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Boundary regularity of Dirichlet minimizing -valued functions

JONAS HIRSCH

Abstract. We prove Holder continuity at the boundary for Dirichlet mimizing Q-
valued functions. Almgren introduced multivalued/Q-valued functions to study
regularity of minimal surfaces in higher codimension. The Holder continuity in
the interior for Dirichlet minimizers is an outcome of Almgren’s original the-
ory [2], to which the work of C. De Lellis and E. N. Spadaro has given a simpler
alternative approach [7]. We extend the Holder regularity for Dirichlet minimiz-
ing Q-valued functions up to the boundary assuming C 1 regularity of the domain

and €O regularity of the boundary data with o > %

Mathematics Subject Classification (2010): 49Q20 (primary); 35J57, 54E40,
53A10 (secondary).

Introduction

Multivalued maps with focus on Dirichlet integral minimizing maps have been in-
troduced by F. Almgren in his pioneering work [2]. Namely, he considered Q-
valued functions, where Q denotes the number of values the function takes, count-
ing multiplicity. His purpose was the development of a proof of a regularity result
on area minimizing rectifiable currents. The author recommends [10] for a motiva-
tion of their definition and for an overview of Almgren’s program. This article also
compares different modern approachs to Q-valued functions inspired for instance
by a metric analysis and surveys some recent contributions. A complete modern
revision of Almgren’s original theory and results can be found in [7]. We follow
their notation, compare Section 1.

Having introduced a Dirichlet energy for Q-valued functions, a Dirichlet min-
imizer is characterised by the fact that it has least energy with respect to compact
variations. Examples of such minimizers are generated by complex varieties as
nicely proven in [16]. Concerning their regularity, one knows that they are Holder
continuous in the interior. This is already contained in Almgren’s original theory
and nicely presented in [7].
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Almgren’s theory has been extended in several directions. The papers [3,5,
12,20] consider Q-valued functions mapping into non-euclidean ambient spaces,
while [11,13,19,21,22] focus on other objects in the Q-valued setting like dif-
ferential inclusions, geometric flows and quasi minima, and [6, 15] extend some
theorems to more general energy functionals. Nonetheless many regularity ques-
tions concerning these functions remain open. Some of them have been already
proposed by Almgren himself and can be found in [1] and [10].

We address the following regularity question concerning Almgren’s multival-
ued functions, posed for example by C. De Lellis in [10, Section 8, (7)]:

Are Dirichlet minimizers continuous, or even Holder, up to the boundary if the
boundary data are sufficient regular?

The following result gives a rather general first answer:

Theorem 0.1. Let % < § <1 be given. There is a constant « = a(N, Q, n,s) > 0
with the property that, if

(al)  c RV is a bounded C' regular domain,
(a2) u e Wh2(Q, Ao (R")) is Dirichlet minimizing,
(@3) u,, € C**(09)

then u € CO%(Q).

To my knowledge, the only boundary regularity theorem proved in this con-
text prior to Theorem 0.1 is contained in [18] where, assuming the domain of the
Dirichlet minimizer is a 2-dimensional disk, the author proved that continuity holds
up to the boundary if the boundary data is continuous. We will give a proof on dif-
ferent lines that continuity extends up the boundary for Lipschitz regular domains
(cf. Section 4.2).

The equivalent “classical” statement of Theorem 0.1 for single-valued har-
monic functions states:

f : @ — R" harmonic, f|as2 e C*P(3Q) for some 0 < B < 1lthen f € c"?(Q).

Note that harmonic functions f with finite energy belong to W'2(Q2, R”) and
f € Wh(Q) if and only if £, € W2?(3%). Now, H?(3%) can be charac-
IfO—fP

terised using the Gagliardo semi-norm f 1o o R .

dxdy that is controlled

by the C%#(32)-norm for g > % Nonetheless our result is suboptimal in the sense
that for classical harmonic functions the modulus of continuity does not depend on

finiteness of energy. So that f|8Q € W%’Z(BQ) N CYB(3Q) for any 0 < 8 < 1

implies u € C%#(Q). In contrast, the Holder exponent we claim in Theorem 0.1 is
not explicit. For dimension three and higher that is not really surprising since the
optimal (or even an explicit) exponent is not known in the interior so far.

The result of Theorem 0.1 is unsatisfactory for planar domains, because in this
case Dirichlet minimizers are Holder continuous with exponent at least é, which
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is optimal. It would be desirable that the Holder continuity with the same exponent
extends to the boundary. We obtain the two-dimensional case of Theorem 0.1 by
“lifting it” to three dimensions. So we get a “bad”, non-explicit exponent. On the
other hand we can prove, as mentioned, that continuity extends up the boundary on
2-dimensional Lipschitz regular domains if the boundary data is continuous. Con-
cerning the optimal exponent we can give a partial first answer. At least on conical
subsets of €2 the interior regularity extends up to the boundary for boundary data
ul,, € C*P(3Q), with g > 3.

Outline of this article: Section 1 recalls the basic definition and results on
O-valued functions that are of interest in our context, Section 2 fixes notation
and general assumptions, Section 3 contains the proof of Theorem 0.1 for dimen-
sion three and higher, Section 4 considers the two-dimensional setting. Finally
the appendix with Sections A, B and C provides tools needed in the proof. So
in Appendix A we prove certain properties of functions in a fractional Sobolev
space W*2 with % < s < 1. It contains for instance an interpolation lemma
in the spirit of Luckhaus with boundaries functions in a fractional Sobolev space
W2, These results are extended to Q-valued functions in Section B. Further-
more we present a concentration compactness result for Q-valued functions. It is
along the same lines and indeed inspired by C. De Lellis and E. Spadaro’s ver-
sion [9, Lemma 3.2] and a WP selection criterion, needed in the two-dimensional
setting.

ACKNOWLEDGEMENTS. My most humble and sincere thanks to my supervisors
Camillo De Lellis and Emanuele Spadaro for introducing me to F. Almgren’s
(Q-valued functions. Reading their modern review of the theory gave me the idea to
start this project. Their insights and stimulating discussions really helped my work.
Their knowledge and expertise, on more topics than I can ever hope to know, was
invaluable.

1. Q-valued functions

As announced this section recalls the basic definitions and results on Q-valued func-
tions needed in here. The theory is presented omitting the actual proofs. They can
be found for instance in C. De Lellis and E. Spadaro’s work [7]. More refined
results are presented in the appendix. A concentration compactness result is pre-
sented therein. It is along the same lines and indeed inspired by C. De Lellis and
E. Spadaro’s version [9, Lemma 3.2]. Furthermore an interpolation lemma in the
spirit of Luckhaus with boundary functions in a fractional Sobolev space and a
WP s > % selection criterion is proved.

From now on Q, Q1, Q», ... will always denote natural numbers.
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Definition 1.1. (AQ R, g) denotes the space of unordered Q-tuples given by

0
AgR") =17 = > [6]: 1 e]R",i:l,...,Q}.

i=1

AQ(RN ) can be made a complete metric space by defining the distance between
two points as

0
S, T = min Y |si — top)|
Gg(s,T) Urgglg iZIIsl o)l

with P denoting the permutation group of {1, ..., Q}.

We use the convention [[¢]] = §; for a Dirac measure at a point ¢ € R”. Con-

sidering T = Z?: ([[#;1] as a sum of Q Dirac measures one notice that Ao (R™)
corresponds to the set of 0-dimensional integral currents of mass Q and positive
orientation. Hence we will write

Y
Spt(T): f,...,tg: T:Z[[ti]] c R".
i=1

Furthermore A (R") is endowed with an intrinsic addition:

01 (%)
+: Ag, R x Ag,(R") > Ag,+0,R") S+T =) [sil+ Y [l

i=1 i=1

We define a translation operator

®: AgR"H xR" - ApR") T ds =

Y
[z + s1.

i=1

Ao (RV) is a complete metric space, so the notion of measurability, continuity and
more generally the notion of modulus of continuity, Holder and Lipschitz continuity
is defined for functions taking values in Ag(RY),i.e.,u : @ - Ag(R"), 2 C RV.

As it has been shown in [7, Proposition 0.4] for any measurable function u :
Q — Ap(R") we can find a measurable selection, i.e.,

0
v=(v1,...,00): Q2 — (R")Q measurable so that u(x) = [v](x) = Z[[vi(x)]].
i=1

[v] denotes the natural embedding of (RMHQ Ao (R") as introduced in [5]. In
particular selections of higher regularity are considered in [5,7, Proposition 1.2]
and in the Appendix B.3.

We will write |u(x)| = ,/Zinl lv; (x)|2 = G(u(x), OO]).
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Definition 1.2. The Sobolev space wh(Q, Ag(R™)) is defined as the set of mea-
surable functions u : & — A (R") that satisfy

wl) x = Gu(x), T) € Wh2(Q, Ry) forevery T € Ag(R");
(w2) dg; € LZ(Q,R+) for j=1,..., Nsothat |D;G(u(x), T)| < ¢;(x) for any
T € Ap(R") and ae. x € Q.

It is not difficult to show the existence of a set of minimal functions ¢;, in the sense
that ¢;(x) < ¢;(x) for a.e. x and any ¢; satisfying property (w2), [7, Proposition
4.2]. Such a minimal bound is denoted by | D ju| and is explicitly characterised by

|Djul(x) = sup {|D;G(u(x), Ty)|: {T;}ien dense in Ag(R™)} .

The Sobolev “semi-norm”, or Dirichlet energy, is defined by integrating the mea-
surable function | Du|? = ZI,-V:IIDquZ:

J
D 2=/ D iul?. 1.1
/Q| ul ng jul (1.1)

Note that, strictly speaking, it is not a “semi-norm”. wh2(q, Ap(R")) is not a
linear space since A (R") lacks this property.
A function u € W12(Q, R") is said to be Dirichlet minimizing if

f|Du|2
Q

(12)
=inf{/|Dv|2: veW2(Q, AoRM), G (u(x), v(x)) € Wy (L2, R+)}.
Q

On Lipschitz regular domains  C R" one has a continuous trace operator as for
classical single valued Sobolev functions, e.g. [7, Proposition 4.5]

of o Wh(Q, AgR™") — L3R, Ag(R™)).

The definition of W12(<2, Ao (R")), Definition 1.2, implies that on a Lipschitz
regular domain @ C R" one has that G(u(x), v(x)) € WOI’Z(Q) corresponds to
u|M2 = v|as2 for any u, v € WH2(Q, Ap(R™)).

As a consequence of a Rademacher theorem for multivalued Lipschitz func-
tions, [7, Section 1.3 and Theorem 1.13], a Sobolev function u € WI’Z(Q, .AQ(R"))
is a.e. approximately differentiable in the sense that:

(1) WU : @ > Ag(R" x HomRN, R"), x > Uy = Y2 (i (x), Ui (x)]]
measurable with U; (x) = U;(x) whenever u; (x) = u(x);

(2) Uy defines a 1-jet JUy : @ x RN — Ap(R™) by JUy(y) = ZiQZI[[u[(x) +
U;(x)(y — x)]I, which has the additional property that JU, (x) = u(x) for a.e.
x e Q;
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(3) forae. x € Q,3IE, C Q having density 1 in x so that G(u(y), JU,(y)) =
o(Jly —x|) on E,.

As one may guess the 1-jet corresponds to a first order “Taylor expansion”, that
becomes apparent in the proof of Rademacher’s theorem, [7, Theorem 1.13]. One
can show that |D;u|(x) = Zlel |Ul~()c)ej|2 for a.e. x € Q, [7, Proposition 2.17].
From now on we will write Du; (x) for U; (x) and D ju;(x) for U;(x)e;.

A useful tool is Almgren’s bi-Lipschitz embedding of Ao (R") into some RV .
A remark of Brian White improved it, compare [7, Theorem 2.1 and Corollary 2.2]:

Theorem 1.3 (bi-Lipschitz embedding). There exists m = m(Q, n) and an injec-
tive map & : Ag(R") — R™ with the properties

(i) Lip(§) < 1 and Lip(§_1|§(AQ(Rn))) < C(Q,n);
(i) VT € Ag(R™) 35 = 8(T) > O such that |&(T) — £(S)| = G(T. S) for all
S € Bs(T) C Ap(R").

There is a retraction p : R™ — Ag(R") because of (i) and the Lipschitz extension
theorem, e.g. [7, Theorem 1.7].

As a consequence |Du|(x) = |DE& ou|(x) forae.x € Qforanyu € wh2(Q,
Ao @R™)).

We want to remark that the image of 4o (IR") under & in R™ is not convex
neither a C? manifold. Moreover there is no “nearest point” projection not even in
a tubular neighborhood.

Two cornerstones in the context of Dirichlet minimizers that are of interest for
us in the following are (cf. [7, Theorem 0.8 and Theorem 0.9]):

Theorem 1.4 (Existence of Dirichlet minimizers). Lerve W12(<2, Ao (R™)).Then
there exists a (not necessarily unique) Dirichlet minimizing u € W1-2(Q, Ao @R™))
with G(u(x), v(x)) € Wy (2, R4).

Theorem 1.5 (Interior Holder continuity). There is a constant ao=ao(N, Q) >
0 with the property that if u € wh2(q, Ao R™)) is Dirichlet minimizing, then
u e COx(K, Ao R"™) for any K C Q C RN compact. Indeed, |Du| is an
element of the Morrey space L>N 27220 with the estimate

r2_N_2°‘0/ |Dul?> < R2_N_2"‘0/ |Du|? forr < R, Br(x) C Q. (1.3)
By (x) Bpr(x)

For two-dimensional domains ap(2, Q) = é is explicit and optimal.

Both results had been proven first by Almgren in [2] and nicely reviewed by
C. De Lellis and E. Spadaro in [7].

J. Almgren presents in [2, Theorem 2.16] an example of non-uniqueness for the
Dirichlet problem: there are two Dirichlet minimizers f # h € WH2(By, A2(R?)),
B1 C R?, with f = h on 3Bj. Given any other minimzer that agrees with f or & at
the boundary must be either f or .
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2. General assumptions and further notation

From now on, if not indicated differently, we will consider the following setting:
Q c RV is a bounded C'-regular domain, i.e., for every z € 9 there exists
R=R(z) >0,F =F, e C'(R¥~!, R) so that (up to a rotation)

QN Br() = {2+ (', xn): x| < R, xy > F(x)}.

