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A special point problem of André-Pink-Zannier
in the universal family of Abelian varieties

ZIYANG GAO

Abstract. The André-Pink-Zannier conjecture predicts that a subvariety of a
mixed Shimura variety is weakly special if its intersection with the generalized
Hecke orbit of a given point is Zariski dense. It is part of the Zilber-Pink con-
jecture. In this paper we focus on the universal family of principally polar-
ized Abelian varieties. We explain the moduli interpretation of the André-Pink-
Zannier conjecture in this case and prove several different cases for this conjec-
ture: its overlap with the André-Oort conjecture; when the subvariety is contained
in an Abelian scheme over a curve and the point is a torsion point on its fiber;
when the subvariety is a curve.

Mathematics Subject Classification (2010): 11G18 (primary); 14G35 (sec-
ondary).

1. Introduction

Consider [7]: Ag(N) — A, (N), the universal family of principally polarized
Abelian varieties of dimension g with level-N-structure over a fine moduli space.
For simplicity we drop the “(N)” in the notation. The variety 21, is an example of
a mixed Shimura variety which is not pure. For general theory of mixed Shimura
varieties, we refer to [24]. An interesting Diophantine problem related to mixed
Shimura varieties is the Zilber-Pink conjecture, which concerns unlikely intersec-
tions in mixed Shimura varieties. In order to study this conjecture, Pink defined
in [25, Definition 4.1] weakly special subvarieties of mixed Shimura varieties. In
Section 3, we shall discuss weakly special subvarieties of 2. In particular we dis-
pose of the following geometric description for weakly special subvarieties of 2lg:
let Y any irreducible subvariety of %, it is then a subvariety of (71~ ([x]Y) with
the latter being an Abelian scheme over [ ]Y, whose isotrivial part we denote by
C. Then we have (for the proof see Subsection 3.2):

Received October 19, 2015; accepted November 5, 2015.
Published online March 2017.



232 ZIYANG GAO

Proposition 1.1. An irreducible subvariety Y of 2l is weakly special if and only if
the following holds:

(1) [1Y is a totally geodesic subvariety of Ag;
(2) Y is the translate of an Abelian subscheme of (717 ([%]Y) (over [7]Y) by a
torsion section and then by a section of C — [7]Y.

Moreover, this holds for any connected Shimura variety of Kuga type S (i.e., mixed
Shimura varieties with trivial weight —2 part), in which case the “Ag” in (1) should
be replaced by the pure part of S. See the forthcoming dissertation [6, Section 2.2].

Let us define the constant sections of C — []Y. By definition of isotriviality,
there exists a finite cover B’ — B such that C Xy B’ =~ Cp, x B’ for any
by € [7]Y. A constant section of C — [m]Y is then defined to be the image of
the graph of a constant morphism B’ — Cp, in C X[y B’ under the projection
C X[xlY B’ — C.

A very important case of the Zilber-Pink conjecture is the André-Oort conjec-
ture, which for 2, is equivalent to the following statement: if a subvariety ¥ of 2,
contains a Zariski dense subset of special points (i.e., points of 2l corresponding
to torsion points of CM Abelian varieties), then Y is a weakly special subvariety of
2,. By previous work of Pila-Tsimerman [23] and Gao [5], the only obstacle to
prove the André-Oort conjecture for 2, (or more generally, for any mixed Shimura
variety of Abelian type) is the lower bound for the Galois-orbits of special points.

The goal of this article is to study another important case of the Zilber-Pink
conjecture, which we call the André-Pink-Zannier conjecture:

Conjecture 1.2. Let Y be a subvariety of 2. Let s € 2, and X be the generalized
Hecke orbitof s. If Y N Zzar =Y, then Y is weakly special.

Several cases of this conjecture had been studied by André before its final
form was made by Pink [25, Conjecture 1.6]. It is also closely related to a problem
(Conjecture 1.4) proposed by Zannier. Pink has also proved [25, Theorem 5.4] that
Conjecture 1.2 implies the Mordell-Lang conjecture.

Conjecture 1.2 for Ag, the pure part of 2, has been intensively studied by
Orr in [18,19], generalizing the previous work of Habegger-Pila [8, Theorem 3] in
the Pila-Zannier method. This paper is based on the work of Orr [18,19] and the
author’s previous work on the mixed André-Oort conjecture [5].

The set ¥ has good moduli interpretation: by Corollary 4.5,

% = division points of the polarized isogeny orbit of s
= {t € Ug| 3n € N and a polarized isogeny (1.1)
[+ Qg x1ss Arls) = g prles Azye) such that nt = f(s)}.
There are authors who consider isogenies instead of polarized isogenies. However

this does not essentially improve the result because of Zarhin’s trick (see [18, Propo-
sition 4.4]): for any isogeny f: A — A’ between polarized Abelian varieties, there
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exists u € End(A%) such that f* o u: A* — A" is a polarized isogeny. See Sec-
tion 8 for more details.

Although Conjecture 1.2 and the André-Oort conjecture do not imply each
other, they do have some overlap. The overlap of these two conjectures is the
same statement of Conjecture 1.2 with ¥ replaced by the set of points of 2, cor-
responding to torsion points of CM Abelian varieties admitting a polarized isogeny
to a given principally polarized CM Abelian variety. A main result of this pa-
per is to prove this overlap, partially generalizing existing result of Edixhoven-
Yafaev [4,30] and Klingler-Ullmo-Yafaev [10,29] for pure Shimura varieties (see
Theorem 1.5.(2)).

We shall divide Conjecture 1.2 into two cases: when s is a torsion point of
2, (715 and when s is not a torsion point of %, []s. The Diophantine estimates for
both cases are not quite the same.

1.1. The torsion case

When s is a torsion point of 2, 7}s, this conjecture is related to a special-point
problem proposed by Zannier. We define the following “special topology” proposed
by Zannier:

Definition 1.3. Fix a point a € A,. Then a corresponds to a principally polarized
Abelian variety (A4, A,) of dimension g.

(1) We say that a point t € A, is A,-special (or a-special) if there exists an
isogeny A, — 2, (71, and ¢ is a torsion point on the Abelian variety g 7.
We shall denote by X/, (or £’ when there is no confusion) the set of a-special
points;

(2) we say that a point 1 € R, is (Aq, Ag)-special if there exists a polarized
isogeny (Ag, Aa) — (g (71> Ax)r) and ¢ is a torsion point on the Abelian
variety 2, 1], We shall denote by X, (or ¥ when there is no confusion) the
set of a-strongly special points;

(3) we say that a subvariety Z of 2, is a-special if Z contains an a-special point,
[]Z is a totally geodesic subvariety of A, and Z is an irreducible component
of a subgroup of (71~ (712).

In view of Proposition 1.1, every a-(strongly) special subvariety is weakly special.
The following conjecture was proposed by Zannier.

Conjecture 1.4. Let Y be a subvariety of %, and leta € Ag. If Y N E[lzm =Y,
then Y is a-special.

By (1.1), Conjecture 1.2 when s is a torsion point of %l [, is equivalent to a
weaker version of Conjecture 1.4, i.e., replace £ by X, in Conjecture 1.4. How-
ever by [18, Proposition 4.4], Conjecture 1.2 for 24, also implies Conjecture 1.4
for 2,. Our first main result is:
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Theorem 1.5. Conjecture 1.4 holds if one of the following conditions holds:

(1) either dim([7](Y)) < 1;
(2) or the point a is a special point of Ay (which is the overlap between Conjec-
ture 1.2 and the André-Oort conjecture for 2y ).

The proof of this theorem will be presented in Sections 5 and 6. Remark that, by
Corollary 4.6, the case where dim([7r]Y) = 0 (i.e., [7](Y) is a point) is nothing but
the Manin-Mumford conjecture, which is proved by many people (the first proof
was given by Raynaud). On the other hand, with a similar proof, Theorem 1.5.
(2) holds for more general cases (more details will be given in the forthcoming
dissertation [6, Theorem 14.2]). In this paper we only present the proof for the
case 2.

1.2. The non-torsion case

The situation becomes more complicated when s is not a torsion point of A 71s.
In this case we prove (in Section 7):

Theorem 1.6. Conjecture 1.2 holds if Y is a curve.

Structure of the paper

In Section 2 we define the universal family of Abelian varieties in the language of
mixed Shimura varieties of Pink [24]. In Section 3 we discuss weakly special sub-
varieties of 2l . In particular we prove Proposition 1.1 and recall the Ax-Lindemann
theorem in this section. Then we shall lay the base of the study for Conjecture 1.2
in Section 4, where matrix expressions of polarized isogenies are given and gener-
alized Hecke orbits are computed. After these preliminaries, we will start proving
Theorem 1.5 and Theorem 1.6. The proof of Theorem 1.5 will be executed in Sec-
tions 5 and 6, with the former section devoted to the Diophantine estimate and the
latter section devoted to the rest of the proof. In Section 7 the proof of Theorem 1.6
will be presented. Finally, in Section 8, we discuss the following situation: replace
the subset ¥ (which is (1.1)) in Conjecture 1.2 by the isogeny orbit of a finitely
generated subgroup of one fiber. We will prove that although this change a priori
seems to generalize Conjecture 1.2, it can in fact be implied by Conjecture 1.2. For
more details see Corollary 8.2.
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2. Universal family of Abelian varieties

LetS := Resc/rG,c. Let g € Nog. Let Vo be a Q-vector space of dimension 2g
and let
W: Vi x Vog — Uy := Ga,0 2.1

be a non-degenerate alternating form. Define
GSpay, = {g € GL(V2)|W (g, gv') = v(g)¥ (v, v') for some v(g) € G},
and H; the set of all homomorphisms
S —» GSpy, r

which induce a pure Hodge structure of type {(—1,0), (0, —1)} on V3, and for
which W defines a polarization. The action of GSp,, (R)* on ]ngs,F is given by the

conjugation, i.e., for any /1 € GSp,,(R)* and any x € H, A - x is the morphism

h-x:S— GSpy
y > hx(y)h~ L.

