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An inscribed radius estimate for mean curvature flow
in Riemannian manifolds

SIMON BRENDLE

Abstract. We consider a family of embedded, mean convex hypersurfaces in a
Riemannian manifold which evolve by the mean curvature flow. We show that,
given any number 7 > 0 and any § > 0, we can find a constant C with the
following property: if ¢+ € [0, T) and p is a point on M; where the curvature is

greater than C, then the inscribed radius is at least m at the point p. The
constant C depends only on 8, T, and the initial data.

Mathematics Subject Classification (2010): 53C44 (primary); 35KS55 (se-
condary).

1. Introduction

In a recent paper [3], we established a sharp bound for the inscribed radius for
mean convex hypersurfaces in Euclidean space which evolve by mean curvature
flow. In this paper we generalize this result to the case of a flow in an ambient
Riemannian manifold. Let X be a Riemannian manifold of dimension n + 1, and let
F : M x]0,T) — X be a family of closed, embedded, mean convex hypersurfaces
in X which evolve by mean curvature flow. As in [3], we define a function u by

2 (exXpp(y. ) (F(y, 1)), v(x, 1)
 d(F&.0). F(y.n)?

p(x, 1) = sup
yeM, O<d(F(x,t),F(y,t))§% inj(X)

Note that A1 < ... < X, < u, where the X; are the principal curvatures. For
hypersurfaces in Euclidean space, the reciprocal of p(x, t) is equal to the inscribed
radius of M; at the point x.
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Theorem 1.1. Let § > 0 and T > 0 be given positive numbers. Then the function
W satisfies an estimate of the form

w<({1+4+38)H+CX, My$,T)
forallt € [0, T) and all points on M;.

In the special case where X is the Euclidean space R"*!, it follows from
general results of Brian White that the ratio % is uniformly bounded from above
(cf.[13-15]). An alternative proof was given by Sheng and Wang [12]. Andrews [1]
recently gave another proof of that fact; his argument is based on a maximum prin-
ciple for a two-point function. This technique was developed in earlier work of
Huisken [7] on the curve shortening flow in the plane.

In a recent paper [3], we showed that, for any mean convex solution to the
mean curvature flow in Euclidean space, we have an estimate of the form pu <
(146) H 4 C, where C is a positive constant that depends only on § and the initial
hypersurface My.

One of the key insights in [3] is that the evolution equation for the function
W contains a gradient term which has a favorable sign (see also [2]). This makes
it possible to use integral estimates and Stampacchia iteration to prove the desired
bound for p. The proof of Theorem 1.1 follows the same strategy, but requires
some adaptations due to the background geometry.

We next define

2(expriy.p (F(y, D), v(x, 1))
d(F(x,1), F(y,1))?

’

p(x,t) = max sup
yeM,0<d(F (x,1),F(y,0)< 4 inj(X)

Note that —p < A; < ... < A,. For hypersurfaces in Euclidean space, the re-
ciprocal of p(x, t) has a geometric interpretation as the outer radius of M; at the
point x.

Theorem 1.2. Let § > 0 and T > 0 be given positive numbers. Then the function
p satisfies an estimate of the form

p<8H+C(X, My,$,T)

forallt € [0, T) and all points on M;.

We note that Theorem 1.2 is a refinement of the convexity estimate of Huisken
and Sinestrari [8,9]; see also [13-15].

Having extended the noncollapsing estimate to Riemannian manifolds, we can
conclude that the curvature derivative estimates of Haslhofer and Kleiner (cf. [6,
Theorem 1.8°]) also hold for mean curvature flow of mean convex hypersurfaces
in Riemannian manifolds. The constant in the interior gradient estimate will de-
pend on the noncollapsing constant and also on the length of the time interval
[0, T).
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2. Evolution of the inscribed radius under mean curvature flow

Given any point ¢ € X, we define a function ¥, : X — R by v, (p) = Ld(p,¢)?,
where d(p, q) denotes the Riemannian distance in X. Moreover, let us put E; ,, :=
(Hess ), — g. Clearly, &, , is a symmetric bilinear form on 7, X, and we have

|Bq.pl < OW(p, 9)?).

Proposition 2.1. Consider a point (x,t) € M x [0, T) such that 1,,(X, 1) < (X, 1)
and pu(x, 1) > 8inj(X Y~ 1. We further assume that U is an open neighborhood of x
and ® : U x (f — a, t] — R is a smooth function such that ®(x,t) = u(x,t) and
®(x,t) > u(x,t) for all points (x,t) € U x (t — a, t]. Then

dd
T AD— m|¢+2:

D®)?:<CH+Cd+C
> (D; ®)* ++Z

D — A D —A;

at the point (X, t). Here, C is a positive constant that depends only on the ambient
manifold X and the initial hypersurface M.

Proof. Let us define a function Z : M x M x [0, T) — R by
2, 3,0 = S0 O VG (FO0) = (VG | v 1)

1
:5¢@JﬁﬂF@JxF@J»2+GWQM¢F@J»JQJ».

