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Homotopy groups of free group character varieties

CARLOS FLORENTINO, SEAN LAWTON AND DANIEL RAMRAS

Abstract. Let G be a connected, complex reductive Lie group with maximal
compact subgroup K , and let Xr denote the moduli space of G– or K–valued
representations of a rank-r free group. In this article we develop methods for
studying the low-dimensional homotopy groups of these spaces and of their sub-
spaces Xirrr of irreducible representations.

Our main result is that when G isGLn(C) or SLn(C), the second homotopy
group ofXr is trivial. The proof depends on a new general position-type result in a
singular setting. This result is proven in the Appendix and may be of independent
interest.

We also obtain new information regarding the homotopy groups of the sub-
spaces Xirrr . Recent work of Biswas and Lawton determined ⇡1(Xr ) for general
G, and we describe ⇡1(Xirrr ). Specializing to the case G = GLn(C), we explicitly
compute the homotopy groups of the smooth locus Xsmr = Xirrr in a large range
of dimensions, finding that they exhibit Bott Periodicity.

As a further application of our methods (and in particular our general po-
sition result) we obtain new results regarding centralizers of subgroups of G and
K , motivated by a question of Sikora.

Additionally, we use work of Richardson to solve a conjecture of Florentino–
Lawton about the singular locus of Xr , and we give a topological proof that for
G = GLn(C) or G = SLn(C), the space Xr is not a rational Poincaré Duality
Space for r > 4 and n = 2.

Mathematics Subject Classification (2010): 14B05 (primary); 14D20, 14L30,
55U10, 14L24, 55Q05 (secondary).

1. Introduction

Given an irreducible singular algebraic variety X with singular set X sing, what is
the relationship between the topology of X and that of its smooth locus X sm =

X \ X sing? In the case of a smooth manifold M and a smooth submanifold N ⇢ M
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of codimension c, transversality shows that the inclusion M \ N ,! M is (c � 1)-
connected (that is, an isomorphism on homotopy groups ⇡i for i = 0, . . . , c � 2,
and surjective on ⇡c�1). However, the corresponding statement for the inclusion
X sm ,! X fails in general.

In this article, we give general local conditions guaranteeing that the inclusion
X sm ,! X is 2–connected, and we prove that these conditions are satisfied for
certain character varieties. We go on to show that in some cases, this inclusion is not
3–connected despite the singular locus lying in codimension at least 4, illustrating
the failure mentioned above. This involves a calculation of the second homotopy
groups of these character varieties and of their smooth loci, and also leads to new
results on their homology.

Our main result, which is proven using these ideas, is as follows:

Theorem (Theorem 5.12). Let Gn be GLn(C), SLn(C), SUn or Un . Then
⇡2(Xr (Gn)) = 0, where Xr (Gn) is the character variety associated to the free
group Fr of rank r and the group Gn .

While character varieties of free groups and their topology have been studied
extensively, previous computational results have focused on fundamental groups
[2, 3, 34] or on rational homology in the special case G = SU2 [1]. Theorem 5.12
appears to be the first systematic calculation of higher homotopy (excepting Stein-
berg’s results for the case of G//G; see Remark 5.17).

We now describe the varieties studied in this paper. Consider a rank-r free
group Fr , a Lie group G, and the set of group homomorphisms Hom(Fr ,G). Being
naturally in bijection with the Cartesian product Gr , the set Hom(Fr ,G) has a nat-
ural smooth manifold structure. The group G acts analytically on Hom(Fr ,G) by
conjugation, but the orbit space, Hom(Fr ,G)/G, is not generally Hausdorff when
G is not compact. We consider instead the subspace of closed orbits, also called
the polystable locus and denoted by Hom(Fr ,G)⇤ (it is generally not a subvari-
ety, only a constructible set), and we study the corresponding quotient Xr (G) :=

Hom(Fr ,G)⇤/G, often referred to as the G-character variety of Fr .
When G is compact, Xr (G) coincides with the orbit space Hom(Fr ,G)/G,

but when G is a connected, complex reductive affine algebraic group (for short,
a connected reductive C–group), Xr (G) is homeomorphic to the (affine) Geomet-
ric Invariant Theory (GIT) quotient Hom(Fr ,G)//G equipped with the Euclidean
topology (for a detailed proof, see [22, Theorem 2.1]).1 Despite its name, it is not al-
ways an algebraic set nor does it always parametrize traditional characters, although
whenever G is a connected reductiveC–group, GIT impliesXr (G) is an irreducible
algebraic set (a variety), and for some classical groups, it does parametrize charac-
ters (see [48], or Appendix A in [19]). We note that there is a deformation retraction
from the non-Hausdorff space Hom(Fr ,G)/G to Xr (G) (see Proposition 3.4), so
that our results on homotopy and homology apply to Hom(Fr ,G)/G as well.

Now let G be a connected reductive C-group. Recall that an affine algebraic

1 In fact, Xr (G) is the categorical quotient in the category of affine varieties, Hausdorff spaces or
complex analytic varieties [35, 36].
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group is reductive if and only if its radical is a torus. It is well known that an affine
algebraicC–group is reductive if and only if it is the complexification of a maximal
compact subgroup K < G. The derived subgroup DG = [G,G] is the maximal
semisimple subgroup of G, and is a connected reductive C–group with maximal
compact subgroup DK = [K , K ].

Since Xr (G) is an irreducible algebraic set, it is path connected, and its zeroth
homotopy group, ⇡0(Xr (G)), is trivial. In [2], the fundamental group ⇡1(Xr (G))
is shown to be isomorphic to ⇡1(G/DG)r . By [18], these results remain true when
G is instead a compact connected Lie group.

In this paper we begin the study of higher homotopy groups of these mod-
uli spaces and of their irreducible loci Xr (G)irr. The irreducible locus Xr (G)irr (a
representation ⇢ : Fr ! G is irreducible if its image ⇢(Fr ) is not contained in
a proper parabolic subgroup of G) also has a natural GIT interpretation. Indeed,
⇢ is irreducible if and only if it is a GIT stable point of the G-action on the rep-
resentation space (see [17]). Therefore, Xr (G)irr is actually the moduli space of
stable representations2 of Fr into G. Such moduli spaces have been studied ex-
tensively for closed surface groups (analogous representation spaces where Fr is
replaced by ⇡1(X) or a certain central extension, for a compact Riemann surface
X). Higher homotopy groups of these spaces were first studied in [7, 12], using
gauge theoretic methods. For G = GLn(C),SLn(C),SUn , or Un we establish a
periodicity result for ⇡⇤Xr (G)irr (Theorem 5.4) analogous to [7, Theorem 4.2(3)]
and [12, Theorem 3.1]. All three of these results establish isomorphisms between
the homotopy groups of a moduli space of stable bundles and the homotopy of an
associated gauge group. In the case G = Un , Lawson [33] showed that the stabi-
lized character variety colimn!1 Xr (Un) is homotopy equivalent to (S1)r , but his
methods do not give information about the spaces Xr (Un) themselves.

We begin in Section 2 with general relationships between Xr (G), Xr (DG),
Xr (K ), Xr (DK ) and their various loci: irreducible, reducible, good, smooth, and
singular. In Section 3, we use a result from [3] to show that

⇡k (Xr (G)) ⇠
= ⇡k (Xr (DG)) ⇠

= ⇡k (Xr (K )) ⇠
= ⇡k (Xr (DK )) ,

for k > 2. Next, Section 4 shows that

⇡1
⇣
Xr (G)irr

⌘
⇠
= ⇡1(G/DG)r ⇥ ⇡1(Xr (DG)irr),

and that ⇡1(Xr (DG)irr) is a quotient of the finite Abelian group ⇡1(DG)r .
In Section 5, we specialize to the case where G = GLn,SLn,Un , or SUn .

In these cases, results in [20] identify the smooth locus Xr (G)sm with the locus of
irreducible characters. After a close analysis of the reducible locus, we prove that
⇡2(Xr (G)sm) is isomorphic to Z/nZ. We use Bott Periodicity for G to calculate
⇡k(Xr (G)sm) in a range of dimensions. Going further, we show that the natural map

2 Here we use the slight generalization of the notion of stability, in affine GIT, introduced by
Richardson [45].
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Xr (G)sm ,! Xr (G) is 2-connected, and we deduce from this that ⇡2(Xr (G)) = 0
for all r .

Our connectivity result is based on the intuition that maps from 2-spheres can
be homotoped off of the singular locus, due to its high codimension. However, the
ambient space Xr (G) is singular, so we need a singular analogue of this general
position argument. Such a result is stated in Proposition 5.8 and proved in the
Appendix, and may be of independent interest. While the hypotheses of this result
do not explicitly refer to codimension, we use codimension arguments, together
with the Conner Conjecture (as proven by Oliver [42]) to verify the hypotheses for
the case of Xr (G).

As an application of our topological methods to the the study of Lie groups
(Section 6), we show that if ⇡1(DG) 6= 1, there exists a finitely generated sub-
group H 6 G with disconnected PG-centralizer. Sikora asked whether this is
always true for connected reductive C-groups (excepting SLn and GLn) with the
additional assumption that H is irreducible [47, Question 19]. Our topological ap-
proach provides a new viewpoint on the problem.

As our study of homotopy demands attention to the singular locus, in Section 7
we resolve a conjecture of Florentino-Lawton (see [20]) that states, in part, that the
reducible locus in Xr (G) is always singular for any reductive G (not just for SLn
or GLn). This relies on the work of Richardson (see [45]) concerning the case of
semisimple G. This further shows that whenever G does not have property CI (see
Section 7 for the definition) then the irreducible locus Xr (G)irr has a non-empty
orbifold singular locus (the only known CI groups are SLn and GLn , and many
others are known not to be CI).

In Section 8, we analyze the structure of the Poincaré polynomial of Xr (SU2)
(as computed in [1]), and give a new proof that these spaces are generally not man-
ifolds with boundary. This was first established using algebro-geometric arguments
in [20].3 In fact, we prove the stronger result that Xr (SU2) is generally not a ratio-
nal Poincaré Duality Space.
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2. Free group character varieties

In this section we collect some general facts about free group character varieties
that will be used in later sections. The reader may wish to skip this section and
refer back to it as needed in the sequel.

Let Fr = he1, . . . , er i be the free group on r generators e1, . . . , er , and let G
be either a connected reductiveC-group, or a connected compact Lie group.4 In this
setting G is always a linear algebraic group. As in the introduction DG = [G,G]

is the derived subgroup. Let PG be the quotient of G by its center Z(G). Then

G ⇠
= (DG ⇥ T )/F, (2.1)

where T 6 Z(G) is a central torus in G and the finite group F = DG \ T acts
diagonally on DG ⇥ T . As shown in [34], this implies

Xr (G) ⇠
= Xr (DG) ⇥Fr T r , (2.2)

where the notation on the right indicates that we mod out the diagonal action of
Fr on Xr (DG) ⇥ T r , with Fr acting by coordinate-wise multiplication on both
Xr (DG) and T r .

When G is a reductive C-group, we call a representation ⇢ 2 Hom(Fr ,G)
irreducible if the image ⇢(Fr ) is not contained in a proper parabolic subgroup of
G. By [47, Proposition 15], a representation ⇢ 2 Hom(Fr ,G) is irreducible if and
only if its stabilizer in PG is finite, which means that ⇢ is stable in the affine GIT
sense (see [17, Proposition 5.11]). We denote the set of irreducible representations
by Hom(Fr ,G)irr ⇢ Hom(Fr ,G), and its complement Hom(Fr ,G)red is the set of
reducible representations.5 As shown in [47], Hom(Fr ,G)red is an algebraic subset
of Hom(Fr ,G). If K is a connected compact Lie group with complexification G,
then Xr (K ) naturally embeds in Xr (G) by [21, Theorem 4.3]. We define the set of
irreducible representations to be Hom(Fr , K )irr = Hom(Fr , K ) \ Hom(Fr ,G)irr,
and similarly for reducibles; since K is a real algebraic subset of G, we see that
Hom(Fr , K )red is a real algebraic subset of Hom(Fr , K ).

If G is a reductive C-group, then ⇢ is completely reducible if for every proper
parabolic P containing ⇢(Fr ), there is a Levi subgroup L < P with ⇢(Fr ) <
L . (Note that irreducible representations are, vacuously, completely reducible.)
By [47], a representation ⇢ : Fr ! G is completely reducible if and only if it is
polystable (has a closed adjoint orbit), so the set Hom(Fr ,G)irr ⇢ Hom(Fr ,G) of
irreducibles lies inside the set Hom(Fr ,G)⇤ of closed orbits. LetXr (G)irr ⇢ Xr (G)
denote the conjugation quotient of Hom(Fr ,G)irr. Also, let Xr (G)red = Xr (G) �

Xr (G)irr be the reducible locus; it is a subvariety (see [47]). Since every completely
reducible representation has a closed orbit, we conclude that

Xr (G)red ⇠
=

⇣
Hom(Fr ,G)red \ Hom(Fr ,G)⇤

⌘
/G.

4 Given [10] we expect some of our results to generalize to the setting of non-compact real
reductive groups. See Conjecture 5.16 for example.
5 We note that when G is Abelian, Hom(Fr ,G)irr = Hom(Fr ,G).
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If G is either a connected reductive C-group or a connected compact Lie group,
then (following [31]) we define the good locus to be the subspace

Hom(Fr ,G)good ⇢ Hom(Fr ,G)irr

of representations whose PG-stabilizer is trivial, and we defineXr (G)good⇢ Xr (G)
to be the quotient Hom(Fr ,G)good/G.

When G is a reductive C-group, Xr (G) is an algebraic variety and we de-
fine Xr (G)sm := Xr (G) � Xr (G)sing, where Xr (G)sing is the subvariety of sin-
gular points. If K < G is a maximal compact subgroup, we define Xr (K )sing =

Xr (G)sing \ Xr (K ), and similarly for Xr (K )sm. As shown in [20] and more gen-
erally in [47], Xr (G)good is a submanifold of the complex manifold Xr (G)sm and
Xr (G)irr is an orbifold in Xr (G). Moreover, both Hom(Fr ,G)irr and
Hom(Fr ,G)good are Zariski open (non-empty for r > 2) subspaces of Gr , and
as such are smooth manifolds too. By [2], these latter spaces are in fact bundles
over the former:

Lemma 2.1 (Lemma 2.2 in [2]). Let G be a connected reductiveC-group (respec-
tively a connected compact Lie group). Then Hom(Fr ,G)good ! Xr (G)good is a
principal PG-bundle, and

Hom(Fr ,G)irr ! Xr (G)irr

is a PG-orbibundle in the étale topology (respectively the usual topology).

