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Failure of the chain rule for the divergence
of bounded vector fields

GIANLUCA CRIPPA, NIKOLAY GUSEV, STEFANO SPIRITO
AND EMIL WIEDEMANN

Abstract. We provide a vast class of counterexamples to the chain rule for the
divergence of bounded vector fields in three space dimensions. Our convex inte-
gration approach allows us to produce renormalization defects of various kinds,
which in a sense quantify the breakdown of the chain rule. For instance, we can
construct defects which are absolutely continuous with respect to the Lebesgue
measure, or defects which are not even measures.
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1. Introduction

In this paper we consider the classical problem of the chain rule for the divergence
of a bounded vector field. Specifically, the problem can be stated in the following
way:

Let Q C R? be a domain with Lipschitz boundary. Given a bounded vector field
v : Q — R tangent to the boundary and a bounded scalar function p : 2 — R,
one asks whether it is possible to express the quantity div(B(p)v), where B is a
smooth scalar function, only in terms of B, p and the quantities u = divv and
A =div(pv).

Indeed, formally we should have that

div(B(p)v) = (B(p) — pB'(P))1t + B'(p)A. (1.1)
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However, the extension of (1.1) to a nonsmooth setting is far from trivial. The chain
rule problem is particularly important in view of its applications to the uniqueness
and compactness of transport and continuity equations, whose analysis is nowa-
days a fundamental tool in the study of various equations arising in mathematical
physics. Indeed continuity equations arise naturally for instance in compressible
fluid mechanics in order to model the evolution of the density of a fluid. Renormal-
ization and uniqueness for the Cauchy problem have been proved in [17] and [4],
respectively for Sobolev vector fields and for vector fields of bounded variation.
See also the survey [5] for a detailed review of results in this direction.

The chain rule problem for nonsmooth vector fields has been considered in
several papers, in particular in [6]. There, it is proved that if v is of bounded varia-
tion and div(pv) is a measure, then div(B(p)v) is also a measure and in particular
formula (1.1) holds for the absolutely continuous parts of A and p. The singular
part is partially characterized in the cited article.

In this paper, we prove that in the three dimensional case for vector fields which
are merely bounded the formula (1.1) is invalid in a very strong sense. Specifically,
for a strongly convex function 8 : (0, c0) — R and a given renormalization defect
f : 2 — R we construct a divergence-free vector field v and a scalar function p
satisfying

div(pv) =01in Q

div(v) = 0in Q (1.2)
v-n=0 onodf2
such that
div(B(p)v) = f. (1.3)

More precisely, our main theorem reads as follows:

Theorem 1.1. Let d = 3 and let @ C R? be a (not necessarily bounded) domain
with Lipschitz boundary and B : (0, 00) — R be strongly convex. Let moreover f
be a distribution such that the equation divw = f admits a bounded continuous
solution on Q. Then there exist v € L®(2: RY) and p € L®(Q2: R) such that
|v| and p are positive and bounded away from zero almost everywhere, and such
that (1.2) and (1.3) are satisfied in the sense of distributions.

Remark 1.2. Theorem 1.1 is still valid for d > 3, with essentially the same proof.

Remark 1.3. Theorem 1.1 does not hold for d = 2. Namely, from the results
established in [8] (see Theorem 7.1) it follows that, if v € L®(Q; R?) and p €
L*°(2; R) satisfy dive = 0, div(pv) = 0, and p is positive and bounded away
from zero almost everywhere, then the equation div(8(p)v) = 0 holds for any
B € C'(R). Thus (1.3) holds only with f = 0. In view of this and of the previous
remark our result can be interpreted as complementary to the ones in [8].

Remark 1.4. The requirement on f in Theorem 1.1 is satisfied for instance when
Q is bounded and f € L”(2) with p > d. However, there exist also distributions
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f which are not measures for which the divergence equation admits a bounded
continuous solution. In particular, our result shows that if we drop the BV regular-
ity assumption on the vector field v, then the quantity div(8(p)v) can fail to be a
measure, even though A and p vanish.

