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Characterizations of signed measures in the dual of BV
and related isometric isomorphisms
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This paper is dedicated to William P. Ziemer on the occasion of his 81st birthday

Abstract. We characterize all (signed) measures in BVL1 (R™)*, where

B V n (R”) is defined as the space of all functions u in L = (R™) such that Du is
a hmte vector-valued measure. We also show that B V 1 (]R”)* and BV (R™)* are

1sometrlcally isomorphic, where BV (R") is defined as the space of all functions
uin L! (R™) such that Du is a finite vector-valued measure. As a consequence
of our characterizations, an old issue raised in Meyers-Ziemer [19] is resolved
by constructing a locally integrable function f such that f belongs to BV (R")*
but | f| does not. Moreover, we show that the measures in BVnn_1 RM* co-
incide with the measures in lel(R”)*, the dual of the homogeneous Sobolev

space WL L(R"), in the sense of isometric isomorphism. For a bounded open
set € with Lipschitz boundary, we characterize the measures in the dual space
BVyp(R2)*. One of the goals of this paper is to make precise the definition of
BVy(£2), which is the space of functions of bounded variation with zero trace on
the boundary of Q. We show that the measures in BVy(2)* coincide with the

measures in WOI’I(Q)*. Finally, the class of finite measures in BV (2)* is also
characterized.

Mathematics Subject Classification (2010): 46E35 (primary); 46E27, 35A23
(secondary).

1. Introduction

It is a challenging problem in geometric measure theory to give a full characteriza-
tion of the dual of BV, the space of functions of bounded variation. Meyers and
Ziemer characterized in [19] the positive measures in R” that belong to the dual
of BV (R"). They defined BV (R") as the space of all functions in L'(R") whose
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distributional gradient is a finite vector-measure in R” with norm given by

lullpy @y = I Dull (R").

They showed that the positive measure p belongs to BV (R™)* if and only if u
satisfies the condition
u(B(x,r)) < Cr!

for every open ball B(x,r) € R"” and C = C(n). Besides the classical paper
by Meyers and Ziemer, we refer the interested reader to the paper by De Pauw
[10], where the author analyzes SBV*, the dual of the space of special functions of
bounded variation.

In Phuc-Torres [20] we showed that there is a connection between the problem
of characterizing BV* and the study of the solvability of the equation div F = T.
Indeed, we showed that the (signed) measure u belongs to BV (R™)* if and only if
there exists a bounded vector field F € L*°(R", R") such that div F = u. Also,
we showed that u belongs to BV (R")* if and only if

()| < C H 1 (BU) (1.1)

for any open (or closed) set U C R" with smooth boundary. The solvability of the
equation div F = T, in various spaces of functions, has been studied in Bourgain-
Brezis [5], De Pauw-Pfeffer [11], De Pauw-Torres [12] and Phuc-Torres [20] (see
also Tadmor [22]).

In De Pauw-Torres [12], another BV -type space was considered, the space
BV’%I (R™), defined as the space of all functions u € LT (R™) such that Du, the

distributional gradient of u, is a finite vector-measure in R". A closed subspace of
BV% (R™)*, which is a Banach space denoted as C Hy, was characterized in [12]
and it was proven that 7 € C Hy if and only if T = div F, for a continuous vector
field F € C(R", R") vanishing at infinity.

In this paper we continue the analysis of BV (R")* and BV,."Tl (R™*. We
show that BV (R")* and BVnnTl (R™)* are isometrically isomorphic (see Corollary
3.3). We also show that the measures in B Vn"Tl (R™)* coincide with the measures in

WLL(R™)*, the dual of the homogeneous Sobolev space WLL(R™) (see Theorem
4.7), in the sense of isometric isomorphism. We remark that the space wLL(Rm*
is denoted as the G space in image processing (see Meyer [18] and Remark 4.8 in
this paper), and that it plays a key role in modeling the noise of an image.

It is obvious that if @ is a locally finite signed Radon measure then [|u| €
BV (R™)* implies that u € BV (R")*. The converse was unknown to Meyers and
Ziemer as they raised this issue in their classical paper [19, page 1356]. In Section
5, we show that the converse does not hold true in general by constructing a locally
integrable function f such that f € BV(R")* but | f| ¢ BV (R")*.

In this paper we also study these characterizations in bounded domains. Given
a bounded open set 2 with Lipschitz boundary, we consider the space BVp(£2)
defined as the space of functions of bounded variation with zero trace on 9€2. One
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of the goals of this paper is to make precise the definition of this space (see Theorem
6.6). We then characterize all (signed) measures in 2 that belong to BVy(2)*. We
show that a locally finite signed measure u belongs to B Vy(2)* if and only if (1.1)
holds for any smooth open (or closed) set U € €2, and if and only if © = divF
for a vector field F € L°°(2, R") (see Theorem 7.4). Moreover, we show that the
measures in BVy(2)* coincide with the measures in Wol’l (R2)* (see Theorem 7.6),
in the sense of isometric isomorphism.

In the case of BV (£2), the space of functions of bounded variation in a bounded
open set 2 with Lipschitz boundary (but without the condition of having zero trace
on 0€2), we shall restrict our attention only to measures in BV (£2)* with bounded
total variation in €2, i.e., finite measures. This is in a sense natural since any positive
measure that belongs to BV (2)* must be finite due to the fact that the function 1
belongs to BV (£2). We show that a finite measure u belongs to BV (2)* if and only
if (1.1) holds for every smooth open set U € R”", where  is extended by zero to
R™ \ © (see Theorem 8.2).

2. Functions of bounded variation

In this section we define all the spaces that will be relevant in this paper.

Definition 2.1. Let Q be any open set. The space M () consists of all finite
(signed) Radon measures w in €2; that is, the total variation of w, denoted as ||u|,
satisfies |||l (2) < oco. The space Mioc(2) consists of all locally finite Radon
measures p in ; thatis, ||| (K) < oo for every compact set K C 2.

Note here that Mo (2) is identified with the dual of the locally convex space
C.(£2) (the space of continuous real-valued functions with compact support in 2)
(see [8]), and thus it is a real vector space. For i € Mo (2), it is not required that
either the positive part or the negative part of y has finite total variation in 2.