We note that [2, Lemma 2.2] refers only to the reductive case. The argument in
the compact case is the same; for the orbibundle statement one uses Proposition 2.5
below.

The isomorphism (2.1) implies that if ⇢ 2 Hom(Fr , DG), the adjoint orbits
{g⇢g�1

: g 2 DG} and {g⇢g�1
: g 2 G} coincide, and it follows that there are

natural inclusions Xr (DG) ,! Xr (G) and Xr (DG)irr ,! Xr (G)irr.

2.1. Stabilizers and irreducible representations in compact groups

In this section K will denote a compact, connected Lie group with complexification
G = KC. We will regard K as a subgroup of G. Recall that there exists a Cartan
decomposition

K ⇥ exp(p)
⇠
=

�! G, (2.3)
(k, exp(p)) 7! k exp(p), where p 6 Lie(G) is the (�1)-eigenspace of a Cartan
involution ✓ on Lie(G).

Lemma 2.2. Let G be a connected reductive C-group with maximal compact sub-
group K 6 G. Then for each subgroup H 6 K , the centralizer CG(H) defor-
mation retracts to CK (H). Moreover, the inclusion CK (H) ! CG(H) induces a
homotopy equivalence

CK (H)/Z(K )
'

�! CG(H)/Z(G).
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Proof. We claim that the map CG(H) ⇥ [0, 1] ! CG(H), (k exp(p), t) 7!

k exp((1 � t)p), is a deformation retraction onto CK (H). We need to prove that
for each t 2 [0, 1] and each k exp(p) 2 CG(H), we have k exp(tp) 2 CG(H) and
k = k exp(0) 2 CK (H).

First we check that if k exp(p) 2 CG(H) for some k 2 K , p 2 p, then
k 2 CK (H). Say h 2 H . We have

k exp(p)h exp(�p)k�1
= h,

so
k�1hk = exp(p)h exp(�p)h�1h = exp(p) exp(�ad(h)p)h.

Hence
k�1hkh�1 exp(ad(h)p) = exp(p).

But k�1hkh�1
2 K and exp(ad(h)p) 2 p (because the adjoint action of K fixes

the (�1)-eigenspace p of ✓), so by bijectivity of the Cartan decomposition map
(2.3), we must have k�1hkh�1

= 1 and exp(ad(h)p) = exp(p). Since h 2 H was
arbitrary, we conclude that k 2 CK (H).

Next, we must show that for each t 2 [0, 1] and each k 2 K , p 2 p with
k exp(p) 2 CG(H), we have k exp(tp) 2 CG(H). Fix t 2 [0, 1] and h 2 H .
The above computation shows that k 2 CK (H) and that exp(ad(h)p) = exp(p).
Since the exponential map is injective on p, we have ad(h)p = p, and hence
exp(tad(h)p) = exp(tp). Following the above computation in reverse, we have

exp(tp) = k�1hkh�1 exp(tad(h)p)

so
k�1hk = exp(tp) exp(�ad(h)tp)h = exp(tp)h exp(�tp)

and hence
h = k exp(tp)h exp(�tp)k�1,

showing that k exp(tp) 2 CG(H), as desired. It follows that the inclusion CK (H)
,!CG(H) is a homotopy equivalence. To see that the natural map f :CK (H)/Z(K )
! CG(H)/Z(G) is a homotopy equivalence, consider the commutative diagram,

Z(K )

✏✏

Z(K )

✏✏
CK (H)

' //

✏✏

CG(H)

✏✏
CK (H)/Z(K ) // CG(H)/Z(K ) // CG(H)/Z(G),

in which the composite of the bottom row is exactly f . The first two columns
in this diagram are (surjective) fibration sequences, so we conclude that the first
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map in the bottom row is a homotopy equivalence. The kernel of the homomor-
phism CG(H)/Z(K ) ! CG(H)/Z(G) is Z(G)/Z(K ), which is contractible since
Z(K ) is the maximal compact subgroup of Z(G). Therefore CG(H)/Z(K ) !

CG(H)/Z(G) is a homotopy equivalence.

Note that the K -orbit of a representation ⇢ : Fr ! K is always closed, since
K is compact. In fact, the G-orbit of such a representation is also closed, as shown
in [18]; that is, K -valued representations in Hom(Fr ,G) are always polystable.
By [47, Theorem 30], polystability is equivalent to complete reducibility, which
yields the following result:

Lemma 2.3. If ⇢ : Fr ! K has image contained in a parabolic subgroup P < G,
then there exists a Levi subgroup L < P with ⇢(Fr ) < L . Moreover, ⇢ is reducible
if and only if there exists a parabolic subgroup P < G and a Levi subgroup L < P
such that ⇢(Fr ) < L .

Lemma 2.4. If ⇢ : Fr ! G is polystable, then StabG(⇢) is a (not necessarily
connected) reductive C-group. In particular, for every representation ⇢ : Fr ! K ,
StabG(⇢) is a reductive C-group.

Proof. By Matsushima’s Theorem, a subgroup H of a reductiveC-group G is itself
reductive if and only if G/H is an affine algebraic variety. Since G/StabG(⇢) ⇠

=

O⇢ , where O⇢ ⇢ Gr is the adjoint orbit of ⇢, we see that O⇢ is an affine variety
whenever it is Zariski closed. However, as observed in [22, Section 2], since O⇢ is
the image of an algebraic map, it is constructible, so O⇢ is closed in the analytic
topology on Gr if and only if it is Zariski closed.

Proposition 2.5. A representation ⇢ : Fr ! K is irreducible if and only if the
PK -stabilizer of ⇢ is finite.

Proof. Irreducibility means that the PG-stabilizer StabG(⇢)/Z(G) is finite (see
[47], and [17]). The kernel of the composition

StabK (⇢) �! StabG(⇢) �! StabG(⇢)/Z(G),

is precisely StabK (⇢) \ Z(G) = Z(K ), so StabK (⇢)/Z(K ) is a subgroup of the
finite group StabG(⇢)/Z(G) (in fact, the two are equal by Lemma 2.2).

In the other direction, say StabK (⇢)/Z(K ) is finite. By Lemma 2.2,

StabG(⇢)/Z(G) = CG(⇢(Fr ))/Z(G) ' CK (⇢(Fr ))/Z(K ) = StabK (⇢)/Z(K ),

which implies that the identity component C of StabG(⇢)/Z(G) is contractible.
By Lemma 2.4, StabG(⇢) is a reductive C-group, and the same is true of C (since
connected reductive C-groups are characterized as affine algebraic groups over C
whose radical is a torus). Now, C deformation retracts to its maximal compact
subgroup H < C , which is a closed manifold. But H is contractible, so H =

{1}, and since C is the complexification of H , we have C = {1} as well. Hence
StabG(⇢)/Z(G) is finite, and by [47], we conclude that ⇢ is irreducible.
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Remark 2.6. Note that the last three results are valid for representations of any
finitely generated group 0 replacing Fr , since the respective proofs work in this
more general case.

2.2. The reducible locus

In this section we study the reducible locus Hom(Fr ,G)red. By [47, Proposition
27], this is an algebraic subset of Hom(Fr ,G) and we begin with an analysis of its
irreducible components.

Lemma 2.7. Let G be a connected reductiveC-group. For a proper parabolic P <
G, define HP := [g2GHom(Fr , gPg�1). Then HP and HP//G are irreducible
algebraic sets, and for maximal P , these sets are exactly the irreducible components
of Hom(Fr ,G)red and Xr (G)red (respectively).

Proof. First note that HP is an algebraic set itself, again by [47, Proposition 27], and
moreover the map Hom(Fr , P)⇥G ! HP given by (⇢, g) 7! g⇢g�1 is a surjective
algebraic map from an irreducible variety to an algebraic set. In general, a surjective
morphism has the property that if the inverse image of an algebraic set is irreducible,
then the original set was too. Therefore, we conclude that HP is irreducible. This
implies HP//G is irreducible. Conversely, the reducible locus Hom(Fr ,G)red is the
union of the irreducible subsets HP , so its irreducible components are the maximal
elements of the collection {HP}P (ordered by inclusion), and these correspond to
the maximal parabolics. The situation for Xr (G)red is analogous.

The next lemma is a technical result that allows us to compute the codimension
of the reducible locus.

Lemma 2.8. Let G be a connected reductive C-group, and fix a maximal compact
subgroup K < G. Then for every parabolic subgroup P 6 G, we have K P = G.
Consequently, the set

{H 6 K : H = K \ P for some parabolic subgroup P 6 G}

contains only finitely many K -conjugacy classes of subgroups.

Proof. The Iwasawa decomposition of DG implies that DG = (DK )B0 for some
Borel subgroup B0 < DG (see [9]). Let B < G be a Borel subgroup containing B0.
We have

G = (DG)(Z(G)) = (DK )B0(Z(G)) = (DK )B

(since B0, Z(G) < B), so G = K B. Now let P < G be parabolic. Recall that
P contains a Borel subgroup of G, and all Borel subgroups of G are conjugate, so
gBg�1 < P for some g 2 G. Since G = K B, we can write g = kb for some
k 2 K , b 2 B, and now

gBg�1
= kbBb�1k�1

= kBk�1.
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Hence
K P � KgBg�1

= KkBk�1
= K Bk�1

= G,

as claimed.
It is well known that there are only finitely many G-conjugacy classes of para-

bolic subgroups in G (see [5]). In fact, if P, Q < G are parabolic and conjugate
in G, then we have gPg�1

= Q for some g 2 G. Since G = K P , we can write
g = kp for some k 2 K and some p 2 P , and we have

Q = gPg�1
= kpPp�1k�1

= kPk�1.

Hence there are only finitely many K -conjugacy classes of parabolic subgroups in
G, and the final statement of the lemma follows because for any k 2 K we have
k(P \ K )k�1

= kPk�1
\ K .

Our main results will rely crucially on the fact that the reducible locus has suffi-
ciently large codimension in the representation space. Recall that the rank Rank(G)
of a complex (respectively, compact) reductive Lie group G is the dimension over
C (respectively, over R) of a maximal torus.

Theorem 2.9. Let G be a connected reductive C-group, or a connected compact
Lie group. Then Hom(Fr ,G)red has real codimension at least 4 when r > 3, and
also when r > 2 and Rank(DG) > 2.

Proof. We first handle the complex case. In general, Hom(Fr,G)red=[PHom(Fr,P)
where P runs through all proper parabolic subgroups of G. Up to conjugation there
are only finitely many such P’s. So the dimension is determined by one of the
maximal dimensional proper parabolics. Call one of these Pmax. Recall that HPmax
is the image of the mapping q : G ⇥ Hom(Fr , Pmax) ! Hom(Fr ,G) given by
(g, ⇢) 7! g⇢g�1, and HP is an irreducible algebraic set by Lemma 2.7. The mor-
phism q factors through the quotient set (G ⇥ Hom(Fr , Pmax))/Pmax, where the
action of Pmax on G⇥Hom(Fr , P) is given by p · (g, ⇢) = (gp�1, p⇢p�1). There-
fore, every fiber of q contains a copy of Pmax (up to isomorphism); this implies
dimCF > dimC P for every fiber F of q.6 By the Fiber Dimension Theorem
(see [46]), we conclude there exists a (generic) fiber F such that:

dimC
⇣
Hom(Fr ,G)red

⌘
= dimC

�
HPmax

�
= r(dimC Pmax) + dimC G � dimCF
6 (r � 1) dimC(Pmax) + dimC G.

6 The fiber is equal to Pmax whenever ⇢(Fr ) is a Zariski dense subgroup of Pmax, since the nor-
malizer of Pmax in G is Pmax itself. And ⇢(Fr ) is generically dense when r > max{2, dim P/L}

where L is a Levi subgroup, since two elements generically generate a dense subgroup in a com-
pact Lie group, and consequently two elements generically generate a Zariski dense subgroup in
a reductive group.



HOMOTOPY GROUPS OF FREE GROUP CHARACTER VARIETIES 153

Therefore,

codimC
⇣
Hom(Fr ,G)red

⌘
> r(dimC G) � [(r � 1) dimC (Pmax) + dimC(G)]
= (r � 1) (dimC(G) � dimC (Pmax)) .

So for r > 3, we have at least complex codimension 2 (and hence real codimension
at least 4) in general.

Now suppose Rank(DG) > 2 and let P < G be a proper parabolic subgroup.
Then the codimension of P in G is the dimension of G/P , which is isomorphic to
the flag variety DG/(P \ DG). The flag variety has Schubert cells (which are CW
cells) given by B-orbits of the left translation action of DG on DG/(P \ DG),
where B ⇢ P is a Borel subgroup of DG. These cells necessarily contain a max-
imal torus T of DG where T ⇢ B (by the Bruhat decomposition; see [9]). Since
Rank(DG) > 2, we have dimC(T ) > 2 and so the Schubert cells and consequently
the flag variety have dimension at least 2. We conclude the complex codimension of
P in G is at least 2, which implies (by the above inequalities) that the complex codi-
mension of Hom(Fr ,G)red is at least 2 when r > 2 (and again the real codimension
is at least 4).

Next, consider the case in which G is compact. Then

Hom(Fr ,G)red =

[
P
Hom(Fr , P \ G),

where P runs through all proper parabolic subgroups of the complexification GC.
Lemma 2.8 implies that the dimension is determined by one of the maximal dimen-
sional proper parabolics in GC; again call it Pmax. A similar argument as above,
where we use Hardt’s Theorem (see [26]) instead of the Fiber Dimension Theorem,
shows that

codimR
⇣
Hom(Fr ,G)red

⌘
> (r � 1) (dimR(G) � dimR (Pmax \ G)) .