By assumption, we have Z(x, y,t) > O whenever x € U,t € (f — «, ], and
d(F(x,t), F(y,t)) < %inj(X). Moreover, we can find a point y € M such
that 0 < d(F(x,1), F(3,1) < %inj(X) and Z(x,y,f) = 0. It is clear that
O(F, ) d(F (%, 1), F(5,1) < 2,50 d(F(%, 1), F(3,) < +inj(X). This implies

9Z _ _ . 13D _ _ I
0= —(X, yat) =3 —(x,t)d(F(x,t), F(yvt))
ax; 2 0x;

—CD(_X‘ t) <eXPF(x t)(F(y’ t)) ()C t)>
+h%xz)#q¥unuw%0) (xt»

oF _ _ _ -
— EFG,0),FG.0D) a—xi(x,t),v(x,t) .

Rearranging terms gives

<epr(x H(FG.D), 5 (x t>>

_1 : i D+ 0(1)) d(F(x. 1), F(§,0)*
20 1) — Ai(E. 1) (_(" N+ U) (F(%, D), F(3. D).
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We now differentiate one more time. Using the Codazzi equations, we obtain

82
Zg(x y, 1)

i=1 i

= % AD (X, N d(F (%, 1), F(3,1))?
AP
—25 D) <epr(x H(F (G, r)) (x t>>
OH
+ 8_(x t) <eXpF()C t)(F(y’t)) (.X' t)>

+HE, D) O, D) <eprOE S (FG. z)), V(E, t)>

— 1AG, DI (exppty ) (G D), v(E D)
+nd(FE, D) — HE, D

+ 0 (d(F(f, ), F(y,0)+ H(, 1) d(F (&, 1), F(3, f))2> ,

%(ACD(x 0+ AE, DI D, 1)

2 2 ) i
_Zcb(x ) — Ai(E, 1) ( - (x, ’)> )CZ(F()?,t),F(y,t))2

oH
+ 5 @D <epr(X A(FG. t)) (x r>>

+ H(E, D) D) (exp;@j)(F(y, ). v(&, t)>
Fn®E D) — HE D)
+ O(d(F(¥,0), F(3, 1) + H(%, 1) d(F (%, 1), F(3,1))?)

n |
+0(Z G, 1) — M, D) ‘_(x 2

We next compute

d(F(x,1), F(3, r))z) .

0oZ _ _ _
0=_(x7y,t)
ayi

= <<D XPriz. 1) . <8yl 53 z)) VE D)+ PE, 1) expp; ; (F(3, t_))> :
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Note that the vector v(x, ) + ® (%, 7) exp, P (x t)(F (¥, 1)) has unit length. From this,
we deduce that
(Dexprten), pop VO D) = V@D F B exprl  (F(.D)

+ O(d(F(x, D), F(7,1)%).

Moreover, we can arrange that

Dexo! OF _ _
( eXpF(JE,l_))F( D 8_yl(y’t)

CaF 2(exp;@t-)(F@,r‘)),3%@?)} expy L o (F(3.7)
=g 0 dFG. 1), FG.0)Y2  d(F& 1), F(G.0)2

+ O(d(F(x,D), F(7,1)%).

This gives

2 5= (Pexprtin) o (oo 5.D)) exppty o (FG.7)
s Vo - ) ex T a_ ) , €X r 7 )
9x;dyi Y ax; * Pran F(3,0) Byl Y Pran't

— (D@, =i (%, D) (Dexp—1 ) F s 0.2 .5
' e FEDJrGn\dy: " ) ox
+ O(d(F(x,1), F(3,1)))
9D
= - @D <epr( HFGD). 5 (x r>>

. 2
eXp;%x,f)(F@’ n), 3£ (%, t)>
d(F(X,1), F(3,1))?

— (PG, 1) —ri(x,0) | 1 —2<

+ O(d(F()E, nD,F@,nD)+HG, HAd(F(x, 1), F(y, t_))z)
= —(®(F, 1) — M (%, 1))
+ O(d(F(x,1), F(3,0) + H(X, D) d(F (%, 1), F(3,1))%)

for each i. Summation over i gives

L 9%Z . _ _
2 Gray I D = @@ D+ HED
i—=1 l l

O(d(F(%,1), F(3,1) + H(X, D) d(F (&, 1), F(5,D)?).
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Finally, we have

" 9%Z
—(x, y,t
> 52 E 5D

i=1 v
- nCD()E,t_)—H(y,t')<<D expyi; b)ﬂﬁ)(u()’),t_)),v()?,t_)—i-q)()?,f)exp;(lx’t-)(F(y, f))>

+ O(d(F(x,1), F(3,1))).
Thus, we conclude that

2”: 82Z(_ y, 1) +2 ’z (x,y t_)+822(_ y, 1)
—F X, Yy, X, Y, — X, Y,
Bxiz Y ax; dy; Y 9y? Y

i=1 ! i

(A<D(x 0+ AR, D> d(X, 1)

I\JI'—

Z : (Bu r))z)dw(x D, F(3.1)
— O(X,1) — Ai (X, 1) T ’

oH

D <epr(x H(FG. r)) (x r>>

+HE D+ HE D BE, ) (exp;g,t-)my, M), (&, 1)