In the next definition by a vector-valued measure we mean a Radon measure

that takes values in R”.
Definition 2.2. Let 2 be any open set. The space of functions of bounded variation,
denoted as BV (£2), is defined as the space of all functions u € L'(€2) such that the
distributional gradient Du is a finite vector-valued measure in Q. For Q # R”, we
equip BV (£2) with the norm

lullpy (@) = lullpiq) + 1Dull (£2), 2.1

where || Du|| (€2) denotes the total variation of the vector-valued measure Du over
Q. For Q = R", following Meyers-Ziemer [19], we will instead equip BV (R")
with the homogeneous norm given by

lull gy ey = I Dull (R"). (2.2)

Another BV-like space is BVﬁ (R™), defined as the space of all functions in

LT (R™) such that Du is a finite vector-valued measure. The space BV% (R™) is
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a Banach space when equipped with the norm

”””BVLI(R”) = || Dull (R").

Remark 2.3. By definition BV (R") ¢ L'(R") and thus it is a normed space under
the norm (2.2). However, BV (R") is not complete under this norm. Also, we have

| Dul| (2) = sup{f udivepdx : ¢ € Ccl.(Q) and |p(x)| < 1Vx € Q},
Q

where ¢ = (91, 92, .... ¢a) and |9(X)| = (@1(X)* + @2()* + -+ + @, (x)H)/2. In
what follows, we shall also write [o, | Du/ instead of || Du|| (€2).

We will use the following Sobolev’s inequality for functions in BV (R") whose
proof can be found in [3, Theorem 3.47]:

Theorem 2.4. Letu € BV (R"). Then

leell, 27 gy = € ) | Dl ®R"). (2.3)

Inequality (2.3) immediately implies the following continuous embedding

BV(R") < BV (R"). (2.4)

We recall that the standard Sobolev space W!'!() is defined as the space of all
functions u € L'() such that Du € L'(2). The Sobolev space whl(Q) is a
Banach space with the norm

lullwii@y = lullpiq) + 1 Dull g

! 2.5)
= / [Iul + (IDyuf* + |Doul* + - + |Dnu|2)é] dx.
Q

However, we will often refer to the following homogeneous Sobolev space. Here-
after, we let C2°(2) denote the space of smooth functions with compact support in
a general open set 2.

Definition 2.5. Let W!!(R") denote the space of all functions u € LnnTl(]R")
such that Du e L'(R"). Equivalently, the space W!!(R") can also be defined
as the closure of C2°(R") in BVn»Tll (R") (i.e., in the norm || Dul ;1 gn)). Thus,

u € WELR?) if and only if there exists a sequence uy € CZ°(IR") such that
Jgn |D(u — u)|dx = 0, and moreover,

wHIR?Y) BV . (R").
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Definition 2.6. Given a bounded open set 2, we say that the boundary 92 is Lips-
chitz if for each x € 3, there exist » > 0 and a Lipschitz mapping & : R"~! — R
such that, up to rotating and relabeling the coordinate axes if necessary, we have

QNBx,r)={y=01,---,Yn=1.Yn) : h(¥1, ..., Yn=1) < Yu} N B(x,r).

Remark 2.7. Let 2 be a bounded open set with Lipschitz boundary. We denote by
WOI’1 (£2) the Sobolev space consisting of all functions in Ww1(Q) with zero trace
on dL2. Then it is well-known that CZ°(2) is dense in WO]’1 (£2). One of the goals
of this paper is to make precise the definition of B V;(£2), the space of all functions
in BV (£2) with zero trace on €2 (see Theorem 6.6). In this paper we equip the two

spaces, BVp(£2) and Wol’l (£2), with the equivalent norms (see Theorem 6.7) to (2.1)
and (2.5), respectively, given by

lellpvy) = 1Dull (), and —flully,ir g, :fngu|dx.

Definition 2.8. For any open set 2, we let BV, (£2) denote the space of functions in
BV (2) with compact support in 2. Also, BV*°(Q2) and B V0°° (£2) denote the space
of bounded functions in BV (2) and B V((£2), respectively. Finally, BV () is the
space of all bounded functions in BV (£2) with compact support in £2.

If @ ¢ R” is a bounded open set with Lipschitz boundary, we have the fol-
lowing well known result concerning the existence of traces of functions in BV (£2)
(see for example [14, Theorem 2.10] and [4, Theorem 10.2.1]):

Theorem 2.9. Let Q be a bounded open set with Lipschitz continuous boundary
02 and let u € BV (). Then, there exists a function ¢ € L'(3S) such that, for
H"-almost every x € 3%,

lim r”/ lu(y) — p(x)|dy = 0.
B(x,r)NQ

r—0

From the construction of the trace ¢ (see [14, Lemma 2.4]), we see that ¢ is uniquely
determined. Therefore, we have a well defined operator

v : BV(Q) — L'(09Q). (2.6)

The intermediate convergence in BV (£2) is defined as follows:

Definition 2.10. Let {u;} € BV (R2) and u € BV (2). We say that u; converges to
u in the sense of intermediate (or strict) convergence if

uk—>ustronglyinL1(S2) and/|Duk|—>/ |Du|.
Q Q
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The following theorem can be found in [4, Theorem 10.2.2]:

Theorem 2.11. The trace operator yy is continuous from BV (2) equipped with
the intermediate convergence onto L' (dQ) equipped with the strong convergence.

The following theorem from functional analysis (see [21, Theorem 1.7]) will
be used in this paper:

Theorem 2.12. Let X be a normed linear space and Y be a Banach space. Suppose
T : D — Y is a bounded linear transformation, where D C X is a dense linear
subspace. Then T can be uniquely extended to a bounded linear transformation T
from X to Y. In addition, the operator norm of T is c if and only if the norm of T
isc.

The following formula will be important in this paper. It is a simple conse-
quence of, e.g., [23, Lemma 1.5.1].

Lemma 2.13. Let i € Mioc(R") and f be a function such that f]R” [ fld n] <
+00. Then

0

[ - fo u(f = i — f u(lf < .