As mentioned above, the chain rule is strongly connected with the uniqueness
for the Cauchy problem for transport and continuity equations. Several counterex-
amples to the uniqueness of continuity equations in a nonsmooth setting are known,
see [1-3,11,16] and also [13], where a similar approach based on convex integration
is used. Some of these examples can be modified in order to obtain counterexam-
ples to the chain rule with vector fields more regular than L°°. More specifically, the
example in [16] can be modified to obtain a divergence-free vector field with locally
bounded variation out of a hyperplane in R3 (the BV norm however blows up when
approaching such a hyperplane), while the example in [2,3] can be modified to ob-
tain a divergence-free vector field in all Holder classes C*, with « < 1. Further
counterexamples to renormalization have recently come from the direction of ac-
tive scalar equations, where a transport equation is coupled with a nonlocal relation
between the velocity and the density. In these examples [12,19,25,26], obtained
by convex integration methods, the non-renormalization is obtained as a byprod-
uct of the analysis. In [9] the authors deal with a passive tracer. However, all the
examples mentioned yield only very specific renormalization defects. In particular,
diffuse defects and defects which are not measures have not been known previously.

We close this introduction with a short comment on our method. We also use
a convex integration scheme, but in order to control the renormalization defect, we
need to use perturbations obtained from laminates, thus taking an approach remi-
niscent of [7,10,20,21,23]. Our convergence strategy relies on Young measures
(cf.[20,21]) and avoids the Baire category method, thus giving a somewhat explicit
construction. The core of our proof is a study (in Section 5 below) of the geometry
of the nonlinear constraint sets K¢ (see (3.2)) in matrix space. It is at this point
that the specific properties of our problem enter. Note that in dimension 2 our rank-
2 condition would turn into a rank-1 condition, which would be too rigid for the
geometric constructions of Section 5 (compare with Remark 1.3).
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Doc at the Departement Mathematik und Informatik of the Universitit Basel. He
would like to thank the department for the hospitality and the support. The au-
thors are grateful to S. Bianchini, C. De Lellis, and L. Székelyhidi for the fruitful
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2. Preliminaries

A function 8 : (0, 00) — R is called strongly convex if there exists k > 0 such
that, for all x;, x, >0and0 <A <1,

BOXI + (1 = Mx2) < 2AB(x1) + (1 = MB(x) — k(1 = Vlx1 — 0. (2.0)
For instance, the map x > x2 is strongly convex with ¥ = 1. We remark in passing
that for the purposes of this paper, we could replace |x; —x2|? by ¢ (|x| —x2|), where
¢ : [0, 00) — [0, 00) is an increasing function with ¢(0) = 0 and lim;_, o, ¢ (t) =
0.

Proposition 2.1. If 8 : (0, 00) is strongly convex for a k > 0, and if . < 0 and
X1, x2 > 0 are such that Ax; + (1 — M)xo > 0, then

AB(x1) + (1= M)B(x2) < BOXI+ (1 = 2)x2) + KA(1 — W)]x1 — xaf*.

Proof. This follows by replacing x; by Ax; +(1—A)x2,x2 by x;,and A by 1/(1—21)
in (2.1). O

Remark 2.2. An immediate remark is that for the proof of Theorem 1.1 we may as-
sume, without loss of generality, that 8(1) = 1. Indeed, by (1.2), equation (1.3) re-
mains unaffected by adding a constant to 8. We will make this assumption through-
out the rest of the paper.

We recall the space of solenoidal vector fields on €2 (cf. [18, Chapter II1]),
H(Q) = {U e L2 (< RY) / v-Vpdx =0 forevery p € W'(Q) } .
Q

It is known that if (v,) € C'(; R¥) is a sequence of divergence-free vector fields
such that v(x) = 0 on 92, and if the sequence converges weakly in L%(Q) to a field
v, then v belongs to H (£2).

The problem (1.2), (1.3) can then be formulated in the sense of distributions in
the following way: Find v € H(2) such that for every ¥ € C2°(£2), we have

/pv-Vtﬁdx:O and /,B(,o)v~V1//dx—|—/f1pdx:0
Q Q Q

(if f is merely a distribution, the second integral is of course to be understood as
the action of f on ).