It is well known that ]HI; can be identified with the Siegel upper half space (of genus
g)
{2 =X+ V=1Y e Mo ©)1 2= 7", ¥ > 0}

and the action of GSp,,(R)* on H is given by

A B _
(C D)z:: (AZ+ B)(CZ+ D).

The action of GSp,, on Vs, induces a Hodge structure of type {(—1,0), (0, —1)}
on V. Let

X;W = Voo (R) x Hf C Hom (S, Vagr % GSpa, )

denote the conjugacy class under (V3 % Gszg)(]R)Jr generated by H; (recall
that every point of Hz,r gives rise to a homomorphism S — GSpyer C Vagr X
GSpy, ). The notion V2 (IR) x H; is justified by the natural bijection

Vag(R) x H = Vo, (R) x H, (v/,x) — int(v') o x. (22)

Under this bijection the action of (v, h) € (V¢ X Gszg)(R)Jr is given by (v, h) -
W, x) = (v+hv', hx).
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Denote by (Pag a, X;g,’a) = (Vg X Gszg, Vag (R) x H;). This is a connected
mixed Shimura datum ( [24, 2.25]). There is a natural morphism

T (PZg,ay XZE,a) —> <GSp2g, H;)

induced by Prg,a = Vag % GSp,, — GSp,,.

LetT'y(N) := NV(Z) and I'g(N) = {h € Gszg(Z)|h = 1 (mod N)} for
any integer N > 3. Define I'(N) := 'y (N) x I'(N), then it is a neat subgroup of
P2y (Q)". Define

A (N) := F(N)\Xzz’a

and

Ag(N) :=TG(N)\Hj .

Then ¢ (N) is a connected mixed Shimura variety and .4, (N) is a connected pure
Shimura variety. The morphism 7 induces a Shimura morphism

[]: Ag(N) = Ag(N). (2.3)

Theorem 2.1. (1) The morphism (2.3) is the universal family of principally po-
larized Abelian varieties of dimension g over the fine moduli space Ag(N).
(2) Both 4(N) and Ag(N) are both defined over @;
(3) let F :=[0, N)8 x Fg C Vo (R) x H; o~ X;g,’a, where F is a fundamental
Siegel set for the action of T'g(N) on H'g". Then F is a fundamental set for the
action of I'(N) on X;{; o Such that unif| z is definable in the o-minimal theory

Ran,exp .

Proof. See [24,10.5,10.9,10.10, 11.16] for (1) and (2), while (3) is the main result
of [20] (see [5, Remark 4.4]). O

Let N > 3 be even. Pink has also constructed an ample G, -torsor over 2, (N)
in terms of mixed Shimura varieties in [24]. In our purpose we only need:

Theorem 2.2. There exists a G,-torsor £4(N) — 4, (N), which is totally sym-
metric and relatively ample with respect to UAy(N) — Ag(N). Furthermore,
any point a € Ay(N) corresponds to the principally polarized Abelian variety
(g (N)a, £g(N)q) with some level-N -structure.

Proof. See [24,2.25,3.21,10.5,10.10]. g

Notation 2.3. In the rest of the paper, we shall always take N to be even and larger
than 3. Furthurmoer we write Ag, A, and £, for A, (N), A, (N) and £4(N) for
simplicity.
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3. Weakly special subvarieties of 2,

In this section we discuss weakly special subvarieties of 2, (or more generally, of
mixed Shimura varieties of Kuga type).

3.1.

The following definition is not exactly the original one given by Pink [25, Definition
4.1(b)], but it is not hard to verify their equivalence (see [25, Proposition 4.4(a)]
and [5, Proposition 5.7]):

Definition 3.1. A subvariety Y of %, is called weakly special if there exist a con-
nected mixed Shimura subdatum (Q, V) of (Pg,as Xzz o)+ @ connected normal
subgroup N of Q possessing no non-trivial torus quotient and a point y € Y™ such
that Y = unif(N (R)*Y).

Remark 3.2.

(1) Weakly special subvarieties of 2, defined as above are automatically irre-
ducible ([5, Remark 5.3]).

(2) For an arbitrary connected mixed Shimura variety S of Kuga type, its weakly
special subvarieties are defined in the same way with (Ppg 4, Xz;, ) replaced
by the connected mixed Shimura datum associated with S. For more general
connected mixed Shimura varieties, the “N (R)*” in the definition should be
replaced by “N (R)T Uy (C)” where Ul is the so-called weight —2 part of N.
We shall not go into details on this.

3.2.

The goal of this subsection is to prove Proposition 1.1. Recall that Py, , is defined
to be V2 X GSp,, with the natural representation of GSp,, on V2. Therefore this

induces the zero-section &: (Gszg, HZ{) — (Payg.a, X;g, 2) of m. Remark that &
corresponds to the zero-section of [r]: A, — Ag.

Proposition 3.3. Let B be an irreducible subvariety of Ay and X := (71~ Y(B).
Define C to be the isotrivial part of X — B, i.e., the largest isotrivial Abelian
subscheme of X over B. Then

{translates of an Abelian subscheme of X — B by a torsion section and then
by a constant section of C — B} = {X N E| E weakly special in 2g}.

The constant sections of C — B are defined as follows: By definition of isotriv-
iality, there exists a finite cover B’ — B such that C xp B’ =~ Cp, x B’ for any
bo € B. A constant section of C — B is then defined to be the image of the graph
of a constant morphism B’ — Cp, in C x g B’ under the projection C xp B" — C.
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It is clear that Proposition 1.1 follows immediately from Proposition 3.3 and
[15,4.3].

The following proposition is not hard to prove using Levi decomposition [26,
Theorem 2.3]. Another (partial) proof can be found in [12, Section 5.1].

Proposition 3.4. 7o give a Shimura subdatum (Q, Y) of (Pag.a. X
lent to giving:

2. a) is equiva-

e a pure Shimura subdatum (G g, ng) of (GSpy,, H;);

e a Gg-submodule Vo of Vag (Vag is a GSpy,-module, and therefore a G -
module);

e an element vy € (Va,/Vp)(Q).

Proof. We only give the constructions here.

(1) Given (Q, Y") C (Paga, Xs, ), we have Vo 1= Ru(Q) < Ru(Prga) =

Vg . Therefore the inclusion (Q, yhH c (Pag.a, X, ) induces

2g a
(Go, yGQ) (0. Y1)/ Vo C (GSpyg, Hy) = (Pagas Xpf, )/ Vag.

The fact that Vg is a G g-submodule of V, is clear. Now it suffices to find
To € (Vag/ Vo) ().

Consider the group Q° := (Vag/ Vo) X G, where the action is induced by
the natural one of G on Vp,. By definition, Q% = n_l(GQ) /Vo. Now
the inclusion (Q, Y1) C (P2ga, X5 ) also induces an inclusion (which we
call i)

2ga

Go=0Q/VoCrn '(Gg)/ Vo= 0"

We have the following diagram, whose solide arrows commute:

1 1 Gog — Gg — 1

o,

1 — Vag/ Vo — O™ 5Go — 1

where s¢ is the homomorphism G = {0} x Gg < (Va,/Vp) X Gg = Q.
Now i’ and s¢ are two Levi-decompositions for Q". By [26, Theorem 2.3],
s equals the conjugation of i’ by an element vy € (Vag/ Vp)(Q). Moreover,
the choice of vy is unique;

(2) conversely, given the three data as in the Proposition, the underlying group Q
is the conjugate of Vg X G g < V2, X GSp,, (compatible Levi-decompositions)
by (vo, 1) in P . The space

V= (vo+ Vo) x Vi, C Vap(R) x Hy = X7

where vy is any lift of v to V24 (Q).
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Proposition 3.5. A subvariety Y of %, is weakly special if and only if there exist

a pure Shimura subdatum (G g, ng) of (Gszg, HZ,’);

a point vy € V24(Q);

a normal semi-simple connected subgroup Gy of G ¢ and a point yg € ng ;
a G g-submodule Vi of Voe;

a G g-submodule V]f,‘ of Vag on which Gy acts trivially, and a point v € Vlﬂ,‘ (R)

such that

Here (vo +v+ VN(R)) x GNR)TYG C Vag(R) x H; ~ Xt

¥ = unif( (v + v + Vy (B)) x Gn (R Tc).

2g,a"

Proof.

(1) Given a weakly special subvariety Y of 2, let (Q, Y*), N and y be as

in Definition 3.1. By Proposition 3.4, (Q, Y") corresponds to a Shimura
subdatum (G, ng) of (Gszg,H;), a Gp-submodule Vg of V,, and a
point Vg € (V25/Vp)(Q). Let vg be any lift of vy to V2,(Q). Let Gy =
N/(Vg N N), then Gy is a connected normal subgroup of G, and hence is
reductive. Since N possesses no non-trivial torus quotient, G is semi-simple.
Let yg := 7 (y).

Let Viy := Vg N N, then Vy is a G g-submodule of Vg since N is normal
in Q. By [5, Corollary 2.14], there exists a G g-submodule Vﬁ of Vg such
that Vo = Vy @ V,\% and Gy acts trivially on V,&. Write ¥y = (Vy, yg) €
(vo+Vo(R)) x ng =Yt cC Xz;, o (here we use the second part of the proof
of Proposition 3.4).

To simplify the computation below, we introduce a new Shimura subdatum
(Q', )" of (Pag.a, X;gﬁ): (Q',)) is defined to be the conjugate of (Q, Y1)
by (—wvo, 1). By the second part of the proof of Proposition 3.4, (Q’,)’) =
(Vo % Go, Vo(R) x V) C (Vag X GSpyy, Xofy ). Let N':= Vy X Gy <
Vag x GSpy,, then N’ is the conjugate of N by (—vp, 1). Let y’ := By —
v, Y6) € V'

Let v be the Vlﬂ; (R)-factor of yy. Then since G acts trivially on VE, we
have

N'R)Y = (v+ Vv[®R) x GyR) Y6 Cc V7.