The same equality also holds if we replace the sets {f > t}and {f <t} by {f >t}
and { f < t}, respectively.
3. BV (R") is dense in BV# (R™)

Theorem 3.1. Letu € B Vﬁ (R™), u > 0, and ¢ € CZ°(R") be a nondecreasing
sequence of smooth functions satisfying:

0<¢r <1, ¢y =10nBr(0), oy =00nR"\ By (0) and |D¢p| < c/k. (3.1)

Then
lim [[(¢xu) —ullgy , ®r)y =0, 3.2)
k—o00 n—1

and for each fixed k > 0 we have

Iim |[(¢xu) A j— prullpy_, wny =0. (3.3)
J— n—1

In particular, BV (R") is dense in B Vﬁ (R™).
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Proof. As BV%1 R™") C BViec(R"), the product rule for BV, functions gives

that D(¢ru) = ¢ Du + uD¢y (as measures) (see [3, Proposition 3.1]) and hence
¢ru € BV(R") C BVn"Tl (R™). Thus

/ ID(u¢p —u)| = / | Du — Du + u Dy |
R" R

5/ |¢k—1||Du|+/ lul| Db
R” R"Nsupp (D)

C
<[ 16— 1||Du|+—/ )
/Rn k Bo\ Bx 34

C _n_ 1
5/ |¢k—1||Du|+;( |7 ) |Bog \ Bl
Rn By \ B

5/ |¢k—1||Du|+c</ IuF>
Rn B\ Bi

We let k — oo in (3.4) and use (3.1) and the dominated convergence theorem
together with the fact that u € LT (R™) to obtain (3.2).
On the other hand, the coarea formula for BV functions yields

/Rn |D(ru — (Pru) A j)| = /0 H* (@ (pu — (peu) A j > thdt
= f T @ g — > 1)
0
= /OOH”I(a*{qsku > j+t)dt
0

:/ H L (0% {pru > s})ds.
j

Here 0* E stands for the reduced boundary of a set E. Since fooo H (0% {ppu >

s})ds < oo, the Lebesgue dominated convergence theorem yields the limit (3.3) for
each fixed k£ > 0.

By the triangle inequality and (3.2)-(3.3), each nonnegative u € BVﬁ (R™)
can be approximated by a function in BV °(IR"). For a general u € BV u R,
let u™ be the positive part of . From the proof of [3, Theorem 3.96], we have
ut € BVipe(R") and ||Du+|| (A) < ||Dul| (A) for any open set A € R”". Thus
| Dut || (R") < |IDull (R") < +o00 and u™ belongs to BV »_(R"). Likewise, we
have u™ € BV n (R™). Now by considering separately the positive and negative
parts of a function u € B V# (R™), it is then easy to see the density of BV (IR")
in BV n_ (R™). O
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We have the following corollaries of Theorem 3.1:
Corollary 3.2. BV>(R") is dense in BV (R").
Proof. This follows immediately from (2.4) and Theorem 3.1. O

Corollary 3.3. The spaces BV (R™)* and BV# (R™* are isometrically isomor-
phic.
Proof. We define the map
St BV . (R")* — BV(R"*
as
S(Ty=TL BVR").

First, we note the S is injective since S(7') = 0 implies that 7 | BV (R") = 0.
In particular, 7 | BV(R") = 0. Since BV>°(R") is dense in B Vo (R™)
and T is continuous on BV n (R™), it is easy to see that T | BV n R™) = 0.

We now proceed to show that S is surjective. Let T € BV(R™)*. Then T |
BV>(IR") is a continuous linear functional. Using again that BV >°(R") is dense in

BVn"Tu (R™), T L BV°(IR") has a unique continuous extension T e BVn"Tl (R™)*

and clearly S(f) = T. Moreover, for any T € BV (R")*, the unique extension T
to BV/T’I (R™) has the same norm (see Theorem 2.12), that is,

< Pl
1T Bv ®e) BY 4 oy

and hence
H ( )H V * H H Vv nyx
BV (R") B nl (Rm)

which implies that S is an isometry. U

We now proceed to make precise our definitions of measures in W' (R")* and
BV 1 (R™)*.
Definition 3.4. We let
Mioe N WHRM* = {T e WHLRM* - T(p)

= / @du for some u € Mo (R"), Vo € CfO(R”)}.

Therefore, if 1 € Mioc(R") N WLL(R™)*  then the action (i, u) can be uniquely
defined for all u € W11 (R") (because of the density of C°(R") in W!1(R?)).
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Definition 3.5. We let

Mioe N BV o (R")* := {T € BV.o (R")" : T(¢)
= f @*du for some pu € Mg, Vo € BVCOO(]R”)},

where ¢* is the precise representative of ¢ in BV °(R") (see [3, Corollary 3.80]).
Thus, if © € Mjoe N BV% (R™)*, then the action (u, u) can be uniquely defined

forallu BVﬁ (R™) (because of the density of BV °(R") in B Vﬁ (R™).

We will study the normed linear spaces Mo N WLLR™)* and Mige N
BV% (R™)* in the next section. In particular, we will show in Theorem 4.7 be-

low that these spaces are isometrically isomorphic. In Definition 3.5, if we use
C°(R") instead of BV>°(R"), then by the Hahn-Banach theorem there exist a
non-zero I' € BV _n_ (R™)* that is represented by the zero measure, which would

cause a problem of injectivity in Theorem 4.7.

4. Characterizations of measures in BV - (R™)*
The following lemma characterizes all the distributions in WLLR™)*. We recall
that W11 (R") is the homogeneous Sobolev space introduced in Definition 2.5.

Lemma 4.1. The distribution T belongs to W' (R")* if and only if T = div F for
some vector field F € L*°(R", R"). Moreover,

”T”Wl.l(Rn)* = min{”F”LOO(R",R")} )

where the minimum is taken over all F € L°°(R", R") such that div F = T. Here
we use the norm

1Pl gy o= |(FF 4+ B et EDVR| o for F= (o .

Proof. It is easy to see that if 7 = divF where F € L*®(R",R") then T €
WEHRM* with
IT N1 qeye < IF [l oo Ry -
Conversely, let T € WLL(R™)*, Define
A:WHRY - L'R", R, A(u) = Du,

and note that the range of A is a closed subspace of L!(R", R") since WLLR?) is
complete. We denote the range of A by R(A) and we define

T : R(A) — R
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as
T1(Du) = T (u), foreach Du € R(A).
Then we have
171l Rcays = T llyirra gy -

By the Hahn-Banach theorem there exists a norm-preserving extension 7> of T
to all L! (R*,R™). On the other hand, by the Riesz representation theorem for
vector valued functions (see [9, pages 98—100]) there exists a vector field F €
L% (R", R™) such that

Tr(v) = / F -v, forevery v € L' (R", R"),

and
IF oo gy = T2l L1 @n mrys = 1Tt Ry = IT llyii nys -

In particular, for each ¢ € C2°(R") we have

T(p) = T'(Dp) = To(Dg) = /Rn F - Do,

which yields
T =div(—F),

with
I=F [l oo mmy = 1T 11 gy -
]

Theorem 4.2. Let Q C R” be any open set and suppose . € Mo (2) such that
lw@)] < CH"1BU) 4.1

for any smooth open and bounded set U € Q2. Let A be a compact set of Q. If
H"1(A) =0, then u(A) = 0.