In our iteration scheme, the perturbations will be chosen as members of re-
covery sequences of rank-2 laminates. These are defined as follows (cf. [14] and
also [24, Definition 9.1] for the rank-1 analogue):



FAILURE OF THE CHAIN RULE FOR THE DIVERGENCE OF BOUNDED VECTOR FIELDS 5

Definition 2.3.

a) Suppose A; > Ofori = 1,...,n, Z;’:l A = 1,and U; € R¥3 fori =
1,...,n. The family of pairs (;, U;);_, satisfies the (inductively defined)
H,, -condition if
1) rank(U; — Up) < 2 in the case n = 2;

ii) after a relabeling of indices, if necessary, we have rank(U — U;) < 2 and
the family (1, V,-):.:l1 satisfies the H,,_|-condition, where

TI=A+Xry, TT=Xiy fori=2,...,n—1

and

Y
Vi=22u,+220,, Vi=Ujyy fori=2,...,n—1
71

71
in the case n > 2;

Moreover we adopt the convention that every pair of the form (1, U) satisfies
the H;-condition;
b) a probability measure v on R3*3 is said to be a rank-2 laminate of order n if

it has the form
n
V= Z)‘iSUi
i=1

for a family (A;, U;)?_, which satisfies the H),-condition.

For the expectation of a probability measure, we write

V= / Vdv(V).
R3x3

A parametrized probability measure or Young measure is a map 2 > x > vy,
where v, is a probability measure on R3*3. It is said to be weakly* measurable if
the map x — f]R3X3 h(z)dvy(z) is measurable in the usual sense for every bounded
continuous test function 4 : R3*3 — R.

We also need to define the rank-2 lamination convex hull of a set K c R3*3.
A similar notion for rank-1 laminates is presented e.g. in [22, Section 4.4].
Definition 2.4. Let K C R33. A matrix U € R**3 is contained in the rank-2
lamination convex hull of K, denoted K¢, if and only if U = Zf‘: 1 AU for a
family (;, U;);_, that satisfies the Hy-condition and such that U; € K for every
i=1,...,n.

3. Proof of Theorem 1.1

Step 1: Reformulation of the problem. First we rewrite equations (1.2) and (1.3)
as the conjunction of an underdetermined /inear differential system and a nonlinear
pointwise constraint, thus adopting a viewpoint similar to the one in [15].
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Let us therefore consider the linear system of equations

divim) =0
div(v) =0 (3.1)
div(w) = f

in the unknowns (m, v, w) : Q — R3*3. We also define the constraint set, with
given constant C > 1, as

1
Kc = i(m,v,w) e RS . c=hl=c
! (3.2)
and there is C < p <Csuchthatm = pv, w = ,B(p)v} .

Thus K¢ is a non-empty compact subset of R3*3. Then, clearly, if a triplet of mea-
surable maps (m, v, w) satisfies (3.1) in the sense of distributions, if (m, v, w)(x) €
K¢ for almost every x € Q, and if v € H(2), then v and p(x) := |m(x)|/|v(x)]
will be a solution of (1.2) and (1.3) as in Theorem 1.1.

Step 2: Recovery of rank-2 laminates. It is convenient to identify a triplet (m,v,w)
with the matrix U whose rows are given by m, v and w. Equations (3.1) then mean
that

div(U) = (0,0, f)T, (3.3)

where the divergence is taken row-wise as usual.

An important building block for our construction is the fact that rank-2 lam-
inates can be approximated in an appropriate sense by solutions of (3.3). This is
the content of the following lemma, whose proof is largely standard (cf., e.g., [24,
Proposition 9.2] or [27, Proposition 19] for similar constructions). We give the full
proof for the reader’s convenience, but postpone it to Section 4.

Lemma 3.1. Ler K C R¥*3 be compact and (vy)ceq be a weakly*-measurable
family of probability measures such that

a) the measure vy is a rank-2 laminate of finite order for almost every x € ;

b) supp vy C K for almost every x.

Assume further that € C(R>3; R) is a non-negative function that vanishes on
K. Then the expectation v, is well-defined for almost every x € Q and for every
€ > 0 there exists a matrix-valued function U such that

1) divU =divv in the sense of distributions;
i) [V (Ux)dx < e;
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iii) || dist(U (x), K%)|| (@) < €;
iv)

/lU(x)—f)xldx<// [V — vy dve(V)dx + €. 34
Q Q JR3x3

Moreover, if v € C(Q), then U can be chosen to satisfy U € C(Q) and U(x) =
Vy on 0S2.