In particular we will write
Qr = {('.xw): an > F()) for F e ¢! (RVLR).

Since 92 is compact, the C' regularity implies that

(A1) for any given er > 0,3R = R(€2, €r) > 0 with the property that for any z €
Q there is F € C'(RV~!,R) with F(0) = 0, grad F(0) = 0, |lgrad F||, <
€r and (up to a rotation):

QN Br(z) ={z+ &, xn): x| <R, xy > F(x')} =2+ Qp N Bg.

In other words, 3L is locally the graph of a C! function with small gradient over
the tangent space 7,0%2.
For the rescaled situation around a point we will write

QZ’,:{xeRN:z—I—rer} forz € Q,r > 0.

In particular for the “graphical” situation 2 at a boundary point z € €2 we have
Q. NB ={z+ & xp): x| < 1,xy > Fo,(x)} =2+ Qp, N B

with Fy ,(x") = r ' F(rx’) (observe that ngad(Fo,r) ||OO B = lgrad Fll» p,)-
The boundary portion in the graphical case will be denoted by

Fp=0QrNB ={( xn): x| < lxy = Fx)}.

The blow up at a boundary point will always converge to the special case of the
upper half space ]Rﬁ. This coincides in our notation with Q¢ = Rﬁ, ie,F=0.

Fractional Soblev spaces, named WS:2 occur naturally when dealing with
boundary regularity for elliptic problems. A short introduction is given in the Ap-
pendix A. We define the Gagliardo semi-norms for 0 < s < 1 and m dimensional
submanifolds ¥ ¢ RV

_ 2
[Lfﬂiz =/ Md(x,y)’ felXx)

Txy  |x— s

2
LLMJJE’E :/ Md(x’ y)’ ue L2 (E,AQ(R")) )
IxX

|X _ y|m+23
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The notation [ -||s, = has been chosen in similarity to the classical notation [-]y, 5
for the Holder semi-norm with exponent . With a little abuse of notation we will
use the same symbol for s = 1:

LLfJJ%,g = /EIDTfIZ, fewh?®)
U”ﬂ%,z = / |Deul?, uewh? (=, AgR™M)
=

where D; denotes the total tangential derivative on X. For single valued functions
f € W12(%) and an orthonormal frame 71, ..., 7, of Ty £ we have |fo(x)|2 =

Z,'Q:1 | g-—rfj 2. In the case of a multivalued function u we make use of the approxi-
mately differentiability of Sobolev functions: for a.e. x € ¥ we have |Dru|2(x) =

7’:1 Z,Qzl |U; (x)tjl2 where U; (x) are the elements of the 1-jet JU,, cf. the dis-
cussion below definition 1.2 for precise statement of the approximate differentiabil-
ity and the definition of the 1-jet.

3. Holder continuity for N > 3

The following is a a more precise version of Theorem 0.1 and the main result of the
paper.

Theorem 3.1. Let @ C RN Cl-regular, N > 3, Q,n € N and% < s < 1. If for
some ball B3g(y) C RN,y e RV

(al) u e WH2(Qn B3r(y), Ao (R™)) is Dirichlet minimizing;
(a2) u}m € W23 N Bar(y), AoR™)) and for some 0 < B < 1 there is a
constant M,, > 0 so that

PR NVEDN )R ree < My V2 €0QN Bi(y).0 <r <R

holds, there are constants C, o1 > 0 depending on N,n, Q,s and Ry > 0 de-
pending on 02 such that

(i) |Dul| is an element of the Morrey space L*>N~212¢(Q N Bg(y)) for any 0 <
o < min{ag, B}, and more precisely the following estimate holds

R2B—)

rZ—N—2°‘/ |Du|* < 2NR§N2“f | Dul*+C—2——M; (3.1)
B, (x)NQ Bagy (NS B—a

for any ball B, (x) withx € BR(y) N Qandr < % = min{R, Ryq}.
(i) u € CO4(Q N Br(»)).



BOUNDARY REGULARITY OF DIRICHLET MINIMIZING Q-VALUED FUNCTIONS 1361

The following lemma provides a relation between the assumption (a2) above and
the Holder continuity of u at the boundary portion 92 N Br(y).

Lemma 3.2.

(i) (a2) is satisfied if u|,, € COP(@Q N B3r(y)) for } < B < 1,ie., there isa
dimensional constant C > 0 so that for0 < s < f

C
p26=B) (N~ U”.”JJS 5 (g = - [M]/3 .

Vz € Q2N Bog(y),r < min{R, R(2, 1)};

(1) if (a2) holds then u |m e COP(3QNByR (y)), i.e., there is a dimensional constant
C > 0 so that

Gu(x1), u(x2)) < CM|x; — x2|P

R(Q, 1)}

Vxi,x2 € 02N Br(y), |x1 — y2| < min {R, >

Proof. Claim (i): Givenz € 32N Byr(y),1et R(Q, 1)>0,F = F,eC'(RVN "1, R)
be the radius and function definded in (Al). For any 0 < r < min{R, R(2, 1)}
writing x = (x/, F(x')) € 3Q and B, = B,(0) C RV~! we have

Gu(x), u(y))?

x — y|N—1+2s dxdy

/Br (2)NIx B, (z2)NOQ

< W 50 / b = PE=D gy
' B, (2)N32x B, (2)NIK
< a1+ lgrad (IR [ 1 = y P00 e )
/X B,

_ 4o - Do,
- 2By

Claim (ii): As we observed in (Al) 9€2 is locally a graph, so we can transform
it to a local question on RY~!. Furthermore making use of Almgren’s bilipschitz
embedding, Theorem 1.3, it is sufficient to check it for single valued functions.
Hence (ii) is equivalent to check that

There is a dimensional constant C = C(n) > 0 so that if f € WS2(R", R™)
and My > O are given with the property that

(13 5 2D,

P2 f1E g o) S M7 VB(x) CR".0 < r < R, (32)
then f € COH-PR", R™) with
|f @) = fFO)] < CMglx = yIP Vix = y| < Ro. (3.3)
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Let us write f(z,r) = J(Br @ f for any B,(z) C R”, then using twice Cauchy’s
inequality we have

][B()If—f(z,r)l - |B,<z>|2/ () = FO)ld(x y)

B (2)x By (2)

1 1
2 x) — 2 2
slBr(z)l‘Z/ (f Ix—y|"+2sdy> / 17x) = FOIF fg)l dy| dx
B (2) \/B,(2) B.(z) |x—Yl

4n 2
< (—zr%" LLfJJf’Br(Z)) <crf my.
Wy

Hence foranyr < Rpand k € N

1f(z, 275 ) — fz,27Fr) < 27 ][ If — fz. 275 < cMprP 2Pk,
Bz—kr(z)

i.e.,k f(z,27%r)is a Cauchy sequence becaused po ol f(z, 27Ky —f (z, 27k

cCM . .
<15 ol i rP . Furthermore for any two Lebesgue points 7, zo € R" with |z; — z2| =

r < Ry we have

2

£@ — fel = YIf@) - Fanl+f £ — [l dx
By (zi)NBy(22)

i=1

2
CM; 4. CM; 4, . CM;
< <4 ;
—Zi=11—2—ﬂr tio2 8 =t

this shows that f has a representative in C%# O

The core of the proof of Theorem 3.1 is the estimate stated in Proposition 3.3
below. To make its proof more accessible it is presented in the next subsection and
split into several lemmas.

Proposition 3.3. For any % < s < 1 there are constants €y > 0,0 < § < ﬁ and
C > 0 depending on N, n, Q, s with the property that, if (A1) holds with e < €,

then
1
|Du|? < (——3)/ |Doul* 4 C|lul)? (3.4)
w/g\ZFﬂBl N -2 SN_lﬂQp i ST
for any Dirchilet minimizer u € WH2(B; N Qr, Ao @R"M)).

Let us take the previous proposition, i.e., the estimate (3.4) for granted and
close the argument in the proof of Theorem 3.1.
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Proof of Theorem 3.1. Let €, 6 be the constants of Proposition 3.3. Fix a1 < ap
(g being the Holder exponent of Theorem 1.4) so that (N —2+2a) (ﬁ - 8) <

1. Let Ry = min{R, R(2, €y)}, where R(£2, ) denotes the radius defined in (A1)
corresponding to €.

Due to the choice of Ry, for any 0 < r < Ry, z € 92 N Bar(y) the rescaled
map

uzr(x) =u(z+rx) forxe BjNQ,,

belongs to WI’Z(Q” N By, Ag(R™)) and satisfies the assumptions of the Proposi-
tion 3.3. One readily checks that for } < s < 1

2 _ 25— (N-1) 2
U”z.rﬂs,BmaQU =r “—MJJS,B,(z)ﬂBQ'

Applying (3.4) and assumption (a2) we get

2—N 2 2
r / |Du|” = / |Du |
Br(Z)mQ BlmQZZ,r

1 2 2
(m B 8) /‘;N—lﬂgz,rlDl’uZyr| + C[LMZ,VJJS’BIHBQZJ

.t
- N —-2+42aq

IA

r3_N/ |D,u|2+Cr2ﬁM3.
9B, (z)NK2

Hence forae.0 <r < Rpand 0 < o < min{aq, B}

d
o (rZNZa/ |DM|2>
or B, (2)NQ

= —p2 N2 / |Dul? + (N — 2 + 2a)r~ 172027V / |Dul?
9B, (z2)N2 By (z)N2

< rZ_N_Z“/ (|D,u|2 — |Du|2> + (N =2+ 2a)CrF=0=1p2
dBr(2)NQ

< (N =2+ 2a)Cr2F=o-1p2,

Integrating in r we achieve the following inequality for any z € 92 N Bog(y) and
0 <r < Ryp:

C -
r2—N—2a/ \Dul? RgNza/ 1Du? < ——RXP™ M2, 3.5)
B, (N By (N B—a
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Now we can conclude (3.1). If x € QN Bg(y) satisfies dist(x, 02) > %, then

By (x) C Bry(x) C QNByr(y) forany0 < r < % and so, by (1.3) in Theorem 1.5
2

Ro 2—N—-2a
r2—N—2&/ |Du|2 E <_> f |Dl/l|2
B, (@) 2 By (x)

1 (3.6)
< 2NR§—N—2°‘/ | Dul?.
Bagy ()N
Ro

Assume therefore x € €N Bg(y) has dist(x, 9€2) < . Fix z € 9Q so that
dist(x, 0Q2) = |x — z|],i.e., z € 02 N Byr(y). Given 0 < r < % we set r| =
max{r, |x —z|},ro =r1 + |x —z| <2r; < R and so

rz—zv—za/ |Du|2§r12_N_2“/ \Dul?
B, (x)NQ By, (NQ
rs N—-2+42a
< <_> r22N2af \Dul?
1 B, ()N

C -
Bry (0L B—a

C -
Bagy (0)NQ2 p—a

(3.7)

(ii) is a consequence of (i) by the theory of Campanato spaces as follows: (i) implies
that | Du| is an element of the Morrey space L>" ~2+2(QNBg(y)). Qis C!-regular
and therefore by Poincarés inequality this implies that & o u is an element of the
Campanato space £V 2¢(Q N Bg(y)), compare for instance [4, Proposition 3.7].
Furthermore one has the equivalence L2NH209QNBR(y)) = CO%(Q N Br(y)), [4,
Theorem 2.9]. O

3.1. Proof of Proposition 3.3
The proof will be divided into two parts and each part is devoted one subsection.

Subsection 3.1.1: 'We show that it is necessary and sufficient for a Dirichlet mini-
mizer on the upper half ball B;N{xy > 0} to be trivial that it has constant boundary
data on By N {xy = 0}.

Subsection 3.1.2: We show that if proposition failed we could construct a non-
trivial Dirichlet minimizer on the upper half ball By N {xy > 0} with constant
boundary data contradicting the previous step.
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3.1.1. Non-existence of certain non-trivial minimizers

In this subsection we consider Dirichlet minimizers on the upper half ball B, =
By N {xy > 0} and we will show that they have to be trivial under certain as-

sumptions. We will use the following notation: S_IX -l = g8N-In {xy > 0} and
I'o = B; N{xy =0}.

Proposition 3.4. Every 0-homogeneous Dirichlet minimizer in Biy with ”|r0 =
const. is trivial, i.e., constant.

Corollary 3.5. A Dirichlet minimizer on B4 with u |Fo = const. satisfying
1
/ |Du|2=—/ | Deul® (3.8)
B+ N -2 Siv_l

They are both consequence of an appropriately chosen inner variation:

needs to be constant.

Lemma 3.6 (A special kind of inner variation). Given a Dirichlet minimizer u €
W1’2(Bl+, Ao R™)) with u|r0 = const. and a vector field X = (X1,...,XnN) €

Cl(B1,RN) withey - X(x',0) = Xn(x,0) > 0 on Iy, then
0
0< / |Dul*div(X) —2 ) "(Du; : Du; DX). (3.9)
Biy i=1

Proof. Let u and X be given and set T = u|r0 (x) for x € I'g. Observe that for
xy >0and 0 < ¢ < fg sufficiently small

xy H XN xn) = xn + 1 (Xn @ xn) — Xn(x',0)) + 1 Xy (x', 0)
> (1 =1 |DXylloo)xn +1Xn(x",0) = 0.
Hence for 1ty > 0 small
Q;(x) = x +1X(x)
defines a 1-parameter family of C'-diffeomorphism that satisfy
So
uo dD,_l(x) for x € A,

ve) = T forxeBlJr\A,

defines a C! family of competitors to «. Standard calculations, compare for instance
[7, Proposition 3.1], give
o0
DO o ®; = (DP) ' =) (=" (DX)* =1-1tDX +o()
k=0
det (D®;) = 1 4t div(X) + o(¢)
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so that

0
|Du; (1 — tDX + o(1))|?

0
|Dv,|> 0 ®; = Z|Du,-Dc1>,—1 o ®,> =
i=1 i=1

0 0
=Y |Du;|* =2t Y "(Du; : Du; DX) + o(1).
i=1 i=l1

In conclusion we found that for all0 <t < ¢,

/ |Dv,|2=/ |th|2=/ Duil? o &, |det D,
By A By
0
=/ |Du|2+t/ |Du|2div(X)—ZZ(Dul-:Dul-DX)-i—o(t).
By By i=1

Since fB1+ |Dv,|* > fB1+ | Du|?, we necessarily have

Q
0 5/ |Duf* div(X) — 2) "(Du; : Du; DX). O
Biy i=1

Proof of Proposition 3.4. Since u is 0-homogeneous, u(x) = u(‘;—‘) for ae. x.