Proof. As H"~'(A) = 0, for any 0 < ¢ < %dist(A, 0L2) (or for any ¢ > 0, if
Q = R"), we can find a finite number of balls B(x;, r;),i € I, with 2r; < ¢ such
that A C |J B(xi,r;) C Qand

iel
Yol <e 42)
iel

Let W, = | B(xi, r;). Then

iel

AE W, C Ag: :{xe]R”:dist(x,A)<8}.
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The first inclusion follows since A is compact and W, is open; the second one
follows since 2r; < & and since we may assume that B(x;,r;) N A # ( for any
iel.

We now claim that for each & > 0 there exists an open set W/ such that W/ has
smooth boundary and

A€W, C Ay

H-1 QW) < P(W,, ), (4)

where P(E, 2) denotes the perimeter of a set £ in 2. Assume for now that (4.3)
holds. Then, since A is compact,

Xw,—> XA pointwise as ¢ — 0,
and

lw(W)| < CH""1(@W!), by our hypothesis (4.1)
< CP(W,, Q)
<CY 7' <eC, by (42).

iel

Thus, the Lebesgue dominated convergence theorem yields, after letting ¢ — 0, the
desired result:

ln(A)| =0.

We now proceed to prove (4.3). Let p be a standard symmetric mollifier:

p=0, peCi(BO,1), | p)dx=1, and p(x) = p(—x).
Rﬂ

Define py1/x(x) = k" p(kx) and

up(x) = xw, * pr/x(x) = k" / pk(x — y) xw, (y)dy

fork = 1,2, ... For k large enough, say for k > ko = ko(¢€), it follows that

ur =1 on A, since A € W,, 4.4
ur =0 on Q\Ay, since W, C A,. 4.5)

We have

P(We, Q) = |Dxw,|(€2)
> |Dui|(£2)

1
= / P(Fk,Q)dt, since 0 < uy <1,
0
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where
Flk ={x € Q: ur(x) > t}.

Note that for k > kg, and ¢t € (0, 1) we have, by (4.4) and (4.5),
A€ FF c A

Forae.t € (0, 1) the sets F,k have smooth boundaries. Thus we can choose #y €
(0, 1) with this property and such that

P(Fr, Q) < P(W,, Q),

which is
H'"NQF)) < P(W,, Q).

Finally, we choose W/ = Ft](‘) for any fixed k > ko. O

Corollary 4.3. If 1 € Moo () satisfies the hypothesis of Theorem 4.2, then || || <
H" 1V in Q; that is, if A C Q is any Borel measurable set such that H'YA) =0
then |||l (A) = 0.

Proof. The domain Q can be decomposed as Q = Q1 U Q7, such that u* =
wl Qtand u= = pu L Q, where u and u~ are the positive and negative
parts of s, respectively. Let A C 2 be a Borel set satisfying H"~'(A) = 0. By
writing A = (AN Q1) U (AN Q7), we may assume that A C Q1 and hence
lliell (A) = T (A). Moreover, since 1 is a Radon measure we can assume that A
is compact. Hence, Theorem 4.2 yields ||| (A) = ut(A) = u(A) = 0. ]

The following theorem characterizes all the signed measures in BVﬁ (R™)*.
This result was first proven in Phuc-Torres [20] for the space BV (R")* with no
sharp control on the involving constants. In this paper we offer a new and direct
proof of (i) = (ii). We also clarify the first part of (iii). Moreover, our proof of
(i) = (iii) yields a sharp constant that will be needed for the proof of Theorem 4.7
below.

Theorem 4.4. Let 1 € Mo (R") be a locally finite signed measure. The following
are equivalent:

(i) There exists a vector field F € L°(R", R") such that div F = p in the sense
of distributions;
(i1) there is a constant C such that

lw(U)| < CH" 1 (3U)

for any smooth bounded open (or closed) set U with H"~1(dU) < +o0.
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(iii) H"~1(A) = 0 implies || 1| (A) = O for all Borel sets A and there is a constant
C such that, for allu € BV (R"),
<C / |Dul,

/ u*du

where u* is the representative in the class of u that is defined H"~'-almost

[, u)| =

everywhere;
(iv) n€eB Vﬁ (R™*. The action of wonanyu € B VnnTl (R™) is defined (uniquely)
as
(wou) := lim {p, ug) = lim | updp,
k—00 k—oo Jrn

where uy € BV (R") converges to u in BVﬁ R™). In particular, if u €
BV>(R") then

(1, u) =/ udpu,

and moreover, if |L is a non-negative measure then, for allu € B VL] (R™),
a

(i, u) = /n u du.

Proof. Suppose (i) holds. Then for every ¢ € C2°(R") we have

f F - Dopdx = —/ ed. (4.6)
n Rn

Let U € R” be any open set (or closed set) with smooth boundary satisfying
H"1(8U) < oo. Consider the characteristic function xu and a sequence of molli-
fications

U = XU * P1/k>

where {1/} is as in the proof of Theorem 4.2. Then, since U has a smooth bound-
ary, we have

ur(x) = xg(x) pointwise everywhere, 4.7

where x Z}(x) is the precise representative of xy (see [3, Corollary 3.80]) given by

1 xent)
Xp(x) =14 xedU
0 xeR"\U.