Hence N(R)*Y = (vo + v + Vv(R)) x Gy(R)"¥5. Now the conclusion
follows;
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conversely given all these data, let the Shimura subdatum (Q, Y1) be the one
obtained from (G, ))E;"Q), Vv & Vlf; and vg by Proposition 3.4. Let N be the
subgroup of Q which is defined to be Viy X Gy conjugated by (vg, 1) in Pyg ,.
Then since Gy acts trivially on Vi, N <1 Q. Let J := (v + v, ¥5). Now we
have
(vo+v+ VN[R)) x GNR) Y6 = NR)TY.

The group N is by definition connected and possessing no non-trivial torus
quotient since G y is semi-simple. Hence Y is weakly special by definition. []

Now we can prove Proposition 3.3:

Proof of Proposition 3.3.

o))

2)

Prove “2”. For this it suffices to prove:

For any weakly special subvariety Y of g, Y is the translate of an Abelian
subscheme of (71~ Y7 1Y) (over [7]Y) by a torsion section and then by a
section of the isotrivial part of (7] ' [7]Y — [7]Y.

Let Y be a weakly special subvariety of 2,. Then associated to Y there are
data as in Proposition 3.5 and

Y = unif( (v + v + Vv (®) x Gy (R)*F5).

Let B’ := [n]Y and X' := [n]1(B).
Now X’ — B’ is an Abelian scheme. Since Vy is a G p-submodule of Vg,
unif ( VNn(R)x Gy (R)JFS;G) is an Abelian subscheme of X’ over B’. Therefore,

unif((vo + Vy(R)) x GN(R)+§G)

is the translate of B’ by a torsion section of X' — B’. Butv € Vi(R)
and Gy acts trivially on VL, so unif(VIﬂ;(]R) x G N(R)*’SI};) is an isotrivial
Abelian scheme over B’. Therefore Y is the translate of an Abelian subscheme
of X’ — B’ by a torsion section and then by a section of the isotrivial part of
X' — B’;

prove “C”. Let Y be a subvariety of X such that Y is the translate of an Abelian
subscheme of X — B translated by a torsion section and then by a section of
C — B, where C — B is the isotrivial part of X — B. Let us find a weakly
special subvariety E of 2, associated with the data in Proposition 3.5 such
thatY = ENX.

Let B’ be the smallest weakly special subvariety of A, containing B. Then
by definition there exist a Shimura subdatum (G g, ng), a connected semi-

simple normal subgroup Gy of G and a point yg € ng such that B’ =

unifg (G N(R)J’i(;). Moreover by [15, 3.6, 3.7], Gy is the connected alge-
braic monodromy group of (B’)*™, i.e. the neutral component of the Zariski
closure of I' gsm :=the image of 71 ((B')*™) — m1(A,) =T'g.
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Let X’ := [7]~!'(B’). Then the isotrivial part C’ of X' — B’ is
unif(V'(R) x Gy (R)56),

where V" is the largest G p-submodule of V>, on which G y acts trivially. This
V' is the Vﬁ- we want in Proposition 3.5.
A key step is to prove that as subvarieties of 2l,, we have

cC=CnX (3.1

Itis clear that C'N X C C. For the other inclusion, suppose that C is defined by
the G g-submodule V" of V3, (i.e. C = unif(V"(R) x B) for B := unifa1 (B)),
then I'psm acts trivially on V”. However the action of G on V>, is algebraic,

therefore Tgam " acts trivially on V”. So Gy acts trivially on V”. By the
maximality of V', V" c V'. So C c C’. Now (3.1) follows.

Now since Y is the translate of an Abelian subscheme by a torsion section and
then by a section of C — B, there exists, by (3.1), a Gg-submodule Vy of
V24 such that

Y = unif((vo + v+ VN(R)) X E)

where vy € V2g(Q) corresponds to the torsion section and v € V'(R) corre-
sponds to the section of C — B. In other words,

Y =ENX,where E = unif((vo + v+ Vy(R)) x GN(R)erG)

and E is the weakly special subvariety of 2(, we desire. O

3.3. Ax-Lindemann

In this subsection we summarize some results regarding the mixed Ax-Lindemann
theorem. All the results stated in this subsection hold for arbitrary connected mixed
Shimura varieties, and in particular for 2, .

In this subsection, let S be a connected mixed Shimura variety associated with
(P, X™") and let unif: X+ — S be the uniformization. An example for this is
Q(g and (Pyg a, XZZ’ 2)- As explained in [5, Proposition 4.1], there exists a complex
algebraic variety X', which is the total space of a holomorphic vector bundle (of
rank g in the case of (Pga, X;g,’ ) over a complex projective variety, such that
Xt — XV makes XT a semi-algebraic! and open (in the usual topology) subset
of XV.

! For any positive integer N, a semi-algebraic set of R is a subset defined by a finite sequence
of R-polynomial equations and inequalities, or any finite union of such sets.
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Definition 3.6. Let ¥ be an analytic subvariety of X't then

(1) Y is called an irreducible algebraic subset of X'T if it is an analytically irre-
ducible component of the intersection of its Zariski closure in X and X't;
(2) Y is called algebraic if it is a finite union of irreducible algebraic subsets of
+

The following Ax-Lindemann theorem is due to Gao [5]:

Theorem 3.7. Let Z be a semi-algebraic subset of X . Then any irreducible com-

~—Zar
ponent of unif(Z)  is a weakly special subvariety of S.

Proof. (See the forthcoming thesis [6, Theorem 7.4]) Recall that a connected semi-
algebraic subset of X't is called irreducible if its R-Zariski closure in XV is an
irreducible real algebraic variety. Note that any semi-algebraic subset of X’ * has
only finitely many connected irreducible components. Let Z’ be any connected
irreducible component of Z. It suffices to prove that every irreducible component

~7z
of unif(Z)’ “ is weakly special

Let Y = umf(f/ ) and let W be a connected 1rredu01ble semi-algebraic
subset of X'+ which contains Z’ and is contained in unif™ (Y ), maximal for these
properties. Then

———=—Zar
Y = unif(W)

Now [22, Lemma 4.1] claims that W is algebraic in the sense of Definition 3.6.
Then any complex analytic irreducible component W’ of W is an irreducible alge-
braic subset of X+ which is contained in unif~ !(Y), maximal for these properties.
But then [5, Theorem 1.2] tells us that umf(W ) is a weakly special subvariety of S,
and in particular a closed irreducible algebraic subvariety of S. Now Y is the Zariski
closure of unif(W’) for W’ running over the complex analytic irreducible compo-
nents of W. Hence any irreducible component of Y equals unif(W'’) for some W',
and hence is a weakly special subvariety of S. U

4. Generalized Hecke orbit

In this section we discuss the matrix expression of a polarized isogeny and then
compute the generalized Hecke orbit of a point of 2.

4.1. Polarized isogenies and their matrix expressions

Let b € A,. Denote by A, = 2, and denote by 1,: Ap > A}/ the principal
polarization induced by £, 5. Then the point b corresponds to the polarized Abelian
variety (Ap, Ap). Let B be a symplectic basis of Hj(Ap, Z) with respect to the
polarization 4. Let b € H be the period matrix of Ap with respect to the basis 3.
In this subsection we fix B to be the Q-basis of V»,.
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Consider all the points b" € A, such that there exists a polarized isogeny
[ (Ap, Ap) = (Ap, Ap)

where (A, Ay) = Rgp, Ap 5 Ay, induced by £, ;). Let B’ be a symplectic
basis of Hj(Ay,Z) with respect to the polarization A, and let b’ € H; be the
period matrix of A with respect to the basis 5.

Definition 4.1. The matrix & € GSp,, (@)1 N Moy x2,(Z) associated to
fo: Hi(Ap, Z) — Hi(Ap, Z)

in terms of I3 and B3’ is called the rational representation of f with respect to 5
and B'.

The periods b and b are related by « in the following way:
b=a'-b = (Ab + B)(CH + D)7,
t A B b b eHT C
where o' = CD and b, b’ € ¢ C Mgy o (C).

Under the Q-basis B of Vs, the matrix o’ corresponds to the dual isogeny of f,
i.e., the following diagram commutes:

(Xz—;,a)ﬁ/ L (ij;,a)g, (v,ﬁl;/) — (atv,a’ﬁ) = (oztv,z))
unifl unifi

“4.1)
Ap Ap
Abl? )Lb/iz
Ay, — L a4y

. . . . d /g
However, since f is a polarized isogeny, f*£, )y = 2?; e f)

diagram commutes:

. So the following

S

Ab Ab/
[(degf)l/”’]okbl Ah/lz. 42)

v fY v

Ay ~—— 4y

Therefore by (4.1) and (4.2), we get the following commutative diagram:

(deg )/ (@)~
(Kog ) ——— (X )p
unifl unifl . (43)
Ap ! . Ay
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Definition 4.2. The matrix (deg f)'/2(a’)~! is called the matrix expression of f
in coordinates 3 with respect to 3.

Remark 4.3. Itis good to give the matrix (deg f) 178 (¢?)~1 a name because we will
use it several times in the proof of Theorem 1.6. The name “matrix expression” is
given by the author. Remark that this definition only works for polarized isogenies
because (4.2) fails for general non-polarized isogenies.

4.2. Generalized Hecke orbit

Lemma 44. Let ¢ € Aut ((Pag.a, X5,

2g’a)). Then there exist g’ € GSpy, Q@ and

v € Va2, (Q) such that the action of ¢ on X;é', o 18 given by

¢ ((v,x)) = (g'v + vo, g'x).

Proof. We have ¢(V2g) = @(Ry(P2g.a)) C Ru(P2ga) = Vag. Since every two
Levi decompositions of P», , differs by the conjugation of an element vy € V4 (Q),
there exists a vp € V2, (Q) such that ¢ := int(vg) ~! o maps (GSpy,, H:[) to itself.
Now v maps V5, and (Gszg, H;) to themselves. So ¥ can be written as (A, B),
where A € GL2(Q) and B € Aut ((Gszg, H;)) = GSp2g(Q)+. Remark that

¥ € Aut(Pyg a), so that we can do the following computation: for any v € V2, (Q)
and h € GSp,, @™,

(Ahv, BhB™") = yr((hv, h)) = ¥ ((0, h)(v, 1)) = ¥ (0, h)yr (v, 1)
= (0, BhB~"(Av, 1) = (BhB~'Av, BhB™").