Step 3: Initial step of the iteration. Our iteration process will start with a triplet
of the form (0, 0, w), where div(w) = f. Since our construction is in a sense
local, we can “freeze” x and first consider a constant vector w € R3. The goal
is to decompose the matrix U corresponding to (0, 0, w) along rank-2 lines as a
sum of matrices in K¢ (of course K¢ can be viewed as a subset of the space of
3 x 3-matrices). More precisely, we have

Lemma 3.2. Let U € R¥3 such that UTe; = UTey = 0 and |UT e3] > 1. Then
there exists a rank-2 laminate v = Y 7_, A;8y, such that U = Y 7_, ,;U; and
a number C > 1 such that suppv C Kc. Moreover there exists a constant Cg
depending only on 8 such that C < max{Cg, 41UT e3}.

The proof will be given in Section 5.

Step 4: Subsequent steps of the iteration. The last lemma we need reads as
follows:

Lemma 3.3. Let e > 0and C > 1. There exists a strictly increasing continuous
function h : [0, 00) — [0, 00), depending only on C and B, with h(0) = 0, and a
number § > 0, depending only on C, B, and €, such that for every 1 < C < C — ¢
and every U € R3*3 such that dist(U, Kélc) < 6, there exists a rank-2 laminate
v =1 A8y, such that

n
U=> xU, (3.5)
i=l1
n
> MilUi = U| < h (dist(U, Kc)) (3.6)
i=1
and
suppv C Kce. 3.7

The proof is postponed to Section 5.

Remark 34. If x — U(x) is measurable and satisfies the assumptions of Lemma
3.2 or 3.3 for almost every x, respectively, then the laminates v, obtained from the
respective lemma form a weakly* measurable family, i.e. a Young measure.
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Step 5: Conclusion. We are now ready to prove Theorem 1.1. Let f be as
in the statement of the theorem. Our goal is to inductively define a sequence
(Mp, vy, Wy)n>0 of solutions to (3.1) that approaches the constraint set K¢ in a
suitable sense, for a suitable constants C > 1.

First we define the triplet (imq, vo, wp) by setting vg = 0, mg = 0; wo is chosen
as a bounded continuous solution of divw = f, which exists by assumption. Since
the divergence is not affected by adding a constant, we may assume |wo(x)| > 1
in .

Next, let Co > 1 be as required by Lemma 3.2 applied to Up(x) for all x € Q
(this is possible since Uy is bounded). Next, pick a sequence (C,),>0 that is strictly
increasing such that C,, /" Cop+ 1 =: C asn — oco. We also set ¢, := Cp41 — Cp.
Then, (¢,) is a sequence of positive numbers converging to zero.

Identifying (mq, vg, wg) with its corresponding matrix field Up, by Lemma 3.2
there exists for almost every x € Q a rank-2 laminate 19 of finite order whose
expectation is Up(x) and whose support is contained in K¢,. This completes the
definition of Uy and 1.

Suppose now that U, and v" have already been constructed for some n > 0 in
such a way that supp v" C K¢, and (3.3), (3.5), (3.6) are satisfied, that is:

div(Uy) = (0,0, £)7,

Un(x) = 77, (3.8)

/ |V — Uy (0)|dVvi(V) < h (dist(Uy, Kc,,_)) -
R3x3

The last estimate is claimed only for n > 1. By Lemma 3.3, where we set € = €,,41
and C = C + 1, there exists 8n+1 = 6(€p41) such that whenever dist(U, Kélnc) <
dn+1, then there exists a rank-2 laminate whose expectation is U and whose support
is contained in

Kc, e, C Keypy (3.9)

Therefore we apply Lemma 3.1 to (v{) with K¢,,€ =8,41,and ¥ :h(dist(.,Kcn)) .
This yields a matrix field U,y satisfying

div(Uny1) = div (o) = div(U,) = (0,0, /)T,

/ h (dist(Up41(x), K¢,)) dx < 8,41, (3.10)
Q

and
I dist(Upnr1(x), K&)lLoo(@) < Sns1- (3.11)

Therefore, by (3.9), we can indeed find, for every x, a rank-2 laminate v)’}“ with
support in K¢, satisfying (3.5) and (3.6). This completes the construction of the
sequence (Up,).
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Next, using (3.8), (3.4), (3.6), and (3.10), we obtain for n > 1