— H(, f)<(D P(5.) s VT D VD) + O D expyl  (F . t‘))>
O(d(F (%, D), F(5,D) + HE D d(FE D), FG,))

- 1
+O<Zd>(x 1) — (%, 1) | x; (x t)’d(F(x 1, F (3, t)))

On the other hand, we have

0Z 109
57 & t)———(x nd(F (%, 1), F(y,0)

+H(£’Z)+H(')E’t)CD(X’t)(exp;(;(’f)(F(}_),t)),v()z’f))

—H(y, lr)<(D eXp;&’,—QF@ t_)(v(jz, ), v, H+P(x,1) eXPF(I;,;)(F()_f,t_))>
~OH - —1 _ - oF _ _

* ; a_xi(x’ t)<epr(m_)(F(y’ 1)), B_xi(x’ t)>

+ H(X, 1) Epg.i,r,nVE 1), VX, 1)).
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Consequently,

0= 2 5.0-3 V72 % G PG5
-— X, , - X, Y, X, Y, X, Y,
= Y izT \9 ? ' dx; 9y ' 3y} '

1 (00 _ . oy
z 5|5, 5D = ARG D — AR, DI S D)

2
+Z d(x, 1) — 1%, 1)

2
( (X, r)) )d(F(x,f),F(y,t‘))2
— O(d(F(, 1), F(3,0) + HF D d(F(&, 1), F(3,1))%)

4 1
_O(Zfb(x N — a0 lox; (x t)‘d(F(x D, F(y, t)))

We now multiply both sides by WF@W' Using the estimate

| (exprls o (F G0, v, D)|
= -— =< = =
dFGED.FGD) - dEED.FG.D2

n
2
i=1

(expris o (FG.0). 3L D)
d(F (7.0, F(5.1)?

‘8<I>_t_
ai (X, t)<8_xl~(x’)

1

5cp(x t)+22 PG +0(1)),

we obtain

2 P 2
(x H—ADGE, D) —|AG, DI, t)—i—z e (5@ z))

d 1

. 1
SO(H(x,tH—CD(x,t)—F;q)(i’f)_ki(x’f) Zq)(x TG 9% &7

Bx,

)

From this, the assertion follows. ]
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Corollary 2.2. The function | satisfies the evolution equation

1
— A

n
(Dip)* <CH+Cpu+C Y

B 1 1
= Au— AP+
-1 M i=1

ot —Ai

on the set {A, < u}N{u > 8inj(X)_1}. Here, A is interpreted in the sense of
distributions. Moreover, C is a positive constant that depends only on the ambient
manifold X and the initial hypersurface M.

Proof. 1t is easy to see that the function w is locally Lipschitz continuous and semi-
convex (see [3, Proposition 2.1]). Hence, by a theorem of Alexandrov, the function
w1 admits a second order Taylor expansion around almost every point (cf. [5, Sec-
tion 6.4]). Let x;; denote the spatial Hessian of 1 in the sense of Alexandrov. Note
that x is defined outside a set of measure zero. It follows from Proposition 2.1
that

ou
— —tr(x) —

i

n
W) <CH+Cpu+C Y.
i=1

at almost every point in the set {1, < u}N{u > 8 inj(X)_1 }. On the other hand, it is
well known that the Hessian in the sense of Alexandrov is dominated by the distri-
butional second derivative (see [5, Section 6.4]). Consequently, tr(x) < Au, where
Ap is interpreted in the sense of distributions. From this, the assertion follows. [

Corollary 2.3. We have

sup sup Ll <C,
1€[0,T) M,

where C is a constant that depends only on the ambient manifold X, the initial
hypersurface Mo, andon T .

Proof. The ratio % saisfies an evolution equation of the form
0 VH < 1
—(ﬁ)—A(ﬁ)—z —,v<ﬁ> <c+clicy —
ot \H H H H H = H(nw— )
It follows from results in [9] that

Al +1
sup sup| il <K,
refo,7y M, H
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where K is a constant that depends only on the ambient manifold X, the initial
hypersurface Mo, and on T. Hence, if & > 2K, then “%)" > K, and therefore

1 1
o) S KEE = K. Thus, we conclude that

) -al) (v () e vy

whenever 7 = 2K. Hence, the assertion follows from the maximum princi-
ple. 0

3. An auxiliary inequality

In this section, we will consider a single hypersurface M; for some fixed time 7. We
will suppress 7 in the notation, as we will only work with a fixed hypersurface. By
the convexity estimate of Huisken and Sinestrari (cf. [9, Remark 3.9]), we have a
pointwise estimate of the form A; > —e H — K (), where ¢ is an arbitrary positive
real number.