Because v is an arbitrary element of V,,(Q), this implies that Ah = BhB~'A
for any h € GSp,, (Q)*. But this tells us that A~' B commutes with any element
of Gszg(Q)+, and hence A™'B € G,,(Q). So ¥ acts on the group Phg o as
¥ ((v, h)) = (cBv, BhB~") where ¢ € Q* and B € Gszg(Q)+. Therefore ¥
acts on ng’a as ¥ ((v, x)) = (cBv, Bx) = (cBv, cBx). Denote by g’ := cB €
GSp,, (@)™, then the action of ¢ on X;g’ o 1 given by

@ ((v,x)) = (g'v + vy, g'x). O

Let s € g, then [7]s € A, corresponds to a polarized Abelian variety (g (715,
)\[n]s)-

Corollary 4.5. Let s € ;. Then a point t is in the generalized Hecke orbit of s
if and only if there exist a polarized isogeny f: (g (715, Ax1s) — g (715 A1)
and n’ € N such that f(s) = n't.
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Proof. Let (v, x) e XZ—;,a (respectively (v, x;) € X;:g,a) be such that s =unif ((v, x))
(respectively ¢ = unif ((v;, x;))). Then by Lemma 4 .4, ¢ is in the generalized Hecke
orbit of s if and only if

(vr, ) = (g'v + vo, g'x) (4.4)

for some g" € GSp,, (Q)" and vy € Vag (Q).

If (4.4) is satisfied, then there exists ¢ € G, (Q) = Q* st h := ¢ lg’ €
GSp,, (Q)* is a Z-coefficient matrix. Hence & corresponds to a polarized isogeny
fi Qg nss Arts) = g (215 Arye) - By (4.4), we have ¢ = unif ((chv + vo, X)),
and therefore

n't =m' f(s) + unif ((vo, x;))

where ¢ = m’/n’. But unif ((vo, x;)) is a torsion point of 2, 71, since vg € V2¢(Q),
and therefore can be removed by replacing m’ and n’ by sufficient large multiples.
On the other hand m’ f is still a polarized isogeny, and hnce replacing f by m’ f,
we may assume m’ = 1. Finally we may assume n’ € N by possibly replacing f
by —f.

On the other hand, suppose there exist a polarized isogeny f: (Ug [7]s, Arls) =
(g (71> A1) and n' € N such that f(s) = n't. Let B, (respectively B;) be a
symplectic basis of Hi (g [x]s, Z) (respectively Hi (g 71, Z)) and let i be the
matrix expression of f in coordiante By with respect to B;. Then i € GSp,, @™
and there exists (yy, yg) € I' such that

(n've, x) = (v, v6)(hv, hx) = (yv + ychv, yghx).
Now g’ := ygh/n’ € Gszg(Q)Jr and vo 1= yyv/n’ € Va4 (Q) satisty (4.4). O

Corollary 4.6. Let s € U, and t be a point in the generalized Hecke orbit of s. Let
fio Qg ix1ss Mr1s) = Qg (z1e> Az1e) be a polarized isogeny of minimal degree.
Then there exist

e apoint so € Ug [x]ss

e ¢ € End (g, x5, Arls))s
® /g € N

such that s = ngso and

fi(p(so) + p) =1
Sfor some torsion point p € Ay 715
Proof. By Corollary 4.5, there exist a polarized isogeny f: (g 715, Afz]s) —
(g 15 AMx1) and m’, n’ € N such that p; := m’ f(s) — n't is a torsion point
of g (7. Now f' o f € End (g (r1ss Azls)) ® Q, i.e., there exist ¢’ €

End ((ng,[ﬂ]s, A[n]s)) and n;, € N such that f,_l of =¢'®(/ng). Sonyo f =
f+ o ¢’ and hence

m' f,(¢'(s)) = m'ny £ (s) = ny(n't + p1) = nyn't + nopi.
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Let g :=m' o ¢’ € End ((ng [xls> Aln]s)) and ng := nOn € N, then there exists a
torsion point py € Ay (71, such that

fi(p(s)) = not + p2.

Hence the conclusion follows. O

5. Diophantine estimate for the torsion case

5.1. Preliminary

In this subsection we fix some definitions and notation used in the proof of Theo-
rem 1.5.

Leta € A,. We use X instead of X, to denote the set of all a-strongly special
points of .. Let unif: XZJ;’ . — 2g be the uniformization map and let F be the

fundamental set in Xz;, o defined as in Theorem 2.1.(3). Let

Y = unif " '(Y) N Fand £ := unif (Z) N F.

The point a € A, corresponds to the polarized Abelian variety (Aq, A4) 1= (g 4,
Aa). Let B be a symplectic basis for H|(A,, Z) with respect to the polarization
Aq. Let @ be the period matrix of A, with respect to the chosen basis 3. In the
rest of the paper, we shall sometimes identify a € H; and (0,a) € {0} x H; C

Vag(R) x Hf =~ X\ .
For any ¢ € ¥, there exists by definition of ¥, a polarized isogeny (A, Ay) —
(g (216> A1) - Besides, t is a torsion point of Apz), := g [7};, Whose order we

denote by N(¢).
Definition 5.1. For any ¢ € X, define its complexity to be
max (minimal degree of polarized isogenies (Aq, Aa) = (Afx]r, Afz1), N(1)).

In addition, define the complexity of any point of T to be the complexity of its
image in X.

5.2. Application of Pila-Wilkie
The goal of this subsection is to prove the following proposition:

Proposition 5.2. Let Y, @ be as in the last subsection. Let ¢ > 0. There exists a
constant ¢ = c(Y, d, &) > 0 with the followmg property:

For every n > 1, there exist at most cn® definable blocks B; C Y such that
UB; contains all points of complexity at mostnin Y N 2.

Lemma 5 3. There exist constants c’, k depending only on g and @ such that for
anyt eYny ofcomplexlty n, there exists a (v, h) € Py, (Q)* such that (v, h)a =71
and H((v, h)) < c'n
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Proof. Lett = unif(tN). By [19, Proposition 4.1], there exist

e apolarized isogeny f: g (71: = Ads
e a symplectic basis B’ for H; (g [x1,, Z) with respect to the polarization A}

such that the rational representation 41 of f with respect to the chosen bases satis-
fies that H (A1) is polynomially bounded in deg( f).

But unlfG (h’a) = [x]t by (4.3). Hence there exists a hp € I'g such that
hzh a=n0) e .7-"(; By [22, Lemma 3.2], H (h7) is polynomially bounded in the
norm of A} - @

Now deﬁne h := hah',. We have then ha = 7 (f) and

H(h) < codeg(f)*

where ¢y > 0 and k¢ > 0 depend only on g and a.

Next write 7 = (fy, n(f)) € F. Letv := 1y, then v € V24 (Q) since ¢ is a
torsion point of A, ;1,. Besides, the denominator of v is precisely the order of the
torsion point #. But by choice, F ~ [0, N)*8 x Fg C Vg (R) x H; o~ XZJ; a
(see Theorem 2.1.(3)). Therefore up to a constant depending on nothing, H (v) is
bounded by its denominator, i.e., the order of the torsion point 7 of g (1.

To sum it up, (v, h) is the element of Py (@) which we desire. O
Now we can prove Proposition 5.2 with the help of Lemma 5.3.

Proof of Proposition 5.2. Let

o: Pp(R)T — X{g .

(v, h) — (v, h)a.

The set R = 0*1(17) = o L(unif "'(¥Y) N F) is definable because o is semi-
algebraic and unif| £ is definable. Hence we can apply the family version of the
Pila-Wilkie theorem ( [21, 3.6]) to the definable set R: for every ¢ > 0, there
are only finitely many definable block families B)(¢) € R x R™ and a constant
C1(R, ¢) such that, for every T > 1, the rational points of R of height at most
T are contained in the union of at most C;7T°¢ definable blocks B;(T, ¢), taken (as
fibers) from the families BY/)(¢). Since o is semi-algebraic, the image under o of
a definable block in R is a finite union of definable blocks in Y. Furthermore the
number of blocks in the image is uniformly bounded in each definable block family
B (g). Hence O'(B (T, &)) is the union of at most C>T¢ blocks in Y for some new
constant Co(Y, d, €) > 0. o

By Lemma 5.3, for any point 7 € ¥ N X of complexity 7, there exists a rational
element y € R such that o (y) =7 and H(y) < ¢/n*. By the discussion in the last
paragraph, all such y’s are contained in the union of at most C(c'n*)* definable
blocks. Therefore all points of ¥ N X of complexity n are contained in the union of
at most C1Cac¢’®n”® blocksin Y. O
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5.3. Galois orbit

In this section we shall deal with the Galois orbit. We handle the case of Q-points at
first and then use the standard specialization argument to prove the result for general
pointsof X NY.

Proposition 5.4. Suppose a € Ay(Q). There exist positive constants ¢ = cj(g),
¢y = ¢4 (g, k(a)) and ¢y = c/(g) satisfying the following property:
For any pointt € X NY N2, (Q) of complexity n,
)
k() : Q] > ¢\ ———
hp (Aa)c3
where k(t) is the definition field of t .

Proof. Define (as Gaudron-Rémond [7])

kU (1) 1= ((149)% [k 1) : QImax (h  (Ag 1) loglk ([]6) : Q1 1)) 10248,

Take a pointr € ZNY NA, (@) of complexity n. Denote by k([r]¢)) the definition
field of [r]¢. Denote by N (¢) the order of ¢ as a torsion point of A[;}; := g (7]
There are two cases.

Case i
n = minimal degree of polarized isogenies (A4, Aq) — (Afzr» Afz)r)- Then by [7,
Théoreme 1.4] and [18, Theorem 5.6],

n < K(ng,[n]t)'
On the other hand, by a result of Faltings [2, Chapter II, Section 4, Lemma 5],
hr@lg (x1:) < hr(Ag) + (1/2)logn.