By Lemma 2.8 we have GC/P = GP/P ⇠
= G/(P \ G) for every parabolic

P 6 GC. Therefore, since the complex dimension of GC/P is at least 1, the real
codimension of P \ G in G is at least 2. And as shown above, when Rank(DG) =

Rank(D(GC)) > 2, the real codimension of P \ G in G is at least 4.
Hence when r > 3, and also when r > 2 and Rank(DG) > 2, the real

codimension of Hom(Fr ,G)red is at least 4.

2.3. Global description of loci

We now show how these various loci relate to each other. In this section, unless oth-
erwise noted, G will denote either a connected compact Lie group, or a connected
reductive C-group.
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The center Z(G)r < Gr acts on Hom(Fr ,G) by setting ⇢ · z to be the rep-
resentation (⇢ · z)(ei ) = ⇢(ei )zi , where z = (z1, . . . , zr ). This action descends
to an action on Xr (G) since it commutes with the adjoint action of G and pre-
serves the polystable locus in Hom(Fr ,G). Consider a property P such that if
⇢ 2 Hom(Fr ,G) satisfies P, then for all g 2 G and z 2 Z(G)r , both g⇢g�1 and
⇢ · z satisfy P. Let Hom(Fr ,G)P = {⇢ : ⇢ satisfies P} and let Xr (G)P ⇢ Xr (G)
denote the image of Hom(Fr ,G)P under the quotient map Hom(Fr ,G) ! Xr (G).
Let Xr (DG)P = Xr (DG) \ Xr (G)P.

The following result extends the free group case of [3, Lemma 2.3], since when
P is vacuous, we have Xr (G)P = Xr (G) and Xr (DG)P = Xr (DG).

Theorem 2.10. Let T be a maximal central torus in G, and set F = T \DG. Then
Xr (G)P ⇠

= Xr (DG)P ⇥Fr T r (in the notation from (2.2)), and

Xr (DG)P �! Xr (G)P �! Xr (G/DG) (2.4)

is a Serre fibration sequence.

Proof. We have G ⇠
= (DG ⇥ T )/F as in (2.1). The product fibration sequence

Xr (DG)P ! Xr (DG)P ⇥ T r ! T r

admits a free action of Fr 6 Z(G)r on the base and total space, making the pro-
jection equivariant: on the total space, the action is f · [[⇢], t] = [[⇢] · f �1, f t]
and on the base it is simply left multiplication. By [3, Corollary A.2], there is
an induced fibration sequence after passing to the quotient spaces, and the fiber is
homeomorphic to Xr (DG)P:

Xr (DG)P �! Xr (DG)P ⇥Fr T r ! Xr (G/DG) ⇠
= T r/Fr .

We claim that the image of the map

Xr (DG)P ⇥Fr T r �! Xr (G), (2.5)

given by [[⇢], t] 7! [⇢ · t], lies in Xr (G)P. This follows since if ⇢ satisfies P, then
by assumption so does ⇢ · z for any z 2 Z(G)r , and since T ⇢ Z(G) we have
t 2 Z(G)r .

It remains to check that every point in Xr (G)P is in the image of (2.5). Say
[⇢] 2 Xr (G)P, and write ⇢(ei ) = ⇢0(ei )ti for some ⇢0(ei ) 2 DG and ti 2 T . Then,
setting t = (t1, . . . , tr ), we have [[⇢0

], t] 7! [⇢], and [⇢0
] satisfies P since ⇢ satisfies

P and [⇢0
] = [⇢] · t�1.

This completes the proof that Xr (G)P ⇠
= Xr (DG)P ⇥Fr T r , and also shows

that (2.4) is a Serre fibration.

Corollary 2.11. Xr (G) ⇠
= Xr (DG) ⇥Fr T r , Xr (G)irr ⇠

= Xr (DG)irr ⇥Fr T r ,
Xr (G)red ⇠

= Xr (DG)red ⇥Fr T r , and Xr (G)good ⇠
= Xr (DG)good ⇥Fr T r .
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Proof. By Theorem 2.10, we just need to check that each of these properties is
invariant under conjugation and under multiplication by central elements. But the
above properties are characterized in terms of stabilizers (see Proposition 2.5 in
particular), and these operations do not change the stabilizers. Note that for these
properties, Xr (DG)P (as defined above) agrees with the intrinsic notion.

We next generalize [20, Corollary 2.6, Corollary 2.7] and thereby reduce the
study of singularities inXr (G) for a general reductiveC-group G to the semisimple
case. Let X sing denote the singular locus of an algebraic variety X and let X sm =

X � X sing be the smooth locus.

Proposition 2.12. Let G be a connected, reductive C-group, and let T be a maxi-
mal central torus in G. Then Xr (G) and Xr (DG) ⇥ T r are étale equivalent. Con-
sequently, Xr (G)sing ⇠

= Xr (DG)sing ⇥Fr T r and Xr (G)sm ⇠
= Xr (DG)sm ⇥Fr T r .

Proof. By Corollary 2.11, we have Xr (G) ⇠
= Xr (DG) ⇥Fr T r , where Fr is acting

freely. Since DGr
⇥T r and Gr are smooth, they are normal. This implies (see [15])

that (DGr
⇥T r )//DG = Xr (DG)⇥T r is also normal. However, the GIT projection

Xr (DG) ⇥ T r ! Xr (DG) ⇥Fr T r

is then étale because Fr is finite and acts freely (see [15]), which completes the
proof that Xr (G) and Xr (DG) ⇥ T r are étale equivalent.

Next, since étale maps determine local isomorphisms (at both singularities and
smooth points), we immediately conclude (since T r is smooth) that Xr (G)sing ⇠

=

Xr (DG)sing ⇥Fr T r and Xr (G)sm ⇠
= Xr (DG)sm ⇥Fr T r , as required.

2.4. Local description of loci

We now note some local properties of Xr (G) that are important in the study of its
global topology.

An algebraic variety is irreducible if and only if there exists a path connected
Zariski open dense smooth subset (for a proof, see [11, Theorem 8.4]). SinceXr (G)
is normal this fact is also local, in the following sense.

When G is a connected reductive C-group, the variety Xr (G) is normal (since
it is a GIT quotient of the smooth, connected variety Gr [13, 46]). Mumford’s
topological version of Zariski’s main theorem [40, III.9] shows that for every point x
in a normal, affine variety X , and every neighborhood V of x in X (in the Euclidean
topology), there exists a neighborhood V 0

⇢ V such that V \X sm is path connected.
We now show that in the compact case, there are contractible neighborhoods a-

round certain reducibles that remain simply connected after removing the reducible
locus. When K = Un , this lemma actually applies to all reducibles, since by [43,
Lemma 4.3], every subgroup of Un has connected centralizer.

Lemma 2.13. Let K be a compact Lie group. Suppose that either r > 3, or
Rank(DK ) > 2 and r > 2. Let ⇢ 2 Hom(Fr , K ) be a representation such
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that Stab(⇢)/Z(K ) is path connected, where Stab(⇢) 6 K is the stabilizer of ⇢
under the adjoint action. Then for every neighborhood U ⇢ Xr (K ) containing
[⇢], there exists a contractible neighborhood V ⇢ U , with [⇢] 2 V , such that
V irr := V \ Xr (K )irr is simply connected.

Proof. Let K act by conjugation on Hom(Fr , K ) ⇠
= Kr , and choose a K -invariant

metric on the tangent bundle T (Hom(Fr , K )). Let

O⇢ ⇢ Hom(Fr , K )

denote the conjugation orbit of ⇢, and let T⇢(O⇢) ⇢ T⇢(Hom(Fr , K )) denote the
tangent space to the orbit at ⇢. Let

K ⇥Stab(⇢) D✏ = (K ⇥ D✏)/Stab(⇢),

where D✏ is the ball of radius ✏ in the orthogonal complement of T⇢(O⇢) inside
T⇢(Hom(Fr , K )) and the action is given by s · (k, x) = (ks�1, ad(s)x). Note that
K acts on K ⇥Stab(⇢) D✏ via multiplication on the left. By the Slice Theorem [25,
Theorem B.24], there exists an ✏ > 0 and a K -equivariant diffeomorphism

� : K ⇥Stab(⇢) D✏
⇠
=

�!
eV

onto a neighborhood eV of ⇢ in Hom(Fr , K ). By K -equivariance, this diffeomor-
phism descends to a homeomorphism from (K ⇥Stab(⇢) D✏)/K ⇠

= D✏/Stab(⇢) onto
a neighborhood V of [⇢] in Xr (K ). By shrinking ✏ if necessary, we may assume
that V ⇢ U .

We claim that V satisfies the desired properties. First, Stab(⇢) is a compact
Lie group, so D✏/Stab(⇢) is contractible by the Conner Conjecture (Oliver’s The-
orem) [42]. Next, we must show that V irr is simply connected. Let Dred✏ = {x 2

D✏ : �([1K , x]) 2 Hom(Fr , K )red}, where 1K is the identity element in K .
Define

(K ⇥Stab(⇢) D✏)red :=

n
[k, x] 2 K ⇥Stab(⇢) D✏ : �([k, x]) 2 Hom(Fr , K )red

o
.

We claim that the (real) codimension7 of Dred✏ in D✏ is the same as the codimension
of (K ⇥Stab(⇢) D✏)red in (K ⇥Stab(⇢) D✏). Since Hom(Fr , K )red is a K -invariant
subset of Hom(Fr , K ) and � is K -equivariant, we have

(K ⇥Stab(⇢) D✏)red = K ⇥Stab(⇢) Dred✏ ,

7 Since Hom(Fr , K )red is an algebraic subset of Hom(Fr , K ), it can be written as a union of
locally closed submanifolds (see [4]), and hence the same is true of Dred✏ and (K ⇥Stab(⇢) D✏)red;
the dimensions of these spaces then refer to the maximum dimension of one of these submani-
folds.
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and since Stab(⇢) acts freely on K ⇥ D✏ , we have

dimR(K ⇥Stab(⇢) D✏) � dimR(K ⇥Stab(⇢) D✏)red

= dimR(K ) + dimR(D✏) � dimR(Stab(⇢))

�

h
dimR(K ) + dimR(D✏)red � dimR(Stab(⇢))

i
= dimR D✏ � dimR Dred✏ .

Now, dimR(K ⇥Stab(⇢) D✏) = dimRHom(Fr , K ), while

dimR(K ⇥Stab(⇢) D✏)red 6 dimRHom(Fr , K )red,

so the codimension of (K ⇥Stab(⇢) D✏)red in (K ⇥Stab(⇢) D✏) is at least the codimen-
sion of Hom(Fr , K )red in Hom(Fr , K ), which is at least 4 by Theorem 2.9.

We claim that Dirr✏ := D✏ \ Dred✏ is simply connected. Given x, y 2 Dirr✏ , there
exists a path between them in D✏ , and by transversality,8 there exists a path that
avoids the subset Dred✏ . Similarly, every loop � in Dirr✏ is nullhomotopic in D✏ , and
applying transversality again shows that there is a nullhomotopy of � that avoids
Dred✏ .

The map ⇡ : D✏ ! D✏/Stab(⇢)
⇠
=

! V restricts to a surjection Dirr✏ ! V irr, so
V irr is path connected. Moreover, since Stab(⇢) is a compact Lie group, the map
⇡ satisfies path-lifting, as does its restriction Dirr✏ ! V irr. The fibers of this map
are quotients of Stab(⇢)/Z(K ), and hence are path connected by hypothesis. It
follows that the induced map ⇡1(Dirr✏ ) ! ⇡1(V irr) is surjective [8, II.6]. Since Dirr✏
is simply connected, we conclude that the same is true for V irr.

Remark 2.14. We expect the above lemma to remain valid when G is a reduc-
tive C-group, as a consequence of the Luna Slice Theorem. For example, let
G = SLn . Then in [20], the Luna Slice Theorem is used to show that at a generic
singularity (having stabilizer C⇤), there exists a model neighborhood of the form
CN

⇥CC(CPm⇥CPm) for appropriate values of N andm, where CC(CPm⇥CPm)
is the affine cone over CPm ⇥ CPm . The complement of the unique singularity in
this affine cone (the cone point) is a bundle over CPm with fiber Cm+1

� 0.9 Con-
sequently, we see that the set of smooth points (in this case equal to the irreducible
points) of this local (contractible) model is simply connected as long as m > 0.
The above theorem achieves this in the compact case without knowing the specific
homeomorphism type of the local model.

8 Our use of transversality in this context is analogous to [44, Corollary 4.8]. Here we are using
the stratification of a real algebraic set by locally closed submanifolds, as in the previous footnote.
9 Although it makes no difference to any result in [20], we take this opportunity to note that this
sentence corrects [20, Lemma 3.18 (ii)].
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3. Comparisons between homotopy groups

In this section we compare the homotopy groups of the G-character varieties
Xr (G) := Hom(Fr ,G)//G, and of their various loci, to those of the corresponding
DG, K , and DK moduli spaces (see Theorem 3.3 below).

The following result allows us to ignore basepoints throughout our discussion
of homotopy groups.

Lemma 3.1. Let G be a connected reductive C-group or a connected compact Lie
group. Then both Xr (G) and Xr (G)irr are path connected.

Proof. First assume G is complex. Then Xr (G) is an irreducible algebraic set,
hence path connected. The irreducible locus is Zariski open in Hom(Fr ,G), and
is non-empty (except when r = 1 and G is non-Abelian, in which case Jordan
decomposition shows that Xr (G)irr is empty and hence path connected). Since
Hom(Fr ,G) is an irreducible algebraic set, every non-empty Zariski open subset of
Hom(Fr ,G) is path connected, and it follows that Xr (G)irr is also path connected.

Now assume G is compact. Since G is path connected, so are Gr and Xr (G).
Theorem 2.9 together with transversality (as in Lemma 2.13) establishes connec-
tivity of Xr (G)irr except in the cases r = 1, or r = 2 and Rank(DG) 6 1. These
low-rank cases can be addressed by hand using Corollary 2.11.

To analyze the higher homotopy groups, we will use the following result.

Theorem 3.2 ([18]). LetG be connected reductiveC-group and K a maximal com-
pact subgroup. ThenXr (K ) is a strong deformation retract ofXr (G). In particular,
these character varieties are homotopy equivalent.

We come to the main result of this section, which reduces the study of higher
homotopy groups for these character varieties, and their irreducible loci, to the
semisimple case.

