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Rigidity for the Hyperbolic Monge-Ampère Equation

CHUN-CHI LIN

Abstract. Some properties of nonlinear partial differential equations are naturally
associated with the geometry of sets in the space of matrices. In this paper we
consider the model case when the compact set K is contained in the hyperboloid
H−1, where H−1 ⊂ M2×2

sym , the set of symmetric 2 × 2 matrices. The hyperboloid
H−1 is generated by two families of rank-one lines and related to the hyperbolic
Monge-Ampère equation det ∇2u = −1. For some compact subsets K ⊂ H−1
containing a rank-one connection, we show the rigidity property of K by imposing
proper topology in the convergence of approximate solutions and affine boundary
conditions.

Mathematics Subject Classification (2000): 49J10 (primary); 74G65, 35L70
(secondary).

1. – Introduction

This paper is motivated by the rigidity problems studied by Chlebı́k and
Kirchheim in [5] and [15]. In connection with mathematical models of crys-
talline microstructures ([2], [6], [7]), one is interested in exact and approximate
solutions of the partial differential inclusions (relations) ∇ f ∈ K a.e. in �,
where f : � ⊂ Rn → Rm is a Lipschitz map on a bounded domain � and K is
a compact set of matrices in Mm×n . We say that the compact set K is rigid for
exact solutions if each Lipschitz map f with ∇ f ∈ K a.e. in � is necessarily
an affine map. The compact set K is rigid for approximate solutions if, for
each convergent subsequence of Lipschitz maps f ( j) with dist(∇ f ( j), K ) → 0
in measure in �, the limit map f is necessarily an affine map. One of the
famous rigidity problems is the one-well problem (i.e., K = SO(n), m = n)
in [14]. The other one is the N -gradient problem for N ∈ {2, 3, 4} (i.e., K
consists of N points in Mm×n) in [2], [24], [5]. These types of (geometric)
rigidity properties for the mappings are useful and have many important ap-
plications, for example in general elasticity theroy (e.g. [13]) or deriving plate
theory from 3-dimensional elasticity (see [11]).
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None of the sets considered in [14], [2], [24] and [5] contains a rank-
one connection. A set K is said to contain a rank-one connection if there
are two matrices A, B ∈ K satisfying rk(A − B) ≤ 1. Whenever a set K
contains a rank-one connection, one may construct an exact or approximate
solution such that ∇ f oscillates strongly. In this situation, which corresponds
to a loss of ellipticity, one cannot have a rigidity result for arbitrary solutions.
However, the absence of a rank-one connection does not guarantee rigidity,
i.e., the absence of microstructures (see [17] for the survey and examples).
Especially, the so called T4-configuration consisting of four matrices without
a rank-one connection, which was observed independently in different contexts
([21], [1], [20], [3], [25]), has been applied to the construction of solutions of
elliptic systems with nowhere C1 (e.g., see [19]). This reveals the difficulty in
deriving the regularity theory for general elliptic systems of PDEs. Thus, we
raised the question: is certain rigidity property restored when proper topology
in the convergence of approximate solutions and suitable (e.g. affine) boundary
conditions are imposed? An interesting model case is to consider a compact
subset K of the set

H−D := {M ∈ M2×2
sym : det(M) = −D} ⊂ R3, D > 0.

Using the coordinates
(

Z+X Y
Y Z−X

)
on the symmetric 2 × 2 matrices, we see

that H−D is a hyperboloid of one sheet in R3. It is generated by two families
of straight lines which are exactly the rank-one lines on H−D . Through each
point on H−D there are exactly two rank-one lines. Thus, H−D locally behaves
in many ways like the linear space of diagonal 2 × 2 matrices, which is well-
understood ([4], [18], [25]). However, H−D globally exhibits much more subtle
behaviour (see [15] and the discussion below).

In [5] and [15], Chlebı́k and Kirchheim have analyzed the behaviour of
Lipschitz maps with ∇ f ∈ H−1, i.e.,

(1.1)
{

(∇ f )T = ∇ f,

det ∇ f = −1.