Thus g—f(x) =0 for a.e. x € By4+, which corresponds to

ou Q ul Xj
0=—W=)Y [|D Djuix)=|]. (3.10)
ar == [x|

Fix 0 < R < 1 and consider the vector field X (x) = n(|Jx))ey = (0, ..., n(x]))
with
1-% r<R
= R -
n(r) {0 r > R.

Thus we have Xy (x) > 0and DX (x) = n'(|x))ey ® |;—| This gives div(X)(x) =
n’(|x|)% and due to (3.10)

N
X
(Du,- . DuiDX) = E <ﬁDjui, DNu,->n/(|x|) =0forae. x.
j=1

Using ' (|x]) = —%IBR (x) and applying Lemma 3.6 we get

1 X
0<—— |Du>Y
R Jpg., x|

This is only possible for | Du| = 0 on Bg4+ and so |Du| = 0 on B . O
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Proof of Corollary 3.5. Letu € W“2(B ., Ao (R™)) be as assumed. Observe that
(3.8) implies that u & W'A(SY ™", Ag(R"). Hence v(x) = u (f) defines a

|x
0-homogeneous competitor using u{r = const.
0

1 1
/ |Dv|? = —/ |D.v|* = —/ |Dfu|2=/ |Du|?,
B: N =2 Jsh-1 N =2 Jgh-1 B:

where we used firstly the 0-homogeneity of v, then u| N-1 = v| SN-1 and finally
+

(3.8). Therefore v has to be minimizing as well, and moreover Dv = 0 as a conse-
quence of Proposition 3.4. This proves the corollary since then Du = 0 as well. [J

3.1.2. Contradiction argument

As announced we want to establish now by contradiction the estimate of Proposition

3.3:
1
|Dul* < (— —3>/ |Deul> + Cllul)? ..
n/QFﬂB| N -2 SN-1INQr i s:I'r

At the end of the proof we add some comments about in which sense one can
consider this estimate as optimal.

Proof of Proposition 3.3. Ifu ¢ W'2(SN='NQp, AgR"))HNW*2(Tp, Ag(R"))
the RHS of (3.4) is infinite and so there is nothing to prove. Hence, assuming that
the proposition would not hold, we can find sequences F'(k) € C L(RN-!, R) defin-
ing the sets Q) as introduced in (A1) with €z ) < %, ie., Fr(0)=0, grad F(0) =
0, llgrad Fillo < %, and an associated u(k) € WH2(B; N QF k., Ao (R™)) failing
(34),ie.,

1 1
‘/QF(k)ﬂBl N-2 &k SN-1NQp ) T 5,TF@)

We may assume that the LHS of (3.11) is 1 by dividing each u (k) by its Dirichlet

1

energy (fQF(kmBl |Du(k)|2)_7, We also assume, w.l.o.g.,k > ko > 4.

To every k we may fix a C'-diffeomorphism G(k) : Biy+ — Qrx N B,
arguing for example on the base of Lemma C.2. F(k) — Fy =0in C' ask — o0
and therefore G(k), G(k)~' — 1in C' (1 denotes the indentiy map on RV).

We consider now instead of the sequence u (k) itself the sequence v(k) = u(k)o
G(k) € WH2(Big, Ap(R")). Up to order o(1) v(k) has the same properties as u (k)
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since G(k), G(k)™! = 1inC', ..,

/ IDv(k) 1> = (1 + o(1)) IDu(k))* < 1+ o0(1);

B Qr k)

/ IDv(k)? = (1 +o(1)) |Dou(k)? < w <2N; (3.12)
SNt SNINQrw) N=2 &

1+0(1)<i,
kT 2k

Lo 12 r, = (1 + o) )12 1y <

(3.11) with LHS = 1 provides the upper bounds. The second and third show that
k)], € WHSTTL Ag(RM) N Wy, Ag(R)).

We apply the concentration compactness Lemma B .4 to the sequences v(k),
T (k). For a subsequence v (k") we can find functions b; € W1’2(Bl+, .AQ]. (R™)), a

sequence of points 7; (k") € R" so that the “traveling sheets” b(k’) = ZJJZ (b @

tj(k")), satisfies among others G(b(k"), v(k')) — 0 in L?(B1, Ag(R™)). We will
prove now that the b; satisfy also the following:

(1) bj|3171 € W1’2(Sf_l, Agp;(R")) and bf|r0 = const.;
(ii) bj € W'2(Bi1, Ag;(R™)) is Dirichlet minimizing and

J
Z/ |Dbj|* = lim/ IDv(k)* = lim |Du(k)*> = 1;
= Bi4 k'—00 By

k'—o0 QFk,ﬂBl
(iii) [p, |Dbj|* < ﬁfsfqlDrbjP for all j.

Proof of (1): The concentration compactness lemma states that G(v(k’), b(k')) — 0
in L?(B14) and D& o v(k') — DE& o b(k') in L*(Bi4+, R™) weakly. This im-
plies that G((k), b(k")) — 0 in L>(SY ") and D& o v(k') — D.& o b(k') in
L%(S iv -1 R™), because we had seen in (3.12) that D& ov(k”) is uniformly bounded

in L*(S i’ ~1 R™). The lower semicontinuity of energy together with (3.12) then
states

1 < ) 1 J )
—N_Z;[Sf_l|nrbj| :—N_zfsf_l;m,sobﬂ

o 1 1 -y (3.13)
Slgglo%f (m - P) /Si”wr& ov(k')|

<1
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g (v|F0 k), b|r0 (k")) — 0 in L*(Tg) due to the weak convergence in the interior.
Hence, due to dominated convergence, for any 6 > 0 and (3.12)

J
> [,

Gbsl,, @), byl )

X,y
= |x _ le—1+2s
G|, K x), v|. K)())? 2
_ . 0 Iy . “ .
B k}Lmoo ToxTo |x — y|N-1+2s d(x,y) = k}Lmoo kK 0;
[x—y|=8

consequently b; ’Fo = const. for all j.

Proof of (ii): Let G : Bj — Bj be the bilipschitz map constructed in Lemma C.1.
Lv(k) o G s.sv-1 is uniformly bounded: firstly apply Corollary B.1 to estimate

LLv(k’)oGJJs,SN—ISC<LLv(k/) Gl gretof o) LV o GJJS,SNIH{W_I});

NG

secondly G is bilipschitz and G(SN 'N{xy > Q—% H=8Y"1and GSY'N{xy <
;—%}) =T, so that

LLU(k/) o GJJS,SN_lﬂ{xN>\_/—é} =< C”_v(k/)ﬂs’si\’—l
LK) 0 Gl g1y <=1y = CLO® sy

thirdly the interpolation property || f || <cC/J sy-11D f1? gives

s,Siv_l
Lo g g1 = [IDVED] 2sy1y

In conclusion we combine all of them and use (3.12) to conclude
Lo 0 Glly sv-1 = € ([IDOED [ 2ggy-1) + Lo @) Isry ) < € @N).

The same bound holds for bj o G € ws2(SN-1, Ao (R")) because of the lower
semicontinuity of energy established in (3.13). Furthermore in the proof of (i) we
showed that G(v(k"), b(k")) — 0 in LZ(SiV_l) and L%(T'y), so that

|Gk o G, b(k') 0 G)|,» = o(1).

(SNhH

Let § > 0 be given and sufficient small so that we can apply the interpolation
Lemma B.2. To every k' we fix an interpolation ¢ (k') € W*2(Bj \ Bi_y, Ao (R™)
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between v(k') o G and b(k") 0 G, i.e.,p(k")(x) = v(k") o G(x), p(k)((1 — L) x) =
b(k') o G(x) for all x € SN~! and

fB DW= 0 (1) 0 G2 gy + 160 0 G g1
1 1-A

C
t |[G@w®E) o G, b(K) o G)||22<SN—1)

C
<8§CA4N + 5—ao(l).

To check the minimizing property let ¢; € W2(By,, Ag;(R")) be an arbitrary
competitorto b; for j =1,..., J. Setc(k') = Zj‘:l (c{,- &) tj(k/)). ForO0 < R <1
we define g = Go 50 Gl (x) = & + % (x — %’). So we found

|Dc(k') o Yrg|* = RN 2 / |De(k)|* < / |De(k)|?

Cr B4 B4

with Cr = ¥z (Bi1+) = G(Bg) C Biy. We define C(k') € W2(B, Ap(R"))

Cy = @Yo G™! ifx € Bi1\ Ci—; = G(By \ Bi_;)
c(kyoy_, ifxeCiy.

C(k')y o G(K') € W'(Qpx N By, Ag(R™)) is now an admissible competitor to

u(k’) and therefore

1 - 0(1))/ |Dv(k)* < / |Du(k)* < (1 +0(1))/ |DC(K)|?
B|+ Q Bl+

F(khNB1

< (I +o(1) C/ |De(K)* + (14 0(1)) | |Dek)?
Bi\Bi_, B4+

J
<cC (8 + 3%0(1)> + (1 +o(1)) Z/B |De; .
j=1YBi+

Pass to the lim inf and apply the lower semicontinuity ensured by the concentration
compactness Lemma B 4 to conclude

J J
Z/ |Dbj|? < liminf (1 —o(1)) | |Dv(k)> <C5+ Zf |Dc;|?.
=By k'— 00 =178

B4 1+

d can be chosen arbitrary small and C is a dimensional constant so that b; has to
be Dirichlet minimizing for every j =1, ..., J. The strong convergence in energy
follows choosing ¢; = b; for every j in the inequality above.
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Proof of (iii): Having established (i) and (ii), a;(x) = b; (lj—l) e W'2(Bys,
.AQj (R™)) is well-defined and an admissible competitor.

1 1
IDb~|2§/ |Da-|2=—f |Da-|2=—/ |
/31+ J g N=2 Jsr waj N =2 Joy-i

for every j due to the 0-homogeneity of a; and a |sN*1 =b; |$N,1 .
+ +

The maps b; constructed above with the properties (i), (ii), (iii) contradict
Corollary 3.5. Firstly we found due to (ii), that

J
Z/ |Dbj|> = lim | Du(k)|?
j=1 B+ k=00 QF(k/)ﬂBl
1 1
> lim [ —— — — / |Du(k)*
K—oo \ N —2 k' QryNSN-1
. 1 1 N2
= lim (—— — — |D;v (k)]
K—>o0 \N —2 k' 51*1

2
N v [Pebil™

j=1 +

Combining this with (iii) gives, for j =1, .

[ 1o, - —f IDeby .
B4

Corollary 3.5 states now that Db; = 0 on By because b; |Fo = const. by (i). This

2
contradicts (ii), because 1 = me By |Du(k’)|* for all k’.
Hence the proposition must hold. O

Having in mind the actual proof of Theorem 3.1 we used from the estimate
(3.4) two properties, the scaling property “—”Z»rﬂ?,Bmam r:rz“’(N’U[l_uJJi B, ()99
and the existence of positive constants 8, M, > 0 both aepending possibly on u so
that in combination

I.I_”z,rﬂs,BmBQz,, =< rﬁMu-

Essentially one would like to replace the W* 2(T'p, Ao (R"))-norm with a weaker
norm with the same scaling property. Actually the C%#-Holder norm, [u] g =

SUPy yex %;’léy)),for any 0 < 8 < 1 shares this property since

(urz1g.09,,nB = Vﬂ[ul,s,assz.(z) = Vﬂ[ulﬂ,ag-
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So it would be desirable to replace the W*%2(3Q)-norm, (s > %) with a Holder-
norm with exponent 8 < % since it would get us closer to the already mentioned
classical result: u € W!2() harmonic with u\m e CYB(3Q) for some B >0
implies u € C%AQ.

Nonetheless we cannot hope to prove an estimate like (3.4) by contradiction if
the fractional Sobolev norm (s > %) is replaced by an C%#-Holder norm, 8 < %
because vanishing of energy through the boundary needs to be excluded. Bounds on
WS2(3L)-, or C%*(9€2)-norms with s < % are insufficient. This is demonstrated
by the following two dimensional example on the disc By C R2. It uses polar

coordinates x = (;zj’ns((g))) =ret?,

Example 3.7. For any € > O there is a sequence of harmonic functions f; €
W12(By, R) and a positive constant ¢ > 0 with the following properties: for all
k we have fBl |ka|2 > ¢, fk(e’e) = 0 for |0| > €. Furthermore f; — 0 uniformly

on By and | fills st » [fkls.s1 — O forevery s < %

Proof of Example 3.7. Given 0 < € < 7, fix a smooth, symmetric, non-negative
bump function n with n(0) > 0 and n(@) = O for |#| > €. Let Z?io a; cos(16)
be the Fourier series of n(0). It is converging uniformly to 5 in the C* topology
since 7 is smooth and ) ;o ™ |a;| < oo for all m € N. Fix ko € N sufficiently

large so that 2|ay| < ag = n(0) for k > ko and set A = Zio(l + Dla;| >

1
(Zfio(l + l)a,z)Q. The addition theorem 2 cos(l6) cos(kf) = cos((l + k)6) +
cos((I — k)6) shows that the harmonic extension of 21 (0) cos(kf) in By is

gr(r eie) = a (rl+k cos((l +k)0) + pli=k] cos((l — k)@))

(am—r + amai)r™ cos(md)  with ay,_x =0 form < k.

Le L2

For k > ko we obtain a lower bound

2
ay

IS

1 o0
= |Dgr|* = Z m(am—k + amx)* > k(ao + an)® >
B

m=1

and an upper bound

1 o0 00
;f Dgl* = Y mlam—k + am)* <2 (1 +k)aj + 11 —klaj < 4kA>.
B, m=1 1=0
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We consider now the sequence of harmonic functions on Bj given by fi(x) =

g"—(lx) € WH2(By). fi has the desired properties: using the equivalence
k2

() ja5 < % [, |DfI* = ||fk||2 o < 4A% forall k = ko;
(i1) fk(e’e) =0 for |f| > € and all k;
(Gii) || fillog < 2 — 0 as k — oo;
k2

. 1
(iv) forany0 <s < 5

00 m2s _
el g =) T(am_k + amk)® < 8KF 1A

m=0

E

o0
_1
[fels.s1 < E — am—k + amik| < 2k°72 E (+ Dla]

I\)I'—

converging to 0 as k — oo.