Theorem 3.3. Let G be a connected reductive C-group, with derived subgroup
DG = [G,G] and maximal compact subgroup K . Consider any property P such
that if ⇢ 2 Hom(Fr ,G) satisfies P, then g⇢g�1 and ⇢ · z satisfy P, where g 2 G
and z 2 Z(G)r . For m > 2, or m = 0, we have isomorphisms:

⇡m(Xr (G)) ⇠
= ⇡m(Xr (DG)) ⇠

= ⇡m(Xr (DK )) ⇠
= ⇡m(Xr (K )).

For m > 2, we have:

⇡m(Xr (G)P) ⇠
= ⇡m(Xr (DG)P) and ⇡m(Xr (K )P) ⇠

= ⇡m(Xr (DK )P).

Proof. By Theorem 3.2, the moduli spaces Xr (G) and Xr (K ) have isomorphic ⇡m
for all m > 0. Now consider the long exact homotopy sequence associated to the
fibration in Theorem 2.10, which has the form

· · ·! ⇡m(Xr (DG)P)! ⇡m(Xr (G)P)! ⇡m(G/DG) ! · · · ! ⇡0(G/DG)= 0.
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Since G/DG is a complex torus, Xr (G/DG) ' (S1)n for some n, and hence
⇡m(Xr (G/DG)) = 0 for m > 2. The long exact sequence now gives the desired
isomorphism ⇡m(Xr (DG)P)

⇠
=

�! ⇡m(Xr (G)P). Similarly, ⇡m(Xr (DK )P)
⇠
=

�!

⇡m(Xr (K )P). This completes the proof.

We end this section by noting that our results regarding homotopy groups of
the GIT quotientXr (G) also apply to the ordinary quotient Hom(Fr ,G)/G, despite
the fact that this space need not be Hausdorff.

Proposition 3.4. Let G be a connected reductive C-group, and let X be a com-
plex affine G-variety equipped with the Euclidean topology inherited from the em-
bedding X ⇢ CN . Then there is a strong deformation retraction from X/G to
X⇤/G ⇠

= X//G, where X⇤
⇢ X is the subspace of points whose G-orbits are

closed. In particular, X/G is homotopy equivalent to X//G.

Proof. We write Gx to denote the G-orbit of x 2 X , viewed as a subspace of X ,
and we write [x] to denote the corresponding point in X/G. By definition of X⇤,
Gx is closed in X if and only if x 2 X⇤, and furthermore these conditions hold if
and only if {[x]} is closed in X/G. Recall that for each G-orbit Gx ⇢ X , there
exists a unique closed G-orbit Gy ⇢ X⇤ such that Gy ⇢ Gx , where Gx denotes
the closure of this set in X , and the map f : X/G ! X/G given by f ([x]) = [y]
is continuous.10

The deformation retraction H: (X/G)⇥[0, 1]!X/G is defined by H([x],t)=
[x] for t < 1, and H([x], 1) = f ([x]). Note that when x 2 X⇤, f ([x]) = [x], so
we just need to check that H is a continuous mapping. Each closed set in X/G has
the form C/G for some closed, G-invariant set C ⇢ X , and it suffices to show that
H�1(C/G) is closed in (X/G) ⇥ [0, 1]. We have

H�1(C/G) = ((C/G) ⇥ [0, 1)) [

⇣
f �1(C/G) ⇥ {1}

⌘
.

Say x 2 C . Since C is G-invariant, we have Gx ⇢ C , and since C is closed, we
have Gx ⇢ C . Writing f ([x]) = [y], we have y 2 C as well, since Gy ⇢ Gx ⇢ C .
Hence H([x], 1) = [y] 2 C/G as well, so in fact we may write

H�1(C/G) = ((C/G) ⇥ [0, 1]) [

⇣
f �1(C/G) ⇥ {1}

⌘
.

Since C/G is closed in X/G, the first set on the right is closed in (X/G) ⇥ [0, 1],
and the second set is closed by continuity of f .

10 This can be seen as follows. Recall that X//G is the quotient of X/G by the relation [x] ⇠ [y] if
and only ifGx\Gy 6= ;. Let ⇡ : X/G ! X//G denote the quotient map, and i : X⇤/G ! X/G
the inclusion. As discussed in the Introduction, ⇡ � i is a homeomorphism. Now f factors as
i � (⇡ � i)�1 � ⇡ .
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4. The fundamental group

The fundamental group of Xr (G) was first determined in [2], and can also be ob-
tained from more general considerations in [3].
Theorem 4.1 ([2]). Let G be a connected reductive C-group, or a connected com-
pact Lie group. Then Xr (G) is path connected and

⇡1(Xr (G)) = ⇡1(G/DG)r .

In particular, Xr (SLn) and Xr (SUn) are simply connected, and

⇡1(Xr (GLn)) ⇠
= ⇡1(Xr (Un)) ⇠

= Zr .

Note that since G/DG is a complex torus, ⇡1(G/DG) is always a free Abelian
group of finite rank.

We proved in Lemma 3.1 that the irreducible locus Xr (G), which coincides
with the moduli space of stable representations in the sense of affine GIT, is path
connected. In this section, we describe its fundamental group.
Theorem 4.2. Let G be a connected reductive C-group or a connected compact
Lie group. Assume that either r > 3, or that r > 2 and Rank(DG) > 2. Then

⇡1(Xr (G)irr) ⇠
= ⇡1(G/DG)r ⇥ ⇡1(Xr (DG)irr), (4.1)

and ⇡1(Xr (DG)irr) is a quotient of the finite Abelian group ⇡1(DG)r . In particular,
if ⇡1(DG) = 1, then ⇡1(Xr (DG)irr) = 1, and

⇡1(Xr (G)irr) ⇠
= ⇡1(G)r .

We note that the product decomposition (4.1) is not canonical, as will be apparent
from the proof.

Proof. By Theorem 2.9, the stated hypotheses imply that Hom(Fr ,G)red has real
codimension at least 4 inside of Hom(Fr ,G), so the inclusion

Hom(Fr ,G)irr ,! Hom(Fr ,G)

is an isomorphism on fundamental groups (by transversality; see the discussion in
Theorem 2.13).

We therefore have the following commutative diagram, in which the bottom
row comes from the fibration sequence in Theorem 2.10:

⇡1(DG)r � � // ⇡1(G)r // // ⇡1(G/DG)r

⇡1(Hom(Fr , DG)irr)
� � //

✏✏✏✏

⇡1(Hom(Fr ,G)irr) // //

✏✏✏✏

⇡1(Hom(Fr ,G/DG))

⇠
=

✏✏
⇡1(Xr (DG)irr)

� � // ⇡1(Xr (G)irr) // // ⇡1(Xr (G/DG)).
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The vertical maps are surjective by a path-lifting argument similar to that in the
proof of Theorem 2.13. Since the fundamental group of a Lie group is Abelian, we
conclude that the fundamental groups on the bottom row are also Abelian. Since
⇡1(Xr (G)) ⇠

= ⇡1(G/DG)r is free Abelian, the exact sequence on the bottom row
splits (non-canonically) as

⇡1(Xr (G)irr) ⇠
= ⇡1(G/DG)r ⇥ ⇡1(Xr (DG)irr),

as claimed. Surjectivity implies that ⇡1(Xr (DG)irr) is a quotient of ⇡1(DG)r ,
which is a finite Abelian group by Weyl’s Theorem, and is trivial if DG is simply
connected. Hence ⇡1(Xr (G)irr) ⇠

= ⇡1(G/DG)r ⇠
= ⇡1(G)r when ⇡1(DG)=1.

Recall that a subgroup H < G is irreducible if it is not contained in any proper
parabolic subgroup of G (so a representation ⇢ : Fr ! G is irreducible if and only
if its image is an irreducible subgroup). Following Sikora in [47], we say G has
property CI if the centralizer of every irreducible subgroup of G coincides with the
center ofG. Clearly, SLn andGLn are CI, by Schur’s lemma. Sikora ( [47, Question
19]) asks if there are any other reductive C-groups with this property.

In [47] and [20] it is shown that orthogonal and symplectic groups are not CI,
and in [47] that finite quotients of groups that are not CI are not CI. Moreover, it is
clear that G ⇥ H is not CI if either G or H is not CI. We also extend the definition
of CI group to the case of compact Lie groups.

Theorem 4.3. Let G be a connected reductiveC-group or a connected compact Lie
group with property CI. Assume that either r > 3, or that r > 2 and Rank(DG) >
2. Then

⇡1(Xr (G)irr) ⇠
= ⇡1(G)r ,

and it follows that
⇡1(Xr (DG)irr) = ⇡1(DG)r .

For the proof, we need a lemma, provided to us by I. Biswas (personal communica-
tion).

Lemma 4.4. Let G be a connected Lie group and let PG = G/Z(G) act on
Hom(Fr ,G) = Gr by conjugation. Then for each ⇢ 2 Gr , the map PG ! Gr

given by [g] 7! [g]⇢[g]�1 is nullhomotopic.

Proof. Since G is connected, we may choose a path ⇢t from ⇢ 2 Gr to the identity,
and [g] 7! [g]⇢t [g]�1 is a nullhomotopy.

Proof of Theorem 4.3. If G is CI, then Xr (G)irr = Xr (G)good, and by Lemma 2.1

PG ! Hom(Fr ,G)irr ! Xr (G)irr

is a PG-bundle (where the first map is the inclusion of an adjoint orbit). Hence we
have an exact sequence

· · · ! ⇡1(PG) ! ⇡1(Hom(Fr ,G)irr) ! ⇡1(Xr (G)irr) ! 0. (4.2)
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As discussed at the start of the proof of Theorem 4.2, the map

⇡1(Hom(Fr ,G)irr, ⇢) ! ⇡1(Hom(Fr ,G), ⇢)

is an isomorphism, and the composite

⇡1(PG) �! ⇡1(Hom(Fr ,G)irr) �! ⇡1(Hom(Fr ,G))

is zero by Lemma 4.4. Hence ⇡1(PG) ! ⇡1(Hom(Fr ,G)irr) is also zero, and by
exactness of (4.2) we conclude

⇡1(Xr (G)irr) ⇠
= ⇡1(Hom(Fr ,G)irr) ⇠

= ⇡1(G)r .

The final statement then follows from (4.1). The case of compact Lie groups is
analogous.

5. The linear case

In this section, Gn will denote one of the groups GLn,SLn,Un , or SUn . Here, we
study the higher homotopy groups of Xr (Gn)

irr and Xr (Gn).
For these groups, a representation in Hom(Fr ,Gn) is good if and only if it

is irreducible. In fact, by [20], for (r � 1)(n � 1) > 2, we have Xr (GLn)irr =

Xr (GLn)sm and Xr (SLn)irr = Xr (SLn)sm. For this reason, we will focus on
the cases (r � 1)(n � 1) > 2 in what follows. In the compact cases, we de-
fine Xr (Un)sm = Xr (GLn)sm \ Xr (Un), and similarly for SUn . We note that
this subspace coincides with the smooth locus of the character variety, viewed
as a real analytic variety. With the above restrictions on r and n we again have
Xr (Un)sm = Xr (Un)irr and Xr (SUn)sm = Xr (SUn)irr.
Remark 5.1. Suppose (r � 1)(n � 1) < 2. Then Xr (Gn) is a topological mani-
fold (with non-empty boundary in some cases) and homotopy equivalent to either a
product of some number of circles, or a point. The proof of this is a good exercise
for the reader.

5.1. Bott periodicity for the irreducible locus

Since Xr (Gn)
irr

= Xr (Gn)
good, Lemma 2.1 shows that the sequence

PGn �! Hom(Fr ,Gn)
irr

�! Xr (Gn)
irr (5.1)

is a principal PGn-bundle. We will use this fact to show that in a range of dimen-
sions, the homotopy groups of Xr (Gn)

irr are 2-periodic.
Lemma 5.2. The real codimension of Hom(Fr ,Gn)

red in Hom(Fr ,Gn) is at least
2(r�1)(n�1). Hence, by transversality, the inclusion map induces an isomorphism

⇡k
⇣
Hom(Fr ,Gn)

irr
⌘

⇠
=

�! ⇡k (Hom(Fr ,Gn)) ⇠
= ⇡k(Gn)

r

for k < 2(r � 1)(n � 1) � 1.
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Proof. First we consider the case Gn = GLn . Recall (Lemma 2.7) that reducible
locus is the union of finitely many irreducible algebraic sets of the form HP , where
P < GLn is a maximal proper parabolic. Hence it suffices to compute the codi-
mensions of the HP . Each maximal proper parabolic P < GLn is conjugate to one
of the subgroups

Pk = {A 2 Gn : A(Ck
⇥ {0}) ⇢ Ck

⇥ {0}},

where k ranges from 1 to n�1. We have dimC(Pk) = k2+n(n�k), so the argument
in the proof of Theorem 2.9 shows that

codimC(HPk ) > (r � 1)(n2 � k2 � n(n � k)) = (r � 1)(nk � k2)

and this is minimized when k = 1 (or, symmetrically, n � 1). Hence

codimC(Hom(Fr ,GLn)red) > (r � 1)(n � 1)

as claimed.
The arguments for SLn , Un , and SUn are completely analogous.

Lemma 5.3. For any ⇢ 2 Hom(Fr ,Gn)
irr, the orbit-inclusion map PGn !

Hom(Fr ,Gn)
irr, [g] 7! [g]⇢[g]�1, induces the zero map on homotopy groups in

dimensions less than 2(r � 1)(n � 1) � 1.

Proof. By Lemma 4.4, the composite map

PGn ! Hom(Fr ,Gn)
irr

! Hom(Fr ,Gn)

is nullhomotopic, and by Lemma 5.2, the second map in this composition is an
isomorphism in the stated range.

Theorem 5.4. Assume (r � 1)(n� 1) > 2 and 1 < k < 2(r � 1)(n� 1) � 1. Then

⇡k(Xr (Gn)
irr) =

8>>><
>>>:

Z/nZ if k = 2
Zr if k is odd and k < 2n
Z if k is even and 2 < k < 2n
(Z/n!Z)r � Z if k = 2n [and 2n < 2(r � 1)(n � 1) � 1].

Moreover, ⇡k(Xr (Gn)
irr) is finite for 2n < k < 2(r � 1)(n � 1) � 1.

When k is even and less than 2n, the above isomorphisms are induced by the
boundary map for the principal PGn-bundle (5.1).