This is equivalent to the hyperbolic Monge-Ampère equation,

(1.2) det ∇2u = −1 in �, u ∈ W 2,∞(�),

where f = ∇u. This equation is locally determined by two functions of
one variable. In fact, Equation (1.2) can be transformed into the linear wave
equation by a nonlinear change of variables. To see this, assume at x0 ∈ �,
∂2

1 u(x0) �= 0 and ∂2
2 u(x0) �= 0 (hence ∂1∂2u(x0) �= ±1). This assumption can

always be achieved by a suitable rotation of coordinates. Then, we will see in
the following that we can use ( f2(x) − x1, f2(x) + x1) as independent variables
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and ( f1(x) + x2, f1(x) − x2) as dependent variables. Since ∇ f is symmetric
and det ∇ f = −1, the map

f −(x) := f (x) −
(

−x2

x1

)

satisfies
det ∇ f − = det

(
∇ f −

( 0 −1
1 0

))
= 0.

Thus, f1(x) + x2 is locally a function of f2(x) − x1, by the implicit function
theorem. Similar reasoning for

f +(x) := f (x) +
(

−x2

x1

)

shows that there exist locally two functions d1 and d2 such that near x0,

(1.3)

(
f1(x) + x2

f1(x) − x2

)
=

(
d1( f2(x) − x1)

d2( f2(x) + x1)

)
.

To the author’s knowledge, this method was first used by Heinz [12] for the
elliptic Monge-Ampère equation. In Schulz’s book [23], this method was called
the Legendre-like transformation and applied to derive the regularity for the two-
dimensional elliptic Monge-Ampère equations. Further references concerning
this method include [9], [22] for the elliptic case, and [16] for the hyperbolic
case. For the standard Legendre transformation converting a nonlinear PDE
into a linear one, readers are referred to Chapter 4 of [8]. Kirchheim in [15]
gave an example showing that Equation (1.3) may fail for W 2,∞ solutions of
Equation (1.2) or, equivalently, W 1,∞ solutions of Equation (1.1). However, he
showed that the set of so called branch points x , for which Equation (1.3) does
not hold in a neighborhood of x (after suitable rotation of local coordinates),
is discrete. Furthermore, for exact Lipschitz solutions of Equation (1.1) with
affine boundary condition, Kirchheim proved that any compact subset K ⊂ H−1
is rigid.

In the following, we consider the perturbed equation of Equation (1.2),

(1.4) det ∇2u = −ϕ2,

for u ∈ W 2,∞(�), where ϕ2 means the square of a Lipschitz continuous function
ϕ with ‖ϕ − 1‖W 1,∞ sufficiently small. On the existence of W 2,∞-solutions of
Equation (1.4) with affine boundary data, the reader is refered to Chapter 3
in [15] (solving partial differential inclusions). However, the function ϕ (or
det ∇2u) in these examples is only in L∞. Note, when � ⊂ R2 is a bounded
and simply connected domain, Equation (1.4) is over-determined as a PDE
problem with Dirichlet or Neumann boundary condition. Here, we skip the
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issue of existence problem but only focus on the rigidity property for the type
of Equation (1.4) on a bounded domain in R2, which is not necessarily simply-
connected. We show that a perturbed version of Equation (1.3) holds locally
if the oscillation of ∇2u is not very large (see Theorem 1). By applying the
Legendre-like transformations, we establish the Bilipschitz maps S, T , h between
domains �, Uz , Uξ , shown in Figure 1 (see the definitions of S, T , h and Uz , Uξ