(iii) follows from the maximum principle on harmonic functions. The fact that the
W#2-norm on S' corresponds to the sum in (iii) is a classical result of interpola-
tion theory with weights. In case of the Holder norm one checks that [¢]g 51 <

Z?io 18 |c7] in case of a a converging Fourier series ¢ (0) = Z?io c;cos(16). ]

4. Boundary regularity in dimension N = 2

4.1. Global Holder regularity

In this section we will show that Theorem 3.1 extends directly to two dimensions.
We can consider the two dimensional case as a special case of a certain minimizer
on a three dimensional domain.

Lemmad4.l. Let u € W'2(Q, Ao @R")) be a minimizer on a domain Q C RV,
N > 1, then U(x,t) = u(x) is an element of whi(Q x I, Ao @R")) for any
bounded open interval I C R. Moreover U is Dirichlet minimizing.

Proof. Assuming the contrary there exists V € wh2(Qx I, AoR")) withV =U
on the boundary of Q@ x I,i.e., (x,7) — GU(x,t), V(x,1)) € WOI’Z(Q x I) and

f IDV|? <f |DU|2=|I|/|Du|2; (4.1)
Qx1 Qx1 Q

the second equality actually shows that U € W2(Q x I, Ao (RM)).
Consider the subset J C [

J={rerixm um = v e WA, Ag®") and v, = u],,};

then by Fubini’s theorem |/ \ J| = 0.
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Furthermore by (4.1) there must be a t € J with

/ |Dv,|>dx < / |Dul. 4.2)
Q Q

vy for ¢t € J satisfying (4.2) is an admissible competitor to u, but (4.2) violates the
minimality of u. O

Remark 4.2. The converse of this lemma holds as well in the following sense,
compare [7, Lemma 3.24]: if u(x) € wh2(Q, Apo@R")) and U(x,t) = u(x) is
Dirichlet minimizing on € x R then u itself is minimizing in €2, in the sense of
compact perturbations:

/’ |szs/’ IDVP
{U#V} {U#V}

forall V e Wh2(Q x R, Ap(R")) with {U # V} compact.

Theorem 4.3. Let Q C R2, Cl-regular, 0,n € Nand % < s < 1. If for some ball
Bir(y) CRVN,y e RN

(al) u € WH2(Q2 N B3r(y), Ao (R™) is Dirichlet minimizing;
(a2) M|aQ € WH2(3Q N Bir(y), Ag(R™))

holds, there are constants C, a1 > 0 depending on n, Q, s and Ryq > 0 depending
on 0K2 such that

(i) |Du| is an element of the Morrey space L>N=2t2¢(Q N Br(y)) for any 0 <
o < min{oy, s — %}, and more precisely the following estimate holds

r—ZO{/ |DM|2 S 27R02O{/ |DM|2
B, (x)NQ2 BZRO(x)ﬂQ

2s—1-"2«a

0 2
+ C2s —1 -2« LLMJJBQOB”(”

4.3)

or any ball B, (x) withx € BR(y) N Qandr < Ro . min{R, Ryq}.
2
(i) u € CO4(Q N Br(»)).

Proof. Set Q; = Qx]—4L,4L[C R3 for some large L > 3R > 0. The boundary
portion QN B3r(y) x] — 3L, 3L[ is C'-regular by assumption on the regularity of
Q. U(x,t) = u(x) is an element of W12(Q;, Ao (R")) and Dirichlet minimizing
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as seen in Lemma 4.1. For any (z, fp) € 0Q2x]—2R,2R[and 0 < r < R we found

2 -2
CP2UULS 5 cioros,

2 2
< r2h- LLUﬂs(B,(z)maQ)xzo e

to+r pto+r u(x), u 2
_ rz(s—ﬂ)—Z/ / / Gu&), ut)) sodhidd(x,y)
B, (2)NOR2x B, (z)NA2 Jtg—rJtg— r |x y|2—|—(t1 _ t2)2) 2

2
S C2r2(S_,B)—1 / g(u(x)v M()’)) d(x, y)

B, ()MIQx B, ()nae  |x — y[I+2s
2s—B)—1 (.. 12
<2Cr2F Lulls s0nBsp()-

We have applied above the following auxiliary calculation. Let « > 0 and J =
[a, a + &]. After the change of variables 1 = a +rx,t, =a +ry, we have

1
/ At =217 [ dtx, )
atl 0’§ O,Q atl
I (P2 4 (1) _,2)2) 2 [ rgg rl (14 (x—y)?)
o° 1
w// e [T
2 0 (1 +Z2)T
=C|J|r “.
The dimensional constant C = 2 fo % < "‘“ is therefore finite.
(14+2%) 2

Combining all obtained estimates we found that U satisfies the assumption of
Theorem 3.1 on the ball B3g(y, 0) C R3 with B = s—% and My = |[ulls,50nBsx(y)
in (a2).

Apply Theorem 3.1, in particular (3.1), to U on a point (x,0) € Qx]— L, L[
withr < % < L. This gives the desired (4.3), because

r—2a r
r—2°‘/ |Dul?> = / / |IDU|? < 22(2r)_1_2“/ |DU|?
B, (x)N§2 2r J, r (x)NQ2 By ((x,0))N82y

R2B—)
<2 R0_1_2°‘/ DU + C———M};
By ((.0)NQ; B—a

25120
527R‘2"‘/ IDuP +C—0  jluJ? _
‘ B,y ()NQ 2s — 1 — 2« 5,0QNB3R(y)

(i) u € COY(Q N Bg (y)) follows by the same arguments outlined in the proof to
Theorem 3.1. O]



1376 JONAS HIRSCH

4.2. Continuity up to boundary

That continuity extends up to the boundary for 2-dimensional ball has been proven
by W. Zhu in [18]. His idea is based on the Courant-Lebesgue lemma and can be
modified to work on Lipschitz regular domains as well. We will give here a different
proof, that on a first glimpse does not seem to be so restricted to the 2-dimensional
setting as it is for Zhu’s proof due to the Courant-Lebesgue lemma. Our proof uses
an interplay of classical trace estimates and energy decay. We shortly recall the
classical trace estimates and their proof. The proof here is taken from [17, Lemma
13.5]. As introduced in the general assumptions, Section 2, we use the notation
QrF = {(x,xy): xy > F(x)} for F: RV-1 5 R.

Lemma 4.4. For F Lipschitz continuous and 1 < p < 0o, one has

p

=51

R

VieWhP(Qp,R); (44)
BxN

LP(Q)

FO2N) = flg, O
xy — F(x)

LP()
and any subset QcCQr of the following type:
Q= {(x’,xN): X e, F(x)<xy < G(x’)}

Q c RV and G > F continuous.
Equivalently one has

p
= 1 |||DNM|||L1)(§2)

LP (D) h
Yu € WhP(Qr, Ag(RM).

G, xn), ul,, ()
xy — F(x')

4.5)

Proof. For p > 1 Hardy’s inequality, compare for instance with [17, Lemma 13 .4],
states that,if » € LP(R), g(¢) := %fot h(s)ds € LP(R,) satisfies

p
I8, < 2 151, 46)
For f € CL(QF) set
_ of o
l’l(t) = I[O,G(x’)fF(x’)](t) a—(x s F(x ) + t)
AN

Apply Hardy’s inequality to it and observe that for 0 < 7 < G(x’) — F(x) and
t=xy— F{&)

f FE) +10) = (&, FG)  f&an) = flg ()
g = = p :
t xy — F(x')
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Hence take the power p and integrate in x’ € €' to conclude (4.5). By a density
argument the inequality extends to all of W1-7(Qp).

For a Lipschitz continuous u € WhP(Qp, Ao (@R")), we have ”|ast x =
u(x', F(x")). k(@) := Gu(x', F(x")+1t), u(x’, F(x'))) is Lipschitz continuous in 7.
Furthermore k'(¢) < |Dyu|(x’, F(x")+1t) fora.e. x". Apply Hardy’s inequality this
time to A(t) = 1y G")—Fu))(t) k' (1), take the power p and integrate in x” € Q'.
This shows (4.5) under the additional assumption that u is Lipschitz. It extends by
density to all of WP (Qp, Ag(R™)). O

Proposition 4.5. Given a Dirichlet minimizer u € W“2(SQ, Ao @®R™)) on a Lips-
chitz regular domain Q@ C RN and that satisfies

(al) u\m is continuous in zg € 0S2;
(a2) N =2or

r2N/ |Dul> > 0asr — 0 4.7
B, (2)NQ

uniformly for all z € 32 N Br(zo) for some R > 0;
then u is continuous on 2 U {z0}.

Proof. Observe that in case of N = 2, r>~N fB,(z)mQ|D”|2 = fBr(Z)mngul2 -0

uniformly due to the absolute continuity of the integral and |Du|?> € L'(2). Hence
it is sufficient to prove the proposition under the assumption that (4.7) holds. u
is Holder continuous in the interior (Theorem 1.5) and so it remains to check that
continuity extends up to zo. So we may assume that Q2 = QF for some Lipschitz
continuous F, with Lipschitz norm Lip(F) < L. Furthermore let z9 = (z/, zy) =
(Z, F(Z')) € 0QF.

Consider a generic sequence x; = (x;, Xy k) converging to zo from the interior.

Setry = xyx — F(x}) >0and e = ﬁ Then Baer, (xx) C QF for all k and

2 1
it <20enk —zn)? +2(F(Z) — F(xp)) 5@|xk—zo|2. (4.8)

To show continuity we have to check that G (u(xg), u | . (zo)) is of order o(1). The
triangle inequality and convexity gives

1
2w, 0, (2007 < Glu(xe), ux))®

+G (u(x), u!aQF(x’))2 +G (u|aQF(x/), u’mF(ZO))z.

Integration in x € B, (xx) gives

1 2
59 (u(Xk), ”|39F(Z0)> S][ G(u(xp), u(x))®

Berk (k)

2
+][Bgrk(m G <u(x), o, (x )) +][Berk(m g (u|mF(x )i, (ZO))

2
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It is sufficient to check that all integrals are of order o(1).
2 2
G (g, &)t @) = sup G (g, )l (20)) =o0(1)
][Berk ) |ast ’8(2,: x€ Bl —/(Z0) ’8(2,: ‘BQF

where we used (4.8) and assumption (al).
For a fixed k set 2 = {(x’,xy): x' € @, F(x') < xy < G(x")} with Q' =
Ber, (x,’C) c RN-L, G(x") = xn k + €rg. The trace estimate, Lemma 4.4, states

2
| 2 G (ux), ul,, @)
%fég(u(x»ﬂmﬁ(x ) =4 )< 16/Q|Du|2;

o v —F@)?
Vyhere we used xy — F(x') < 2r; on Q. We set z; = (x;, F(xp)) then Be, (xx) C
Q C By, (zk) N QF and assumption (a2) gives

2 16
][ g (u(x), ul,, (x/)) < Nrkz_Nf |Du)? = o(1).
Bery (xi) F WN€E By, (202

Finally the first integral is estimated using the internal Holder continuity result,
Theorem 1.5 or [7, Theorem 3.9]: By, (xx) C S2F, so that for positive C, 8

lx — x|

28
Gux), u(xp)> <C ( ) (erp)>™N / |Du|? for all x € Bey, (x1).
B2erk(xk)

Integration in x and B¢, (xx) C Boy (zk) gives

C C
f oG S [ bl s Y [ e
Bery (k) (ere) Baer, (x1) € Bay, (z4)

that is of order o(1) by assumption (a2). ]

4.3. Partial improvement of the Holder exponent

In the introduction we mentioned already that it would be desirable to extend the
optimal Holder exponent é in the interior up to the boundary. We want to present
in this subsection a partial improvement of Theorem 4.3.

We will say a closed subset K C  touches 9 in a point z € 9 non-
tangential, if there is a radius R > 0, a cone

Cro = {x e R2: |x|cos(B) < —(vag(z),x)}

with 6 < 7 and vy (z) denoting the outward pointing normal to <2 at z such that
K N Br(z) C C; 9 N Br(z). This is sketched in the figure.
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“\v voa (2)

The improvement can now be formulated as:

Theorem 4.6. Let u € W'2(Q, Ao (R™)) satisfy the assumptions of Theorem 4.3,

1 —
additional u |39 ecto (02N B3r(y)), K C 2 touching 02 non-tangential in only
one point 7 € 02 N Br(y) then u € CO*(K) witha = éfor 0>20<a< %
for Q =2.

Shrinking R > O if necessary we may assume that C; 9 N Br(z) C Q. K\
Br(z) is a compact subset of €2 hence the interior regularity theory holds. It remains
to prove the regularity for conical subsets C; 9 N Br(z). The precise statement of
Theorem 4.6 is:

Corollary 4.7. Let% < s <land Cy = {x = (x1,x2): |x|cos(0) < xp} with
0<0 < % (a cone). Under the assumptions

(al) u € W'2(Qr N By, Ag(R™)) Dirichlet minimizing
(a2) u |ast€ WS2(CF, Ao (R™) and for some 0 < y there is a constant My, > 0 so

that

2(s—y)—1 2 2
r LLMJJS,BrﬂFF = Mu’

then there exists 0 < R < 1 depending on u(0) and 0 so that, for any o < min{y, %}
and o < é the following holds:

(1) |Du| is an element of the Morrey space L?>2*(QrNB R N Cy), more precisely

4 CR*v=9®
r_z"‘/ |Dul* < - / |Dul> + —— M? (4.9)
B, (x)NQF 5 \JBrnar Yy —«o

where 8§ = cos(0) — 008(20#);
(i) u € C**(Qr N By NCy).
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Concerning the optimality of the achieved Holder exponent and assumption (a2)
consider the following:

Remark 4.8. (a2) is obviously always satisfied for y = s — %

(a2) is satisfied for y > % and any s < y if ”irF e CO7(I'F) as we have seen
in Lemma 3.2. Furthermore this implies that

- 1 1
uGCO’“(QFHBRDCQ)WithazaforQ>2andanya< EforQ:Z,

i.e., the optimal exponent extends on cones up to the boundary.