In particular, if (r � 1)(n � 1) > 2 we have

⇡2(Xr (Gn)
irr)

@

⇠
=

// ⇡1(PGn) ⇠
= Z/nZ , (5.2)

and for r, n > 3 we have ⇡3(Xr (Gn)
irr) ⇠

= Zr . Furthermore, when n = 2 we
have ⇡4(Xr (G2)irr) ⇠

= (Z/2Z)r � Z so long as r > 4, and when n > 3 we have
⇡4(Xr (Gn)

irr) ⇠
= Z so long as r > 3.
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Remark 5.5. The periodic groups Z and Zr in Theorem 5.4 are precisely the ho-
motopy groups of the gauge group Map(6,Gn) of the trivial bundle 6 ⇥ Gn (with
a shift in dimension), where6 '

W
r S1 is an open surface with fundamental group

Fr . Analogous periodicity results (again describing the homotopy of the moduli
space of stable bundles in terms of a gauge group) were established in [7, 12].

Proof of Theorem 5.4. By Lemmas 5.2 and 5.3, if k < 2(r � 1)(n � 1) � 1, then
the long exact sequence in homotopy associated to the bundle (5.1) breaks up into
short exact sequences

1 ! ⇡k(Gn)
r

! ⇡k
⇣
Xr (Gn)

irr
⌘

! ⇡k�1(PGn) ! 1. (5.3)

The short exact sequence of groups 1 ! Z(Gn) ! Gn ! PGn ! 1 shows that
⇡1(PGn) ⇠

= Z/nZ, while ⇡k(PGn) ⇠
= ⇡k(Gn) for k > 2. By Bott periodicity and

stability of the homotopy groups of Gn , we have

⇡k(Gn) =

(
Z if k is odd and 1 < k < 2n
0 if k is even and k < 2n,

and by Borel-Hirzebruch [6] we have ⇡2n(Gn) = (Z/n!Z) (n > 2). The calculation
of ⇡k(Xr (Gn)

irr) now follows easily from (5.3).
By a standard computation in rational homotopy theory (see [24]), ⇡k(Gn)⌦Q

vanishes for k > 2n � 1, so ⇡k(Gn) is finite for k > 2n � 1, as is ⇡k(PGn).
(Note that ⇡k(Gn) is a finitely generated Abelian group, since it is isomorphic to
⇡k(Un) and Un is a finite CW complex.) Using the exact sequence (5.3), we see
that ⇡k(Xr (Gn)

irr) is finite in the stated range.

Remark 5.6. Works of Kervaire, Toda, and Matsunaga [32, 37, 51] give calcula-
tions of ⇡2n+i (Gn) for i = 1, . . . , 5, and Matsunaga [38] has also provided a great
deal of information on the odd primary parts of ⇡2n+i (Gn) for i > 5. In many of
these cases, however, it is unclear whether the exact sequence (5.3) splits.
Remark 5.7. It is natural to try to generalize the ideas in this section to any any
connected reductive C-group by replacing the irreducible representations by the
good representations, since the good locus will provide a fibration (but the irre-
ducible locus in general will not). Unfortunately, we do not know how to count the
codimension of the complement of the good locus in general. However, we expect
that ⇡2(Xr (G)good) ⇠

= ⇡1(PG) for any connected reductive C-group G and for
sufficiently large r .

5.2. The second homotopy group of the full moduli space

In his thesis [1], Baird computed the Poincaré polynomial of Xr (SU2). This result
is recalled in Section 8, where we give an explicit version of his formula (Lemma
8.2). One sees immediately from the formula that the Betti numbers satisfy

bk(Xr (SU2)) = 0 for 1 < k < 6, and b6(Xr (SU2)) =

✓
r
3

◆
.
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SinceXr (SU2) is simply connected (Theorem 2.1), Serre’s Mod-C Hurewicz Theo-
rem implies that Rank(⇡k(Xr (SU2)))=bk(Xr (SU2)) for k66. Thus ⇡6(Xr (SU2))
is the first non-trivial homotopy group, and in fact we expect that for all the Lie
groups G considered in this article, ⇡k(Xr (G)) = 0 for 2 6 k 6 5.

In this section we will provide integral information about the second homotopy
group (and consequently the second homology group) of Xr (SUn). Note that by
Theorem 3.3, replacing SUn by Un , GLn , or SLn does not change ⇡2. To obtain
information about this group, we will use a general-position type argument in the
context of simplicial complexes. We begin by explaining the necessary ingredients.

Consider a simplicial complex X together with a subcomplex Y ✓ X such that
X \ Y is dense. Under certain local conditions around points in Y , it is possible to
homotope every map S ! X off of Y , where S is a compact manifold of dimension
at most 2. This result is inspired by Lemma 2.5 from Gomez-Pettet-Souto [23],
which deals with maps S1 ! X .

Proposition 5.8. Let X be a simplicial complex and let Y ✓ X be a subcomplex.
Assume the following conditions hold:

(1) the space X \ Y is dense in X;
(2) for each point y 2 Y , and each open neighborhood U ✓ X containing y, there

exists an open neighborhood V ✓ U (with y 2 V ) such that V \ Y is path
connected;

(3) for each point y 2 Y , there exists a path connected open neighborhood V of y
such that ⇡2(V ) = 0 and the natural map ⇡1(V \Y, v) ! ⇡1(V, v) is injective
(for each v 2 V \ Y ).

Let S be a compact manifold of dimension at most 2 with (possibly empty) boundary
and let S0

⇢ S be a closed subset containing @S such that S admits a triangulation
with S0 as a subcomplex. Then for every continuous map f : (S, S0) ! (X, X \

Y ) such that f is simplicial on S0, there exists a map h : S ! X such that h is
homotopic to f (rel S0) and h(S) \ Y = ;.

The proof of Proposition 5.8 will be given in the Appendix.

Theorem 5.9. Let Y ⇢ X be as in Proposition 5.8. Then the inclusion X \Y ,! X
is 2-connected.

Proof. The fact that the maps are surjective on ⇡i for i 6 2 follows from Propo-
sition 5.8 by taking (S, S0) to be the based sphere (Si , ⇤). Note that given a map
f : (Si , ⇤) ! (X, X \ Y ), we can always subdivide X to make f (⇤) a vertex (so
that f is simplicial on S0

= ⇤).
To see that these maps are injective on ⇡i for i 6 1, we will apply the Propo-

sition in the case (S, S0) = (Si ⇥ [0, 1], Si ⇥ {0, 1}). Assume i = 1; the case
i = 0 is simpler. Given f, g : S1 ! X \ Y and a homotopy between them in
X , we need to show that there exists a homotopy between them in X \ Y . Since
f (S1) and g(S1) are compact, they are contained inside some finite subcomplex
X 0

⇢ X . These compact sets are disjoint from the compact set Y \ X 0, so they lie at
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some positive distance from Y \ X 0 (in the simplicial metric on X 0) and hence after
barycentrically subdividing X enough times (so that the diameter of each simplex is
sufficiently small), every simplex in X 0 meeting f (S1) or g(S1) is disjoint from Y .
Viewing f and g as maps from S1 to the subcomplex X 00

⇢ X \ Y consisting of all
maximal simplices in X 0 that meet f (S1) or g(S1), the Simplicial Approximation
Theorem allows us to choose a triangulation of S1 and maps f 0, g0

: S1 ! X 00, sim-
plicial with respect to this triangulation, such that there exist homotopies f ' f 0

and g ' g0 inside X 00 (hence inside X \ Y ). Now, since f and g are homotopic
in X , so are f 0 and g0. Let H be a homotopy between f 0 and g0. We can now
choose a triangulation of S1 ⇥ [0, 1] that restricts, on S1 ⇥ {0} and on S1 ⇥ {1}, to
the triangulation of S1 for which f 0 and g0 are simplicial. Applying Proposition 5.8
to H : (S1 ⇥ [0, 1], S1 ⇥ {0, 1}) ! (X, X \ Y ), we conclude that f 0 and g0 are
homotopic inside X \ Y , and it follows that the same is true of f and g.

We note that when S is 1-dimensional, only the first two conditions of Propo-
sition 5.8 will be used in its proof, so Proposition 5.8 extends [23, Lemma 2.5].
Moreover, when S is 0-dimensional only the first condition is used. This motivates
the following question.
Question 5.10. Can Proposition 5.9 be extended to maps M ! X , with M a
closed, triangulable, manifold of dimension n > 2, after adding the condition that
each point in Y admits a neighborhood V such that ⇡i (V ) = 0 for i = 1, . . . , n and
⇡i (V \ Y ) ,! ⇡i (V ) for i < n?

We now apply the general result above to the moduli spaces considered in this
paper.

Proposition 5.11. Assume that (r�1)(n�1) > 2. Then the inclusionXr (Gn)
irr

=

Xr (Gn)
sm ,! Xr (Gn) is a 2-connected map.

Recall that in these cases, the good locus in Xr (Gn) coincides with the irre-
ducible locus.

Proof. By assumption n > 2; however, we note that when n = 1, G1 is Abelian
and PG1 = 1, so Xr (G1)irr = Xr (G1) and there is nothing to prove.

For Gn = Un , the stabilizer of every representation is connected (see [43,
Lemma 4.3]). Therefore, Lemma 2.13 implies that conditions (2) and (3) in Propo-
sition 5.8 are satisfied. Condition (1) is satisfied as well, as explained in more
generality at the end of the proof of Theorem 6.1. Therefore, Theorem 5.9 gives the
result.

Next consider the case Gn = GLn . In the diagram

⇡1(Xr (Un)irr)
⇠
= //

✏✏

⇡1(Xr (Un))

✏✏
⇡1(Xr (GLn)irr) // ⇡1(Xr (GLn)),
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the right-hand vertical map is an isomorphism because Xr (GLn) deformation re-
tracts to Xr (Un) (Theorem 3.2). Hence the map ⇡1(Xr (GLn)irr) ! ⇡1(Xr (GLn))
is a surjection, but we know that these groups are free Abelian of the same rank by
Theorems 4.1 and 4.2. Hence the map must be an isomorphism. Surjectivity of the
map ⇡2(Xr (GLn)irr) ! ⇡2(Xr (GLn)) is proven similarly.

Finally, suppose Gn = SUn . By Theorems 4.1 and 4.2 we know thatXr (SUn)
and Xr (SUn)irr are simply connected. The desired statement for ⇡2 follows from
the diagram

⇡2(Xr (SUn)irr) //

✏✏

⇡2(Xr (SUn))

✏✏
⇡2(Xr (Un))irr // // ⇡2(Xr (Un)),

in which the vertical maps are isomorphisms by Theorem 3.3. Finally, the case of
SLn can be deduced from the GLn case analogously.

Theorem 5.12. Let Gn be one of GLn, SLn, SUn or Un . Then we have
⇡2(Xr (Gn)) = 0.

Proof. By Theorem 3.3, it suffices to prove the case of Gn = SUn . When (r �

1)(n�1) < 2 the result is trivial since Xr (SUn) is contractible (more generally see
Remark 5.1). So we assume (r � 1)(n � 1) > 2.

For r 0 < r , the projection q : Fr ! Fr 0 defined by ei 7! ei for i 6 r 0, ei 7!

1 for i > r 0 induces a map q# : Xr 0(SUn) ! Xr (SUn), and since smoothness
coincides with irreducibility in the situations under consideration, and applying q#
does not change the image of a representation, we see that q# restricts to a map
Xr 0(SUn)sm ! Xr (SUn)sm. We now have a commutative diagram

⇡2(Xr 0(SUn)sm) //

✏✏✏✏

⇡2(Xr (SUn)sm)

✏✏✏✏
⇡2(Xr 0(SUn))

q#
⇤ // ⇡2(Xr (SUn)),

(5.4)

in which the vertical maps are surjective by Proposition 5.11, and the top map is an
isomorphism between finite cyclic groups by naturality of (5.2). This implies that q#

⇤

is surjective, and q#
⇤
is also injective since q is split by the map Fr 0 ! Fr defined by

ei 7! ei . Hence q#⇤ is an isomorphism, and we conclude that the orders of the finite
cyclic groups ⇡2(Xr (SUn)) are independent of r (so long as (r � 1)(n � 1) > 2).

When n = 2, X3(SU2) is homotopy equivalent to a 6-sphere (see [18]), so
⇡2(X3(SU2)) = 0 and hence ⇡2(Xr (SU2)) = 0 for all r > 3.

Now assume n > 3. Since ⇡2(Xr (SUn)) and ⇡2(Xr 0(SUn)) are finite groups
of the same order, every homomorphism between them that is split (admits a left or
right inverse) is an isomorphism. Consider the SUn-equivariant maps

Hom(F2,SUn) = SU2n
µ

�! Hom(F3,SUn) = SU3n
⌘

�! Hom(F2,SUn) = SU2n
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defined by
µ(A, B) = (A, B, AB), ⌘(A, B,C) = (AB,C).

These maps are split (respectively) by the SUn-equivariant maps

(A, B,C) 7! (A, B) and (A, B) 7! (A, I, B),

so the induced maps µ : X2(SUn) ! X3(SUn) and ⌘ : X3(SUn) ! X2(SUn)
are also split, and hence ⌘ � µ induces an isomorphism on ⇡2(X2(SUn)). Since
⌘ � µ([A, B]) = [AB, AB], we have a factorization

X2(SUn)
⌘�µ //

↵

&&MMMMMMMMMM
X2(SUn)

X1(SUn)

�
88qqqqqqqqqq

,

where ↵([A, B]) = [AB] and �([A]) = [A, A]. However,X1(SUn) is contractible,
since it is homeomorphic to the Weyl alcove (see [16, page 168]), and in particular
⇡2(X1(SUn)) = 0. This completes the proof.

Remark 5.13. A small modification to the above argument can be used to deduce
the n = 2 case directly. We also note that the n = 3 case can be handled by
appealing to the fact that X2(SU3) is homotopy equivalent to an 8-sphere [18].

Applying the Hurewicz Theorem gives the following corollaries for the special
linear case.

Corollary 5.14. Let Gn be either SLn or SUn . Then

H2(Xr (Gn); Z) = H2(Xr (Gn); Z) = 0.