We note that x; is the same for U open or closed, since both are the same set of
finite perimeter (they differ only on dU, which is a set of Lebesgue measure zero).
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From (4.6), (4.7), and the dominated convergence theorem we obtain

1
w(Int(U)) + —,LL(E)U)' = ’/ Xl*/dﬂ' = lim f ukd,u‘
2 R~ k— 00 n
= lim f F - Dudx
k— 00 n

4.8)
< Jim [Pl [ 1Duclds
k— 00 R
- ||F||oo/]R IDxul = I Fllo H™' GU).
We now let o
K :=U.
For each & > 0 we define the function

in{dg (x), h
Fh(x)=1—M, x e R",

where dg (x) denotes the distance from x to K, i.e.,dg (x) = inf{|x — y| : y € K}.
Note that F}, is a Lipschitz function such that Fj(x) < 1, Fp(x) = 1 if x € K and
Fn(x) = 0if dg (x) > h. Moreover, Fj, is differentiable £"-almost everywhere and

1
IDF,(x)| < ’ for L"-ae. x € R".

By standard smoothing techniques, (4.6) holds for the Lipschitz function Fj,. There-

fore,
[

Since F;, — xk pointwise, it follows from the dominated convergence theorem

that
/ Xxdu
Rﬂ

On the other hand, using the coarea formula for Lipschitz maps, we have

. (4.9)

f F -DFydx

K)|l = =1l
[ (K)| Jim

/ thu‘. (4.10)

/ F - DFpdx

=< IIFIIOO/]R |DFp|dx

1
— IF E/ Dy |dx
{O<dg <h}
—1F L /hH"—l (d‘l(t)> dt
OOh 0 K
= IFlloo '~ (d' ).

“.11)
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where 0 < tf < h,and d;l(teh) C (R*\ K). Because K is smoothly bounded, it
follows that

H—1 (d,;l (tj’)) — H" ' (9K) as h — 0. (4.12)
Since K = U and 3K = 93U, it follows from (4.9)-(4.12) that
Iw@)| < IIFlloo H* ' U). (4.13)

From (4.8) and (4.13) we conclude that, for any open set (or closed) U € R" with
smooth boundary and finite perimeter,

< 2||F|loo H" 1 (3U),

1 — 1
S ln@U)| = ‘M(U) - [M(Int(U)) + EM(BU)}

and hence
l(Int(U))| < 3| Flloo H"1(3U).

This completes the proof of (i) = (ii) with C = || F ||, for closed sets and C =
3 || F|| o for open sets.

We proceed now to show that (ii) = (iii). Corollary 4.3 says that || || < H" !,
which proves the first part of (iii). Let u € BV °(IR") we consider the convolutions
Pe * u and define

A == {pexu>t}fort >0, and B} := {p, xu <t} fort <O.

Since pg*xu € C2°(R™), it follows that 9 AY and d B} are smooth for a.e. r. Applying
Lemma 2.13 we compute

00 0
/nps*udu‘ = '/0 M(Af)dt—/ w(Bf)dt

00 0
5f0 |/,L(Af)|dt+f | (B)\dt

—00

> 0 (4.14)
< C/ H'N (9 A®)dr + C/ H'~L(9Bf) dt, by (i)
0 —00
=C / |D(pe *x u)| dx, by the Coarea Formula
Rn

< C/ | Du|.

We let u* denote the precise representative of u. We have that (see Ambrosio-
Fusco-Pallara [3, Chapter 3, Corollary 3.80]):

Oe kU — u* H"!_almost everywhere. 4.15)
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We now let ¢ — 0 in (4.14). Since u is bounded and ||| < H"~!, (4.15) and the
dominated convergence theorem yield
=C / | Duf,

/ u*du

which completes the proof of (ii) = (iii) with the same constant C as given in (ii).
From (iii) we obtain that the linear operator

Tw) :={(u,u) = / u'dp, ue BVIRY (4.16)

is continuous and hence it can be uniquely extended, since BV, °(R") is dense in
BVﬁ (R™) (Lemma 3.1), to the space B Vn"Tl (R™).
Assume now that . is non-negative. We take u € BV _n_ (R™) and consider the

positive and negative parts (u*)* and (u*)~ of the representative u*. With ¢y as in
Lemma 3.1, using (4.16) we have

T ([$ewt] A j) = / (e A, j=1.2....

n

We first let j — oo and then & — oo. Using Lemma 3.1, the continuity of 7', and
the monotone convergence theorem we find

T(wH")= [ @H%du.
R}‘l
We proceed in the same way for (#*)~ and thus by linearity we conclude

T =T (W) = T (W) = /R W - Wy dp = / o

To prove that (iv) implies (i) we take u € BVﬁ (R™*. Since WHI(R")
BVn"TI (R™) then

l:i/ = M I_ Wl,l(Rn) c W],I(Rn)*’
and therefore Lemma 4.1 implies that there exists F € L°°(R", R") such that

divF = ji and thus, since C® ¢ WU !(R"), we conclude that div F = u in
the sense of distributions. O

Remark 4.5. Inequality (4.13) can also be obtained be means of the (one-sided)
outer Minskowski content. Indeed, since |Ddg| = 1 a.e., we find

/ F .- DFydx

< ||F||oo/]R |DFyldx

1
= IFllcc 7 {0 < di < h}l.
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Now sending # — 0% and using (4.9)-(4.10) we have
(K| < | Flloo SM(K) = || Fllo H' ' (9K),

where SM(K) is the outer Minskowski content of K (see [2, Definition 5]), and
the last equality follows from [2, Corollary 1]. This argument also holds in the case
U only has a Lipschitz boundary. Note that in this case we can only say that the
limit in (4.7) holds H"~'-a.e., but this is enough for (4.8) since ||u| < H ! by
(4.6) and [7, Lemma 2.25].

Remark 4.6. If F € L°(R", R") satisfies div F = u then, for any bounded set
of finite perimeter E, the Gauss-Green formula proved in Chen-Torres-Ziemer [7]
yields,

w(E'UJ*E) :/

EVU3*E

divF = f (Fo - V)NAH" (y)
0*E

and

W(E) = / divF = / (Fi - )AH (),
E! 0*E

where .%; - v and .%, - v and the interior and exterior normal traces of F on 9*E.
Here E! is the measure-theoretic interior of E and 9*E is the reduced boundary of
E . The estimates

”ge . v“LOC(B*E) = ”F'”LOO and ”% . v“LN(Z)*E) = ”I';'“LOo
give
IW(E" U*E)| = [w(EY) + @*E)| < [|F |~ H"~'(*E)
and
IW(ED] < |F |l H" ' (0 E).
Therefore,

L@ E)| < | F|lpoe H" N(B*E) + |(EY)| < 2||F|| e H" 1 (3" E).

We note that this provides another proof of (i) = (ii) (with C = || F|| for both
open and closed smooth sets) since for any bounded open (respectively closed) set
U with smooth boundary we have U = U (respectively U = U'! U 3*U).