The proof of the corollary follows similar lines as in the higher dimensional
case. We will prove an improved estimate in the spirit of Proposition 3.3, that will
lead eventually to Corollary 4.7. Before we present this final argument we prove
the preliminary lemmas. As in the previous sections: Bi; = B N {x2 > 0},
S'=09B,8} =8'N{x; > 0},and Iy = B; N {x, = 0}.

Lemma 4.9. Let % < § < 1 be given, then there is a constant C = C(s) so that
any single valued harmonic function f € W'2(B1,) satisfies

[ e sase [ 0P+ S [ 1r2n vemoo @0
By st € Jry ’

Proof. In a first step we show the existence of C = C(s) such that any classical
single-valued harmonic 4 € W12(B,) satisfies

/ |Dh|*> < C / |D-h* + Lh]}r, ) - (4.11)
B4 st ’

Ith ¢ WS’Z(FO) the RHS is +00 so there is nothing to check. G : B| — B+
denotes the bilipschitz map of Lemma C.1. Let ), are'*? be the Fourier series

of ho G| s = h\ any, © G. Its harmonic extension is then
+
fz(r eiG) = Zakrkeike.
keZ

h is harmonic, hence minimizing the Dirichlet energy, and / o G~ is an admissible
competitor, so that

~ 2 -2
/ |Dh|2§/ D(hoG™) §C/ D" = c2m Y Ikl
Bl+ B[+ B

keZ

It remains to estimate the series on the RHS.
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For s = 1 we estimate

2 3 kil =2 Y Karl = [ [De
S+

2 3
n / ‘D,h
kez keZ st

e /|Dmﬁ+ DA
st To

The constant C depends only on the Lipschitz norms of G, G~!. '
For % < s <1 we note that it is classical that for a function f(0)=)_ kel byek?

on S' the series |bg|> + Zkezlk|2“|bk|2 is an equivalent norm to ||f||iz(31) +

2

LA f,sl . So that we get in a first step
21 Y kllai? < 2m S kP lal? < CLADZ o1
keZ keZ

secondly Corollary A.5 gives
702 72 72 .
“—hJ-'s,S1 =C <|'|‘hJ'|s,Slﬁ{x2>%} + “‘hl's,Slﬂ{xz<%}) ’

thirdly G is Lipschitz continuous and G(S' N {x, > %}) =8,G68" " Nn{x <
%}) = I'g so that

N2 712 2 2 .
”‘hﬂs,slﬂ{x2>%} + “‘hﬂs,Slﬂ{xg<%} =C (U'hﬂs,sjr + “—hJJS»FO) ’

finally combining these with the interpolation property || f 1l sl = Cl-y, 51 we

estimate
2 Zlkllakl2 <C (/51 |D:h|* + Uhﬂ?,ro) .
+

keZ

Hence (4.11) holds.

Now we are able to improve (4.11) to (4.10). Let f be the harmonic function
as assumed. We may assume f € W*2(I'y) otherwise the RHS is 400 and (4.10)
holds trivially. Define the linear function

f(1,0) — f(=1,0) f(1,0)+ f(—1,0)
) X1+ 5 .

[(x1,x2) =
The same calculations as in Lemma 3.2 give a constant C = C(s) with

L2, < Cllgrad il = CI£(1,0) — f(=1,0)].
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We achieved that f(1,0)—/(1,0) =0 = f(—1,0) —I(—1, 0) and hence Corollary
A 4 provides that
: 1
) = 0 ?fx eSSy
fx)—Il(x) ifxely

is an element of W* ’2(81+ U T). Hence there is a unique harmonic & € W2(By )
with A slur

['g. The antisymmetric reflexion

.= h. g = f — (h +1) is harmonic in B, and satisfies g(x) = 0 on

g(x1, x2) ifx; >0
—g(x1, —x2) ifxo <0

g’(xl,xz):{

is by means of the Schwarz reflexion principle harmonic in By with

2/ |Dg|2=/ |Dg|25/ |Dr§|2=2/ Dyl
By B s! st

Young’s inequality for 2(Dx f, D) < €| D¢ f|* + L ||grad|/%, gives

1
/ |D-g|* < (1 +6)/ D f1* + (1 + —) m [lgrad 113,
sy sy €

C
(1 _|_e)/ 1D 1>+ = Lf U3 r,
st €

IA

where we used grad/ = W and W$2(I'y) C CO’S_%(FO). Young’s
inequality for 2(D; f, D;(h + 1)) > —€|D; f1* — 1| D;(h + 1)|* gives

2 2 1 2
[Dgl” > (1 —¢) IDf|” — = [D(h + D)%
B+ B+ € JBi4

applying (4.11) we may conclude

/ |D(h+l)|2§C</ |D.(h+D)> + LLh—HJJfFo)
Biy st ’

< C(wlgradtlZ + LFU2r,) < CUF2g, O

Lemma 4.9 behaves well under perturbations of Bjy, as made quantitative in the
following corollary.

Corollary 4.10. Let % < s < 1. There is a constant C > 0 so that to any € >
0 there is e = €p(€) > 0 so that any single valued harmonic function f €
Wh2(QF N By) satisfies

C
/ IDfIP < (1+e) 1D fP+ =1L Sy
QrNB; €

Qpﬂsl
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Proof. This follows as a perturbation of the previous lemma making use of the
bilipschitz equivalence of Q2 N By and B4, i.e., fix

Gfr: B+ - QrN By

as given by Lemma C.2. Hence | DGF — 1| »

)DG;l - 1HOO< 10 |grad F o, <
10er. Let f as assumed with finite RHS, otherwise there is nothing to prove.
f o Gr € WH2(By,) hence there is an unique harmonic f € W!2(Bjy) with
f |slur0 = foGp | slury” f, f are Dirichlet minimizer on their domains so that

2
| ores |
QrNBy QrNBy

The previous lemma showed that, for some constant C > 0,

D(foc;;;)‘2 <+ 1oep)4/B1+ ‘Df‘z.

/BH)DJFF < (1+61)/S1+ ‘sz‘anEC—lLLfJJf’FO

C

< (1+e)( +10ef)’ ID: fI* + —(1 4+ 10ep)’ [Lf 12, -
SlﬂQF €1

We conclude choosing €; = % and then € > 0 sufficient small for (1 + %)(1 +

10er)” < 1+e. O

We can use the obtained results to get an estimate for Dirichlet minimizers
in the spirit of Proposition 3.3. As in the proof of the concentration compactness

lemma, Lemma B 4, we need the separation sep(7T") of a Q-point T = Zlgzl [#1 €
Ao (R"), defined as

0 if T = O[]l
mintl.#,j |ti —tj|  otherwise.

- |

Lemma 4.11. For % < s < 1lande > 0, there is a constant C = C(s) > 0 with
the property that if (A1) holds with e = €r(€) > 0 then

C
/ |Dul* < (1+€) |Deul® + =r* " Mull} g o, Y0 <7 < Ro
B,NQp BN € o

or any Dirichlet minimizing u € WL2(QrNB;, Ao(RM) and Ry = Ry(u(0)) > 0.
0]

Proof. As usual we may assume that the RHS is finite. Let e > 0 be the constant
of the previous Corollary 4.10 and ||grad FIIOO’B1 < €p.

Suppose sep(u#(0)) = 0, i.e., u(0) = Q[p] for some p € R". Since we
assumed the RHS is finite u € W'2(3B, N QF, Ao (R™)). Fix for such a radius
t-<0<tyand -5 <6 <6 < %”sothat

9B, NQp = {x+ — 1y, F(rty)) = réf®, x_ = (r1_, F(ri_)) = re“’f} .
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There is b = (b1, ..., bg) € W'2([04,0-1, R"?) so that [b(9)] = uo,(e?) =
u(re=?) for 0+ < 6 < 6_ due to the 1-dim. W-2_selection criterion [7, Propo-
sition 1.2]. There are a(t) = (ai,...,ag) € W*2([0,7,], R"?) and b(r) =
(b1,...,bg) € WS/’Z([I_,O],]R”Q) for any s’ < s with [a(¥)] = u(rt, F(rt)),
[b(¢)] = u(rt, F(rt)) respectively due to the W* 2_gelection, Lemma B.7. Permut-
ing a and c if necessary we may assume that a(ty) = b(6+), c(t—) = b(6-). We
may define

a(x;y) ifrxe B, NI'p,x1 >0
g(x)=1b@) ifrx=re’ €dB. NQp
c(x;) ifrxe B NI'p,x1 <0.

g =1(g1,...,80) € WS,’Z(G(Bl, (2F)0.r)s R"9) as a consequence of Corollary
A4 [gx)] = Z?:l [gi(x)]l = uo,(x) forall x € (B N (2F)o.r). Hence there is
h=(hi,...hg) € wi2(B N (2F)o.r, R”€) harmonic with g as boundary values.
[h] = Zlel [[/;1] is a competitor to ug » so that

/ |Du|2=f |Duo,r|2s/ |D[h]|2=/ |Dh|?.
B.NQF B1N(RF)o.r B1N(RF)o.r B1N(RF)o.r

The previous Corollary 4.10 applies to % since H grad Fp , ” 0B = llgrad Fllo g, <
€r. So, we find for a fixed % <s' <s,eg. s’ = “j%,

C
/ IDh* < (1+¢) 1Dk + =1Ll
BIN(QF)o, SIN(QF)o., € ' "
C
< +e>r/ IDrul* + =r* ul? g g
9B, N € S

considering in the last line [ (x)] = [g(x)] = uop, (x) forx € (B1 N (RF)o,r) and
UWrlls avpyo, < Clluorls.appo, = Crzs’ll_l_uﬂiQmBr from the W*-2-selection,
Lemma B.7.

If sep(u(0)) > 0,i.e.,u(0) = Z;Zl Qillpl, |pi—pjl > sep(u(0)) fori # j.
Fix Ry > 0 so that

5 1
Rg [u]&,QFﬂBRO < g Sep(”(o))

where [-]z B R denotes the Holder semi-norm on QN Bg, with exponent@ > 0

provided by Theorem 4.3. Hence there are Dirichlet minimizing u ; € Wh2(Qr N
Bg,, .AQj (R™)) with

1
Gujx), Q;lip;M < 3 sep(u(0)) for all x € QF N Bg,. 4.12)
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To each u ; the assumption sep(u;(0)) = O is satisfied. So, by the previous consid-
erations, fora.e. 0 <r < Ry

J
|Du|? = / |Du ;|
\/;rﬂﬂp ; - NQF !
J
<Y d+er f
j=1 d

C ,_
= (1 + 6)1’/ |D-[I/t|2 + _r2s ll-l-uJ-'?,QFﬂBy
3B.NQp €

C

2 2s—1 2
|Deu ™+ —r= 7 U5 opns,
BNQFr €

where we used in the last step that G(u(x), u(y))> = Zle Guj(x), uj(y))2 to
4.12). O

As Theorem 3.1 follows from Proposition 3.3, we can now use Lemma 4.11 to
give the final argument leading to the Holder estimate of Corollary 4.7.

Proof of Corollary 4.77. Let @ > 0 be given as stated. Fix € > Osothat1 +¢€ < %
and 0 < R < 1 sufficient small so that

(1) R < Rg when Ry is the radius of the previous Lemma, 4.11;

() ligrad Flloe ppro, < cos(5E).

(2) ensures that Cy N Bg C Cze% N Br C QF N Bj. Following the steps in the
proof of Theorem 3.1 forae.0 <r <R
0
——r2“f |Dul?> = —r2“/ |Dul? + 2ar2‘“/ |Dul|?
ar B,NQF 3B, N B,NQF

€ atr—a-1pp2
€

C
~ . (2s—1-2a)—1 2
=T Lull§ g,Ar, <

Integration in 0 < » < R gives

CR2r=)
r—Z“/ |Dul? < R_ZO‘/ |Du> + —— M>. (4.13)
B,NQF BrNQp y— o

By definition of § = cos(f) — cos(zej””), forall x € B§ N Cy we have Bs|y|(x) C

Cuix NBr.Letx e Bk NCypand0 < r < gbe given, set r; = max{r, |x|} and
4 2
rp=r1+ x| < %1’1. We found

20

2
r—Za/ |DM|2Sr1_2a/ |Du|2§ %r2—2a/ |Du|2
B, ()N By, ()NQF 8 By, ()NQF

4 , CRXr=o
< o |Duf? + ——M2 |,
) BrNQr y —«o
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where we applied at first the internal estimate since o < é and finally the just
established (4.13). Having established (i), (ii) follows as indicated in the proof of
Theorem 3.1. O

Appendix
A. Fractional Sobolev spaces

Recall that we defined the fractional Sobolev space W*2(I'),0 < s < 1 on an
(N — 1)-dimensional Lipschitz-manifold I' C RN to be the subset of L2(I") with
”f”%vsl(r) = IIfIIiz(F) +1Lfl ?,r < 00. In the first subsection we outline how this
definition fits into the general framework of of fractional Sobolev spaces. Further-
more we state some general estimates. In particular we give a sufficient condition
to patch two fractional Sobolev functions together.

The second subsection is devoted to prove an interpolation lemma in the the

spirit of Luckhaus for fractional Sobolev spaces.

A.l. General facts
Essential there are three ways to define W*2(RN)/ H*(RN) for0 < s < 1:
(a) using Fourier transform:
H*(RN) = {u e L*(R") |&1° Fu(€) € L*(RV));
(b) using real interpolation:

W2 (RY) = (WI,Z(RN)’ LZ(RN))l_M;

(¢) using the the Gagliardo semi-norm ||| g~

s . Ju(x) —u(y) _
W2 RN = {u e L*RN): Lull? g = /RNXRN md(x,y),<oo}.

All of these define the same Banach space. Their equivalence can be found for
instance in [17]: (a) = (c) corresponds to Lemma 16.3 or Lemma 35.2, (a) = (b)
can be found in Lemma 23.1.

For a bounded open domain & C R with Lipschitz boundary one has es-
sential three possible definitions for W* 2(Q), compare [17, Section 34 and Section
36]:

(a) as restriction

W2(Q) = space of restrictions of functions in Ws’z(}RN );
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(b) using interpolation

were) = (W@, L2@)

1-s,

(c) using the Gagliardo semi-norm

lu(x) —u(y)I?

|x_y|N+2s d(x,y)<<>o :

xQ

W(Q) = {u e L*(Q): lull} =_/
Q

Once again it turns out that all of them are equivalent, compare [17, Section 34] for
(a) = (b) and [17, Lemma 36.1] for (c) = (a).