Now the conclusion for this case follows from the two inequalities above and the
easy fact [k(¢) : Q] = [k([7]r) : Q].

Case ii
n = N(t). By [7, Théoreme 1.2], there exist positive natural numbers [/, simple
Abelian varieties Ay, ..., A; over a finite extension k" of k([7]¢) (A; and A; can

be isogenous to each other over Q for i # j) and an isogeny

!
(2 mg,[n]t - HAi 5.1
i=1
such that ¢ is defined over &, deg ¢ < k(g [71,) and [k : k([7]6)] < k(g [710)%.

Call p;: A — A; the composite of ¢ and the i-th projection Hi:l A — A (Vi =
1,...,0).
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Now ¢ € A is a torsion point of order 2 [;};. Without any loss of generality
we have

N(pi1(®)) = N(pi())
where N (p;(t)) is the order of p;(¢) as a torsion point of A;.

Lemma 5.5.

N(@t) < kg ()N (p1(0)® and [k(t) : Q) = [k(p1 () : Ql/x g (1)
where k(p1(t)) is the definition field of p1(t).

Proof. Denote by N (¢(t)) the order of ¢(¢) as a torsion point of ]—[521 A;. Ttis
clear that

N(p() = N(@t)/degp = N(1)/k (Ug,(x11)-

On the other hand, N (¢ (1)) = lcd(N(p1(t)), ..., N(pi(t))) < N(pi(t))8. Now
the first inequality follows.

For the second inequality, first of all since ¢ and Hﬁ:l A; are both defined over
k', we have

[k(p(®)) : Q1 < k(K : Q] = [k(r) : QIO k(O] < [k(r) : QIK" : k]
< k(@) = QI RAg, 10

Next since all Abelian varieties Aj.,...,A; are defined over k’, we have then

[k(p())k": Q1 = [k(p1(1)) : Q]

But
k(@)K = Q1 = [k(p)k : K1k = k]lk : Q]
< [k(p()) : k1K = klik : Q]
= [k(p(1) : QIIK : k]
< k(@) = Qlx g, 1710)%
Now the second inequality follows from the three inequalities above. O

By [3, Corollaire 1.5],

N(p1(1)"/ 2
log N (p1 (1) (h (AD) + log N(p1 (D)’

[k(p1(1) : Q] = ¢;(g) (5.2)

By the comment below [7, Corollaire 1.5], we may assume

1
hp(AD) < hp@lg 21:) + 7 log k (Ag,(71)- (5.3)
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By assumption of this case, there exists an isogeny A, — ng,[n 1t of degree < n.
So by Faltings [2, Chapter II, Section 4, Lemma 5],

hr g (1) < hr(Ad) + (1/2) logn. (54)

Now because [k(¢) : Q] = [k([z]t) : Q], the conclusion of Case ii now follows
from Lemma 5.5, (5.2), (5.3) and (5.4). ]

Corollary 5.6. Suppose a is defined over a finitely generated field k. There exist
positive constants ¢ = c1(Aq, k) and co = c3(Aq, k) satisfying the following
property: for any pointt € ¥ N'Y of complexity n defined over a finitely extension
k(t) of k,

[k(t) : k] = c1n®2.

Proof. This follows from Proposition 5.4 and a specialization argument. The case
where n = minimal degree of polarized isogenies (A4, Aq) — (Aprls, Afryr) 1S
proved by Orr [19, Theorem 5.1] (possibly combined with [18, Theorem 5.6]). The
case where n = N(t), the order of ¢ as a torsion point of g [}, follows from
the standard specialization argument introduced by Raynaud (see [19, Section 5]
or [27, Section 7]). ]

6. End of the proof in the torsion case

In this section Y is always an irreducible subvariety of 2,,a € A, and X is the set
of all a-strongly special points of 2.

=% . .. . .
Theorem 6.1. If Y N X “ =Y, then the union of all positive-dimensional weakly
special subvarieties contained in Y is Zariski dense in Y .

Proof. Let X be the set of points ¢ € Y NX such that there is a positive-dimensional
block B C Y with t € unif(B). Let Y| be the Zariski closure of 2. Let k be the
finitely generated field k(a). Enlarge k if necessary such that both Y and Y| are
defined over k.

Let ¢ be a pointin ¥ N'X of complexity n. By Corollary 5.6, there exist positive
constants ¢ and ¢, depending only on g, A, and k such that

k(1) : k] = cn/?.

But all Gal(k/ k)-conjugates of ¢ are contained in ¥ N = and have complexity . By
Proposition 5.2, the preimages in JF of these points are contained in the union of
c(Y,d, c2/4)n2/* definable blocks, each of these blocks being contained in Y.

For n large enough, c1n?/? > ¢cn2/*. Hence for n > 0, there exists a defin-
able block B C Y such that unif(B) contains at least two Galois conjugates of ¢,
and therefore dim B > 0 since blocks are connected. So being in unif(B), those
conjugates of ¢ are in X|. But Y is defined over k,so ¢t € Y.
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In summary, all points of ¥ N X of large enough complexity are in ¥;. This
excludes only finitely many pointsof Y N . So ¥ =Y.

Let %, be the set of points # € ¥ N ¥ such that there is a positive-dimensional
connected semi-algebraic set B’ C Y with 7 € unif(B’). Let Y, be the Zariski
closure of ¥,. By definition of blocks, ¥, = ¥, and hence Y> = Y} = Y. But the
Ax-Lindemann theorem (in the form of Theorem 3.7) implies that the irreducible

— . . . .
component Z of unif(B’) o containing ¢ is weakly special. Moreover dim(Z) > 0
since dim(B’) > 0. Therefore every point € ¥, is contained in some positive-
dimensional weakly special subvariety of 2. Now the conclusion follows. U

Proof of Theorem 1.5. Let S be the smallest connected mixed Shimura subvariety
containing Y. Assume S is associated with the connected mixed Shimura datum
(P, X1). Let (G, XCJ{) := (P, X")/R,(P). By Theorem 6.1 and [5, Theorem
12.2], such a non-trivial group N exists: N is the maximal normal subgroup of P
such that the following hold:

o there exists a diagram of Shimura morphisms

(P,.XT) L (P X)) = (P.XT)/N - (G, X)) = (P, X)) /Ru(P)

unifl unif’i unif’G l
S [o] S/ [7'] S/G

(then S’ is by definition a connected Shimura variety of Kuga type);

o the union of positive-dimensional weakly special subvarieties which are con-
tained in Y’ := [p](Y) is not Zariski dense in Y;

o ¥ =[p]'(Y").

(1) We prove the theorem by induction on g. When g = 1, the only non-trivial
case is when Y is a curve. But then Y must be weakly special by Theorem 6.1.
Remark that this case has also been proved by André [1, Lecture 4] when he
proposed the mixed André-Oort conjecture.

When dim([7r](Y)) = O, this is the Manin-Mumford conjecture by Corol-
lary 4.6. Hence we only have to deal with the case dim([7](Y)) = 1. Remark
that in this case [](Y) is weakly special by the main result of [19], and hence
equals unifg (G”(R)*Y) for some G” < GSp,, of positive dimension and
ye ]HI‘;. Now there are two cases:

If dim([z'](Y")) = 0, then [7’](Y’) is a point. In this case Y’ is a subvariety
of an Abelian variety. The hypothesis ¥ N X = Y implies that Y’ contains a
Zariski dense subset of torsion points. Therefore by the result of the Manin-
Mumford conjecture, Y’ is a special subvariety, i.e., the translate of an Abelian
subvariety by a torsion point. But the union of positive-dimensional weakly
special subvarieties which are contained in Y’ := [p](Y) is not Zariski dense,
so Y’ is a point. Therefore Y is weakly special by definition.
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If dim([z'](Y")) = 1, then N/R,(N) is trivial because the dimension of
[7]1(Y) = unifg (G//(R)+§)) is 1. Therefore Vy := R,(N) < Va4 is non-
trivial since N is non-trivial.

Denote for simplicity by B := [7'](Y’) = unif;(G"(R)Tp()) and X :=
[7/17Y(B). Then X — Bisa family of Abelian varieties of dimension g’.
We have g’ < g since Vy is non-trivial. Besides, X — B is non-isotrivial
because otherwise G” acts trivially on V2, / Vi, and therefore G” <1 P’. This
contradicts the maximality of N. Hence there exists, up to taking finite covers
of X — B, a cartesian diagram

X Lo 9ty
1y

such that both i and ip are finite. AppIA%nductlon hypothesis to i (Y') C Ay,
we get that i (Y") is weakly special. By the geometric interpretation of weakly
special subvarieties (Proposition 1.1), i~ (Y")) is irreducible. Therefore
Y’ = i~'(i(Y")) since they are of the same dimension. So Y’ is a weakly
special subvariety of S’ (again by Proposition 1.1). But then Y’ must be a
point by definition of Y’. Hence Y is weakly special by definition.

This part of the theorem is the intersection of the André-Oort conjecture and
Conjecture 1.2. It holds in a more general situation (see the forthcoming thesis
[6, Theorem 4.3.2]). The proof, which requires more background knowledge
about mixed Shimura varieties, is similar to [5, Theorem 13.6], except that the
lower bound used in that article is replaced by a result similar to (but weaker
than) Corollary 5.6. More explicitly: since a € Ay, is a special point, every a-
strongly special point is a special point of 2. Therefore Y’ contains a Zariski
dense subset of special points. Besides, Y is a-special if and only if Y is a
special subvariety of %[, by Proposition 1.1.

Suppose that Y is not a-special. Then Y’ is not a special subvariety of S’. On
the other hand, Y is defined over a number field since every point in X/, is.
Define Vy := Ry (N) < Vogand Gy := N/Vy <G < Gszg. The reductive
group G decomposes as an almost direct product Z(G) H; ... H, with all H;’s
simple. Without any loss of generality, we may assume that Hi,...,H; are
the simple factors of G which appear in the decomposition of Gp. Define
Gﬁ = Hjy1 ... H.. Define T := MT(a), then T is a torus since a is a special
point of Ay.