We recall the spaces defined in Definitions 3.4 and 3.5. We now show the
following new result.

Theorem 4.7. Let £ := M, N BV : R"Y* and F 1= Mige N WELR™)*. Then

_n_
n—

& and F are isometrically isomorphic.
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Proof. We defineamap S : £ — F as
S(Ty=TL wWh!.

Clearly, S is a linear map. We need to show that § is 1:1 and onto, and
“S(T)“Wll(Rn)* = ”T”BVLI(]R”)* forall T € £.

In order to show the injectivity we assume that S(7) = 0 € F forsome T € €.
Then )
T(u) =0forallu € WH(R").

Thus, if x4 is the measure associated to T € £, then
/E;n wdpu =T(p) =0forall p € CX(R"),
which implies that & = 0. Now, by definition of £, we have
T(u) = /n u*dp =0 forallu € BV°(R"),

which implies, by Theorem 2.12 and Theorem 3.1, that
T =0on BVn'lTl(Rn).

We now proceed to show the surjectivity and take H € JF. Thus, there exists
€ Mige(R™) such that

/ edp = H(yp) forall ¢ € C°(R").
]Rn

From Lemma 4.1, since H € W1 (R")*, there exists a bounded vector field F €
L% (R", R") such that

div F = u in the distributional sense and
4.17)
IH Ny gny = litllypra ey = 1F oo rn gy -

Now, from the proof of Theorem 4 .4, (i) = (ii) = (iii) , it follows that
el < H* L,

1(U)| < | Flloe H ' (3U)

for all closed and smooth sets U € R", and

/ u*du

< ”F”LOO(]R",R”) ”l/lHBVL1 (R™) forall u BVCOO(RH)
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Hence, u € BV>(R")* and from (4.17) we obtain

il Bygenys = I1F [l Loomn my = [l£ellyirn1 oy -
From Theorem 2.12, it follows that u can be uniquely extended to a continuous
linear functional i € BV (R™)* and clearly,
S() = u,

which implies that S is surjective. According to Theorem 2.12, this extension pre-
serves the operator norm and thus

1000 = 1

Rn)* BV_n_ (R")* = ||/~'L||BVC°°(]R”)* = ||/~’L||W11(Rn)* )
n P
n—1 n—1

which shows that £ and F are isometrically isomorphic. O

Remark 4.8. The space W' (R")* is denoted as the G space in image processing
(see Meyer [18]), and it plays a key role in modeling the noise of an image. It is
mentioned in [18] that it is more convenient to work with G instead of B VnnTl (R™y*,
Indeed, except for the characterization of the (signed) measures treated in this paper
and the results in De Pauw-Torres [10], the full characterization of B Vn"Tl (R™)* is
unknown. However, G can be easily characterized; see Lemma 4.1. Our previ-
ous results Theorem 4.4 and Theorem 4.7 show that, when restricted to measures,
both spaces coincide. Moreover, the norm of any (signed) measure & € G can be
computed as
ln(U)]

H=1U)’
where the sup is taken over all open sets U C R" with smooth boundary and
H"1(8U) < +o0. Hence, our results give an alternative to the more abstract
computation of ||u||s given, by Lemma 4.1, as

llllg = sup (4.18)

lllg = min{[| F || oo gn rn)},

where the minimum is taken over all F € L°°(R",R") such that divF = T. We
refer the reader to Kindermann-Osher-Xu [16] for an algorithm based on the level
set method to compute (4.18) for the case when w is a function f € L?(R?) with
zero mean. Also, in the two-dimensional case, when p is a function f € L2(R?),
the isometry of measures in Theorem 4.7 could be deduced from [15, Lemma 3.1].

5. On an issue raised by Meyers and Ziemer

In this section, using the result of Theorem 4.4, we construct a locally integrable
function f such that f € BV(R™)* but | f| ¢ BV (R")*. This example settles an
issue raised by Meyers and Ziemer in [19, page 1356]. We mention that this kind
of highly oscillatory function appeared in [17] in a different context.
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Proposition 5.1. Ler f(x) = €|x|~' = sin(|x| 7€) + (n — 1) |x|~! cos(|x|~€), where
0 <€ <n—1isfixed. Then

Fx) = div [x|x|_1 cos (|x|—€)] . (5.1)

Moreover, there exists a sequence {ry} decreasing to zero such that
/ fredx = erf™17¢ (5.2)
By, (0)

for a constant ¢ = c(n, €) > 0 independent of k. Here 7 is the positive part of f.
Thus by Theorem 4.4 we see that f belongs to BV (R™)*, whereas | f| does not.

Proof. The equality (5.1) follows by a straightforward computation. To show (5.2),
we letry = (7/6 + an)_T] fork =1,2,3,... Then we have

/ Fr(x)dx = s(n) /rk et sin(t ™) + (n — D! cos(ff)]+£
By, (0) 0 t

e+1

S (% 1 Ldx
= /_E x e [ex € sin(x) + (n— 1)xe cos(x)] -
Tk

e 7 /242kw+2in
S(I’l) —n+1
> — - / e dx,
b4

-2 J6+2kn+2im

where s(n) is the area of the unit sphere in R”. Thus using the elementary observa-

tion , ,
ﬂ/6+2k7‘[+2(1+1)n n+1 7 /242kn+2im —nt
dx <6 x" € dx,
7w /242km42im 7 /642km+2imw
we find that
242k +2im
( >0 m/ —n+1
/ frndx = —Z x T dx
By, (0) 14 = Ja/6+2km+2in
s(n) o0 72+2kn+2im
> —Z / x € dx
14 = \Jr /6426 +2in
w/64+2km+2(i+1)m a1
+[ X ¢ dx
7 /242km+2im
> x "€ dx

s(n) oo/n/6+2kn+2(i+1)ﬂ —ntl
14 =0/

J6-+2km+2im

_ s(n) /oo xfnjldx s(n)e -l
14 )2 6100 4n—1—¢) k

This completes the proof of Proposition 5.1. O
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6. The space BV, (Q2)

In this section we let 2 C R” be a bounded open set with Lipschitz boundary.
We now proceed to make precise the definition of BVy(2).