/ |Un+1(x) — Up(x)|dx = / |Un41(x) = 97| dx
Q Q

s/ / |V — 3" |dV'dx + 8,11
Q Jr¥3 (3.12)
< / h (dist(Uy (x). Kc,,)) dx + 8n 41
Q
< (Sn + 5n+1-

By (3.12) and since we may assume 8,, < ¢,,, the sequence (U,) is Cauchy in L! ().
Indeed, this follows from Z:":O €, = C — Co = 1. Therefore, (U,) converges
strongly in L! to a limit matrix field Uy € L'(R), and up to a subsequence (not
relabeled) the convergence even takes place almost everywhere.

Finally, by (3.11) and the observation that K¢, C K¢ for every n, the sequence
(Uy) is bounded in L*°, and by (3.10)

/ h (dist(Up+1(x), Kc))dx < / h (dist(U,H_](x), Kcn)) dx — 0
Q Q

as n — oo. It follows then from dominated convergence that

[ h (dist(Uso(x), Kc))dx =0,
Q

so that Ux(x) € K¢ for almost every x € 2.

As a final observation, since vp = 0 and the boundary values of UnT e remain
unchanged in passing from n to n + 1 thanks to the last statement of Lemma 3.1,
we may conclude UoToez € H(S2). According to Step 1, U, thus gives rise to the
desired solution. O

4. Recovery sequences for rank-2 laminates

In this section we prove Lemma 3.1.

The approximating maps for parametrized measures, whose existece is claimed
in the Lemma, will be composed of localized plane waves as in [15], which satisfy
the divergence-free condition

divim) =0
div(v) =0 4.1)
div(w) = 0.
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A plane wave solution is a solution of (4.1) of the form (m, v, w)h(x - £), where
(m, v, w) € R>3 is constant and £ € R3 \ {0}. The function & : R — R is called
the profile function. The wave cone of (4.1) is then defined as

A= {(na, 3, w) € R3*3 : There exists & # 0 such that

(m, v, w)h(x - §) satisfies (4.1) for every smooth  : R — R}.

The characterization of the wave cone is standard. To formulate it, it is convenient
to identify a triplet (m, v, w) with the matrix U whose rows are given by m, v and
w. Condition (4.1) then means that

div(U) =0, 4.2)
where the divergence is taken row-wise as usual.

Proposition 4.1. The wave cone for (4.2) is the set of all matrices U € R3*3 whose
determinant is zero.

Proof. This follows immediately from the fact that div (Uh(x - §)) = h'(x - §)U&.
O

We are now ready to prove Lemma 3.1.

Remark 4.2. In the situation of Lemma 3.1, we say that U approximates the pa-
rametrized measure (v, ) with precision €.

Proof. Step 1. Suppose first that we are dealing with a homogeneous measure with
zero expectation, i.e. x — vy is constant almost everywhere and v = 0. To start an
inductive argument, consider first the case that v is a rank-2 laminate of order 2, i.e.
v = Ay, + (1 — A)dy, with rank(U, — Uy) < 2 and Uy, U, € K. Therefore, there
exists a non-zero & € R3 such that (U — Up)é = 0 and hence, by Proposition 4.1,
the matrix field

Un(x) =AU + (1 = 1)Uz + h(nx - §)(Uz — Uy) = h(nx - §)(U2 — Uy)

is divergence-free for any frequency n and any profile 4 (the second equality follows
from v=0). We choose here as our profile the 1-periodic extension of the function

h(t):{x if 0,1
—(1—n) ifrefl—al).

To achieve zero boundary values, we use a standard cutoff technique as follows:
Since div(U,) = 0, there exists another matrix field ®,, such that

U, = curl(®,), “4.3)
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the curl being taken row-wise. Indeed, we can explicitly exhibit such a field: Let H
be such that H' = h; since h has mean zero, H is bounded on all of R. Let also V;
denote the i-th row of the matrix U, — U;. Then, by choice of £, V; is orthogonal
to & fori = 1, 2, 3, and hence there exist vectors A; such that & x A; = V;. Then,
we have

curl (%H(nx -E)Ai) =hnx-&)¢ x A; =h(nx -&)V;,

so that (4.3) is satisfied for ®,,(x) = %H (nx-£)A, where A is the matrix with rows
A;. It follows that ||®,||L~@) — 0 asn — o0o. As a further remark, observe that
U, (and thus also ®,) can be taken smooth by means of a mollification of # with a
mollification parameter of size asymptotically 1/n2.