Let G| = GﬁT. This is a subgroup of G (and therefore a subgroup of
GSp,,). Moreover, it defines a connected Shimura subdatum (G, Xgl) of
(GSpy,. H;) and hence its associated connected Shimura subvariety Sg, of
Ag such thata € Sg,. Recall that (P, X'*) = (P, XT)/N and (G, X;") =
(G, X(J;r )/ G . Therefore the natural Shimura morphisms

(G1, X5) = (G, X)) — (G, X5)

identify X , and X5
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Recall that P = V x G gives rises to a connected mixed Shimura datum
(P, X*). SoV := R,(P) is a Gi-module such that the action of G| on
V induces a Hodge-structure of type {(—1, 0), (0, —1)} on V. Therefore by
[24,2.17], there exists a connected mixed Shimura datum (P;, X 1+ ) such that

=V xGiand (G, Xg,) = (P1, X1+)/V. (Py, Xfr) is a connected mixed
Shimura subdatum of (P, XT). Since N <1 P, we have Vy < P;. Now we
have the following diagram of Shimura morphisms:

(Py. X)) 1= (P X)) Vi L (P XY e (PLXF) Lo (P X

lumfz l ' l iunif’

S, [o'] S [j] S [o] S’

Then the map p o j o p'~!: (P3, X;) — (P, X'") is well-defined and is
a Shimura morphism. Hence Y’ is a special subvariety of S’ if and only if
Y2 ;= ([plo[j]o [P'T™H~ (Y isa special subvariety of S>. Hence it suffices
to prove that Y is special. But XZJ“ and X’ are identified under p o j o p’~!
by the discussion in the last paragraph, so the union of positive-dimensional
weakly special subvarieties of Y, is not Zariski dense in Y, by choice of Y’.
Therefore we are left to prove that the set of special points of Y> which do not
lie in any positive-dimensional special subvariety is finite. Remark that Y> is
defined over a number field (which we call k) since Y’ is.

Take the pure part of the diagram above, we get the following diagram of Shi-
mura morphisms between pure Shimura data and pure Shimura varieties:

(G, X)) L2 (G1, &) L% (G, &) L% (5", Xf)

!

S, liG] Se [oG] S/G

Therefore ng can be seen as a subset of XZ{ , and hence of H‘;. Since

YNX, =Y, we have Y N[p](X),) = Y'. But then by the identification of
X2+ and X', we get that in Sy, the subset of torsion points over a’, where Ay
is isogenous to A,, is Zariski dense in Y.

For any torsion point 7 over a’ such that A,/ is isogenous to A, take a rep-
resentative 7 € unif, l(t) in the fundamental set F as in [5, Section 10.1]
(this fundamental set is similar to the one defined in Theorem 2.1.(3)). De-
note by V, := R, (P,), which is a Q-vector group. Then T = (ty,1g) €
V2(Q) x (]HI+ N Mzg((@)) and hence we can define its height. By choice of
F,H(ty) is bounded by N (7), the order of 7 as a torsion point of A, . But up
to constants depending only on a (or more explicitely, only on H (), H (i)
is polynomially bounded from above by the minimal degree of the isogenies
Ay — Ag. This follows from [19, Section 4.2, Proposition 4.1]. But the
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minimal degree of the isogenies A, — A, is polynomially bounded from
above by the Galois orbit of a’. This follows from [19, Theorem 5.1]. Hence
by [5, Proposition 13.3],

| Gal(Q/ k)t| 347 HOH*&D

for some (g, da) > 0. Hence i(/)r H() > 0, Pila-Wilkie [21, 3.2] implies
that 30 € Gal(QQ/k) such that o (¢) is contained in a connected semi-algebraic
subset of unif, l(Yg) N F of positive dimension. Now the Ax-Lindemann
theorem (Theorem 3.7) implies that o (¢) is then contained in some weakly
special subvariety Z of S, such that dim Z > 0. Hence o~'(Z) is weakly
special containing a special point ¢, and therefore o ~!(Z) is special of positive
dimension. To sum it up, the heights of the elements of

{t e unify ! (Y2) N F special and unif, (7) is not contained in
a positive-dimensional special subvariety of S»}

are uniformly bounded from above. Therefore this set is finite by Northcott’s
theorem. O

7. Proof of the non-torsion case

We prove Theorem 1.6 in this section. Let ¥ be a curve in g, let s € A, (C)
and let ¥ be the generalized Hecke orbit of s. For simplicity, we will denote by
(A, A) := (Ug (x)s, Az)s) the polarized Abelian variety attached to [7](s) in this
section. Assume that s is not a torsion point of A. Throughout this section, we
assume that Y is not contained in a fiber of [7]: A, — Ag (otherwise this is a
special case of the Mordell-Lang conjecture, which is proved in a series of works
of Vojta, Faltings and Hindry).

We fix some notation here. Let B be a symplectic basis of H|(A, Z) with
respect to the polarization . Let 5 € H be the period matrix of (A, 1) with
respect to the basis 3, then unifg (sg) = [7]s. Now let’s = (sy,5g) € Vo (R) x
Hg ~ Xz;, . D€ @ point in 77 1Gs) N unif_l(s). In the whole section, we will fix B
to be the Q-basis of V¢ as in Subsection 4.1.

Denote by k the definition field of s. Then A is defined over the finitely gener-
ated field k.

7.1. Complexity of points in a generalized Hecke orbit

Let unif: Xz; . — 2lg be the uniformization map and let 7 be the fundamental set

in XZZ o defined in Theorem 2.1.(3). Let

?::unifl(Y)ﬂ}"andg] = unif () N F.
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Let t € ¥. Let f; be as in Corollary 4.6 (i.e., a polarized isogeny (A, 1) —
(g, (711> Apr)r) of minimal degree). Define

n; :=min{n € N| 3p € (End(A, 1)) such that nt € f;(¢(s) + A(C)or)}.

The existence of such an n; is guaranteed by Corollary 4.6. Furthermore, let s; :=
unif ((Sv /ns, 5G)) € g, (x1s = A. Then there exist by definition of r,

e ¢; € End ((A, 1);
e §; a torsion point of A

such that
Je (@e(se) +80) =1t (7.1)

The notation n;, f;, ¢;, s; and §; will be used throughout this section.

Definition 7.1. Define the complexity of t € ¥ to be
max (n;, N(3r))

where N (8;) is the order of §;. In addition, define the complexity of any point of 5
to be the complexity of its image in 2.

The fact that this complexity is a “good enough” parameter will be proved in
Subsection 7.3.

7.2. Galois orbit

In contrast to the torsion case, we deal with the Galois orbit at first for the non-
torsion case. Keep the notation of the beginning of this section and Subsection 7.1.

Proposition 7.2. Let t € X be of complexity n, then
[k(t) : k] > c3n™
where c3 = c3(A, A, s) and ca = c4(A, A, §) are two positive constants.

Proof. By [19, Theorem 5.1] and [18, Theorem 5.6], there exist positive constants
cs = ¢5(A, A) and cg = c6(A, A) such that

deg(f,) < eslk(@) : kI°. (72)

The Abelian variety A is defined over k. By the main result of [13] and the standard
specialization argument introduced by Raynaud (see [19, Section 5] or [27, Section
7]), there exist two positive constants cg and cg depending only on A and k such
that for any torsion point g € A of order N(g), we have

[k(g) : k] = coN(g)". (7.3)
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Case i

2
N(8)<10/2 > n?$ T By [9, Proposition 1] or [14, Theorem 2.1.2] and the
standard specialization argument introduced by Raynaud (see [19, Section 5] or [27,
Section 7]), there exists a positive constant c;; = ¢11(A, s, k) such that

Gal (k(g; (s1), Aln1)/k(Aln,1) < cning.

Hence

[k(@: (se)) = k] = | Gal (k(¢r(s¢), Aln: 1)/ k(Aln: D) [[k(Aln;]) : k] )
2 o
< C/llnt2g +4g+1
for another positive constant ¢}, depending only on A, s and k. Now by (7.4), (7.3)
and the assumption for this case,

N ()10

c10/2
et 2 NG (1.5)
t

[k(@r (1), 8¢) = k(@i (s))] = c12

for a positive constant c12 = c12(A, s, k).

Since Ais defined over the finitely generated field k, every element of Aut(C/k)
induces a homomorphism A(C) — A(C). It is not hard to prove the following
claim:

Claim. For any o1, 03 € Aut (C/k(@:(s1))), o1(p:(s:) + ) = o2(pr(s¢) + &) if
and only if 02_101 € Aut (C/ k(¢ (s1), 61))-

This claim implies [k(¢: (s;) 4 ) : k] = [k(@1(s1), &) = k(1 (s:))]. Hence by
(7.5),
[k (s (s) + 8:) 1 k1 = ciaN(8:)€10/2.

Since t = f;(¢;(s;) + 8;), we have therefore

N (§,)<10/2
deg(fy)
Now the conclusion for this case follows from (7.2), (7.6) and the definition of

complexity (recall that k is the definition field of s, and therefore depends only
ons).

[k(t) - k] = c12 (7.6)

Case ii
N(8,)10/2 < n,2g2+4g+1. Roughly speaking, this case follows from the Kummer
theory [9, Appendix 2]. Here are the details of the proof:

Let A := End ((A,1))s and let A := End(A)s C A. Then A is a finitely
generated subgroup of A. Let k’ be the smallest field over which all points of A are
defined, then k" depends only on A and s. Then A C A(k). Let A’ := QA N A(k")
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andlet A’ = QA N A(k"). Then A’ contains A. By the Lang-Néron theorem, the
group A(k’) is finitely generated (because k' is finitely generated over Q). Therefore

A s finitely generated and rankA" = rankA. Hence [A’ : A] is a finite number
depending only on k', and hence only on A and s. On the other hand, A C ANA’ C
A+ A(K)ior. So [A N A’ : Al is a finite number depending only on k’, and hence
only on A and s. Therefore by

[A:Al=[A :ANANANA A< [A :AI[ANA: Al

there exists ¢j3 > 0 depending only on A and s such that [A’ : A] = ¢3.
For each r € X, define another number n; := min{n € N| nr € ft(A(k’) +

A((C)tor)}. Let s' € A(k’) be such that njt = f;(s’ + A(C)r). Then because
t = fi(pi(s1) + &), we have

shi=s — n,¢;(st) € A(Cor.

