x� y)d� (y)

is constant on each connected component of the open set
�
R3 \�

�
[D. So we infer

that the above integral vanishes in the unbounded connected component of R3 \�.
Suppose that x 2 R3 \�: we also have

Z
@D


(⌫ · Ay+ ⌫ · d)0(x� y) �

✓
1
2
y · Ay+ d · y+ C

◆
@

@⌫y
0(x� y)

�
d� (y)

= TrA
Z
D
0(x� y)dy.
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Therefore we have from (1.6) and (5.2) that the quantity

k
Z
�\D

0(x� y)dy�

k|� \ D|

|D|

Z
D
0(x� y)dy

is constant on each connected component of the open set R3 \ �. This can be
rephrased as the statement that bN�(x)�

bND(x) is constant on each connected com-
ponent of the open set R3 \ �, where bN� and bND are the (averaged) Newtonian
potentials on � and D, respectively, namely,

bN�(x) :=

1
|�|

Z
�
0(x� y)dy, (5.3)

and similarly for bND . If x 2 D, then we have from (5.2) that

k
Z
�\D

0(x� y)dy = �TrA
Z
D
0(x� y)dy+

1
2
x · Ax+ d · x+ C⇤,

for some constant C⇤, and from (1.6) that

k|�|

⇥bN�(x) �
bND(x)

⇤
=

1
2
x · Ax+ d · x+ C⇤. (5.4)

In conclusion, we have shown that if (1.4) admits a solution, then

bN�(x) �
bND(x) =

(
constant on each connected component of R3 \�

a quadratic polynomial in D,
(5.5)

and moreover, bN�(x) �
bND(x) = 0 in the unbounded connected component of

R3 \�.
One can easily see that the converse is also valid: if (5.5) holds, then (1.4)

admits a solution. So we may reformulate the statement: if (5.5) holds, then D and
� are confocal ellipsoids. This is reminiscent of a question related to the Newton
potential problem: if a Newtonian potential of a simply connected domain is a
quadratic polynomial in the domain, then the domain must be an ellipsoid (and vice
versa). This problem has been solved by Dive [4] and Nikliborc [16] (see also [3]).
It is worth mentioning that this characterization of ellipsoids by their Newtonian
potentials is an essential ingredient in resolving conjectures of Polya-Szegö and
Eshelby in [11].
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