For§ > O let now ns € C SO(Q) be a cutoff function such that 0 < ns < 1 and
ns = 1 for all x € Q for which dist(x, 02) > §. Then, by the product rule,

C
InsUn — curl(ns®,) || L) < Clinslict 1 PrllLe@) < E”(Dn”LOO(Q)a 4.4)

so that by choosing, say, § = 8(n) = [|®, |/ g, We can make the left hand side

of (4.4) arbitrarily small by choosing » sufficiently large. Thus, choosing U (x) =
curl(5(ng) Pn,) for a sufficiently large ng, we see that U is as desired: Indeed, 1)
follows from the fact that U is a curl, the continuity and boundary values follow
by construction; iii) is an immediate consequence of (4.4) and the fact that nsU,
takes values in K¢ for every x € §; properties ii) and iv) are both implied by the
observation that the sequence (curl(ns(;,)®,)), is uniformly bounded in L* and
generates v in the sense of Young measures (cf., e.g. [22, Chapter 3]).

For the induction step, we use the hypothesis that the lemma be true for lami-
nates of order n, and consider a laminate v of order n 4+ 1, namely v = Z?:ll AU,
where ();, U;); satisfies the H,1-condition. Define a laminate of second order by

V= An+100,,; + (I = Aut1)8p

where U := ZZ%I—;MA[,]I Using Definition 2.3, it is not hard to see that rank(U, 1 —
U) < 2 and therefore 7 is a rank-2 laminate of second order (we omit the conceiv-
able case that U, = U, which is trivial). We may hence find an approximating
map U for v with precision € exactly as in the induction basis (observe that the
expectation of v is not necessarily zero, which does not matter for our construction
however). By construction, the set § = {x € @ : U(x) = U} is Lipschitz and

we may assume that % — 3%, Ai| < €. By the induction hypothesis together

with Definition 2.3, there exists a map U’ on § which approximates the measure
i1 Midy;

By v with precision €. Moreover, U’ = U on the set {x € S :dist(x, 05) < 8}
=17
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for some § > 0. Hence the map defined by

Uto) = I{/(x) %fxeS
Ux) ifxeQ\S

is smooth and satisfies the requirements of the lemma.

Step 2. As a next step, consider a possibly non-homogeneous measure (vy),, whose
expectation v is however still assumed to be identically zero. This case can be
treated as usual by approximating v by a piecewise homogeneous measure and ap-
plying Step 1 to each piece. For details see e.g. Section 4.9 in [22]. Observe that,
in this step, we may even allow K to depend on x € €2 (in a measurable fashion).

Step 3. Let now (vy), be of full generality as assumed in the Lemma. Consider the
shifted measure ., defined by duality via

/ h(z)dux(z)=/ h(z — vx)dvx(2)
Rdxd Rdxd

for ae. x € Q and every test function h € Cp(R4*). Then one sees easily
that p, is still a rank-2 laminate, and moreover for its expectation [, we have
iy =0 forae.x € Q. Applying Step 2 to u with K replaced by K — v, (cf. the
last observation in Step 2) yields an approximating map W for . One can then
easily check that U := W 4 v approximates v in the sense of the lemma. 0

5. Geometry of the nonlinear constraint

5.1. Proof of Lemma 3.2

In this subsection we prove the geometric Lemma 3.2.

Proof. Let U be as in the statement of the lemma. As usual, we identify it with the
triplet (m, v, w) of its row vectors, so by assumption,m = v = 0 and |w| > 1. We
split (0, 0, w) into

1 1
0,0, w) = 3 (—w, —w, w) + 3 (w, w, w).

If we call the matrices correponding to the two triplets on the right hand side U_
and U, respectively, we first observe that U_ and U are rank-2 connected since
(U- — Us)es = 0. Secondly, U; € K¢ for any C such that C > |w| (recall that
B(1) =1 by Remark 2.2).