Proof. SinceXr (SLn) andXr (SUn) are simply connected, Hurewicz Theorem pro-
vides isomorphisms ⇡2(Xr (Gn)) ⇠

= H2(Xr (Gn); Z), and the Universal Coefficient
Theorem further implies that H2(Xr (Gn); Z) = 0.

Recent results in [10] allow us to extend our analysis of ⇡2 to certain real
reductive Lie groups.

Corollary 5.15. Let G = U(p, q) or Sp(2n, R). Then ⇡2(Xr (G)) = 0.

Proof. Since the maximal compact subgroup ofU(p, q) isUp⇥Uq , the main result
in [10] shows that Xr (U(p, q)) is homotopic to Xr (Up) ⇥ Xr (Uq). Therefore,
Theorem 5.12 shows that ⇡2(Xr (U(p, q))) = 0.

The result for Xr (Sp(2n, R)) follows similarly, since this space is homotopy
equivalent to Xr (Un).

Based on the above, we make the following conjecture. Note that complex
reductive C-groups and compact Lie groups are real reductive.
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Conjecture 5.16. Let G be a connected real reductive Lie group. Then ⇡2(Xr (G))
is trivial.

Remark 5.17. For r = 1 the above conjecture is true since G//G is contractible if
G is simply connected: this follows from the results in [50].

We end this section by noting that the codimension of the smooth locus in
Xr (Gn) grows linearly in both r and n. Theorems 5.4 and 5.12 show that the map
Xr (Gn)

sm
! Xr (Gn) is not 3-connected when n > 2, so this gives examples in

which the inclusion of the smooth locus is not highly connected, despite the singular
locus lying in arbitrarily high codimension.

Proposition 5.18. Assume r, n > 2. Let Gn be either GLn or SLn . Then the
complex codimension of Xr (Gn)

sing is at least 3, and grows linearly in r and n.
Similarly, for Gn equal to Un or SUn the real codimension of Xr (Gn)

sing is at least
3 and grows linearly.

Proof. First consider the case Gn = GLn . If r > 2 and n > 3, or r > 3 and
n > 2, then Xr (GLn)sing = Xr (GLn)red and an argument analogous to the proof of
Lemma 5.2 gives

codimC
⇣
Xr (GLn)sing

⌘
= dimC

�
Xr (GLn)

�
� dimC

⇣
Xr (GLn)sing

⌘
= (n2(r � 1) + 1) � ((n � 1)2(r � 1) + 1+ r)
= 2(n � 1)(r � 1) � 1
> 3.

In the case that r = 2 = n, the functions tr(A), tr(B), tr(AB), det(A), and
det(B) induce an isomorphism gl2//GL2 ⇠

= C5 [14], and hence X2(GL2) ⇠
= C3 ⇥

(C⇤)2 is smooth and so the complex codimension of the singular locus is 5. Thus,
codimR

�
X2(GL2)sing

�
> 6.

Restricting the determinant to be 1, we obtain for r > 2 and n > 3, or r > 3
and n > 2:

codimC
⇣
Xr (SLn)sing

⌘
= dimC

�
Xr (SLn)

�
� dimC

⇣
Xr (SLn)sing

⌘
= (n2 � 1)(r � 1) � ((n � 1)2(r � 1) + 1)
= 2(n � 1)(r � 1) � 1
> 3.

If r = n = 2, the above description of X2(GL2) shows that X2(SL2) ⇠
= C3 and is

smooth, so the complex codimension of X2(SL2)sing is 3.
The cases of Un and SUn are similar.
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6. An application to Lie groups

In this section we apply our topological methods to study centralizers of subgroups
in compact connected Lie groups and connected reductive C-groups. As noted
previously, every subgroup H 6 Un has connected centralizer [43, Lemma 4.3]. As
observed in [30, Section 1.2], the same is true for GLn if one restricts attention to
finitely generated subgroups H 6 GLn , because the centralizer CGLn (H) is Zariski
open in the vector space

{A 2 Mn(C) : AhA�1
= h for all h 2 H}.

To our knowledge, Un and GLn are the only known groups with such properties.
It is a deep theorem of Springer and Steinberg that semisimple elements in simply
connected semisimple algebraic groups over C have connected centralizers (for an
exposition, see [30]). Here we will show that the presence of torsion in ⇡1(G)
forces the existence of subgroups whose centralizers are disconnected (even after
killing the center of G).

Theorem 6.1. Let G be either a connected reductive C-group, or a compact con-
nected Lie group. If ⇡1(DG) 6= 1, then there exists a finitely generated subgroup
H 6 G such that CG(H)/Z(G) is disconnected.

Note that for every finitely generated subgroup H 6 G, we have CG(H) =

CG(H), where H is the Zariski closure of H in G. Hence in fact Theorem 6.1 im-
plies that there exist Zariski closed subgroups in G with disconnected centralizers.

Proof. Let K be a maximal compact subgroup of G (so K = G if G is compact).
Assume, for a contradiction, that for every finitely generated subgroup H 6 G,
the quotient CG(H)/Z(G) is connected. Lemma 2.2 implies that CK (H)/Z(K ) is
connected for every finitely generated subgroup H 6 K . Hence K is a CI group,
and by Theorem 4.3, we have

⇡1(Xr (K )irr) ⇠
= ⇡1(K )r

for r > 3.
On the other hand, we claim that the hypotheses of Theorem 5.9 are satisfied,

meaning that the map

⇡1(Xr (K )irr) �! ⇡1(Xr (K )) ⇠
= ⇡1(K/DK )r

is an isomorphism. This is impossible, since the fibration sequence

DK ! K ! K/DK

yields a split short exact sequence on fundamental groups, and ⇡1(DK ) ⇠
= ⇡1(DG)

6= 0 by hypothesis.
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To check that the hypotheses of Theorem 5.9 are satisfied, first note that
our hypotheses on G guarantee that for sufficiently large r , we have
codimR

�
Hom(Fr , K )irr

�
> 4 (see Theorem 2.9). Hence Hom(Fr , K )irr is dense

in the smooth variety Hom(Fr , K ) ⇠
= Kr , and hence Xr (K )irr is dense in Xr (K ).

Next, since the image of a reducible representation ⇢ 2 Hom(Fr , K ) is a finitely
generated subgroup, we know that Stab(⇢)/Z(K ) = CK (Im(⇢))/Z(K ) is con-
nected, and by Lemma 2.13 there exist arbitrarily small contractible neighborhoods
of [⇢] in Xr (K ) whose irreducible points form a simply connected subset.

7. The singular locus

In [20], it is shown for G = SLn or GLn that

Xr (G)sm = Xr (G)good = Xr (G)irr

if (r � 1)(n � 1) > 2. As shown in [28], this result does not even generalize to
G = PSL2. In this section, we address the following conjecture.
Conjecture 7.1 ([20, Conjectures 3.34 and 4.8]). If r > 3, or r > 2 and Rank(G)
is sufficiently large, then

Xr (G)red ⇢ Xr (G)sing.

Note that [20, Remark 3.33] shows that X2(PSL2) has smooth points which are
reducible and singular points which are irreducible; so a condition on the rank of G
when r = 2 is necessary. However, the r = 2 case of this conjecture requires mod-
ification, due to the examples below. We prove a modified version in Theorem 7.4.
Example 7.2. Let G be any connected reductive C-group. Then there exists a re-
ducible smooth point and a irreducible singular point in X2(G ⇥ PSL2). Let [⇢] 2

X2(G)good and let [ 1] 2 X2(PSL2)red \ X2(PSL2)sm and [ 2] 2 X2(PSL2)irr \
X2(PSL2)sing. Then clearly, [⇢ �  1] has positive dimensional stabilizer and so is
reducible, but yet it is in X2(G)sm ⇥ X2(PSL2)sm and so is a smooth point. On the
other hand, [⇢ �  2] has a finite stabilizer and so is irreducible (but not good), but
is in X2(G)sm ⇥ X2(PSL2)sing and so is a singular point.

This shows that there are Lie groups H of arbitrarily large rank with the prop-
erty that X2(H) has smooth reducibles and singular irreducibles.

We now give an example to show that the groups H in the above example do
not only arise as products with rank 1 Lie groups.
Example 7.3. In [49], X2(SO4(C)) = Hom(F2,SO4(C))//SO4(C) is explicitly
described. Consider

⇢ =

0
B@ 1
12

0
B@

37 35i 0 0
�35i 37 0 0
0 0 13 5i
0 0 �5i 13

1
CA ,

1
40

0
B@

401 399i 0 0
�399i 401 0 0
0 0 41 9i
0 0 �9i 41

1
CA
1
CA
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in Hom(F2,SO4(C)). It is clearly reducible and completely reducible. However,
as the relations and generators are explicitly computed in [49] for this variety, in
Mathematica we can compute the rank of the Jacobian matrix at ⇢, finding it to
be 11. There are 17 generators in the presentation for the coordinate ring and the
variety has dimension 6. Thus, ⇢ is a smooth point if and only if the rank is 11.
Therefore, we have a smooth point in X2(SO4(C)) that is not in X2(SO4(C))irr,
arising from a reductive group of semisimple rank 2 that is not a product with a rank
1 group. However, note that the simple factors are each of rank 1.

The examples above show that for r = 2 the rank of the Lie group G being
large is not sufficient for Conjecture 7.1 to hold, although we do believe the conjec-
ture for r > 3 without any condition on the rank of G.

We now mostly resolve Conjecture 7.1 by showing that if each simple factor
in the derived subgroup of G has rank at least 2 then the reducibles are always
singular. For r = 2, we expect this to be a sharp condition on the Lie group G.

Theorem 7.4. Let r > 2. If G is a connected reductive C-group such that the Lie
algebra of DG has simple factors of rank 2 or more, then:

(1) Xr (G)red ⇢ Xr (G)sing;
(2) Xr (G)irr � Xr (G)good ⇢ Xr (G)sing, and all points in Xr (G)irr � Xr (G)good

are orbifold singularities;
(3) Xr (G)good = Xr (G)sm.

Proof. By [45, Theorem 8.9] when G is semisimple and the simple summands of
the Lie algebra g have rank at least 2, and r > 2, we have Xr (G)good = Xr (G)sm.
Therefore, Proposition 2.12 and Corollary 2.11 together imply that Xr (G)good =

Xr (G)sm for any connected reductive C-group whose derived group has simple
factors of rank at least 2.

We then conclude that Xr (G)red ⇢ Xr (G)sing since the PG-stabilizer of any
reducible representation has positive dimension (hence they are not good). For
the same reason, Xr (G)irr � Xr (G)good ⇢ Xr (G)sing, and by Lemma 2.1 these
singularities are of orbifold type.

We have the following geometric corollary.

Corollary 7.5. Let DG have simple factors of rank at least 2, and assume r > 2.
If G is not CI, then the orbifold singular locus in Xr (G)irr is non-empty.

It remains to deal with groups G whose derived subgroup has rank 1 factors.
Given the classification of singularities in Xr (SL2) by [20], and in Xr (PSL2) by
[28], we expect the above theorem to extend directly to r > 3 and DG having rank
1 simple factors.

As a step in this direction, we reduce Conjecture 7.1 to the case when G is
semisimple and simply connected, leading to a proof of the conjecture for G =

PSL2. We need two lemmas.
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Lemma 7.6. Let G be a connected, reductive C-group and let Z < Z(G) be a
finite central subgroup. Denote the quotient map G ! G/Z by ⇡ , and con-
sider the induced map ⇡⇤ : Xr (G) ! Xr (G/Z). If Xr (G)red ⇢ Xr (G)sing, then
⇡⇤(Xr (G)red) ⇢ Xr (G/Z)sing.

Proof. By Lemma 2.7, the sets HP := [g2GHom(Fr , gPg�1), with P 6 G
a maximal proper parabolic subgroup, are exactly the irreducible components of
Xr (G)red. Note that since the identity is in P for every parabolic subgroup P < G,
the trivial representation is in each irreducible component HP//G. Moreover, the
left multiplication action of Zr on Xr (G) is free at the trivial representation. Note
that the set of representations where Zr does not act freely is the union of the Zariski
closed sets determined by the algebraic equations z[⇢] = [⇢], and thus is a Zariski
closed set (recall that Z is finite). Since in every component there is a point where
the action is free (the trivial representation) the action of Zr on Xr (G)red is free on
a non-empty (dense) Zariski open set in each component. Therefore, the quotient
mappingXr (G) ! Xr (G)/Zr ⇠

= Xr (G/Z) is generically étale on the restriction to
Xr (G)red; that is, there is an open dense set U ⇢ Xr (G)red for which the mapping
is étale. Therefore, every [⇢] 2 U (necessarily singular by assumption) is mapped
to a singular point. Since the quotient map is continuous, the closure of U maps
into the closure of the image of U . However, the closure of U is Xr (G)red and the
closure of the image ofU is contained in the singular locus (since the singular locus
is a closed set).

Lemma 7.7. Let G be a connected, reductive C-group and let Z < Z(G) be a
Zariski closed, central subgroup. Denote the quotient map G ! G/Z by ⇡ ,
and consider the induced map ⇡⇤ : Xr (G) ! Xr (G/Z). Then ⇡⇤(Xr (G)red) =

Xr (G/Z)red.

Proof. It will suffice to show that a representation ⇢ 2 Hom(Fr ,G) is reducible if
and only if ⇡ � ⇢ 2 Hom(Fr ,G/Z) is reducible, or equivalently that a subgroup
P < G, with Z < P , is parabolic if and only if ⇡(P) = P/Z is parabolic in G/Z .
Recall that a subgroup Q < H is parabolic (H a reductive C-group) if and only if
Q is Zariski closed in H and H/Q is projective.

First, note that a subgroup Q < G, with Z < Q, is Zariski closed if and only
if ⇡(Q) = Q/Z < G/Z is Zariski closed. This follows since ⇡ is the GIT quotient
map, and Q is a Z -space (see [13, Proposition 6.2]).