But n)g;(s) +s7 € A’,s0

n, = min{n € N| nt € fi(A"+ A(C)or)}. (7.7)
However by definition,

n, =min{n € N| nt € fi(A + A(C)or). (7.8)
Compare (7.7) and (7.8), we get

ny/n, <[A: Al < ci3. (7.9)

By [9, Lemma 14] or [14, Corollary 2.1.5] and the standard specialization argu-

ment introduced by Raynaud (see [19, Section 5] or [27, Section 7]), there exists a
positive constant c14 = c14(A, k) such that

Gal (K (¢1(51). Al N@1)/K (Aln;N D)) > eran;.

Butt = f;(¢/(s;) +6;), 50

K (i) +8) KT _cran,
deg(f)  ~ deg(f)

Now the conclusion follows from (7.2), (7.9) and (7.10). O

[k(t) : k] > [K'(t) : k'] >

(7.10)

7.3. Néron-Tate height in family

Next we prove that the complexity defined in Definition 7.1 is a good parameter.
More explicitly we dispose of the following proposition:
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Proposition 7.3. Let Y, s and X be as in the beginning of this section. Lett € X.
Let f;, ns, 8¢, ¢ and &; be as in Section 7.1. Then

deg(p,) < crns® and  deg(f;) < cénfg

for some positive constants ¢7 = ¢7(g, Y, s), c§ = cé(g, Y,s)and cg = cg(g, Y, s),
cg =cg(g. Y, ).

We shall prove this proposition with the help of a well-chosen family of Néron-
Tate heights, i.e., the one related to the symmetric and relatively ample G,,-torsor
£, — Uy with respect to A, — A, defined in Theorem 2.2. We shall use the
Moriwaki height (see [16]), which is defined for points over finitely generated fields.
Then we shall use a theorem of Silverman-Tate [28, Theorem A].

Pink explained in [24, Chapter 8 and 9] that £, extends over Q to a relative

ample G,,-torsor £, — 2, over Ql_g — A,, where Ql_g (respectively A_g) is a
compactification of 2, (respectively .Ag).2 By abuse of notation we denote also by
£, the relative ample line bundle associated to the (,,-torsor. Let M be an ample

line bundle over @ over A, which extends over @ to an ample line bundle M over
.A_g. For a > 0, the line bundle £ := £, ® [ ]* M®¢ over 2, is ample.

Let ¢t € X be as in Proposition 7.3. Recall that k is the definition field of s.
Hence 1 € 2, (k). Let d be the transcendence degree of k and let B=@®:H,...,

H,) be a big polarization of k, namely, a collection of a normal projective arith-
metic variety B whose function field is & and nef smooth hermitian line bundles
Hy, ..., H;y onB satisfying the bigness condition of Moriwaki [ 16, page 103, above
Theorem A]. Consider the arithmetic Moriwaki height associated to B

hg, ot Ul > R

defined in [16, page 103].

For any point b € A, (k), £, 5, is an ample line bundle over the Abelian variety
2, » defined over k. Now consider the Néron-Tate height ﬁ%g , on Ap as in [16,
Subsection 3.4]. For any point P € 2l (k), we shall denote

B py._ 7B
He, (P):i=hg ., (P).

Lemma 74. Let 51 and sy be two points of U,(k). Assume that there exists a
polarized isogeny

f: (ng,[n]sl y }\[n]sl) - (ng,[ﬂ]szv }\[n]sz)
such that sy = f(s2). Then ﬁ%g (s2) = (deg f)l/giﬂﬁg (s1).
2 For experts of mixed Shimura varieties, we are in the situation of [24, 9.2] since we are consid-

ering (following Pink’s notation) (P, Xz‘;) — (Pyg.a; XZ‘; a)» S0 this follows from [24, 6.25,
8.6,8.13,9.13,9.16,9.24, 12 4].
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1/g
Proof. By the moduli interpretation of £, (Theorem 2.2), f* £, (715, = Qi([%i If )
So we have
g () =N (f(s1)) = ﬁfﬁ‘@([de]gf)ug (s1)
g,[7]sq
= (deg f)l/gil\az[”].‘,I (s1) = (deg f)l/gi?gg (s1)- O

Now we start proving Proposition 7.3.

Proof of Proposition 7.3. Denote by ¢: A, — 2, the zero section.
Following Silverman [28, Section 2, page 200], we define the canonical height

h% by B B
ha(P) :=1im,.oon hy_ o(nP), VP € Ag(k).

Then

oo

_7B
_hﬂg.

Apply [28, Theorem A]: there exist constants c;5 = ¢15(g) > 0 and c16 = c16(g)
such that

WG, (1) = hy, o] < ci5hiy o710 + c16 (7.11)

for any ¢ € %4 (k). Remark that the original theorem of Silverman is a statement
for points over global fields, but his proof easily extends to points over finitely
generated fields for the Moriwaki height [16].

We need the following lemma, which uses the fact that ¥ is a curve in an
essential way:

Lemma 7.5. There exist two constants c17 > 0 and c1g depending only on Y such
that

h]g[g,g(l) < C17hag’8*2([n]t) +c18

Proof. The idea is due to Lin-Wang [11, proof of Proposition 2.1]. The following
notation will be used only in this proof: denote by B = [« ](Y) and X = (71~ 1(B).
By abuse of notation, we will not distinguish [] and [ ]|x. Remark that X — B
is a non-isotrivial family of Abelian varieties.

Let Y’ be a smooth resolution of ¥ C A, then X xp Y — Y’ is also a
non-isotrivial family of Abelian varieties of dimension g and we write gy/: Y/ —
X x Y’ to be the zero-section. Let f: Y’ — 2, be the natural morphism. Consider
the following commutative diagram

& y/
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Now let #' € Y'(k) be such that f(¢) = ¢. Then up to bounded functions,

hggag(t) = h@ NG HE oo (10) = B gy (I10)
HE o (F@)) = KB g (f o [T1()
= hY’,f*S\x(t/) = h?’,(fO[ﬂ])*S*ﬁlx(t/)

_ 1B /
- hY/.S*,pTSIX ().

Since Y is a curve, the morphism [r] o f: ¥’ — B is finite. Therefore p12|X is
ample. So &}, pi£L|x is ample. Hence there exist two constants ¢j7 > 0 and ¢
depending only on Y’ (and hence only on Y) such that

B B
hy/,f*g\x (t/) < Cl7hy/’g;/pfg‘x (t/) +ci8 (7.12)
for any ' € Y’. Now the conclusion follows. O]
Now forany r € Y N X, by (7.1) and Lemma 7 4,

_ 1/ /g _
7B (1) = S eee) 5 (). (7.13)

ny

But for any t € X, we have the following result of Moriwaki [17, Proposition 3.2
and Lemma 1.6.3]:

IWE (A1) — E(A)] < e19 log deg(f,) (7.14)

where c¢19 depends only on B, and hence k. Here A is the Faltings’ modular height
defined by Moriwaki in [17, Proposition 3.4(1)] (which he denotes by W od) This

is the generalization of the stable Faltings height for Abelian varieties over Q.
Moreover Moriwaki proved [17, Proposition 4.1] that there exists a positive
constant ¢ and ¢p; depnding only on g, M and B such that

c20hp (Apzi) = hiy, oo g([n]t)( < e (7.15)

for any t € 2, (k).
Now (7.11), Lemma 7.5, (7.13), (7.14) and (7.15) together imply

d
eg(%) deg(f, )l/g (S) (c15 + c17)¢20 <c19 logdeg(f;) +h (A))

t

+ (c15 + c17)c21 + ci6 + cis.

Since deg(¢;) = 1, we get that deg(f;) is polynomially bounded in #;.

On the other hand, letting deg(f;) — oo, we see that there exist two positive
constants My and c», depending on nothing such that deg(¢;)!/$ < czzn[2 for any
t € YN X with deg(f;) > Mp. Butif deg(f;) < My, then deg( f;) takes values in a
finite set {1, ..., Mp}. So deg(¢;) is bounded polynomially in n; from above. [
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7.4. Application of the Pila-Wilkie theorem
Keep the notation of the beginning of this section and Subsection 7.1.

Proposition 7.6. Let Y and s be as in the beginning of this section. Let & > 0.
There exists a constant C = C(Y, s, &) > 0 with the following property._

For every n = 1, there exist at most Cn® definable blocks B; C Y such that
UB; contains all points of complexityn of Y N X.

Proof. The proof starts with the following lemma:

Lemma 7.7. There exist constants C' and «' depending only on g and’s such that
For any Te¥Yny of complexzty n, there exists a (v, h) € Py, (Q)* such that

(v,h) -5 =7and H (v, h)) <

Proof. Let t := unif(7). Then r € ¥ and therefore we dispose of a relation as
(7.1). Let f] := f; o g, then f/: (A, A) = (Ug 71, AMx)e) is a polarized isogeny.
Moreover, there exists a §; € A(Q)t0r such that N (8;) < N(8;) deg(¢;) and

t=fl(si+6)). (7.16)

Claim. There exists a symplectic basis B’ for H; iz}, Z) with respect to the
polarization Az}, such that the height of s € GSp,, (@) (the matrix expression
of f/ in coordinates B with respect to B’) is polynomially bounded in deg(f/) =
deg(¢;) deg( f;) from above (see the beginning of this section for B).

This claim follows from [19, Proposition 4.1]: remark that ﬂ is a polarized
isogeny instead of an arbitrary isogeny, hence the endomorphism ¢ € End(A) in
[19,4.3] equals [deg ¢;] 1/8  and therefore the u € (End A)*in [19,4.6] can be taken
tobe 14. - -

Then unifG (ys - 56) = [7]s. Besides let §; = (5;",,?(;) € F be such that

unif(3)) = 8;. Then 8/ |, € V2,(Q) and, by (7.16) and (4.3),

unif ()/ff ( + 81 Vs SG)> =1.