Next, let us further decompose U_. We make the ansatz

1 1
(—w, —w, w) = E(plvl, v, B(p1)vr) + E(pzvz, v2, B(p2)v2) 5.1
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with
v =w, vy =-—3w. 5.2)

Then clearly (5.1) is a rank-2 decomposition (in fact even rank-1), and (5.1) and
(5.2) result in the conditions

—p1+3p2=2
—B(p1) +3B(p2) = —2.
Let us show that these equations can be satisfied thanks to the strong convexity

assumption on . Indeed, suppose —p; + 302 = 2. Then, using Proposition 2.1,
we calculate

(5.3)

1 3
—B(p1) +3B(p2) =2 <—§ﬁ(p1) + zﬂ(pz))

1 3 3
<28(—= “p2 ) = 2= p1 — po? (54)
<28 ( 5P + 2,02> K4|,01 02|

2 3| B
=2— —K — .
5 £1 — P2

Finally, the equation —p; 4+ 305 = 2 can be rewritten as p; — pp = 2p2 — 2, and
therefore by (5.4) we can achieve (5.3) by choosing p» > 1 sufficiently large and
then setting p; = 3p2 —2 > 1.

Since, with this choice of pj, p2, the triplets (pjvy, vi, B (01)v1) and
(p2v2, V2, B(p2)v2) are in K¢ for a suitable C, the proof is finished. In partic-
ular, the estimate for C in the statement of the lemma follows directly from our
construction. O

5.2. Proof of Lemma 3.3
We finally prove Lemma 3.3.

Proof. As usual we denote by (m, v, w) the rows of the matrix U. We proceed in
five steps:

Step 1. Suppose the vectors (m, v, w) are collinear, so that there exist real numbers
a, ¥ such that m = av and w = yv. Note that if §' is sufficiently small, then
dist(U, K¢) < &' implies

C+€<|v|<C+€. 5.5)

Note that the meaning of “sufficiently small” here can be understood to depend only
on € and C. We want to find a decomposition using the ansatz

(m, v, w) = A(my, vy, wy) + (1 — A)(my, v2, w2),
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where v1 = t1v and v, = 1ov. Clearly, this defines a rank-2 (even rank-1) decom-
position regardless of the values of A, 7| and 1. The requirement that (m1, vy, wy)
and (m», v, wy) lie in the set K¢ then leads to the requirement that there exist
P1, p2 > 0 such that

A+ 0= =1
Atipr+ (1 =M =« (5.6)
At Blen) + (1 —1)nB(2) = .

If it happens that y = () + 1 for some n > 0, we set 71 = 75 = 1 so that the first
equation of (5.6) is automatically satisfied and the other two equations become

M1+ —-2p=«a
AB(p1) + (1 —1)B(p2) = B(a) + 1.

(5.7

By the first of these equations and the strong convexity of 8, we have

A1) + (1 = MB(2) = Bla) +ih(1 = 1) p1 — p2|*.

Therefore, it is possible to find functions A (1), p1(17), and p2(n7), depending on B
and «, that are continuous in 1 and satisfy A(0) = 1, p1(0) = p2(0) = « such
that (5.7) is satisfied for every n > 0. Since, if dist(U, K¢) < 8’, we can make n
arbitrarily small by choosing 8 sufficiently small (depending only on C, f, and 1),
we can ensure

< p1, <C+e
Cte P1, P2

for 8’ small enough. Together with (5.5) we conclude that
(mi, v, wi), (M2, v2, w2) € Kce.

Thus we have established (3.5) and (3.7).
Next, suppose y = f(a) — n for some n > 0. Then, in (5.6) we choose
71 = (2 —X)/A and 7o = —1 to eliminate the first equation and arrive at

Atpr— (1= =«
AtiB(p1) — (1 =1)B(p2) = B(@) — 1.

(5.8)

Then, by Proposition 2.1 (replacing A by —(1 — A), x; by pz and x» by p; and
keeping in mind A7y — (1 — A) = 1), we have

A1) — (1= MB(p2) < Ble) — k(2 — 1)1 —W)lp1 — p2|*.

Assertions (3.5) and (3.7) then follow by the same arguments as above, observing
that again n = 0 corresponds to A = 1, p; = pp = «. This completes Step 1.
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Notice again that 8’ > 0 constructed in Step 1 depends on €, 8, and C , but not
onU,orC.