Proposition 3.1. Consider a point x € M such that A,(x) < w(x) and pu(x) >
8inj(X)~!. Furthermore, we assume that U is an open neighborhood of X and
® : U — R is a smooth function such that ®(x) = u(x) and ®(x) > u(x) for all
x € U. Then

1 1 1
05ACD+5|A|2<I>—5H<I>2+§n3(ned>+l(1(8))<l>2

n
1
+ le o5 (D@1 +C)IDiH|
1=

+ (H 41’ (ne @+ K1 () Y
i=1

@ -2 ((Difb)2 +C)

1
D —A;

+C¢+C2n:
i=1

at the point x. Here, C is a positive constant that depends only on X, My, and T .

Proof. As above, we define

1
Z(x.y) = 5 @) d(F (). FO)? +{expy () (F ). v()).

By assumption, we have Z(x,y) > 0 whenever x € U and d(F(x), F(y)) <
% inj(X). Moreover, there exists a point y € M such that 0 < d(F(x), F(y)) <



1456 SIMON BRENDLE

% inj(X) and Z(x, y) = 0. As above, it is easy to see that ®(x) d(F (x), F(y)) <2,
so d(F(x), F(y)) < 3—1inj(X). Moreover, we have H(x) < C ®(x) and H(y) <
C @ (x) for some constant C that depends only on the ambient manifold X .

It follows from results in Section 2 that

AP A d H() d(x 2 < 2 0d _ 2
( (¥) + [A@) > ©(X) — H(X) d(¥) —;m <_(x)>
Y ! OH I
+;m (—( )+ 0(1)> 8—m(x)) d(F(%), F(3))

+n®(F) — H(¥)

o n 1 AP _ o,
O(d(F(¥), F(3))) + O (; s B_x,-(x)‘ d(F (%), F (7)) ) .

Moreover, we have

0z _ : o o
5 (X, ) = —(@X) — 1 (X)) + O(d(F(x,1), F(3,1)))
X; 0y;

and

0%z _ : _ o o
— (%, 3) = ®(X) — hii() + O(d(F (X, 1), F(3,1))).

In particular, we have h;; (y) < ®(x) + O(d(F()E, N, F(y, f))), hence H(y) <
n®(X)+O(d(F(x,1), F(y,1))). Consequently, the convexity estimate of Huisken
and Sinestrari (see Remark 3.9 in [9]) implies that &;; (y) > —e H(y) — K1(¢) >
—ne ®(x) — Ki(¢) — O(d(F(x,1), F(y,1))). From this, we deduce that

2
E;yz (x,y) <P(x)+ned(x)+ Ki(e) + O(d(F(x 1), F(y,t)))

Note that ®(x) — A;(x) > 0 fori = 1,...,n. From this, we deduce that

_ _ _ _ _ 2
max <i<n (P (®) =4 (1)) < 3y (P (F) =1 (1) <n®(F), hence Y} R <
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n3. Thus, we conclude that

i <32 5 &) — (@) 32z G5+ (D (X) — 1i(¥))? 82 )
— \ 9x2 d(F)  dx; dy; D(¥)?

n

1 _ 12 (s = )2 2 2
<3 (Ad>(x)+|A(x>| PX) — H(X) &) —;m (8—)@( )>
1

- 19 _ oH _ ) .
+ ; m <8—xl(X) + 0(1)) a—Xl(X)> d(F(X), F(y))
c - I (D(X) — 24(X))?
+nd®kx) — H() — T AR
n®(x) (x) l; 50

(D(X) — 2 (¥))?
+Z q)( )2

+ o(d(F(x, 0, F(y,1))

(ne ®(x) + Ki(¢))

; 1 3D _ o
o (; (X, 1) — Ai(X, 1) a_x,.(x’t)’d(F(x’f),F(y,t)) )

(ACD(x)—I— |A(X)|> ®(X) — H(X) D(%)?

< 2
Lawam (o)

Y ! OH _ o
+;m <—( )+0(1)) 3_xl(x)) d(F (%), F(3))

A 4 O(F) + K
o) +n’ (ne ®(x) + K1(g))

+ 0 (d(F(x,1), F(3,1)

l\)|>~

+ HE) —

- 1 ad _ _ - -

0 — __—_,t‘dF_,t,F_,tz.

+ (;q)(x’t)_ki(x,t) o, & D|dEFED.FG )))
‘We now multiply both sides by WF@))Z Using the identity

2 2
| (exprln FOD @) o (expry (FG), $E(®)

d(F(X), F(3)?  d(F®), FG)* +i:] d(F(x), F(3))*

2 1 2
(@(x) +Z(<I><x) REYe ( mw(l)))
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we derive the estimate

o cp()z)—xi(x) %z
d(F (o). F<y>)2z<az( DT2"6®  axoy Y

(@) -2 (X)? %7 _ _
)2 9?2 (x, y))

< AD(X)+|AX) [P D (F) — H(X) D(¥)*
n 2 b _\? & 1 oD OH _
Lo (a_xi(x)> e (a—xi(x)w(l)) )

=\12
+% (H()E) — % +n’ (ned>(x>+1<1<e>>>

2 1 2
(cp(x) +Z(<I><x> o (o (x)+0(1)))
8_x,( ))
U TV B ORI .
= AP+ S IADP @) — 3 HEO P+ 51 (16 @)+ Ky () ()
—f#(—< )) +f;<83®+0(1>> O %
= O (x)—Ai(x) \ 0x; = O(x)—A;i(x) \ 0x; 0x;

lH( ) LADE e @)+ K e) Z;< (x)+0(1))2
(%) 1 (@ (©) =i (D)2\0

i=1
B_x,( ))