in Step 10 of the proof of Theorem 1). Since the map h (or g = h−1) satisfies
the quasilinear hyperbolic 2 × 2 system, for a fixed point z(0) ∈ Uz (or ξ (0) =
h(z(0)) ∈ Uξ ) and ± ∈ {+, −}, there are exactly two characteristic curves, or so
called rarefaction curves, denoted by R±(z(0)) (or E±(ξ (0))), passing through
z(0) (or ξ (0)) with strictly positive and negative finite slopes. Notice that for each
± ∈ {+, −} we have S−1(R±(z(0))) = T −1(E±(ξ (0))) ⊂ �, which intersects the
lines {x1 = c1} and {x2 = c2} transversely for some (c1, c2) ∈ �. Denote by
(c1, w±(z(0))) = S−1(R±(z(0)))∩{x1 = c1} and (w±(ξ (0), c2)) = T −1(E±(ξ (0)))∩
{x2 = c2} the points of intersection in �. Thus in Step 20 of the proof of
Theorem 1, for each point x = S−1(z) = T −1(ξ) ∈ �, we can locally define the
Bilipschitz maps R : Uz → R2 and E : Uξ → R2 by R(z) = (w+(z), w−(z)) and
E(ξ) = (η+(ξ), η−(ξ)). Since w±(z̃) = w±(z) (or η±(ξ̃ ) = η±(ξ)) whenever z̃ ∈
R±(z) (or ξ̃ ∈ E±(ξ)), we call w±(z) (or η±(ξ)) the Riemann invariants for all
± ∈ {+, −}, in order to be consistant with the terminology of hyperbolic systems
in PDE theroy. We further define the Bilipschitz map D : R(Uz) → E(Uξ )

locally by D(w+(z), w−(z)) = (η+(ξ), η−(ξ)). Since ∪±,z
S−1(R±(z)) forms a

local coordinate net in � and for each fixed ± and z, S−1(R±(z)) intersects the
straight lines {x1 = c1} and {x2 = c2} transversely, the Bilipschitz map D is a
diagonal map, i.e., ∇ D is a diagonal 2×2 matrix. The above argument is only
a local one. We extend it to be global by applying the Kirszbraun’s Lipschitz
extension theorem (see Federer [10] 2.10.43). The estimate in Corollary 1 is a
direct consequence of the diagonal map D and the affine boundary condition.
For a nonconvex domain �, we refine the above argument to derive the rigidity
results for some compact subsets of H−1 with respect to certain approximate
solutions of Equation (1.2) in Theorem 2. The rigidity result could be expected
for an elliptic equation. Note, however, that Equation (1.4) is a nonlinear
hyperbolic equation. Since the definition of the so called branch points in [15]
strongly used the explicit structure of Equation (1.1), it is not clear how to
generalize Kirchheim’s arguments to the perturbed case. We thus leave it as a
topic to be studied in the near future.

The following theorem gives the main estimates in this paper.

Theorem 1. Let � ⊂ R2 be a bounded and convex Lipschitz domain. Assume
u ∈ W 2,∞(�) is a solution of Equation (1.4) with ϕ satisfying

(1.5) ‖ϕ − 1‖W 1,∞(�) ≤ δ <
1

2
.

If we further assume

(1.6)
∂2u

∂2x1
≤ −m2,

∂2u

∂2x2
≥ m2, 0 < m2 <

1

2
,
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where m is a nonzero constant, then for a given small enough ε > 0 there exists a
positive constant δ0 = δ0(ε, m, diam(�)) such that the following holds:

if δ < δ0, then there exist Bilipschitz maps Ẽ . R̃ and D such that ∇ D is
diagonal, i.e.,

D

(
w1

w2

)
=

(
d1(w1)

d2(w2)

)
,

‖Ẽ − id‖W 1,∞(�) < ε, ‖R̃ − id‖W 1,∞(�) < ε,

and

Ẽ

( ∂u

∂x1
+ x2

∂u

∂x1
− x2

)
= D ◦ R̃

( ∂u

∂x2
− x1

∂u

∂x2
+ x1

)
.

This result immediately implies a rigidity estimate for compact perturbations
of affine data.

Corollary 1. Suppose all the hypotheses of Theorem 1 hold. If we further
assume ∇2u = A in a neighborhood of ∂�, where A is a constant matrix with
det A = −1, then

‖∇2u − A‖L∞(�) < δ · C(m, diam(�)).