Furthermore we remark that all these definition behave well under bilipschitz
maps F : Q — " and multiplication with smooth functions e.g. partitions of unity.
Therefore, to give a definition of WS2(I') for a (N — 1)-dimensional Lipschitz-
manifold I' ¢ RY it is sufficient to give a definition for the graphical case, i.e., let
Qr = {(x',xn): xy > F(x")} with F € Lip(RVY~!, R) we define for the manifold
I'r =0QF

W209p) = {u € L2020 u(x', F) € W2(RN)].

Using the Gagliardo semi-norm we can give an equivalent global definition in the
case of ' = 0Q2

_ 2
Lull? yo = /0 W)ﬂ—Nu_ﬂnyd(m).

QxaQ X —

Having defined the fractional Sobolev spaces we collect now several estimates that
might be known but for which we could not find any reference. For s > % the
trace operator | oRY WS’2(]R_1X ) —> WS _%’Z(RN ~1) is a bounded, linear and sur-
jective map, compare [17, Lemma 16.1, Lemma 16.3]. Additionally it satisfies the
following estimate.

Lemma A.1. For % <5< % one has

(")

!/
u(x', xn)—u|,

<C)|lenIFu 2, <CO Nl sy (AD)
L2@RN)

lxn [
Proof. We define vy, (x) = u(x’, xy), then Fuy,, (§') = [ XNV Fu (&', &x)dén
R
and ‘7:/”|aRN (&) = Fuo(&') = [ Fu(§', En)déy; hence by Cauchy inequality
+

2
|Fvey ) — FuoE")* = ' /R (PTENIN 1) Fu(g', En)dén

<4< [sin(énxn)|
— \JrR  Enxn[¥

de§N>x?</_l (/Rlsin(ﬂéNxN)lléNI“Ifulz(é/, éN)déN) -
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—2s
| S

Multiply this by |xy and integrate in xy to conclude

/ ey |7 | Fory (8)) — Fro &) Pdxy

<4c@ [ ( [ |sN|de) e P 1 Ful €', En)dén

Enxn

=4C(a)? /R En 1% | Ful* &, En)dén

where C (o) = [ S'Tt(lgt)dt < oofora =1+2s—a (note that 1 < 5 lis=a<?2).

This gives the desired result by integrating in &', since

u(x’, xn)—ul,, ()2
/ J““” dx=f |xN|—ZS/ | Fay (€)= Fuo(¢)2d dxy. O
RN |~ R RN~

|x v

As a corollary we obtain a tool that will allow us to check if a function u € W* 2(Q)
is an extension to a function v € W52(RN \ Q), Corollary A.3. In fact one is an
extension of the other if their traces coincide.

As introduced before: Qf = {x € RV: xy > F(x')} with F Lipschitz con-
tinuous

Corollary A.2. For % <s < landu € WS%(QF), one has

u (', xn) —ul, ()

lxy — F(x)Is

< Cllull, gy (A2)
L2(QF)

Proof. Using the bilipschitz mapping (x’, xy) + (X', xy —F(x")) and v(x’, xy) =
u(x’, F(x') +xy) € W”(Rﬁ) together with

X3

/ @ xn) —ul,, G2 / U, xn + F&) =l (DI
QF B RY

lxy — F(x")[? lxn |
one has only to consider the case F = 0,i.e., QF = Rﬁ.
Furthermore we can reduce it to the case of Lemma A.l extending u by
u(x’, —xy) forxy < Otoobtainu € W2(RN)=H*RN) and || |&x|*| Fu| Il 2wy
< Cllullsgy for0 <s < 1,e.g.[17, Lemma 16.3]. ]

Corollary A.3. v € L2(RN™Y) is the trace of u € W*(Qr) if

1
< 00,5 > —. (A3)

L2(Qr) 2

ulx’, xy) —v(x")
lxy — F(x")]$

In particular it implies v € W“'_%'z(RN_l).
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Proof.

Aélﬁwf)—ukhuﬁﬁdﬂ

Zoex! / / () —u(x', F&) 4 xn)?
€ Jo RN-1

ey |2
2
1 (€ u(x’, F(x') +xn) —uf,, ()]
+2e%- / / e dx'dxy
€ Jo Jry-i lxn ]S
2
2 / _ /
et [ [H@ xn) — o) u', xy) —uf, ()
= iy — FOOE | 20y oy = FCOP | 2,
converging to 0 as € — 0 hence v = ”|aszp‘ U

Corollary Ad. Letu € WH2(Qp) and v € WH2(RN \ Qp) for s > % satisfying
M‘SQF = U‘BQF then

_Julx)  ifxeQp
vt = {v(x) ifx e RN\ Qp (AD
defines an element in WS2(RN) satisfying
LUl v < C (Lulls.or + Lol gyva,) - (A5)

Proof. As before using the bilipschitz mapping (x’, xy) — (x', xy — F(x')) one
has only to consider the case F = 0; then

IO Z2gwy = 172, + 10072 e,

|U(x) — U(y)? / |u(x) — v(y)|?
———d(y, =2 ———d(y,
./RNXRN |x — y| N2 R RY xRN [x — y|NF2s 020
lu(x) — u(y)|?
+ / vt 40nX)
RYxRY X — y[MFE

v — v
" /RA_’xRJ_V md(y, x).
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The last two summands are obviously bounded. The first one can be estimated as
follows

_ 2 lul & —=v|, )P
/ lu(x) ;(yzn d(w)ﬁ/ s, N|ag;F i) (A6)
RYxRY |x — y|V+2s RY xRY lx — y|VHe

. |u(x)—u|mF<x/)|2d . |v\BQF(y/)—v<y)|2d p
" /MXM lx — y[NF2 0o 0% /MXRI_V jx — y| N+ o0 (A7

For the first integral, (A.6), we have

2
/ ‘M|BQF(X/)_v’aQF(y/) d(y. x)
Y, X

RY xRV |x — y|N+2s

2
‘M|BQF(XJ) B v’aQF(y/)‘
< Cl
— ./RN—lxRN—l |x/ _ y/|N—2+2s

where we used firstly

d(y',x') = ClLull? gy

N

1 (1+@+1)?) 2
— v 4N, YN) =/ d(t, 1)
/ﬂw&- v =y Rom, X — Y[V

Ci
- Ix — y|N72+2s

—S

by means of the change of variables xy = |x" — y'|t, yv = —|x’ — y’|t and then
u |Z)]RN = | 2N together with the continuity of the trace operator |i)]RN : W‘V*Z(Rﬁ ) —>
+ + +

WS_%’Z(]RN”), compare [17, Lemma 16.1, Lemma 16.3].
For the second and third integral, (A.7), we proceed similarly. For instance for
the second

2 2
) = u] Ly ) ' ) = ] ()|
/ s apn=zc / £ ax
RY xRN Y

[ — [V R e

2
<
= C |.|_uJ.| S,R{X
where we used

f _ dy :xz‘Y/ _ dz = x> C
RY |x — y[N+2s N Ry 2+ en V2 N

by means of the change of variables (y, yy) = (x" — xyz’, —xnzn), xy > 0 and
afterwards we apply Lemma A.2.
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The constants C;, C, are indeed finite since (1 + )2 > 2 + 72 and thus

/00/% rdrdf w
Cl < ~ =
0 0 (14r2)2ts 2N —4 4 4s

c </ 1 d Nowy .
) < ————dz = ——.
RN\ B, (—ey) |2+ en|NVFT2S 2s

For our purpose a particular version of Corollary A 4 is needed:

Corollary AS. For any given —1 < a < 1 and % < § <1 there is a constant C >
with the property, that ifu € WSSV I'N{xy > a}), v € WSSV INn{xy < a})

with u| = v| : then

sN=Inxy=a) sN=Inpxy=a

u(x) ifxeSN 1 xy>a

A.
v(x) ifx eSSVl xy <a (A8)

U(x)={

defines an element in W*(SN 1) satisfying
|-|-UJ-|S,SN_I =C (LLMJ-'S,SN_'ﬁ{xN>a} + I.I.UJJS,SN—lﬂ{xN<a}) : (A9)

Proof. We can apply Corollary A.4 locally using a partition of unity {Gi}le sub-
ordinate to a coordinated atlas (U;, ¢;)i=1,...1.. More detailed, we may choose a
smooth atlas (U;, ¢;);=1,....r with the additional property that every chart ¢; : U; C
SN-1 5 v, ¢ RVN=! satisfies ¢;(U; N {xy > a}) = V; N {yn_1 > a}. We
may now apply Corollary A .4 to each pair u|y, o (plfl, vy, o (pfl and obtain func-
tions U; € WS2(V;). Using a subordinated partition of unity {Oi}iL: |» the function
Uix) = Zle 6; (x)U; o ¢;(x) agrees by construction with # on ST = SN-I'n
{xy > a} and with v on S~ = S¥~!' N {xy < a}. Furthermore it satisfies for a
constant C > 0

|_|_UJ_|S’SNf1 < ||U||W.§',2(SN71) < C (||M||W.&',2(S+) + |Iv||WS,2(Sf))

because every U; does. To pass to the desired inequality (A.9) we proceed as fol-
lows: given u, v satisfying the assumption, we can apply the above construction

to
ﬁ:u—][ u| +,f):v—][ v| .,
S as
st s~

because i, v still satisfy the assumptions as a consequence of u’ st = v] We

~ _ as— "
obtain U and U with U = U — f 95+ u| We can now conclude by applying the
Poincaré inequality, since

I_L(jJJS’SNfl = |_|_UJ_|S’3N—I

! _][as+ st
0 _][as— Vlase

ast-

, + |.|_uJ.|s,S+ =< C“.”JJS,S"’
L2(ST)

+ Lvlls,s- = Cllvlly,s- O
L2(s7)

||17t ” WS,Z(S+) -

||17||Ws,2(s—) =




1392 JONAS HIRSCH

A.2. Interpolation lemma for fractional Sobolev spaces

A classical result due to S. Luckhaus is concerned with the extension of a map that
is defined on the boundary of an annulus d (B \ B—,) into the interior. We want
to give an extension to fractional Sobolev spaces. In contrast to Luckhaus original
result our version does not provide an L* estimate.

Lemma A.6. Let 1 < s < 1 thereisa constant C > 0,00 = Nol, 1
2 c Ve

and a continuous function ). € C ([0, 11, R.) with L(0) = 0 depending only on the
dimension N and s such that the following holds: suppose sE—DU+y) < % be
given, letu, v € WS 2(SN=1 R™) then there exists /RS wh2(B, \ Bi—x, R™) with
the following properties

) = u(x) iflx] =1 (A10)
U (w) =10 ‘

12
/ |D§0|2 <C$§ <|_|_MJ_|28N_] + LI_vJ_Iz,SN_])—F—/ |M—v|2-
B1\Bj_; o 5, i SN-1

Remark A.7. One gets easily the version of Lemma A.6 for s = 1. In this case
o = 1,A(6) = § as follows: given u,v € Wwh2(SN-1 R™) we define the linear
interpolation on the cylinder S¥~! x [0, 6]

t t
oy, 1) = (1 - 3) u(y) + gv(y),

(compare claim 2 in the proof). Using polar coordinates we obtain the desired
extension ¢(x) = ¢(y, 1 —r) € WH2(By \ Bi_s, R™), withr = |x|, y = i+ One
checks that ¢ satisfies the right traces as in (A.10) and

2 2 2 2, 4 2
|Do|” <4 |Dp|” <25 |Drul” + |Dev|” + < e —vl]”.
Bi\Bj- SN=1x[0,A] SN-1 8 Jsn-1

Proof. The proof is split into 2 parts.

(1) finding “good” extensions to functions f € W* (SN~ R™) to SN~ x R,
(2) extend/interpolate between the extensions U, V of u, v € WS (SN, R™)

Claim 1. There exists a dimensional constant C = C (N, s) > 0 such that for any
f e WH2(SN~1 R™) there exists F € WH2(SV~I xR, R™) with F(x,0) = f(x)
forae.x € SV ~!and

21
||DF||L2(3N71X[O’5]) <Cé2N I_I»fJ_lsysN—l

HM <CILfI, gv-1

1
512 L2(SN-1xR)

(A.11)
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Proof of Claim 1. Let us fix some notation. Pgs(x’, xy) = ﬁ Py(x', xy) =
i _X;N denote the stereographic projection from SV~! to RV ~! with respect to the
south and north pole respectively. Furthermore 61, 6, is a fixed smooth partition
of unity on SN~ with respect to the open sets U; = S¥~! N {xy > —%}, U =
SNIn{xy < %}. Finally n € C*°(R, R,) is a fixed non-negative cut-off function
with (1) = 1 fort < 4 and n(r) =0 fors > 3.

Let f € H (SN~ R™) be given. We define

A1) =1 (=ten, P50 £ (P )

£ =n(~tev. P7'®) £ (Py' ).
So fi’ e H'RN-1 R™), i = 1,2 with supp(f;) € B7(0). The choice of n and the
partition of unity ensures that that f(x) = 61(x) f{(Ps(x)) + 62(x) f5(Py(x)).

The trace operator o|(x, =0} is a surjective map from H s+3 RN) to HS (RN

for all s > 0, e.g. [17, Lemma 16.1]. Hence there exists Fl.’ € HS+%(RN) with
F!lxy=0y = f{,supp(F}) C Bg(0) satisfying

| F| B @y <c|f| HS(RN-1)
and so DF/ € HS_%(RN) and by Lemma A.1
|| Fz‘/”H‘*%(RN) =C “fi/HHS(RN*I)’

Fl(x,xn) — f{(x)
|S+%

(A.12)

<C Al HSRN-1) -
L2(RV)

|x v

The assumption that supp(F: l-/ ) C Bg(0) is not restrictive since due to supp( fl-/ ) C
B7(0) we may pass to ' F/ for a smooth cut-off function 6’, with 6" = 0 for |x| > 8
and 0’ =1 for |x| < 7.