Since the function Z attains a local minimum at the point (X, y), we have

n 1
+0<d>(x)+2m Zm

o 1 n 1
(D) smTm T s ®
i=1 i=1

" (027 D@ -ME) 2Z (PR —ME)?2Z
Z(ﬁ(x,)’)ﬁ-z @) 8Xi3yi(x’y)+Wa_yi2(x’y) >0

i=1 i
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Putting these facts together, we obtain

0<ADE) + = |A(x)|2 O(F) — l HE) @) + n3(ne ) 4 Ki(e) (i)
n 2 1 ® _ OH _
_; M(a_x,( ) 2 Swn® (a—xi<x>+0<1>) o

] A®P 5 ! I 2

_ " 1 1
o (q’(") * 2L %mhm +,.; T | )D

From this, the assertion follows. O

Corollary 3.2. We have

2 1 2, 13 2
0<Au—|— |A]" EHM +5n (nep+ Ki(e))

n
+

iu| +C)|D;H|

n

+ (H+n3 (ne u + Kl(s))) Z
i=1

G (i +0)

+C,u+CZM -

on the set {A, < u}N{u > 8 inj(X)_1 }. Here, A is interpreted in the sense of
distributions.

Corollary 3.3. We have

. 1 2. 2, .3 2
0< (Vn, V) + n (AP w — Hpn” +n’ (ne p+ K1 () 1”)
M; 2 M;

inl 4+ C)|DiH|
M, =1
3 - 1 2
+/M,"(H+" (ne 1+ Ki(e))) ;—(M_W ((Diw)* +C)

1
+C/ /x+C/
M; M; 1 _)\'l

i=

for every nonnegative test function n which is supported in the set {A,, < pu}N{u >
8inj(X)~!}.
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4. Proof of Theorem 1.1

Let us fix positive real numbers 6 > 0 and 7 > 0. By the convexity estimate
of Huisken and Sinestrari (c¢f. [9, Remark 3.9]), we can find a constant Ko >

Sinj(X)_1 (inf,e[o,T) infy,, min{H, 1})_1 such that
J .
n—1xr > —3 H — K¢ min{H, 1}

fort € [0, T). Here, Ky is a constant that depends only on X, My, §,and T'.
For each o € (0, %), we define

fo=H ' (u—(+8H) - Ko

and
fo.+ = max{ f5, 0}.

On the set { f, > 0}, we have
w>1+8)H+KoH' ™ >(1+8)H + Ko min{H, 1},

hence
n—1 S
w— An zZAi+8H+K0 min(H, 1} > - H.

i=1
In particular, we have { f, > 0} C {A, < u}N{ > 8inj(X)~!}. By Corollary 2.3,

we can find a constant A > 1, depending only on X, Mg,and T,suchthat u < A H
and |A|> < A H*>fort € [0, T).

Proposition 4.1. Given any § > 0, we can find a positive constant cqy, depending
only on § and the initial hypersurface My, with the following property: if p > L

= o

1
ando < co p~ 2, then we have

d
_</ f(f+>§co"l?/ f£++0PK(SD/ |AI® + (Cp)? | M|
dt M; M, M,

Jor almost all t € [0, T). Here, C is a positive constant that depends only on X,
My, 8, and T, but not on o and p.

Proof. By Corollary 2.2, we have

au ) 1 1 5
— —Ap—|APp+Y —— (Dip)* <CH
oy A IAT iZIM_M(ZM)_
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on the set { f; > 0}, where Apu is interpreted in the sense of distributions, and C
is a positive constant that depends only on X, My, §, and T. A straightforward
calculation gives

a—l

\Y%
_fa —Afe —2(1—-0) <— Vfa>+z (DIM) —0 |A| (fo + Ko)

— A
<—0(1-0)H P (u—(1+8 H)|VH*+CH°
<CH°

on the set { f, > 0}, where Af, is again interpreted in the sense of distributions.
This implies

d ) VH
S )= p(p—l)/ 2w nr 2 —opf 22 (S r)

o1
—1
/ (Diu>2+ap/ AP 75" (f + Ko)
M= h— Cu—A M,
+/ (Cprr gf;l—Hzfgf+).
M;

The integral of |A|? fcf’ J_rl (fs + Ko) has an unfavorable sign. To estimate this term,
14

we put & = Applying Corollary 3.3 to the test function n = f‘;;“

4n4A2

1 a+
E/M (H u? — |AP = n® (ne pu + Ky (e) %) 225 7

5‘/< (fH) > fH 1, il +C) D H|
M A

p
” 1
/ J ot H-l-n (ne u+ K1(¢))) E T)Z((Diﬂ)2+C)

il(
+C fa+ —I—C/ fa—i—Z
M,

£7
f Jor IV/LIIVfalJrCf (il + 1) IV H]
M;

fo+

M= A

+C

Vi |2+C/ ..

t

Here, C is a positive constant which depends on X, My, §, and T, but not on ¢ and
p. On the set { f, > 0}, we have u > (1 4 §) H. Moreover, the convexity estimate
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of Huisken and Sinestrari implies that A1 < (1 + &) H?> + Ka(e). Consequently,
we have

Hp? — AP p—n’ (ne p + Ky () 1

> (1+8) H> u— |AP w—n’ (ne  + K1(e)) A> H?