More generally, we have the following rigidity result:

Theorem 2.
(i) Suppose � is a bounded Lipschitz domain in R2, which is not necessarily simply

connected, and K is a compact subset of H−1 with sufficiently small diameter
diam(K ). Let u( j) be a sequence of functions in W 2,∞(�) with

dist(∇2u( j), K ) → 0 in W 1,∞
0 (�),

and on the boundary ∂�,

(1.7) ∇u( j)∂�= F, ∇2u( j)∂�= ∇F = A,

for some affine map F. Then,

∇2u( j) → A in L∞(�).

(ii) The restriction on diam(K ) can be dropped if the sequence of functions are in
C2(�).

If � is simply connected, then the assumption in the first part of Equa-
tion (1.7), ∇u( j)∂�= F , is redundant since the connectedness of ∂� implies
the assumption up to a constant.
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2. – Proof of the main results

To simplify our notation, it will be more convenient to establish the equiv-
alent representative

E

(
f1(x)

x2

)
= D ◦ R

(
x1

f2(x)

)
,

with ∥∥∥∇E −
( 1 1

1 −1

)∥∥∥
L∞ < ε,

∥∥∥∇ R −
( −1 1

1 1

)∥∥∥
L∞ < ε.

The maps E and R will be constructed by Riemann invariants. The relation
between the various maps and domains which appear in the proof is summarized
in Figure 1. We remark that the map � exists only when f is invertible. We
will, however, not use � but work directly with g and h.

( f1, f2)
���� (x1, f2) ∈ Uz

R−→ (w1, w2) ∈ Uw

f ↑ S↗ g↑↓h ↓D

(x1, x2) ∈ �
T−→ ( f1, x2) ∈ Uξ

E−→ (η1, η2) ∈ Uη

Fig. 1. Outline of the changes of variables in the proof.

Proof of Theorem 1. We first study the geometry of the restrictions, from
Equation (1.4) and (1.6), on ∇2u. The norm of a symmetric 2 × 2 matrix

A =
(

a11 a12
a21 a22

)
is defined as

‖A‖ :=
√√√√1

2

2∑
i, j=1

a2
i j .

Applying the coordinates
(

Z−X Y
Y Z+X

)
on symmetric 2 × 2 matrices, we have

the form: ‖A‖ = √
X2 + Y 2 + Z2. Assume Z0 ≥ 0 is a fixed constant. Then,
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Equation (1.6) means that X satisfies both X ≥ m2 + Z0 and X ≥ m2 − Z0.
Thus, X ≥ m2 + Z0. By Equation (1.4),

(2.1) 0 ≤ Y 2 = Z2
0 − X2 + ϕ2 ≤ Z2

0 + ϕ2 − (m2 + Z0)
2 = ϕ2 − 2m2 Z0 − m4.

By Equation (1.5) and the same calculation in the case: Z0 < 0, we con-
clude that

(2.2)

∣∣∣∣∣ ∂2u

∂x1∂x2

∣∣∣∣∣ ≤
√

1

4
− m4.

Furthermore, Z0 satisfies

(2.3) |Z0| ≤ ϕ2 − m4

2m2
.

Now, Equation (1.5) implies that dist(∇2u,H−1) is finite in the sense of L∞-
norm. Meanwhile, Equation (2.3) implies ∇2u lies between the two hyperplanes,
{(X, Y, Z) : Z = c(m)} and {(X, Y, Z) : Z = −c(m)}. By the geometry of the
hyperboloid H−1, we conclude that there exists a positive constant M , depending
on m, such that

(2.4) sup
i, j,x

∣∣∣∣∣∂2u(x)

∂xi∂xj

∣∣∣∣∣ ≤ M < ∞,

For simplicity, we abbreviate ∂2u
∂x2

i
and

∂ f j
∂xi

as ∂2
i u and ∂i f j respectively in the

rest of this paper.

Step 1. (Existence of maps g, h and the hyperbolic system for g).
Set f (x) = ∇u(x). Define the map S : � → R2 by

S(x1, x2) = (x1, f2(x)).