Now, say Z < P < G and P is Zariski closed. We claim that there is an
isomorphism of algebraic varieties G/P ⇠

= (G/Z)/(P/Z). We will appeal to the
universal property of the quotient map p : H ! H/Q, where H is an algebraic C-
group and Q < H is a Zariski closed subgroup: as shown in [29], this map has the
property that if f : H ! X is an algebraic map whose fibers f �1(x) are all unions
of cosets of Q, then there exists a unique algebraic map f : H/Q ! X such that
f = f � p. Let q : G/Z ! (G/Z)/(P/Z) be the quotient map (which exists,
and has the above universal property, since P/Z < G/Z is Zariski closed). It now
suffices to check that the composite map G ⇡

�! G/Z
q
�! (G/Z)/(P/Z) satisfies the
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universal property of the quotient map G ! G/P . Given a map f : G ! X whose
fibers are all unions of cosets of P , the fibers are also unions of cosets of Z , so f
factors as f = f � ⇡ . But now for any x 2 X , we have f �1(x) = ⇡�1( f �1

(x)) =S
g2I gP for some subset I ⇢ G, and hence

f �1
(x) = ⇡

⇣
⇡�1

⇣
f �1

(x)
⌘⌘

= ⇡

 [
g2I

gP

!
=

[
g2I

(gZ)P/Z ,

so the fibers of f are unions of cosets of P/Z . Hence f factors through the quotient
map q : G/Z ! (G/Z)/(P/Z), yielding the desired factorization of f . Unique-
ness of the factorization is immediate.

Combining the previous two paragraphs, we see that if Z < P < G, then P is
parabolic if and only if ⇡(P) = P/Z is parabolic in G/Z , and this completes the
proof that ⇡⇤(Xr (G)red) = Xr (G/Z)red.

Theorem 7.8. Let G be a connected, reductive C-group, and let gDG be the uni-
versal cover of the derived subgroup DG. If Xr (gDG)red ⇢ Xr (gDG)sing, then
Xr (G)red ⇢ Xr (G)sing.

Proof. Let [⇢] 2 Xr (G)red. By Corollary 2.11, there exist [⇢0
] 2 Xr (DG)red and

� 2 Xr (T ) = T r such that

[⇢] = [([⇢0

],�)] 2 Xr (DG)red ⇥Fr T r ⇠
= Xr (G)red.

Since the kernel of the universal covering homomorphism ⇡ :
gDG ! DG is a

finite central subgroup of gDG, by Lemma 7.7 there exists [
e⇢0

] 2 Xr (gDG)red such
that ⇡⇤[

e⇢0
] = [⇢0

]. By assumption [⇢0
] is singular, and by Lemma 7.6 ⇡⇤[

e⇢0
] = [⇢0

]

is also singular. By Proposition 2.12, we conclude [⇢] is singular.

By the work of [20], we know that all reducibles in Xr (SLn) are singular for
(r � 1)(n � 1) > 2. Thus, the above theorem immediately implies:

Corollary 7.9. Xr (PSLn)red ⇢ Xr (PSLn)sing for (r � 1)(n � 1) > 2.

Note that PSLn is simple of rank n � 1. Hence when n = 2 we have an
example, not covered by Theorem 7.4, in which the above conjecture holds.

8. Poincaré polynomials for n = 2

In this section we show how Tom Baird’s computation (see [1]) of the Poincaré
polynomials of Xr (SU2) = SUr2/SU2 implies immediately that Xr (SU2) is not a
topological manifold (locally homeomorphic to R3r�3) for r � 4. In fact, we wish
to establish that it is also not a topological manifold with boundary.
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To simplify the presentation, consider the following polynomials in the vari-
able t :

fr (t) =

1
2

h
(1+ t)r (1+ t2) � (1� t)r (1� t2)

i
hr (t) = (1+ t3)r .

Proposition 8.1 (T. Baird, 2008). The Poincaré polynomials of Xr (SU2) are:

Pt (Xr (SU2)) = 1+ t +

t Q(t)
1� t4

, where Q(t) = t2 fr (t) � hr (t).

As particular cases, one can easily compute that, for r = 1, 2, 3 and 4, we have
Pt (Xr (SU2)) = 1, 1, 1+ t6 and 1+ 4t6 + t9, respectively.

Let us first check that Pt is indeed a polynomial in t with non-negative integer
coefficients. This follows from an alternative way to write Pt which will be useful
later. Denote by

�r
k
�
the binomial coefficient, with the convention that

�r
k
�

= 0 for
r < k.

Lemma 8.2. We have

Pt (Xr (SU2)) = 1+ a(t) + b(t),

where a, b are given by the finite series

a(t) =

X
k>1

✓
r

2k + 1

◆
t2k+4

1� t4k

1� t4
(8.1)

and

b(t) =

X
k>1

✓
r

2k + 2

◆
t2k+7

1� t4k

1� t4
, (8.2)

where
1� t4k

1� t4
= 1+ t4 + t8 + · · · + t4k�4.

Proof. We can write fr (t) = rt +

�r
3
�
t3 +

�r
5
�
t5 + · · · + t2 +

�r
2
�
t4 +

�r
4
�
t6 + · · ·

and hr (t) = 1+

�r
3
�
t3 +

�r
6
�
t6 + · · · + t3r so that

Q(t) = t2 fr (t) � hr (t) = �1+ t4 +

✓
r
3

◆
(t5 � t9) +

✓
r
5

◆
(t7 � t15) + · · ·

· · · +

✓
r
4

◆
(t8 � t12) +

✓
r
6

◆
(t10 � t18) + · · · .
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Therefore, we get

t Q(t) = �t (1� t4) +

✓
r
3

◆
t6(1� t4) +

✓
r
5

◆
t8(1� t8) + · · ·

· · · +

✓
r
4

◆
t9(1� t4) +

✓
r
6

◆
t11(1� t8) + · · ·

= (1� t4)(�t + a(t) + b(t))

which proves the desired formula.

SinceSU2 is a compact connected Lie group, the orbit spaceXr (SU2) = SUr2/SU2
is also a compact connected topological space, with the natural quotient topology.
Observe that the degree of Pt (Xr (SU2)) = 1+ t +

t Q
1�t4 is given by (for r > 2)

N = deg Q � 3 = max{deg fr + 2, deg hr } � 3 = 3r � 3,

because the degree of fr is r + 2 and the degree of hr is 3r .

Lemma 8.3. Let r > 3 and N = 3r � 3. (a) The Poincaré polynomial Pt of
Xr (SU2) has degree N and its top coefficient is 1. (b) If Xr (SU2) is a manifold
with boundary, then its dimension is N = 3r � 3.

Proof. (a) We have seen that deg Pt = N = 3r �3. To determine its top coefficient
for r > 3, note that the top coefficient of Pt is either the top coefficient of a, when
r = 2k + 1 is odd, or the top coefficient of b, when r = 2k + 2 is even. According
to equations (8.1) and (8.2) we have that both the top coefficients of a and b are 1
(in the odd case, r = 2k + 1, so that

� r
2k+1

�
t2k+4t4k�4 = 1 · t6k , and 6k = 3(r � 1)

and similarly in the even case).
(b) The dimension of Xr (SUn) as a semi-algebraic set is (n2 � 1)(r � 1) for

r > 2, and if it additionally is a topological manifold, the dimensions coincide. All
semi-algebraic sets have dense subsets which are manifolds, and it is not hard to see
that the irreducible representations are all smooth and form a dense subset. Clearly,
the projectionSUrn ! Xr (SUn) is locally submersive at irreducible representations
(since their stabilizers are zero dimensional) and thus the dimension in this case is
easily seen to be the dimension of the tangent space to the representation, (n2� 1)r
(since SUrn is smooth), minus the dimension of the orbit, which is n2 � 1, since the
stabilizer is finite. When n = 2, we get the claim.

We will use the following standard facts (see [27]). By a closed manifold we
mean a connected compact topological manifold (without boundary).

Proposition 8.4. Let M be an m-dimensional closed manifold. If

dim Hm(M, Q) = 1,

then M is orientable.
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Theorem 8.5 (Poincaré duality). Let M be a closed manifold of dimensionm, and
let bk = dim Hk(M, Q) be its kth Betti number. If M is orientable, then bk = bm�k ,
for all k = 0, . . . ,m.

Proposition 8.6. Let M be a compact connected manifold of dimension m with
non-empty boundary. Then Hm(M, Q) = 0.

Corollary 8.7. Let r > 3. If Xr (SU2) is homotopy equivalent to a manifold with
boundary, then r = 3.

Proof. First we show that the polynomial Pt (Xr (SU2)) = b0+b1t+· · ·+t N , where
bk = dim Hk(Xr (SU2), Q), does not satisfy bk = bN�k , when r > 4. This is clear
by looking at the coefficients. For example, b4 = 0 and, when r > 5, equations
(8.1) and (8.2) imply there is always a nonzero coefficient for the term of degree N�

4 = 3r � 7, so that bN�4 6= 0. When r = 4, we have Pt = 1+ 4t6+ t9 which does
not satisfy Poincaré duality either. Since Betti numbers are a homotopy invariant,
we now suppose without loss of generality that Xr (SU2) is a manifold possibly
with boundary. Then Lemma 8.3 and Proposition 8.6 show that Xr (SU2) has no
boundary. So, Xr (SU2) is closed of dimension 3r � 3, and therefore orientable
by Proposition 8.4. Thus Poincaré duality (Theorem 8.5) applies, and we get a
contradiction. So,Xr (SU2) is not a closed manifold for r > 4. Since it is connected
and compact, it is not everywhere locally homeomorphic toR3r�3 or to a Euclidean
half-space either.

As a consequence of the above theorem, given the computations in [20] of the
compact and complex (r, n) = (2, 2) and (3, 2) cases, the following corollary holds
true.

Corollary 8.8. The character varietyXr (U2),Xr (GL2),Xr (SU2), orXr (SL2) has
the homotopy type of a manifold if and only if 1 6 r 6 3.

Note this corollary is non-trivial since the complex (3, 2) case is not a man-
ifold with boundary but it does deformation retract to a manifold. Moreover, we
have shown not only that Xr (SU2) and Xr (SL2) are not generally homotopic to
manifolds, but the stronger statement that they are not rational Poincaré Duality
Spaces.

A. Appendix. Proof of Proposition 5.8

A.1. Background

We will be dealing with simplicial complexes, subdivision, and simplicial maps, so
we begin by fixing some terminology and conventions. For full details, see [27,
Sections 2.1, 2.C]. Given a space Z , a triangulation T of Z is a covering of Z by
subsets � ✓ Z , called simplices, equipped with homeomorphisms �� : 1k ⇠

=

�! � ,
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where 1k
⇢ Rk+1 is the convex hull of the standard basis vectors e1, . . . , ek+1.

The points �� (ei ) are the vertices of � . This data is subject to the usual axioms.
In particular, a set U ⇢ Z is open if and only if U \ � is open in � for all � 2

T . Suppressing the characteristic functions from the notation, we write (Z; T ) to
denote Z equipped with the triangulation T , and we refer to this data as a simplicial
complex. We write � = [t0, . . . , tk] to indicate that � is the (unique) simplex in
(Z; T ) with vertex set {t0, . . . , tk}.

A subcomplex (Y ; T |Y ) of (Z; T ) is simply a union of simplices in T , with the
induced triangulation. The k-skeleton of (Z; T ) is the subcomplex consisting of all
simplices of dimension at most k. Each subcomplex of (Z; T ) is closed as a subset
of Z . A subcomplex Y of (Z; T ) is full if for every simplex � = [z0, . . . , zk] 2 T
with zi 2 Y for i = 0, . . . , k, we have � ⇢ Y .

For a simplex � in a simplicial complex (Z; T ), the interior
�

�= Inter(� ) is
the subset of � formed by removing all proper faces; equivalently,

�

� is the interior
of � as a topological manifold with boundary. In particular, if � is a vertex, then
�

�= � . Every point in Z lies in the interior of exactly one simplex from T . The
boundary @� = �\

�

� of � is the union of all proper faces of � ; equivalently, @� is
the boundary of � as a manifold.

A simplicial map (Z; T ) ! (Z 0
; T 0) between simplicial complexes is a map

f : Z ! Z 0 such that for each � 2 T , we have f (� ) 2 T 0, and f |� is linear with
respect to the homeomorphisms �� and � f (� ). We note that this implies that

f (
�

� ) = Inter( f (� )). (A.1)

The characteristic functions �� give us a well-defined notion of the barycenter �(� )
for each simplex � 2 T and hence a well-defined barycentric subdivision �(T )
of T . We need a small modification to deal with the fact that a simplicial map
f : (Z; T ) ! (Z 0

; T 0) does not carry barycenters to barycenters (for instance,
consider a simplicial map from a 2-simplex onto a 1-simplex), and hence may no
longer be simplicial after barycentrically subdividing the domain and range. Given
any point b in the interior of a k-simplex � , one may subdivide by barycentrically
subdividing all faces of � and then, for each simplex ⌧ in the subdivision of a face of
� , adding in the cone on ⌧ with conepoint b (identifying � with a standard simplex
via �� , this cone is just the union of all line segments from points in ⌧ to b). We
call this the b-centric subdivision of � .

Now, if (Z; T ) is a 2-dimensional simplicial complex and

f : (Z; T ) ! (Z 0

; T 0)

is simplicial, we may choose, for each 2-simplex � 2 T , a point b = b(� ) such that
b 2 Inter(� ) and f (b) = �( f (� )). If f (� ) is either 0- or 2-dimensional, then we
will always take b = �(� ) (but if f (� ) is an edge, we must choose b differently).
We can now define a subdivision (Z; S) of (Z; T ) by taking the barycentric subdi-
vision of the 1-skeleton together with the b-centric subdivision of each 2-simplex.
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We call this an f -centric subdivision of (Z; T ). Note that f is simplicial as a map
(Z; S) ! (Z 0

; T 0).
We need a few standard, elementary lemmas that will be used (sometimes im-

plicitly) throughout this appendix.

Lemma A.1. If Y ✓ X is a subcomplex of a simplicial complex (X; T ) and ⌧ 2 T ,
then ⌧ ⇢ Y if and only if

�

⌧ \Y 6= ;.

Lemma A.2. If f : (Z; S) ! (X; T ) is a simplicial map and Y is a full subcom-
plex of (X; T ), then

f �1(Y ) =

[
{[z0, . . . , zk] 2 S : f (zi ) 2 Y for i = 0, . . . , k}.

This follows from Lemma A.1 along with (A.1).