> (8 —e)H? u —n’ (ne u+ Ki(e)) A2 H> — Ka(e)
§ 2

> 5H w—CH

on the set { f; > 0}. Therefore, we obtain

Iy Iy
/ AP £ SCP/ S |VM||Vfo|+C/ ;I’; (IVul+ 1) |VH]
M, M;

fa+ 2
-+ |yl +c/ £
v, H? M, ot

where C is a positive constant that depends only on X, Mo, §, and T. Using the
pointwise inequality

+C

—1
P (fo+Ko) <27 + K,

we obtain

fM AP 75 (fo + Ko)

1 p

f(f]-i- f(r-i-
<C — |Vul||V C . \% 1)|VH
< p/M, [Tl 9 o+ /MtHZ(' ul+ 1) [VH|

fp
+c/ 1‘;; |w|2+c/ f£++K(§’f 1A%,
M, M; M;

where C is a positive constant that depends only on X, My, §, and T. Putting these
facts together, we conclude that

([, )

b2 VH
= P(P—l)/ fr IV fol? +2(1—0)p/ Ve

0—1 p 1
—p Z S (Dip)? +Ccrp/ ot 919
M=
+Cop f"*(|Vu|+1)|VH|+c6p f"*w ?
v, H? v, H?

1
+Cop [ flovapkl [ 1P+ [ (cpn i —u gL,
M; M, M;
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where C is a positive constant that depends only on X, My, §, and T. Using the
identity

VH = Vu—H"7Vf,
H (-o)u+o(1+8H
we obtain
VH (Vu, Vv
Vi) < Jo) o CH YV Sl
H (1—0)u+0(1+6)H
and VH v v
| |§c| M|+ IV fol
H H fa+
This implies

/ ()'p-‘,-
dt M, ’
n p=1 yo—1

B rly
s—p(p—l)/ f(f+2|Vfa|2—p/ S Lot 2 (py

Mti:l I‘L_)"l
f + f£+ 2
+C(p+op?) Vil IV fol+Cop | =2 1Vul
t
f0p+ fa—i—
—l—Cap/ — |Vul+Cop IV fsl
v, H? M, H 7

1
vCop [ slovopkf [ 1at+ [ (com it - m ).
M; M; M;

where C is a positive constant that depends only on X, My, d,and T.
Therefore, we can find a positive constant co, depending only on §, My, X, and

T, with the following property: if p > — and oc=<cp -3 , then we have

d 1
(o vt e e )

for almost all + € [0, T'). Finally, since H is uniformly bounded from below on
bounded time intervals, we have the pointwise estimate

_ 1
CpH fI7' - G H S < (Cp)P HFCOT < (Cp)”

This completes the proof of Proposition 4.1. O

As usual, we can now use the Michael-Simon Sobolev inequality (c¢f. [11]) and
Stampacchia iteration to show that

w=({10+38)H+CX,Moy,$T)

for all ¢ € [0, T') and all points on M. This is the desired noncollapsing estimate.
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5. Proof of Theorem 1.2

Finally, we give the proof of Theorem 1.2.

Proposition 5.1. The function p satisfies

op
——Ap—|A|p+Z (Dip)? <CH+Cp+CZ

ot o+ A o+ A

on the set {p + 11 > 0YN{p > 8inj(X)~'}. Here, Ap is interpreted in the sense of
distributions. Moreover, C is a positive constant that depends only on the ambient
manifold X and the initial hypersurface M.

The proof of Proposition 5.1 is analogous to the proof of Corollary 2.2 above.
In fact, it suffices to reverse the orientation of M; everywhere in the argument.

Corollary 5.2. We have

sup sup s <C,
1€[0,T) M,

where C is a constant that depends only on the ambient manifold X, the initial
hypersurface My, and on T .

Proof. The ratio % saisfies an evolution equation of the form

ad VH 1 1

—(ﬁ)—A(ﬁ)—z v( ) <c+clicy — .

ot \H H ‘H H H = H(p+ M)
It follows from results in [9] that

S

sup sup
t€[0,T) M,

where K is a constant that depends only on the ambient manifold X, the initial
hypersurface My, and on T. Hence, if % > 2K, then %)"' > K, and therefore

1 1
T = xmz = K. Thus, we conclude that

a () -2 () 2 v (@) =ereyg

whenever £ > 2K . Hence, the assertion follows from the maximum principle. [

We next state an auxiliary result:
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Proposition 5.3. Consider a point (x,t) € M x [0, T) such that p(X, £)+Ai (X, ) >
Oand p(x,1) > 8inj(X)_1. We further assume that U C M x [0, T) is an open
neighborhood of X and ® : U x (f — a,t] — R is a smooth function such that
D(x,1) = p(X, 1) and ®(x,t) > p(x,t) for all points (x,t) € U x (t —a, t]. Then

n

b 1
— H &?
at +2 XI:CD+M

—Zﬁ (Do +1)<LH
i=1 !