Step 2. Suppose now that m and v are parallel, that is, there exists a real number «
such that m = av. (We are no longer assuming that w be parallel with m and v.)
Again, we wish to represent (m, v, w) as a rank-2 combination of two triplets,

(m, v, w) = A(my, vy, wy) + (1 — A)(ma, v2, w2),

where m;, v;, w; are collinear (i = 1, 2), so that we can proceed as in Step 1. To
this end, take the ansatz m; = av;, w; = p;v;,and set A = 1/2:

vi+v =2v
av] + avy = 2av 5.9
miv1 + (v = 2w.

First, clearly (m2, vo, wy) — (m1, vy, wy) has rank at most 2 with this ansatz. Sec-
ondly, if v; and v, are chosen linearly independent and in the plane spanned by v
and w, then they form a basis of this subspace and therefore (5.9) can be solved (if
w and v are already parallel, it can be trivially solved). More specifically, if n > 0,
then by choosing 8” > 0 small enough (depending only on C, B, and 1) we can
ensure that dist(U, K¢) < §” implies |w — B(a)v| < n. When w = B(a)v exactly,
we can simply set vi = vp = v and w1 = up = B(a). Therefore, there exist con-
tinuous maps v; (w), u; (w) (i = 1, 2) depending on «, 8 such that v; (B(x)v) = v
and p; (B(a)v) = B(a) and such that (5.9) is satisfied for any w. It follows that, by
choosing §” > 0 sufficiently small, dist(U, K¢) < 8" guarantees

dist((m;, vi, wi), Kc) < 8" (i =1,2)

for the number & established in Step 1. We may therefore decompose each
(m;, v;, w;) further as in Step 1, which yields a rank-2 decomposition of (m, v, w)
into (at most) four triplets in K¢, each satisfying (3.5), (3.6). Note again that §”
depends only on C,B,ande.

Step 3. Consider now a general triplet (m, v, w). We want to decompose (m, v, w)
into two triplets along rank-2 lines,

(m, v, w) = A(my, vy, wy) + (1 — L) (ma, v2, w2),

such that there exist a1, oy such that m; = ajvy, my = vy, so that Step 2 can
be applied to both (m;, v;, w;) individually. We take the ansatz A = 1/2, w; =
wy = w (thereby ensuring our decomposition runs along a rank-2 line), to obtain
the equations

v +vp =2v

a1V + apvy = 2m.
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The exact same reasoning as in Step 2 then yields a § > 0 depending only on C, 8,
and € such that dist((m, v, w), K¢) < § ensures that

dist((m;, vi, wi), Kc) < 8" (i =1,2),
where §” is the number from Step 2.

Step 4. So far we have produced § > 0 such that the assertions of Lemma 3.3 are
true provided dist(U, K¢) < §. Let now U be such that only dist(U, Kél") < 6. By
assumption and the definition of the rank-2 lamination convex hull (Definition 2.4),
U can be written as

n n
U= X;AiUi +U = Z]:Ai(Ui +0),
1= 1=

where |ﬁ | < &, the family (A;, U;) satisfies the H,-condition, Elnd Ui e Kec (i =
1, ..., n). But for every i, we can now apply Steps 1-3 to U; + U, which completes
the proof of Lemma 3.3 modulo the estimate (3.6).

Step 5. It remains to exhibit a function & that renders (3.6) correct. To this end,
recall that the A; and U; which we constructed in the previous steps depended solely
on U and B, so that in particular the left hand side of (3.6) is independent of C.
Moreover, if U € K & our construction leaves U unchanged, so that the left hand
side of (3.6), considered as a function of U (with B fixed), is zero on K. The
last observation needed is that, by construction, the left hand side "/, A;|U; — U|
depends on U continuously in a §-neighborhood of KZ°.

The distance function dist(U, K ) is of course zero on K and positive else-
where (since K is compact). Therefore, we may define

n
h(r)=rrgx{2x,-|U,-—U|},
toli=1

where we set U, = {U € R¥>3 : dist(U, Kz) = t}. Again we considered the left
hand side of (3.6) as a continuous function of U. We may further assume 4 to be
strictly increasing by choosing it larger if necessary.

Then, by definition of & we have

n
D XU = Ul < h(dist(U, Kg)) < h (dist(U, K¢))
i=1

forany C < C ,since then K¢, C K, c- The proof is thus complete. O
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