Definition 6.1. Let
BVy(£2) = ker(n),

where yy is the trace operator defined in (2.6).
We also define another BV function space with a zero boundary condition.
Definition 6.2. Let
BV (2) := CX(Q),
where the closure is taken with respect to the intermediate convergence of BV (£2).
We will show in this section that B Vy(2) = BV((£2). We have the following:

Theorem 6.3. Let Q be any bounded open set with Lipschitz boundary. Then
BV () is dense in BVy(R2) in the strong topology of BV (Q2).

Proof. We consider first the case u € BVy(CRr, 1), where Cp 7 is the open cylinder
Crr =Br x(0,7),

Bk is an open ball of radius R in R"~!, and supp(u) N dCg 7 = supp(u) N (Bg x
{0}). A generic point in Cg 7 will be denoted by (x', 1), with x" € Bg and ¢ €
0, 7).

Since u € BVy(Cg.T), the trace of u on Br x {0} is zero. From Giusti [14,
Inequality (2.10)] we obtain

B B
/ / lu(x’, t)|dx'dt < ,B/ / |[Dul, 0 < B < T. 6.1
0 Br 0 Br

Consider a function ¢ € C2°(R) such that ¢ is decreasing in [0, +-00) and satisfies
p=1on[0,1],p=00nR\[-1,2],0<¢ < 1.

We define
o) =@lkt), k=1,2,...

/ , (6.2)
ve(x, 1) = (1 — @re(@)ulx’, 1).

Clearly, vy — u in LI(CR,T). Also, if u > 0 then vt 1 u since ¢ is decreasing in
[0, 4+00). Moreover,

vk ou ,
= =1 —@)— — ko' (kD)u,
5 ( §0k)at @ (kt)u

Dx’vk = (1 - §0k)Dx’”-
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Thus we have

/ |Dvy — Du| = /
CrT Cr,T
/CR,T

Since ¢ (t) =0 fort > % we have the following:

/ |Dv — Du| < C(/ @k|Dul +/ k|¢/(kxn)llu|>
Cr,1 Cr.T Crr
2/k 2/k
< Cf f IDMI+Ck/ / lu(x’, 1)|dx'dt
0 BR 0 BR

< C|[Dull (Bg x (0,2/k)) (6.3)
+ Ck(2/k) | Dull (Br x (0,2/k)), by (6.1)
< C|[Dull (Br x (0,2/k)).

at at

D ou
_ o, —
ot

ou ,
—@rDyu, vl ko' (kt)u

9 9
(Dx’u — @Dy, i (ﬂk_u - kqo/(kt)u>

Since || Du| is a Radon measure and N7, (Br x (0,2/k)) = #, inequality (6.4)
implies that

lim |Dvy — Du| = 0.
k— 00 Cror
Thus
vx — u in the strong topology of BV (Cr.T). (64)

We consider now the general case of a bounded open set 2 with Lipschitz boundary
and let u € BVy(£2). For each point xg € 9€2, there exists a neighborhood A and a
bi-Lipschitz function g : B(0, 1) — A that maps B(0, 1)™ onto A N  and the flat
part of 9B(0, 1) onto AN dQ. A finite number of such sets Ay, As, ..., A, cover
d2. By adding possibly an additional open set Ag € €2, we get a finite covering
of Q. Let {«;} be a partition of unity relative to that covering, and let g; be the bi-
Lipschitz map relative to the set A; fori =1,2,..., N.Foreachi € {1,2,..., N}
the function
Ui = (aju) o g

belongs to BVy(B(0, 1)*), and has support non-intersecting the curved part of
dB(0, 1)*. Thus, we can extend U; to the whole cylinder C; ; := B (0) x (0, 1)
by setting U; equal to zero outside B(0, 1)*. By (6.4), for each ¢ > 0, we can find
a function W; € BV,.(Cq,1) such that

IW; = Uillgvic,, < e (6.5)
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fori =1,2,..., N. Letting now
wi =Wiogi_1’ l= 1,2,...,N,
we have w; € BV.(A; N Q) and
ID(w; — @)l (4 N ) = | DWi 087" = (@) o g o g7 H | (4N )

= | D(gi#(W; — (aju) o gi))Il (A; N €2)
< Cgi# |D(W; — (aju) o &)l (A; N 2),
by [3, Theorem 3.16]

= C/ ID(W; — U, (6.6)
g ' (AinQ)
by definition of g;# acting on measures
—c [ ipavi-u
B(0,1)*+
< Ce, by (6.5).

Here C = maxi{[Lip(g,-)]”_l} (see [3, Theorem 3.16]). Let wg = agu. Then
wo € BV.(L2). Define

We have w € BV,.(R2), and by (6.6)

N
IDw —w)l () < Y IDw; — aiw)]| (A N Q)
i=0

N
= Y IDw; — i) (A; N Q)
i=1

< NCe.

Likewise, by (6.5) and a change of variables we have

N N
lw—ulpq = Z lwi —aiullpiang = Z lwi —eiullpra,ng) < Nce.
i=0 i=1
Thus BV,(2) = BVp(£2) in the strong topology of BV (£2). ]

Remark 6.4. By (6.2) and the construction of w in the proof of Theorem 6.3 above,
we see that each u € BVp(£2) can be approximated by a sequence {u;} C BV, (£2)
such that uy = u in Q \ Ny foraset Ny = {x € Q : d(x,0) < §(k)} with
8(k) — 0 as k — 4o00. Moreover, if u > 0 then so is u; and uy 1 u as k increases
to +00.
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We will also need the following density result.

Lemma 6.5. B V0°° (R2) is dense in BVy(2) in the strong topology of BV (2). Like-
wise, BV (Q) is dense in BV.(2), and BV°°(2) is dense in BV (2) in the strong
topology of BV (L2).

Proof. We shall only prove the first statement as the others can be shown in a similar
way. Letu € B V0+(S2) and define

uji=unj j=12,...

Obviously, u; — u in L'(€2). We will now show that ||D(u —uj) || (2) = 0. The
coarea formula yields

/ ID(u —uj)| = /OOH"_I(QOB*{M —uj > t}hdt
Q 0
= /OOH"_l(QﬂB*{u —j > thdt
0
- me”_l(Qﬂa*{u > j+t))dt
0

= /Oo HN QN {u > s))ds.
j

Since fooo HNQ N 8*{u > s})ds < oo, the Lebesgue dominated convergence
theorem implies that

/ [D(u —uj)| — 0as j — oo. (6.7)
Q

Ifu € BVp(2), we write u = ut — u~ and define fj =u™ A jand g; =u™ A j.
Thus fj —8j € BVp(£2) and

/QID(M—(fj—gj))l = /QIDM’L—DM_—ijJFDgH

< [1pwt = i+ [ D6~ g
Q Q
— Oas j — oo,
due to (6.7). This completes the proof of the lemma. O

We are now ready to prove the main theorem of this section that makes precise
the definition of the space of functions of bounded variation in €2 with zero trace on
the boundary of €2.