(ID;®|+ L) (ID;H| + L)

at the point (X, t). Here, L is a positive constant that depends only on the ambient
manifold X, the initial hypersurface My, and on T .

Proof. We define
W(x,y,1) = ®(x, 1) Yry.n(F(x, 1) + (vwF(),,t)}F(x,t), v(x, 1))

1
= SO0 D d(F(x. 1), F(y.1) = (exp;gx’t)(F(y, ), v(x, r)).

By assumption, we have W(x, y,#) > 0 whenever x € U,t € (f — «, 1], and
d(F(x,t), F(y,1)) < 1 IHJ(X) Moreover, we can find a point y such that 0 <

d(F(x,1), F(y,1) < 3 IHJ(X) and W(x,y,f) = 0. From this, we deduce that
®x, 1) d(F(x,1), F(3,1)) <2,hence d(F(x,1), F(,1)) < %inj(X). As in Sec-
tion 2, we compute

ow
0=

1 0®
1) = Ea_(x Hd(F(3,1), F(%,1))*
- (D(X t) <eXPF(x t)(F(y’t)) ()C t)>
—h](x 1) <CXPF(x (0, t)) (x t)>
_ 9F _
+ EF@G.0,F@E.D <£(x, 1), v(x, t)) .

Let us pick geodesic normal coordinates around X such that &;; (X, 7) is a diagonal
matrix. The relation %(i, v, f) = 0 implies

<epr( H(FG, r)) <x t>>
1 1
T2 DO, 1) + i (F 1)

(8—(x N+ 0(1)) d(F(%,1), F(%,1)>.



1466 SIMON BRENDLE

In the next step, we use the identity

L
W(x,y,t) =3 % (x,0)d(F(x,1), F(y,1))

— HE D) + HED O D (exppi; ) (FG. D) v(E D)
+H(, D < (Pexpries) sy WO D) VED = O D exppf (G, r‘))>

~3H o - -1 _ - OF _ _
_ Zl a—Xi(x, r) (epr(;,,—)(F(y, 1)), E(x’ t)>
1=

1

— H(X, 1) Brgi,ranVE, 1), (X, 1)).

The terms H(y,7) and ((D exp;&’t-))F(y’;)(v(y, v, 1) — O(x, 1) exp;zm-)
(F(y, t_))) are nonnegative. This gives

ow _ _ _
v 7at
at(xy)

>1 0D _ _ H(E D512
_E E(x,t)—l— (x,t)d(x,1)

Xn:—l _acp(_ 1)+0(1) —8H(' H)IFGEH-FF.DI?
— — — X, X, X,1)— s
Lo (F,D+0 (5D \ 0, ox; Y
—H(%D+O0(HE,Dd(F(%,1),F(3.0))%).
. . 2 . .
We now multiply both sides by FGO-FGIP Using the relation

—1 _ - __\2
| (expyte o (FG.0),v(ED)
dFED.FGDE . dEGD.FG.D)

. 2
+i<exp;2x,;)<m,r»,gTi@,t))
i=1 d(F(x,0),F(3,0))*

-1 <1>('t‘)2+2n: : & h+o) 2
A ,.:1<<I>(i,f)+x,m>2(a_m i ) ’
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we deduce that

2 oW
d(F(x 1),F(y,1))? ot

—(x,y,0)

S0 G AL HGEDOG Z)Z—i;< (%, t)—{—O(l)) H 9
— ot ’ ’ d(x,1)+X; (x,1) xi

Lhen (o f)2+2n: : ( - (% t)+0(1)>2
2O\ T L o @ D G2 o
—O(H(x,1))

" 1

=3£(;z t_)+lH(JE N (% z‘)z—Z—< (%, t)—|—0(1)> - (%.7)
at 2 ’ ’ O (x, 1)+ (x,1)

1 2 .
——H(x t)z(d)(x SewES z))2( (X, t)+0(l)) —O(H(X,1)).

Since %(E, v, 1) < 0, the assertion follows. O

Corollary 5.4. We have

RN ¢ H 5

— Dip|+ L) (|DiH|+ L ——((D; + L
T s (IDipl + L) (DiH|+ L) — z}(pmﬂ(( ip)”+ L)
§LH

almost everywhere on the set {p + A1 > 0} N {p > 8inj(X)~'}.

Let § > 0 be given. The convexity estimate of Huisken and Sinestrari (see [9,
Remark 3.9]) implies that we can find a constant

-1
KOZSinj(X)_1 < 1[8f 1nfm1n{H 1}) ,
1

depending only on X, My, §, and T, such that
) .
A > —3 H — Ko min{H, 1}.