Lemma A.3. If Y ✓ X is a subcomplex of a simplicial complex (X, T ), then Y is
a full subcomplex of the barycentric subdivision (X,�(T )): that is, if � 2 �(T ) is
a simplex all of whose vertices lie in Y , then � ⇢ Y .

This also follows from Lemma A.1, since for each simplex � 2 �(T ) there
exists a (unique) simplex ⌧ 2 T with

�

�⇢

�

⌧ , and �(⌧ ) is a vertex of � .

Lemma A.4. Let K be a simplicial complex and let � ✓ K be a simplex. Then the
set

star(� ) =

[n
�

1 | � ✓ 1
o

is open in K .

The set star(� ) is known as the open star of � . The proof that star(� ) is open
is elementary, and can be found in [41, Section 62].

Lemma A.5. Let Z be a path connected topological space. Given a nullhomo-
topic map f : S2 ! Z , the restrictions f + and f � of f to the upper and lower
hemispheres of S2 are homotopic relative to the equator S1 ✓ S2.

Now assume further that ⇡2(Z) = 0. If f, g : D2 ! Z are continuous maps
that agree on @D2, then f ' g (rel @D2).

This follows from the fact that nullhomotopic maps from spheres extend to
disks.

A.2. Proof of Proposition 5.8

We are given simplicial complexes (X; T ) and (S; N ), subcomplexes Y ⇢ X and
S0

⇢ S, and a map
f : (S, S0) ! (X, X \ Y )

that is simplicial on S0. We will assume that S is 2-dimensional; the 1-dimensional
case is similar but simpler. By the Simplicial Approximation Theorem, there exists



180 CARLOS FLORENTINO, SEAN LAWTON AND DANIEL RAMRAS

a triangulation N 0 of S, with S0 still a subcomplex, and a simplicial map f 0
: (S; N 0)

! (X; T ) such that f ' f 0 (rel S0) (see the comments after the proof of the
Simplicial Approximation Theorem in [27, Section 2C]).

The proof will proceed through several steps. Let N1 be an f -centric sub-
division of N 0. In Step 1, we use density of X \ Y to produce a simplicial map
f1 : (S; N1) ! (X;�(T )) such that f ' f1 (rel S0) and for each 2-simplex
� 2 N1, f1(� ) * Y . In Step 2, we use the local connectivity condition around
points in Y to construct a map g : (S; N1) ! (X;�(T )) such that g ' f1 (relative
to the union of S0 with the vertices of (S; N1)), and g�1(Y ) lies in the vertex set
of (S; N1). In Step 3, we use the local ⇡1-injectivity condition around points in
g(S) \ Y to homotope g off of Y .

Step 1
Let N1 be an f -centric subdivision of N 0. For each 2-simplex � 2 N 0, let b(� )
denote the new vertex in N1 lying in the interior of � . We will show that f is
homotopic (rel S0) to a simplicial map f1 : (S; N1) ! (X;�(T )) such that for
each 2-simplex � 2 N1, we have f1(� ) * Y .

We will define the desired homotopy separately on each 2-simplex � 2 N .
Since X\Y is dense in X , for each simplex ⌧ 2 T |Y wemay choose a simplexe⌧ 2 T
such that ⌧ ⇢e⌧ ande⌧ * Y . Now, say � is a 2-simplex in N with f (� ) = ⌧ 2 T |Y .
Then there exists a (unique) simplicial map f �1 : (� ; N1|� ) ! (e⌧ ,�(T )|e⌧ ) sending
b(� ) to �(e⌧ ) and sending the other vertices in (� ; N1|� ) to their images under f ,
and this map agrees with f on @� . Since f |� and f �1 both map into the contractible
spacee⌧ , Lemma A.5 tells us that f |� ' f �1 (rel @� ). Moreover, Inter(e⌧ ) \ Y = ;,
so we have ( f �1 )�1(Y ) ⇢ @� .

The maps f �1 paste together to give a simplicial map

f1 : (S; N1) ! (X,�(T ))

(which we set equal to f on 2-simplices in N that do not map into Y ), and we have
f1 ' f (rel S0). Moreover, for each 2-simplex � 2 N1, we have f1(� ) * Y .

Step 2
Next, we homotope f1 further (still rel S0) to a map g : S ! X such that g�1(Y )
is a subset of the vertices of N1. We note that it will not be necessary to make g a
simplicial map.

Consider an edge e 2 N1. We call e bad if f1(e) ⇢ Y . Since @S ⇢ S0, if e
is bad, then e * @S and hence there are exactly two 2-simplices � (e), ⌧ (e) 2 N1
containing e. Let L(e) denote the subcomplex � (e) [ ⌧ (e) of (S, N1). Let @L(e)
be the union of the edges in L(e) other than e (so @L(e) is the boundary of L(e) as
a topological disk).

We claim that if e is bad, then L(e) \ f �1
1 (Y ) = e, and from this it follows

that if e1 and e2 are distinct bad edges, then L(e1) \ L(e2) ⇢ @L(e1) \ @L(e2).
To prove the claim, say e is bad. Let s and t be the two vertices in L(e) \ e.
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By Lemma A.3, Y is a full subcomplex of (X,�(T )), and by choice of f1 we
have f1(� (e)), f1(⌧ (e)) * Y . Hence we must have f (s), f (t) /2 Y , and now
Lemma A.2 proves the claim.

We will now define the desired homotopy of f1 separately on the various sets
L(e) with e bad. For each such e, the following lemma will construct a map g =

g(e) : L(e) ! X such that g(e) ' f1|L(e) (rel @L(e)) and g(e)�1(Y ) = @e. These
homotopies then paste together to define a homotopy f1 ' g on all of S (constant
outside of these sets), and g�1(Y ) will automatically lie inside the vertex set of
(S; N1).

Lemma A.6. Let (X; T ) be a simplicial complex and let (L; R) be the simplicial
complex consisting of two 2-simplices � and ⌧ sharing a common edge e. Let @L
be the union of the edges in L other than e. Let Y ✓ X be a full subcomplex
such that for each y 2 Y and each open neighborhood U of y in X , there exists
an open neighborhood V ⇢ U , with y 2 V , such that V \ Y is path connected.
If f : (L; R) ! (X; T ) is a simplicial map such that f �1(Y ) = e, then f is
homotopic (rel @L) to a map g : L ! X such that g�1(Y ) = @e.

Proof. Let U ⇢ X be the open set star( f (e)). Since �( f (e)) 2 Y , there exists an
open set V ⇢ X such that �( f (e)) 2 V ⇢ U and V \ Y is path connected.

We will say that a point r 2 V \ Y is reachable (from f (� )) if there exists a
sequence of simplices 11, . . . ,1m 2 T satisfying the following:

(i) f (� ) ✓ 11;
(ii) f (e) ✓ 1i for 1 6 i 6 m;
(iii) 1i \1i+1 * Y for 1 6 i 6 m � 1;
(iv) r 2

�

1m .

Note that condition (iii) is vacuous when m = 1.
We now argue that all points in V \ Y are reachable. Note that V \ f (� ) 6= ;

(since �( f (e)) 2 V \ f (� )), so openness of V implies that Inter( f (� )) \ V 6= ;.
Moreover, each point in Inter( f (� )) \ V is reachable, by setting m = 1 and 11 =

f (� ). So the set of reachable points is non-empty.
Next, we check that the set of reachable points is open. If r 2 V \ Y is

reachable, then there exists a sequence of simplices 11, . . . ,1m as above. Since
r 2

�

1m⇢ star(1m), to prove openness it will suffice to show that all points in
(V \ Y ) \ star(1m) are reachable. If x 2 (V \ Y ) \ star(1m), then x 2

�

1m+1
for some simplex 1m+1 2 T with 1m ⇢ 1m+1. We claim that the sequence
11, . . . ,1m,1m+1 satisfies the above conditions, thereby proving x is reachable.
We must check that 1m \1m+1 * Y ; all the other conditions are immediate from
our choices of 11, . . . ,1m+1. Note that 1m \ 1m+1 = 1m . If m = 1, then
by (i) we have f (� ) ⇢ 1m , so 1m * Y ; on the other hand, if m > 1, then
1m�1 \1m * Y , so 1m * Y .

Finally, we show that the set of non-reachable points in V \ Y is also open.
Since V \Y is (path) connected, this will imply that all points in V \Y are reachable.
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Say v 2 V \ Y is not reachable. Since v 2 V ⇢ U = star( f (e)), we have v 2

�

1 for
some simplex 1 2 T with f (e) ⇢ 1. We claim that no point in (V \ Y ) \ star(1)
is reachable; this will suffice since this open set contains v. If w 2 (V \ Y ) \

star(1) were reachable, then we would have a sequence 11, . . . ,1m as above,
with w 2

�

1m . Since w 2 star(1), we have 1 ⇢ 1m . We claim that the sequence
11, . . . ,1m,1 shows that v is reachable, a contradiction. All that remains to be
checked is that 1m \1 * Y . But 1m \1 = 1, and 1 * Y because v 2 1 and
v 2 V \ Y .

To complete the proof of the lemma, we will need to introduce some auxiliary
simplicial complexes. Let D2m be geometric realization (see [41, Section 3]) of the
abstract 2-dimensional simplicial complex with m + 2 vertices w0, v1, . . . , vm+1,
and 2-simplices [w0, vi , vi+1] for i = 1, . . . ,m. The edges in D2m are simply the
faces of these 2-simplices. Let D3m be the geometric realization of the abstract
3-dimensional simplicial complex with m + 3 vertices w0, w1, v1, . . . , vm+1, and
3-simplices [w0, w1, vi , vi+1] for i = 1, . . . ,m. The 1- and 2-simplices in D3m
are simply the faces of these 3-simplices. Note that D2m is homeomorphic to a
topological 2-disk, and D3m is homeomorphic to a topological 3-disk. In particular,
both spaces are contractible.

Now, �( f (e)) 2 V\ f (⌧ ), so Inter( f (⌧ ))\V 6= ;. Given x 2 Inter( f (⌧ ))\V ,
we know that x is reachable, so there exists a sequence of simplices 11, . . . ,1m 2

T satisfying the above properties (i)–(iv). Note that by (iv), we have Inter( f (⌧ )) \

Inter(1m) 6= ;, so 1m = f (⌧ ).
Let e = [✏0, ✏1], � = [✏0, ✏1, s], and ⌧ = [✏0, ✏1, t]. Let v0

1 = f (s) and let
v0

m+1 = f (t), and note that v0

1 2 11 by (i), and v0

m+1 2 1m = f (⌧ ). Since Y
is a full subcomplex of X , (iii) implies that there exist vertices v0

i 2 1i�1 \ 1i
(i = 2, . . . ,m) such that v0

i /2 Y . Since f �1(Y ) = e, we also have v0

1, v
0

m+1 /2 Y .
Let j = dim f (e) + 2. For i = 1, . . . ,m, we have f (e) [ {v0

i , v
0

i+1} ⇢ 1i (here we
are using (ii)), so there exists a (unique) simplicial map p : D j

m ! (X, T ) defined
by p(wi ) = f (✏i ) and p(vi ) = v0

i . Also, we have a simplicial map q : L ! D j
m

defined by q(✏i ) = wi , q(s) = v1, and q(t) = vm+1. Now f |L : L ! X factors as
p � q.

Since D j
m is a topological disk, the loop q(@L) (which lies on the boundary

of this disk) is nullhomotopic via a homotopy that lies in the interior of D j
m except

at time 0 (for instance, choosing a homeomorphism between D j
m and the unit disk

D j
⇢ R j , we can radially contract q(@L) to the origin). This homotopy gives a

map q 0
: L ⇠

= D2 ! D j
m , which (by Lemma A.5) is homotopic to q (rel @L). We

note that (q 0)�1([w0, wdim f (e)]) = @e.
Now we have f = p � q ' p � q 0 (rel @L), and to complete the proof it will

suffice to check that p � q 0 satisfies (p � q 0)�1(Y ) = @e. We have (p � q 0)�1(Y ) =

(q 0)�1
�
p�1(Y )

�
, so it is enough to show that p�1(Y ) = [w0, wdim f (e)]. But

p(vi ) = v0

i /2 Y by choice of v0

i , and so the only vertices of D
j
m that map to Y

under p are those of the form wi . Applying Lemma A.2 completes the proof.
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Step 3
At this point, we have produced a map g, homotopic to f (rel S0), such that g�1(Y )
consists only of vertices in (S; N1). LetW be the set of vertices in N1 that map to Y
under g, and note thatW \ S0

= ;. For eachw 2 W , our hypotheses on X state that
there exists a path connected open neighborhood Vw of g(w) such that ⇡2(Vw) = 0
and for all v 2 Vw \Y , the natural map ⇡1(Vw \Y, v) ! ⇡1(Vw, v) is injective. For
each w 2 W , choose a Euclidean neighborhood Uw ⇢ S containing w. Then there
exists a disk Dw ⇢ Uw \ g�1(Vw), centered at w, such that Dw is disjoint from S0

and does not contain any vertex of N1 other than w. Note that by shrinking these
disks if necessary, wemay assume that they are disjoint. Now g(Dw\{w}) ⇢ Vw\Y ,
so @Dw maps under g to a loop in Vw \ Y that is nullhomotopic in Vw. For each
z 2 @Dw, we have ⇡1(Vw \ Y, g(z)) ,! ⇡1(Vw, g(z)), so each of these loops is in
fact nullhomotopic in Vw \ Y , and this nullhomotopy defines a map hw : Dw !

Vw \ Y such that hw|@Dw = g|@Dw . Since ⇡2(Vw) = 0, Lemma A.5 implies that
hw ' g|Dw (rel @Dw). We can now define a new map h : S ! X by replacing g
with hw on each Dw, and we have h ' g (rel S0), since S0

\

�S
w2W Dw

�
= ;.

Since h(S) ⇢ X \ Y , this completes the proof of Proposition 5.8. ⇤
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Faculdade de Ciências da Universidade de Lisboa
Edf. C6, Campo Grande
1749-016 Lisbon, Portugal
cflorentino@ciencias.ulisboa.pt

Department of Mathematical Sciences
George Mason University,
4400 University Drive
Fairfax, Virginia 22030, USA
slawton3@gmu.edu

Department of Mathematical Sciences
Indiana University-Purdue University Indianapolis
402 N. Blackford
Indianapolis, IN 46202, USA
dramras@math.iupui.edu