Then S is Lipschitz with

∇S =
( 1 0

∂1 f2 ∂2 f2

)
, det ∇S = ∂2

2 u ≥ m2 > 0.

Thus S is open and Uz := S(�) is open. Since x2 �−→ f2(x1, x2) is strictly
monotone and � is convex, the map S is injective and has a Lipschitz inverse
S−1 : Uz → � with

(2.6) (∇S−1) ◦ S = 1

∂2 f2

( ∂2 f2 0
−∂1 f2 1

)
.

Similarly the map
T (x1, x2) = ( f1(x), x2)
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is Bilipschitz with

∇T =
( ∂1 f1 ∂2 f1

0 1

)
, (∇T −1) ◦ T = 1

∂1 f1

( 1 −∂2 f1
0 ∂1 f1

)
,

and
det ∇T = ∂2

1 u ≤ −m2 < 0.

We set Uξ := T (�) and define Bilipschitz maps

(2.7) g = S ◦ T −1, h = T ◦ S−1 = g−1.

Then

(2.8) (∇g) ◦ T = 1

∂1 f1

( 1 −∂2 f1
∂1 f2 det ∇ f

)
.

Keeping in mind that ∂1 f2 = ∂2 f1 and det ∇ f = −ϕ2, we deduce that for g(ξ),

∂

∂ξ2
g +

( 0 1
ϕ2(z1, ξ2) 0

)
· ∂

∂ξ1
g = 0,

for ξ ∈ T (�) and z = g(ξ). The matrix
(

0 1
ϕ2(z1,ξ2) 0

)
has eigenvalues

λ± = ±ϕ(z1, h2(z)),

with right and left eigenvectors

(2.9) r± = (1, ±ϕ(z1, h2(z))), l± = (±ϕ(z1, h2(z)), 1).

In the above, the notation ± means either + or −. From now on, denote the
opposite sign of ± as ∓.

Step 2 (Globally defined Riemann invariants and Bilipschitz maps R and E).
For a fixed point z(0) ∈ Uz and ± ∈ {+, −}, we define the rarefaction curve

R±(z(0)) locally in Uz by

(2.10)


d

dt
α±,z(0)

(t) = (1, ±ϕ(α
±,z(0)

1 (t), h2(α
±,z(0)

(t)))),

α±,z(0)
(0) = z(0).

By basic ODE theory, the Lipschitz condition of ϕ and h implies the existence
of the Lipschitz solutions of Equation (2.10). We may assume (c1, c2) ∈ �,
for some constants c1 and c2. We may assume that the rarefaction curves
∪z(0),±{R±(z(0))} parametrize the domain Uz , because of the local uniqueness
of the solution of Equation (2.10). Since ϕ ≈ 1, the curve R±(z(0)) intersects
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the line {z1 = c1} transversely. Define the Riemann invariants w+(z(0)) and
w−(z(0)) by

w±(z(0)) := {ẑ2 : if (c1, ẑ2) lies on the curves R±(z(0))}.

By the definition of w±(z(0)) and Equations (2.10), (2.9), we have

∇zw± · r± = 0, ∀ ± ∈ {+, −}.

Let z(0) = (z(0)
1 , z(0)

2 ) and α±,z(0)
(t) be the solution of Equation (2.10). It is

easy to verify that

(2.11) w±(z(0)) = z(0)
2 ∓

∫ z(0)
1

c1

ϕ(t, h2(α
±,z(0)

(t))) dt.

From now on, we identify the notation (w+, w−) with (w1, w2). Denote by R
the map R(z) = w and the set R(Uz) by Uw. Notice so far, the Riemann
invariants w± are not globally defined on Uz . This is because that the rarefaction
curves α±,z(t) only exist in Uz , thus may not intersect any of the lines {zi = ci },
i ∈ {1, 2}. However, by Kirszbraun’s Lipschitz extension theorem (see [10]
2.10.43), we can extend the Lipschitz function

ψ(z) := ϕ(z1, h2(z))

from Uz to R2 such that ψ : R2 → R, with

(2.12) Lip(ψ) = Lip(ψ), ‖ψ − 1‖L∞ < δ · (diam(Uz) + 1).