For each o € (0, %),We put

8o =H"""(p—8H) —

and
8o+ = max{gs, 0}.
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On the set {g, > 0}, we have

p>8H+KyH'™ >8H + Ko min{H, 1},

hence

)
P+MZ§H-

In particular, we have {g, > 0} C {p + A1 > 0} N {p > 8inj(X)~'}. Furthermore,
by Corollary 5.2, there exists a constant A > 1, depending only on X, My, and T,
suchthat p < A H and |A|> < A H?fort € [0, T).

Proposition 5.5. Given any § > 0, there exists a positive constant cgy, depending

only on X, My, 8, and T, with the following property: if p > % and o < ¢g p_%,
then we have

d
— f gg,+ ECpr gg,++0pKé)/
dt \ Jum, M, M

|A”” + Cpr H* G0
t
for almost all t.

M;

Proof. For abbreviation, we define a function @ by

n

1
w:Ap‘Xmef“m2
1=

n

—Z:;%Euam+wawﬂ+u—2;G£%ﬁ(wmﬁ+L)

where L is the constant in Corollary 5.4. Combining Proposition 5.1 and Corollary
5.4, we obtain

1
o+ A

ap 1
= A —[APp+ )
i=1

o (Dip)? < —max{w + |A? p,0} +C H

on the set {g, > 0}. From this, we deduce that

o—1

3 VH n
9 Ay —2(1—0) [ Ve, ) +2
8o —Ags—2( o)<H g>+ ;

- (Dip)* — o |AI* (g0 + Ko)

P+ A

< —H°"max {a) AR p, o} —6(l—0)H* 3 (p—8 H)|VH|>+C H°
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on the set {g, > 0}. Note that g, < H°~! p by definition of g,. Since o € (0, %),
we have 20 %" < H°~! at each point on the hypersurface. This implies

n o—1

9 A 21 ) V + E (D )2
e _ —0o) (—, .
atgo 8o H 8o PERY iP

i=1

< —H°"! max {w+ A% p, 0} +0 |A? (g5 + Ko) + C H°

< —20‘%" <w+|A|2p> +o AP (g5 + Ko) + C H®

=—20%w+a|A|2(KO—gU)+CH°

on the set {g, > 0}. Therefore, we have

d P
E(/M, go,+)

5 _, |[VH
<-pp— 1)/ g Ve P +201 —o)p/ g <—,Vgn>
M, M;

n P—1 yo—1 P
g(r—i-H 2 ga-i-
—p/ 2t (Dip)* —20p ~ o
M,Z P+ A l

i=1 M P
—1 _1
+0p/ 8oy (Ko—ga)|A|2+/ (CH"gc’f,Jr—H2 4 )
M; M;
Integration by parts gives

gl gl
—/ o wst/ %t 1Y) Ve, |
M, P m, H

p P
8 8
+c/M ot <|Vp|+1)(|VH|+1)+c/M 2L Vol + 1),
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where C is a positive constant that depends only on X, My, §, and T. Putting these

facts together, we obtain

d p
E(/M, g0’+>
VH
(e

S—p(p—l)/ ga+|Vga| +2(1—0)p/Mgo+ A
t
g o-l gl
—pf o 7! (Dip)2+C<rp2f %t V0| |V, |
Mtl 1 p+)‘l Mt H
P

g 8
2X (Vpl+ 1) (IVH| + 1) +Cop/ 2L (1Vpl* +1)

+Cop/

v, H? M,
p 2 o 2
vopkf [ap+ [ (cwogr -melL).

M, M,

where C is a positive constant that depends only on X, Mo, §, and T. Using the

identity
VH Vp—H'"Vg,

H (I—o)ptodH’

we obtain
VH <V,0»Vga) -1
_—, < <CH "|Vp||V
<H gg>_(1_a)p+08H_ Vol Vol
and
VH \Y \%
| |§C|p|+clga|‘
H H 8o+
This gives
d g -1
d—(f ga+)< p(p—l)/ 032 Vol —p/ Z r (Dip)?
t M =
gl g
+C(p+or?) [ E2E wpvel+cop [ ok vop
Mt Mt
p p—1
g go+
C v
+ Up H2 Mt H2 | O’|

t

+0p1<é’/ IA|2+/ (CH"gH —H2g0+)
M, M,

where C is a positive constant that depends only on X, My, §,and T
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Consequently, there exists a positive constant ¢y, depending only X, My, §,
and T, with the following property: if p > % and o < ¢g p*% , then we have

d -1
—(/ g5,+)500p/ g§,++0pK§/ |A|2+/ (cHogb ! —H7g] ).
dt \Ju, M, M, M,

Finally, since we have a lower bound for the function H for ¢ € [0, T), we obtain

a pointwise upper bound for the function C H® g(f;l — H?gl  forallt € [0, 7).
This yields

d e
—(f g§,+> §C0pf g5,++0p1<é’/ |A|2+Cp"f H2Cmor,
dt M; M; M, M,

This completes the proof of Proposition 5.5. O

As above, we can use now the Michael-Simon Sobolev inequality (cf. [11]) and
Stampacchia iteration to show that

p<8H+C(X, My,5,T)

for all t € [0, T') and all points on M;.
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