N

The Sobolev embedding theorem for fractional Sobolev spaces, s — 5 < 7,
[17, Lemma 32.1], states H*~2(RV) ¢ LPO(RN) with L. = 1 — 2=1 By

p(s) 2 2N
Holders inequality we get for any § > 0

|DF| < |Bg x [0, 8]]2 70

| DF! H LPG) (Bg x[0,8])

2s—1 ,
< C8 | ] oy -

(Bgx[0,8])

2oty
<8 DRy,

We define now an extension of f on S¥~! x R by

F(x,1) = 01(x)F{(Ps(x), 1) + 601 (x) F5(Py (x), 7).
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The stereographic projections are uniformly Lipschitz, on the open sets U; and U
respectively so we have F' € H 2 (SN x R), F|;—¢ = f satisfying

IDFl L2sn-1x0.51 = € Z HDF{H L2(Bgx[0,3]) + ” Fi/ H L2(Bgx[0,5])

i=1.2
25—1
=C Z | DF|| 2 pgxo.7 = € Z 8 | f7 | s vy
i=1.2 i=1.2

21
< C8§2W (|_|_fj_|s’31v71 + ||f||L2(SN’1))

where we used Cauchy’s inequality to estimate the L? norms of F;, that are com-
pactly supported, and the just established bounds.

Similarly we get
F(x, 1) — f(x)

|t|s+%

Fl(x,xn) — f{(x)

<C ;
lxn |tz

L2(SN-1xR) i=1,2 L2@®N)
< C(Lf Ussnv—1 + 1l r2snon)) -

Finally the L? term can be absorbed by the following trick: let f be given as as-
sumed and m(f) =f$N_1 fitsmean. f —m(f) is still admissible, || f || sy—1 =
ILf — m(f)llssv-1, and so by Cauchy’s inequality | f —m(f)ll 2v-1) =<
CLfl; oy If F isthe just constructed extension to f —m( f) then F' = 17“+m(f)
is an admissible extension for f and it satisfies the claimed bounds:

DF . - HDF
IDF 12 sv-1x10.67) 2SN x[0.6])

<C8I (ILf=m(P) s gv-1+1 f =m(F)ll 2sv-1)
2.

—C8H | f ]I, gnei
F(x,t) — f(x)

|t|s+%

F(x,1) = f(x)

<C 1.
] <CULf b v

L2(SN-1xR)

L2(SN-1xR)

Claim 2. There exists an interpolation as stated.

Proof of Claim 2. Let u,v € WS2(SN-1 R") be given as assumed. We fix two

extensions U, V € WI2(SV~1 x R, R") with the properties stated in claim 1.
Recall that for any nonnegative function g € L!(Q), 2 c R™, Chebychef’s

inequality states |[{x € Q: g(x) > A}| < %ng Hence the choice A = I%Ifﬂg

gives that g(x) < ﬁ Jo & up to a set of measure %

We may apply this argument to the case C = 5, Q = [0,48] and g1(¢) =
—u()? .
fSN,lx{t}lDU|2, &) = fSNflx{t} W(xl’;l)zisfl(x)l, g3, g4 equivalently V, v replac-
ing U, u. Hence there exists 79 €]0, §[ satisfying

5 1)
gilio) < 5/ giOdifor | <i <4
0
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and U (x, 1), V(x, to) € WH2(SV=1 R"). Furthermore let us fix u > 0, deter-
mined later. We partition the interval [0, 256 + u] by ag = 0,a; = tg, a2 = 8,a3 =
S+ u,as =28+ —tg,as = 26 + . We define the extension ¢ separately on the
“intervals” Q; = SN~! x [a;—1, a;], 1 <i <5 and we will write ¢; = ¢|gq, .

Let ¢1(x, 1) = U(x, 1), ie., ¢1(x,0) = u(x) forae. x € SV, similiar we
set ¢s(x, 1) = V(x,as—1),ie., ¢5(x,as) = v(x) forae. x e SN Using (A.11)
we have

2s—1
IDg11> = | IDU> < Cty ¥ [[ull? cnois
Q Q 0 58
1 1

similarly fQ |Dgs|? < Cto LLUJJ s SN For ¢ (x,t) = U(x, tp) and ¢4(x,t) =
V (x, 1) the particular choice of 1 gives
- S—1y

|Dgn|? <
Q )

IDUP < C8°F LLull® ot
SN-1x[0,5] - 58

equivalently fﬂz |D$|? < C 55 Lvll f gn-1- Finally we can interpolate linearly
SE) UG 10)

between U(x,fo) and V(x,10) on 3, ie., ¢3(x,1) = (1 _
+ ’%V(x, fp) with

1
D < ﬁ/ |DU|2+|DV|2+—f U - VP
ol 2 JSN=1x{10} W JSN=1x (10}

The first integral is estimated as before by

L < — D D < 6
VS35 o0 U VP =Cs Lel? gues + L0l guer )

We use the second estimate in (A.11) for the second integral and obtain

1 _ 3 o U —ul> |V—-v? 3
_/ U=V = OH/ TN R G TR +_/ ju = vf®
M JSN=Tx {1} l/« SN=Ix{n} 1y 1y HJSN-1

2 2
<it2‘+1/ U —ul? | IV -l +3/ lu — v)?
= 180 SV-1x(0.8] 12T £25+1 )i
2s+1 3
0 2
<ch (ouJYSN.ﬂLvJJYSN )+ ;/SNlm—m.
ué% is equal to % for the choice u = sy — 2)(1+ N)

for s > % we have

2s5—1

825-{—1 . /'L(S N
us — 6

8o = 86— DU+R) —
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andu:B“,a:N—I_}—i—

all estimates we find

3
/ D9 = oo (1Ll gt + L) vt ) + —a/ u— vl
SN=1x[0,as] 5 5, 50 SN-1

Finally define ¢(x) = ¢(y, 1 —r) € WHA(B1 \ By, R™), withr = |x], y =
One checks that ¢ satisfies (A.10) and

f Dol < 4/ DoI2. 0
Bi\Bj-» SN=1x[0,2]

B. O-valued functions

1

e harh If we set A(89) = 28 4+ . = as and collect

B.1. Fractional Sobolev spaces for O-valued functions

As before we restrict ourself to0 < s < 1. AQ(R”) fails to be a linear space, so
L%, Ao (R™)) is not a Banach space. Hence we are not in a setting for classical
interpolation methods. Nonetheless there are two ways to define ws2(Q, Ao @R"))
in a natural way:

(a) using Almgren’s bilipschitz embedding & : Ap(R") — R™, Theorem 1.3,
W22, Ag(RY) = {u € LA, Ag(RM): £ ou € WH(2, Rm)} :

(b) using the Gagliardo norm

Gux), u(y))?

5,2 _ 2 n . 2 —
w (Q)_{u € L7, AgRM): |lullf o = o X =y

d(x,y) < oo}.
The equivalence of both definitions follows from the bilipschitz property of €, i.e.,
cléou(x)—Eou(y)l < Gux), u(y)) < |§ou(x)—§ou(y)| forsome c = c(n, Q).
This implies

cllEoullio < lulliq < UEoullq. (B.1)

We saw that all definitions of W*2(§2, R™) are equivalent in case of a bounded
Lipschitz regular domain & C RV,

Combining the definition of W*2(£2, Ao (R™)) as suggested in (a) with (B.1)
nearly all the statements for single valued functions pass over to the Q-valued set-
ting. For the sake of completeness we state two of them for Q-valued functions:

Corollary B.1. To any given —1 < a < 1 and % < § <1 there is a constant C >
with the property that, ifu € WS2(SN "IN {xy > a}, Ag®R")),v € WH3(SV~In
{xy < a}, Ag(R™)) with u| = v| oy then

SN=Inxy=a) sN=Inpy=

- N-1
Ulx) = ulx) ifxeS" any>a

= B.2
v(x) ifxeSN xy <a (B.2)
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defines an element in W$2(SN 1, Ao (RM)) satisfying
|-|-UJ-|S,SN_I <C (l-l-uﬂs,SN—'ﬁ{xN>a} + I-I-UJJS,SN—]ﬂ{xN<a}) . (B.3)

LemmaB.2. Let L <5 < 1thereisaconstantC > 0,0 =214+ 1 _ -
e a ety < ere is a cons C , N‘H—i_(s—%)(l—i-%)

and a continuous function » € C°([0, 1], Ry) with 1(0) = 0 depending only on

the dimension N,s and Q such that the following holds: suppose s6=DU+y) <
L be given, let u,v € WS2( SN, Ap(R")) then there exists ¢ € WY2(By \
6 0

Bi-5., Ag(R")) with the following properties

o fH = -
= v(lf—/\) iflx] =1— A '

C
/ |Do|* < Cs <|_|_UJ_|23N—1 +[LvJJ25N1)+—/ lu —v|%
B]\B],)L 5 S, 80[ SN*I

Proof. First apply Lemma A.6to £ ou, & ov. We obtain p € WH2(By \ Bi_;, R™).
The retraction p = po w € wh2A 1,8, Ao (R™)) has the desired properties, since
the energy estimate changes only by a constant depending on n, Q. O

Remark B.3. With the same argument Lemma B.2 holds as well for s = 1 with
o =1, A(§) = §, using instead of Lemma A.6 the Remark A.7.

B.2. Concentration compactness for Q-valued functions

Let @ C RY be given, then there is a concentration compactness lemma for se-
quences u(k) € wh2(Q, Ao (R")) with uniformly bounded energy.

Lemma B4. Given a sequence u(k) € W-2(Q, Ag(R")) with

limsup/ |Du(k)|> < oo
Q

k—00

for a subsequence, not relabelled, we can find:

(i) functions by € Wh2(, Ag,(RM) forl =1,...,J, -, 01 = O;

(ii) asequence of pointstj(k) e R, 1 =1, ..., J withlimsup,_, o, |t;(k)—t,, (k)| =
+o0 forl # m and G(u(k), b(k)) — 0in L? for the “travelling sheets” b(k) =
Yoy (b @ 11(k)).
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Moreover, the following two additional properties hold:

(a) if Q' C Qis open and Ey, is a sequence of measurable sets with |Ex| — 0, then

k—o00

liminff | Du(k)|? —/ |Db(k)|*> > 0.
QN\Ek Q

(b) limsup/ (|Du(k)| — |Db(k)|)? <hmsup/|Du(k)|2 |Db(k)|?.
Q

k— 00

Before we give the proof we recall the definition of the separation sep(7') of a Q-
point T = Y2 [[4] € Ap(R").

ep(T) {o | if 7 = Ol
ming, |t; —tj|  otherwise .

The following results are of essential use in the context of the separation and needed

for the proof of the concentration compactness lemma. The first gives a kind of

relation between diam(spt(7")) and sep(T), see [7, Lemma 3.8]; the second gives a

retraction ¢ = ¢ 7 based on sep(T'), see [7, Lemma 3.7]

Lemma B.5. For every € > 0 there exists B = B(e, Q) > 0 with the property that
toany T € Ag(R") there exists S = S(T) € Ag(R") with

spt(S) C spt(T), G(T, S) < € sep(S) and B diam(spt(T)) < sep(S).

Lemma B.6. For a given T € Ap(R") and 0 < 4s < sep(T) there exists a 1-
Lipschitz retraction

V=07 : AgR") - Bs(T) ={S € Ap(T): G(S,T) < s}
with the property that

(i) #(S) =SifG(S,T) <s;
(i) G@(S1), #($2) < G(S1, 82) if G(S1. T) > s.

Proof of Lemma B 4. By the generalised Poincaré inequality [7, Proposition 2.12]
we can pick a sequence of means 7 (k) € Ag(R") satisfying fQ Gu(k), T (k))? <
C fQ |Du(k)|>. Now we distinguish two cases depending on these T (k). The second
will be handled by induction on the first.

Case 1 and basis of the induction: liminfy_, diam (spt (7 (k))) < oo
(diam(spt(T' (k))) = 0 for Q = 1):

Passing to an appropriate subsequence, not relabelled, diam(spt(7 (k))) < C
for all k. Set L = 1, and as splitting keep the sequence itself, i.e., T (k) = T1(k).
For every k fix a t; (k) € spt(T (k)).
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Hence we have

limsup/ luk) @ (—1(k))|?

k Q

= limksupfgg(u(k), ol (k) )*

< lim sup2 / Guk), T () +212AG(T (), Ol W) < oc.
k Q

Passing to an appropriate subsequence there is b = b; € W'2(Q, Ag(R")) with
u(k) ® (=11 (k)) — b in L>. This proves (i), (ii) since G(u(k) ® —t(k), b) =
Guk),b & r1(k)) = Gu(k), b(k)). Furthermore, the established properties im-
ply that &£ o u(k) — & o b(k) in WL2(Q, R™). The additional property (a) follows,
because 1o 4, — 1o in L?(2) and so 1on 4, Déou(k) — 1o DEob(k). The prop-
erty (b) is a further consequence of L?(£2) being a Hilbert space. We have seen that
fc = DE ou(k) — f = DE& o b(k) weakly in L2(2) and so passing to the limit in

Il = 11172y < i = Flifa i) = Wil 2 gy +1F 1720y = 20fc = f. )i2q):

gives the desired inequality.
Case 2 and the induction step: lim infy diam(spt(7 (k))) = +o00

Suppose the lemma holds for Q' < Q. For each T (k) we pick S(k) €
Ap(R"). According to Lemma B.5, ¢ = %, ie., let op = sep(S(k)), S(k) =

Y79 0,0l (k)T € Ag(R"), then B({;. Q) diam(spt(T (k))) < oy and G(T (k),
Sk)) < ‘1’—6. Passing to an appropriate subsequence, not relabelled, we may further

assume that J (k) > 1 and Q (k) do not depend on k. Fix the associated 1-Lipschitz
retractions of B.6 #: Ag (RY) — By, g o (SCO). i.e.. HO(spt(@e(THNBy. ;) =
Qjforall T € Ap(R") and j = 1,..., J. These retractions #; define new se-
quences v (k) in W'3(Q, Ag; (R™) by #rou(k) = vi(k)+- - - vy (k) with v (k) €

B (s))
Each sequence v;(k), j = 1,...,J satisfies itself the assumptions of the
lemma, because ZJJ.:llej(kﬂ2 = |D¥ o u(k)|*> < |Du(k)|? a.e. as a conse-

quence of #; being a retraction. Furthermore we record some properties: defining
Ac = {x @ Hou®)x) # uk)()} = {x : Guk),Sk) > F} C {x :
G(u(k), T (k)) > T} = By (subsets of Q) we have

(1) |Bx| = 0 as k — oo, because by the generalised Poincaré inequality

10\ \
|Bk|s<—) /B Guk), T (k)
k

o%)

()" (o)’
=\—) € /IDM(k)I — 0;
Ok Q
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(2) Gu(k), 9 ou(k)) — 0in L? as k — oo, since

/ Guk), #xouk))®> = | Gu(k), #y o u(k))?
Q A

<2 [ Gk, T(k)* + Gy o u(k), #x o T(k))*
By

10\2 2 -
§4<—> / Guk), TKk)
Ok By

2*
C 2
< > (/ |Du<k>|2) — 0;
oy Q

(3) limsup,_, ., dist(spt(v; (x)), spt(v;(x))) = +o0, since v; € v;(k) € B(rs_k(sj)
and so dist(spt(v; (x)), spt(v; (x))) > |s; — 5| — 2% = %Uk.