Replace the differential equation in Equation (2.10) by

(2.13)
d

dt
α±,z(t) = (1, ±ψ(α±,z(t))),

then the rarefaction curves α±,z(t) are globally defined on R2, the z-plane.
Hence, the Riemann invariants w± are well defined on Uz .

Now, we show that the map R is Bilipschitz. From Equations (2.11)
and (2.13), for any z(0), z(1) ∈ Uz , we have

(2.14)

w±(z(1)) − w±(z(0)) = (z(1)
2 − z(0)

2 ) ∓ (z(1)
1 − z(0)

1 )

∓
∫ z(1)

1

z(1)
1

[ψ(α±,z(1)
(t)) − 1] dt

∓
∫ z(0)

1

c1

[ψ(α±,z(1)
(t)) − ψ(α±,z(0)

(t))] dt.
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By Equation (1.5),

(2.15)

∣∣∣∣∣∣
∫ z(1)

1

z(0)
1

[ψ(α±,z(1)
(t)) − 1] dt

∣∣∣∣∣∣ < δ · (diam(Uz) + 1) · |z(1) − z(0)|.

By Equations (2.2), (1.6), (2.5), (2.6), (2.7), (2.8), (2.12) we have

(2.16)
diam(Uz) ≤ sup |∇S| · diam(�) ≤ C(m) · diam(�),

Lip(ψ) = Lip(ψ) ≤ Lip(ϕ) · Lip(S−1) ≤ Lip(ϕ) · C(m),

and

(2.17)

1

|z(1) − z(0)|

∣∣∣∣∣∣
∫ z(0)

1

c1

[ψ(α±,z(1)
(t)) − ψ(α±,z(0)

(t))] dt

∣∣∣∣∣∣
≤ diam(Uz) · Lip(ψ) sup

t

|α±,z(1)
(t) − α±,z(0)

(t)|
|z(1) − z(0)| .

By standard ODE theory, we have

(2.18) lim
z(1)→z(0)

(
sup

t

|α±,z(1)
(t) − α±,z(0)

(t)|
|z(1) − z(0)|

)
≤ exp(Lip(ψ) · diam(Uz)).

By the definition of the map R and the estimates in Equations (2.14)∼ (2.18),
one can verify that we have the estimate,

(2.19)
∥∥∥∇ R −

( −1 1
1 1

)∥∥∥
L∞(Uz)

< δ · C1(m, diam(�)).

If we assume ε = δ ·C1 is sufficiently small, then R is Bilipschitz. By standard
ODE theory, we have the local existence and uniqueness for the solutions of
Equation (2.10). This implies that R is injective. Thus R−1 exists and we may
treat ξ as the function of w by setting ξ = h ◦ R−1(w).

Step 3 (Properties of the diagonal map D between two pairs of Riemann
invariants).

For fixed ξ (0) := h(z(0)) and ± ∈ {+, −}, denote the Lipschitz curve
h ◦ α±,z(0)

(t) in Uξ as E±(ξ (0)). Let

β±,ξ (0)
(t) := h ◦ α±,z(0)

(t).

Then, by Equations (2.7), (2.8), and (2.10), one can verify that

(2.20)
d

dt
β±,ξ (0)

(t) = (∇h)(α±,z(0)
(t)) · d

dt
α±,z(0)

(t) = ±ϕ − ∂1 f2

∂2 f2
·
( ∓ϕ

1

)
.
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The assumptions in Equations (1.5), (2.2) and (1.6) imply that ±ϕ−∂1 f2
∂2 f2

is
bounded, nonzero and stays one-signed. One can verify that the Lipschitz
curve E±(ξ (0)) can be described by γ ±,ξ (0)

(s), which satisfies
d

ds
γ ±,ξ (0)

(s) = (∓ϕ(g1(γ
±,ξ (0)

(s)), s), 1),

γ ±,ξ (0)
(0) = ξ (0).