So there exists an element y = (yv, yg) € I such that
SV~ o~ ~
Yy (— + v SG) =1,
ny
ie.,

~ ~

sy ~ ~
= (VV +vYcyy (n— + 5;,‘/) ) )/G)/f’SG) = ()/V + J/Gyf/5t Vs

t

VGVf’) 5

ng
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Denote by

YGVf!
(v, h) = (VV+VGVf’ Ve / )
ny

then (v, k) is an element of Py, (Q)* such that (v, h)S = 7. Now we prove that
H ((v, h)) is polynomially bounded in the complexity n of 7. To prove this, it
suffices to prove that n;, H (8/ ’V) H(yy), H(yg) and H (yy) are all polynomially
bounded in 7.

The fact that n; is bounded by n follows directly from the definition of com-
plexity.

For H (8 V) because 8/ € F ~ [0, N)28 x Fg (where N is the level structure,
and hence depend on nothing), we have ZSV;’V e [0, N)28. Therefore H (ZSV;’V) is
bounded up to a constant by the denominator of E;,V, which equals N (§;). But
N(8;) < deg(g)N(8;), hence it suffices to bound both deg(¢;) and N(8;) by n.
Now deg(¢;) is polynomially bounded in n;, and hence by n, by Proposition 7.3.
By definition of complexity, N (§;) < n.

For H(ys): by choice, H(yys) is polynomially bounded in deg( f;) deg(¢;),
which is polynomially bounded in n; by Proposition 7.3. Hence H (y ) is polyno-
mially bounded in n by definition of complexity.

For H(yg): remark yGyf/?G = n(f) € Fg. By [22, Lemma 3.2], H(yG)
is polynomially bounded in ||y;/sG||. Therefore H(yg) is polynomially bounded,
with constants depending on |[s¢]||, by n.

For H(yv): remark yv +yGy )  +VGypsv/ne = v € [0, N)28 (where N
is the level structure, and hence depend on nothing). Therefore H(yy) is polyno-
mially bounded in ||yGysdrv + vG yf/?V /n;||. Therefore H (yy) is polynomially
bounded, with constants depending on ||5V ||, by n. O

Leto: Py (R)t — Xi;,a be the map (v, h) — (v, h) -5.

The set R = 0! (?) = oV (unif "' (Y) N F) is definable because o is semi-
algebraic and unif|r is definable. Hence we can apply the family version of the
Pila-Wilkie theorem ( [21, 3.6]) to the definable set R: for every ¢ > 0, there
are only finitely many definable block families B/)(¢) C R x R and a constant
C| (R, &) such that for every T > 1, the rational points of R of height at most T
are contained in the union of at most C{T* definable blocks B;(7, ¢), taken (as
fibers) from the families B(/)(¢). Since o is semi-algebraic, the image under o of
a definable block in R is a finite union of definable blocks in Y. Furthermore the
number of blocks in the image is uniformly bounded in each definable block family
B (g). Hence O’(B (T, €)) is the union of at most C’ T blocks in Y for some new
constant C5(Y, a, €) > 0.

By Lemma 7.7, for any point 7 € YN of complexity n, there exists a rational
element y € R suchthato(y) =7and H(y) < C'n*. By the discussion in the last
paragraph, all such y’s are contained in the union of at most C/ (C'n* ")¢ definable
blocks. Therefore all points of Y NS of complexity n are contalned in the union of
at most C{C5C"*n «'¢ blocks in ¥ . O
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7.5. End of proof of Theorem 1.6

Now we are ready to finish the proof of Theorem 1.6.

Let % be the set of points 7 € ¥ N ¥ such that there is a positive-dimensional
block B C Y with t € unif(B). Let Y| be the Zariski closure of ¥{. Let k be a
number field such that both Y and Y| are defined over k.

Let 7 be a point in ¥ N ¥ of complexity n. By Proposition 7.2, there exist
positive constants c5 and cg depending only on (A, A) and s such that

[k(t) : k] > csn‘®.

All Gal(k/k)-conjugates of ¢ are contained in ¥ N X and have complexity n. By
Proposition 7.6, the preimages in F of these points are contained in the union of
C(Y, s, cg/2)ns’? definable blocks, each of these blocks being contained in Y.

For n large enough, csn® > C n°/2. Hence for n > 0, there exists a defin-
able block B C Y such that unif(B) contains at least two Galois conjugates of 7,
and therefore dim B > 0 since blocks are connected. So being in unif(B), those
conjugates of ¢ are in X;. But Y is defined over k,so ¢ € Y.

In summary, all points of ¥ N X of large enough complexity are in ¥;. This
excludes only finitely many pointsof Y N 2. So Y; =Y.

Let X be the set of points # € ¥ N X such that there is a connected positive-
dimensional semi-algebraic set B’ C Y with ¢ € unif(B’). Let Y, be the Zariski
closure of ¥,. By definition of blocks, ¥, = Xj,and hence Y, = Y] =Y.

Now since dim(Y) = 1, the conclusion follows from Theorem 3.7.

8. Variants of the main conjecture

In the previous sections we have discussed the intersection of a subvariety of A,
with the set of division points of the polarized isogeny orbit of a given point (1.1).
The goal of this section is twofold: one is to replace the given point by a finitely
generated subgroup of one fiber of 2, — A, (remark that the fiber is an Abelian
variety), the other is to replace the polarized isogeny orbit by the isogeny orbit. In
particular we will prove that although these changes to Conjecture 1.2 a priori seem
to generalize the conjecture, both can actually be implied by Conjecture 1.2 itself.

In the rest of the section, fix a point b € Ag, which corresponds to a polarized
Abelian variety (A, A) := (g5, Ap). Let A be any finitely generated subgroup
of A.

Theorem 8.1. Let Y be an irreducible subvariety of 4. Let X be the set of divi-
sion points of the polarized isogeny orbit of A, i.e.,

Yo = {t € ™Ug| 3n € N and a polarized isogeny f: (A, 1) = (g (7115 Ar)r)
such that nt € f(A)}.

Assume that Conjecture 1.2 holds for all g. If Y N Eozar =Y, then Y is weakly
special.
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Proof. The proof is basically the same as Pink [25, Theorem 5.4] (how Conjec-
ture 1.2 implies the Mordell-Lang conjecture).

Suppose rank A = r — 1. Let Vz’g be the direct sum of r copies of V. as
a representation of GSp,,. Then the connected mixed Shimura variety associated
with V. g X GSp,, is the r-fold fiber product of 2, over Ag, and so its fiber over b
is A”. Denote by

R R . ]

the summation map (remark that both varieties are Abelian schemes over A,).

Now the homomorphisms

Prga = Vag X GSpy, — Vzrg X GSp,y, <= Vagr X GSpyg,
(v, h) = ((v,...,v), )= ((v,...,v),(h,..., h))

induce Shimura immersions

Q[g —>Q(g XAg...XAgQ[g —>Q[gr

=) | |

Ag - Ag Ag 7.

For simplicity we shall not distinguish a point in 2, (respectively A, ) and its image
in g, (respectively Ag,). Then g = A”.

Fix generators ay,...,a,—1 of A and seta, :== —a; — ... —a,—1. Let A’ be
the division group of A, i.e., A’ = {s| 3n € Nsuch thatns € A} C A. Then [25,
Lemma 5.3] asserts that

A=A+ + A =0 (A) x...xA}) 8.1)

where (as Pink defined) A}, := {s € A| 3Im,n € Z\ {0} such that ns = ma;}.
Now consider

AT =07 )N {f (M) < x AL )| f1 (AR = @i hy)
a polarized isogeny}.
We have
o(AT) = Yma({f’ (A%, X oo AE )] £ (A, 2) > Qg hy)
a polarized isogeny})
=YN{f (o (A), x...x AL )| [ (A L) = Qg Ap)

a polarized isogeny }
=Y n{f (A)| f: (A, L) - g, Ap) apolarized isogeny}  (8.1).
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Because Y N EOZar: Y, YN{f(A)] f: (A, 1) = (g1, Ap) a polarized isogeny}
is Zariski dense in Y (as subsets of %l,). Therefore o (AT) is Zariski dense in Y (as
subsets of 2 XA« XA, 2, , and hence as subsets of 2,,). Let Y be the Zariski
closure of AT in g x4, ... xa, Ag. Then YT is also a subvariety of 2, . Since
taking Zariski closures commutes with taking images under proper morphisms, we
deduce that o(Y") = Y. So there exists an irreducible component Y’ of Y T such
thato (Y") =Y.

For any polarized isogeny f: (A, 1) — (%g 5/, Ay), the generalized Hecke or-
bitof (ai, ..., a,) € A" asapointon 2, contains f"(Ay x...x Ay ) by Corollary
4.5. Therefore the intersection of Y’ with generalized Hecke orbit of (ap, ..., @) in
2, is Zariski dense in Y’. Hence Conjecture 1.2 for 2, implies that Y’ is weakly
special. Therefore Y = o (Y’) is also weakly special by the geometric interpretation
of weakly special subvarieties of 2 and of g, (Proposition 1.1). 0

Corollary 8.2. Let Y be an irreducible subvariety of 2g. Let X be the set of
division points of the isogeny orbit of A, i.e.,

DI {t € AUg| 3n € Nand an isogeny f: A — Ug (7 such that nt € f(A)}.

—7
Assume that Conjecture 1.2 holds for all g. If Y N X Yoy , then Y is weakly
special.

Proof. Recall Zarhin’s trick (see [18, Proposition 4.4]): for any isogeny f: A —
A’ between polarized Abelian varieties, there exists u € End(A*) such that f* o
u: A* — (A% is a polarized isogeny.

Now let i: 2, < 24, be the natural embedding. Then A4 := End(A%)i(A)
is a finitely generated subgroup of A* = 4¢.i(») and hence

) C {t € Q4| In € Nand a polarized isogeny f : (A% B

such that nt € f(A4)}.

) = Clag (216> AMzr)

Now the conclusion follows from Theorem 8.1. O
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