Due to the induction hypothesis the lemma holds for each sequence v;(k), i.e., we
can find bj; € wh2(Q, Ag;,R™M)), with ZILZJI Q1 = Qj, sequences of points
tiik) € Bos_k (s;) satisfying the conditions (i), (ii). Furthermore the additional
properties (a),(b) hold.
We claim that these sequences work as well for u (k). We relabel by setting L =
i—1
S Lj. Kj =" Liand b, 1 = bj. tx,11(k) = tj,(k) and Ok, 41 = Q.
forjefl,...,J}andl € {1, ..., L;}. Property (ii) holds because |#; (k) —#,, (k)| >
%ak ifl < K; < m for some j and |#;(k) — #(m)| — oo by induction hypothesis if
K; 1 <!l <m < K;. Furthermore

Guk), b(k)) = Gu(k), v(k)) + G(v(k), b(k))
L
< Guk). v(k) + Y _ G (k). bj(k))

Jj=1
K.
where v(k) = Zle vj(k), b(k) = ZJL-zl bj(k) and bj(k) = l:'/Kj_IH(bl &
1;(k)) for each j. G(u(k), v(k)) — 0in L? as seen before and G;jk),bjk)) — 0
in L2 once again by induction hypothesis for all j. Moreover the additional property

(a) holds because if |[Ex| — 0 so does |Ex U Bx| — 0 and |Du(k)| = |Dv(k)| on
Q\ Bg. So

lim |Du(k)|2—/ |Db(k)|> > lim |Dv(k)|2—/ |Db(k)|> > 0.
k=00 JQ\ E; Q k=00 JQ\ ExUBy Q

To check the additional property (b) we may pass firstly to a further subsequence
such that all lim sup’s are actually limits. We use again the fact that Du (k) = Dv(k)
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on 2\ By and so

/Q (1Du®)] — | DbE)])

=f9(|Dv<k)|—|Db<k>|)2+ B|Du<k>|2—|Dv(k>|2—2(|Du<k)|—|Dv(k>|)|Db<k)|.
k

The v(k)'s were obtained by retraction so |Du(k)| > |Dv(k)| a.e. hence the last
term is negative and using induction hypothesis the claim follows

lim / (IDu®)| — | DbK)])

k—oo Jo

< lim / (IDv)| — IDbK))) + / DU — | D)
k—oo Jo By

< lim /|Dv<k>|2—|Db(k>|2+f |Du(k)|* — | Dv(k)|?
k—oo Jo By

= lim /|Du(k)|2—|Db(k)|2. O
k—oo Jo

B.3. W5 P.gelection for s > lp
The proof of this lemma is due to Camillo De Lellis, but has not been published so
far.

Lemma B.7. Lets > %, Q € N be given, then for u € WP ([0, 1], Ag(R")) we
canfindv = (vy,...,vg) : [0, 1] — (R™M€ with the property that

0
(i) [w®] =Y i1 = u() forall €0, 1];

i=1

(i) v € Ws,’p([O, 11, RMQ) for any s’ < s, ie., there is a positive constant C
depending on Q and p, s, s’ so that

[v(x) —v()IP Gu(x), u(y)?
/ —Hys,d(x, y) < C/ —Hyvd(x, y).
[0,11x[0,1] |x — y['*P [0,1]x[0,1] X — y[' TP

Proof. The lemma is a consequence of the results on regular selections of multival-
ued functions, [5, Theorem 1.1], and the following estimate

,max | f(o) = f(D)IP

[x,y]
; d(x,y)
/Ofxfyfl |x — y|tFps (B.5)
|f(o) — f(D)IP
<C ——— d(o, T
a /0505151 lo — T|1+ps ( )

for a constant C depending only on p,s” < s.
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O,S—l

We start with proving (B.5). WS ?([0,1]) Cc C ? ([0, 1]) for ps > 1,i.e.,

forany o, T € [0, 1]

|f(o) = fFOI = CLLf s pi0.11 (B.6)

where we used the abbreviation Ufﬂip’[a’b] = Jiabixia.b] V@O=SOI 705 y).

‘x_yllerx
(B.6) i~s classical and can for example be deduced from Lemma 3.2. To do so extend
fto feWsP(-1,3],R") by

f(—=t) if —1<t<0
f=1rw if0<r<1
f—1 ifl<t<2.

The means f(x, r) =fﬁir: fare well-defined forall x € [0, 1]andr < 1. (B.6) for

f in the case of p = 2 agrees with (3.3) in Lemma 3.2 since (3.2) is satisfied with
B = %; for general p the calculations have to be adapted classically. We conclude:
forall o, T € [0, 1]

If(0) = f@)| =1f©0)— f@OI < CUFls pi-1.21 < CLFUs.p.j0.1)-

For any f € W¥%”([a,b],R") we may apply (B.6) to the rescaled function
Ja,p(t) = fla+ pt) with p = b — a:

max |f(x) — f(y)| = max |fa,p(0) - fa,p(f)| = C“.fa,pﬂs,p,[o,l]
x,y€la,b] o,7€[0,1]

_1 _1
:C:OS p”_fﬂs,p,[a,b] :C(b_a)s pLLfﬂs,p,[a,b]-

Inserting this in the left hand side of (B.5) gives
max |f(o) — f()|”
,T€[x,y]

»[Osxfygl |x — y|1—|—ps’
_ s—1 _
SC‘/O M/ lwd(t’a)d(x’y)

<x<y<l (y_x)1+ps (-[_U)H-ps

o 1
_ x)Pls—sH=2 1f(@) = f@OIP
¢ /0‘50351 (/0 /T O —x) d(y, x)) (T —o)ltps d(t,0)

C/ |f(o) = f(D)IP d(z. o).
O<o<t<l

(t — U)H-ps

d(x,y)

IA

IA

The constant C is determined by

1 orl 1721*8 . _ _
/a/ (y—x)‘s_zdydx <// (y—x)‘s_zdydx P =) ifd=pi—s)#£1
0Jr “JoJo In(2) if6=ps—s)=1.
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Making use of Almgren’s bilipschtiz embedding & we deduce that (B.5) holds as
well for multivalued functions, i.e., for any u € W*7 ([0, 1], Ag (R"))

max Gu(o), u(r))?

o,T€[x,y]
/0 d(x,y)

<x<y<l lx — y|1+ps/
- C/ Gu(o), u(r))?

0<o<r<l |0 — T|]+ps

B.7)
d(o, 7).

We observed W* ([0, 1], Ap(R")) C CO’S*%([O, 11, Ap(R"™)), so that we may
apply the theory of regular selections developed in [5]. Especially we use the
proof of [5, Theorem 1.1]. For a given u € W*([0, 1], Ag(R") we can find
v = (vy,...,vg) : [0,1] — (R™M€ continuous with the property that [v(¢)] =
Z,Q:1[IUi ()Nl = u(t) on [0, 1] and there is a constant Co > 0 so that for any
0<x=<y=l

lv(x) —v(y)| < CQU ?;?fy]g(u(a)’ u(7)).

Combining this with (B.7) gives the remaining part (ii) of the lemma. O

C. Construction of bilipschitz maps between By, and Qr N By

Before showing the general situation, Qr N By with QF = {(x/, xy) € RN: xy >
F(x)}, F € CY@®RM~1), we consider the similar case of a bilipschitz map be-
tween B; and the upper half ball Bj;+ = B; N {xy > 0} that preserves “radial”
homogeneity.

It is of interest for us to preserve “radial” homogeneity in the context of con-
structing competitors. We want to make use of the interpolation lemma on annuli,
Lemma A.6. We cannot use a generic bilipschitz map between B; and B, be-
cause in general it is not true that if G : U — V is bilipschitz and ¥ : U — U a
sequence of diffeomorphisms that satisfy 1 — id then G o ¥ o G~! — 1 with
Lip(Go Yy 0o G™!) = lask — oo.

Lemma C.1. There is a bilipschitz map G : B] — By, that preserves “radial”
homogeneity in the sense that

G ! G 'y 1 ! +1
o—o = —— Jc+ —y;
R Y R R

wherec:%”:(O,...,O,%)andO<R.

Proof. We make the ansatz G(x) = ¢ + s(X)x for a piecewise C ! function s :

SN-1 — 3B, with bounded derivative, where X = |§—| The constraints |¢ +
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s(x)x|?=1forx €e SN N{xy > a} and (en,c +s(x)x) =0forx € SN n

{xy < a} for some —1 < a < 0 determine s and a uniquely to a = —% and
1 /.2 : 1
> —xny + /x5 +3 ifxy > ———
s@) = s(oy) = 1 2 (1 vV ) TS
e ifxy < VA

The derivative is

—% 1 — =2 if xy > —L
/ _ 2 3 5
s (xn) = Tyt
: 1
— < ——=.
27 if xy 7

So we may check the bounds |s’| < 3 and % <s(y) < g Furthermore we got
grad s(x) = gradgn-1 s(x) = s'(xny)(1 —x @ x)en.

The inverse is explicitly given by G~ 1(y) = Y(y/l_?) (y —¢). Gand G ! are

almost everywhere C! with

DG(x) = s(x)1+x ® grads(x)

1 o ds(y —¢
DG_I(}’)=71—)’—C®W
s(y—o) s2(y —¢)

The “radial” homogeneity follows, i.e., G o % o G_l(y) = G( ! %) =

s(y—0)

(1 — %) c+ %y. Therefore DG o % oGl = %1 convergingtolas R — 1. O

Lemma C.2. For any F € C'(RN™") that satisfies F (0) = 0, grad F(0) = 0 and
llgrad F'|| o, < % there exists a C l—diﬁ‘eomorphz’sm

Gfr : B+ —> QrN B

with bounds |DGf — 1| & ,

DGF' =1 <10/grad Fl .
o

Furthermore if Fy is a sequence of admissible maps with Fy — F in C! then
G, — GrinC!.

Proof. Let F be fixed, then ¥ : (x', xy) — (X', xy + F (x")) is a C ' -diffeomorphism
between Rﬁ and Q. Its inverse is ¥ ' (x’, xy) = (', xy — F(x')). We make
again an ansatz for G = Gp. Set G(x) = ¥ (s(X)x) where s : SV~ — R,
satisfies ¥ (s(y)y) € Qr NS¥~ ! forall y € Siv_l. The inverse for such a G is

G0 = ==y (0).
sl )
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As a consequence of the implicit function theorem applied to the level set at 1
of the auxiliary function

h(y,s) = WP,
s € C I(Siv _1, R.) has the desired properties. Note that s(ey) = 1 because
h(ey,1) = 1.
Existence: to every y € Sfrvfl there exists s(y) € Ry so that (y, s(y)) = 1 and
1—lgrad Fllo, < 1 <1+ |lgrad F||,, because

F(sy')
h(y,s) =s*|y + —= - enl®

2 2 . 1
<s“(1+ ||grad F <lifs< ——m———
(14 llgrad Flloo) I+ lgrad Fll

2 2 . 1
s(1—|lgrad Fll )" > lifs > ———— .
( °°) 1 — |lgrad F| o

C1 oc homeomorphism: every tuple (yo, so) with h(yo, so) = 1 has a neighbourhood
UxlI inSiV_1 xRy andaC'maps: U — I,C! with h(y, s(y)) = 1 on U. This
follows from the implicit function theorem, because at xo = so Yo

1 oh

3550 = 1 — (Y (x0), ¥ (x0) — dr(x0)x0)

1

=1 — Y (x0) (F(xp) — (grad F(xp), xg)) = 1 — 2 |lgrad Flloc > 3

Uniqueness/well-definition: this is a consequence of % > 0 for each such tuple
(y0, S0), so there cannot be two 51 < s2 with h(yg, s1) = 1 = h(yo, 52).

Bounds on grads = gradgn-1s: fix any generic T € TySN 1 and so 0 =
(Dth + % D,s) (v, s(y)). Furthermore writing x = s(y)y we have

1 1
ZDrh(y, §) = ;W(X), dy(x)st) = tn F(xX') + ¢ (x") (grad F (x'), 7'),
that gives

1
‘—2 D h(y,s)| < /2| grad F||
S

We conclude

2|3 Dehl
[Des(0)| =s I <3s”|grad Flo, < 16|lgrad F| .
25 as

Bounds on DG, DG~': One calculates explicitly that

DG(x) = dy(s(¥)x) (s(¥)1 + ¥ ® grad s (X))
=s(@)1+X®grads(X) + (ey @ grad F) (s(X)1 + X ® grad s(X)) .



1406 JONAS HIRSCH

As we have seen |s(X) — 1] <

llgrad F|lo

T lerad Fls Combining all obtained bounds one can

conclude ||[DG(x) — 1], < 10 ||grad F|| . DG lis given explicitly by

——  grads(P-1(x)

DG™'() = ———ay (1) — ) @ LI

s(=1(x)) s2(y~1(x))
— 1
= /l\ 1- eN®gradF—w—1(x)®w.
sWl(x) s ) s2(y~1(x))

1

Combing as before all obtained bounds especially |(T —1| < |lgrad F ||, one
N

Y=l

can get HDG‘l(x) - IHOO <6|grad F|| .

The convergence statement follows as a consequence of the implicit function

theorem, because F, — F in C! then implies sp, — sF in C I O
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