Define the quantity η± (or called the Riemann invariant) on Uξ by

η±(ξ (0)) := {ξ̂1 : (ξ̂1, c2) lies on the curves E±(ξ (0))}.

It is easy to verify that

(2.21) η±(ξ (0)) = ξ
(0)
1 ±

∫ ξ
(0)
2

c2

ϕ(g1(γ
±,ξ (0)

(s)), s) ds.

By a similar argument as in Step 20, one can verify that the map E is well
defined on Uξ and Bilipschitz with

(2.22)
∥∥∥∇E −

( 1 1
1 −1

)∥∥∥
L∞(Uξ )

< δ · C1(m, diam(�)).

The Bilipschitz map R maps the rarefaction curves α± to the lines {w± =
constant. Similarly, E maps the curves β± = h ◦ α± to the lines {η± =
constant. Hence D := E ◦ h ◦ R−1 is Bilipschitz which maps {w1 = constant
to {η1 = constant and {w2 = constant to {η2 = constant. Therefore, D(w) =
(d1(w1), d2(w2)) and E ◦ h = D ◦ R. Recall the definition of h, we find
η = D(w) on Uw and

(2.23) ∇ D =
 ∂η1

∂w1

∂η1

∂w2
∂η2

∂w1

∂η2

∂w2

 =
( ḋ1(w1) 0

0 ḋ2(w2)

)
,

where ḋi denotes the derivative of the functions of one-variable di .
Let R̃ := R ◦ Lz and Ẽ := E ◦ Lξ , where

Lz :
( z1

z2

)
�→

( (z2 − z1)/2
(z2 + z1)/2

)
,

Lξ :
( ξ1

ξ2

)
�→

( (ξ1 + ξ2)/2
(ξ1 − ξ2)/2

)
.

Then the proof is finished.
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Proof of Corollary 1. From the proof in Theorem 1, it is obvious
that for each fixed x (0) ∈ � there exist two points x (+), x (−) on ∂� such
that S(x (±)) ∈ α±,S(x(0)). Since ±ϕ−∂1 f2

∂2 f2
is bounded and stays one-signed, one

can simply verify that the approximate tangent lines of the Lipschitz curve
S−1(α±,S(x(0))) are never vertical, horizontal or changing the sign of slope in
the chosen coordinates of �. From Figure 1 and Theorem 1, one can further
verify that

(2.24)

∥∥∥∥∥∥∥∇ D ◦ R ◦ S −


∂1 f2 + 1

∂2 f2
0

0
∂1 f2 − 1

∂2 f2


∥∥∥∥∥∥∥

L∞(�)

< δ · C2(m, diam(�)).

By Equations (2.23), (2.24) and triangle inequality, we obtain the estimates∣∣∣∣∂1 f2 ± 1

∂2 f2
(x (0)) − ∂1 f2 ± 1

∂2 f2
(x (∓))

∣∣∣∣ < δ · 2C2(m, diam(�)),

for each ± ∈ {+, −}. The proof is then finished by applying the affine boundary
condition.

Proof of Theorem 2. (i) For each f ( j), we want to apply the argument
in the proof of Theorem 1 and Corollary 1. Thus, we need to check if the
slightly different assumptions in Theorem 2 would cause problems. When j is
sufficiently large and diam(K ) is sufficiently small, the assumptions in Equa-
tion (2.2) and (1.6) are fulfilled by a suitable rotation of coordinates in �.
Notice that, here, we apply the property: both ‖∇2u‖ and det ∇2u are invariant
under rotations of the coordinates of �. Due to the nonlinear change of vari-
ables associated to f ( j), we have the maps Sj and Tj , which denote the maps
S and T respectively in Figure 1. However, without assuming the convexity of
�, the inverse map S−1

j or T −1
j may not exist. This problem can be fixed by

the affine boundary condition in Equation (1.7). Namely, we have the Lipschitz
extension of f ( j) by defining

f
( j)

(x) :=
{

f ( j)(x), x ∈ �,

F(x), x ∈ R2 ∼ �.

Since ∇ f
( j)

is symmetric and uniformly bounded on R2, there exists an entire
function u( j) so that ∇u( j) = f

( j)
. It is easy to verify that u( j) satisfies the

assumptions in Equations (1.5), (2.2), (1.6), and thus both ∂2
2 u( j) and ∂2

1 u( j) are
strictly positive and negative. This guarantees the existence of both the inverse
maps of Sj and Tj : R2 → R2, which are maps induced from ∇u( j) as shown
in Figure 1. Therefore, both the inverse maps S−1

j and T −1
j exist.

The proof is finished by following the argument in Theorem 1 and Corol-
lary 1.
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(ii) Since � is bounded, we can choose a domain of rectangle in R2 to
contain �. Namely, for each fixed k ∈ {1, 2}, we can define the finite numbers,

x inf
k (�) := inf

x∈�
{xk : x = (x1, x2) ∈ �}; x sup

k (�) := sup
x∈�

{xk : x = (x1, x2) ∈ �}.

Thus, � ⊂ [x inf
1 (�), x sup

1 (�)] × [x inf
2 (�), x sup

2 (�)]. Let t > 0 and define the
domains

�t := {x = (x1, x2) ∈ � : x2 > x sup
2 (�) − t}.

By choosing a subsequence, we may suppose as j → ∞, dist(∇2u( j), K )

decreases monotonically in the sense of W 1,∞(�). For given ε > 0 and j , let

V ε
j := {x ∈ � : ‖∇2u( j) − A‖L∞(�) < ε}.

Since u( j) ∈ C2(�), V ε
j is an open set. Let

tε
j := sup{t : �t ⊂ V ε

j }, and Iε
j := (0, tε

j ) ⊂ (0, ∞).

Now we claim: for given ε > 0, there exists J ε ∈ N such that

‖∇2u( j) − A‖L∞(�) < ε, if j ≥ J ε.

This is equivalent to showing that for fixed ε > 0, Iε
j = (0, ∞) for some

sufficiently large j . Since for each j , u( j) ∈ C2(�), thus Iε
j is open and

nonempty. Therefore, we only need to show that for some sufficiently large j , Iε
j

is also closed in (0, ∞). Assume on the contrary that supj tε
j � x sup

2 (�)−x inf
2 (�).

In other words, for any sufficiently large j , there exists a( j) = (a( j)
1 , a( j)

2 ) ∈ �

with a( j)
2 = x sup

2 (�) − tε
j such that

(2.25) ‖∇2u( j)(a( j)) − A‖L∞(�) ≥ ε.

Since the slope of the curve S−1(α±,S(a( j))) is one-signed for each ± ∈ {+, −},
the curve S−1(α±,S(a( j))) must intersect∂�tεj

∼ {(x1, x2) ∈ � : x2 = tε
j }, which

is a subset of ∂�.
Now, applying the argument in Theorem 2 (i) on �tεj

, we obtain contra-

diction from the conclusion of Theorem 2 i).
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[19] S. Müller – V. Šverák, Convex integration for Lipschitz mappings and counterexamples
to regularity, Ann. of Math. (2-3) 157 (2003), 715-742.

[20] V. Nesi – G.W. Milton, Polycrystalline configurations that maximize electrical resistivity,
J. Mech. Phys. Solids (4) 39 (1991), 525-542.

[21] V. Scheffer, “Regularity and irregularity of solutions to nonlinear second order elliptic
systems of partial differential equations and inequalities”, Dissertation, Princeton University,
1974.

[22] R. Schoen – J. Wolfson, Minimizing volume among Lagrangian submanifolds, Differen-
tial equations: La Pietra 1996, Florence, pp. 181-199, Proc. Sympos. Pure Math., 65, Amer.
Math. Soc., Providence, RI, 1999.



RIGIDITY FOR THE HYPERBOLIC MONGE-AMPÈRE EQUATION 623
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