Theorem 6.6. BV (2) = BVy(2).
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Proof. Let u € BV((2). Then Definition 6.2 implies the existence of a sequence
{ur} € C°(K2) such that

up — u in L'() and / |Duy| — / |Du|.
Q Q
Since uy € C°(S2), we have yo(ux) = 0. Then Theorem 2.11 yields

w(ug) — y() in L'(39),

and so
y(wm) =0 and u € BVp(2).

In the other direction, let u € BVy(£2). Then, from Theorem 6.3, there exists a
sequence uy; € BV,(2) such that

lim f lupy — u| = lim / |Duy — Du| = 0. (6.8)
k—o0 Jo k—oo Jo

Given a sequence g — 0, we consider the sequence of mollifications
Wk = Uk * Pgy -
We can choose ¢ sufficiently small to have
wg € C coo ().
Also, for each k,
lim [ [D(ug * pe)| = / | Dug],
e—=0Jq Q
and

lim | |ug * po —ug| =0.
e—=0Jq

Thus we can choose ¢ small enough so that, for each k,

‘/ |D(”k*,08k)|_/ | Du|
Q Q

/ |Mk *pé‘k _ukl =<
Q
Using (6.10) and (6.8) we obtain

lim / |lwrg — u| < lim / |wr — ug| + lim / |ug —u| = 0. (6.11)
k—oo Jo k—oo Jo k—o0 Jo

Also, letting k — o0 in (6.9) and using (6.8), we obtain

1
< -, 6.9
= (6.9)

and
(6.10)

| =

lim / |D(uk*pgk)|=/ |Dul. (6.12)
Q Q

k— 00

From (6.11) and (6.12) we conclude that wy — u in the intermediate convergence
which implies that u € BV (). O



410 NGUYEN CONG PHUC AND MONICA TORRES

Note that Theorem 6.6 implies the following Sobolev inequality for functions
in BVy(R2) (see also [23, Corollary 5.12.8] and [6, Theorem 41]):

Corollary 6.7. Let u € BVy(R2), where 2 is a bounded open set with Lipschitz
boundary. Then

lull 27 o) = € 1Dull ().

for a constant C = C (n).

Proof. The Sobolev inequality for smooth functions states that
o n
”u”Lﬁ(R") < C/n |Du| for each u € C2°(R"). (6.13)
From Theorem 6.6 there exists a sequence ux € C2°(2) such that
up — u in L'(Q) and / |Duy| — / |Dul. (6.14)
Q Q

Since ux — u in L1 () then there exists a subsequence {uy j} of {uy} such that
ukj(x) — u(x) forae. x € Q.

Using Fatou’s lemma and (6.13), we obtain

n n ni]
/ lu|n=T < liminf/ |ukj|m < liminf (C/ |Dukj|) . (6.15)
Q j=oo Jq oo Q

Finally, using (6.14) in (6.15) we conclude

n—1
(/ |u|ﬁ> §C/ |Dul. O
Q Q

By Corollary 6.7, we see that |[u|| gy (q) is equivalent to || Du|| (€2) whenever u €
BVy(R2) (or BVy(2)) and €2 is a bounded Lipschitz domain. Thus, for the rest of
the paper we will equip B Vp(£2) with the homogeneous norm:

lull gy = Il Dull (€2).
From Theorem 6.3 and Lemma 6.5 we obtain

Corollary 6.8. Let 2 be any bounded open set with Lipschitz boundary. Then
BV (Q) is dense in BVy(R2).
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7. Characterizations of measures in BV,(Q)*

First, as in the case of R”, we make precise the definitions of measures in the spaces
Wy (2)* and BVo(Q)*.
Definition 7.1. For a bounded open set 2 with Lipschitz boundary, we let

Mioe(@) N Wy L (Q)* = {T e W (@ : T(p)
= f @du for some € Mo (R2), Vo € Cfo(Q)} .
Q

Therefore, if £ € Mjec(2) N W(} ’I(Q)*, then the action (u, #) can be uniquely
defined for all u € Wol’1 (2) (because of the density of C2°(£2) in Wol’1 (2)).

Definition 7.2. For a bounded open set 2 with Lipschitz boundary, we let
Mioe(£2) N BVo(Q)* := {T € BVo()" : T(p)
:/ @*du for some 1 € Moo (), Vo € BVCOO(Q)} ,
Q

where ¢* is the precise representative of ¢. Thus, if 4 € Miec(2) N BVp(2)*,
then the action (u, u) can be uniquely defined for all u € BVp(€2) (because of the
density of BV, °(2) in BVp(£2) by Corollary 6.8).

We will use the following characterization of Wo1 1 (2)*, whose proof is com-

pletely analogous to that of Lemma 4.1.

Lemma 7.3. Let 2 be any bounded open set with Lipschitz boundary. The dis-

tribution T belongs to WOI’I(Q)* if and only if T = div F for some vector field
F € L°°(Q2, R™"). Moreover,

||T||W01.1(Q)* = min {||Fl g}

where the minimum is taken over all F € L (2, R") such that div F = T. Here
we use the norm

for F = (Fy, ..., Fp).

1/2
L(€)

We are now ready to state the main result of this section.

Theorem 7.4. Let Q be any bounded open set with Lipschitz boundary and . €
Mioc(R2). Then, the following are equivalent:

(i) There exists a vector field F € L°°(2, R") such that div F = u;
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(i) |u(U)| < CH"YQU) for any smooth open (or closed) set U € Q with
H1(QU) < +oo;

(iii) H*'(4) =0 implies ||t]| (A) = O for all Borel sets A C 2 and there is a
constant C such that, for all u € BVCOO(Q),

/MWAsC/HML
Q Q

where u* is the representative in the class of u that is defined H"~'-almost
everywhere;
(iv) u € BVy()*. The action of | on any u € BVy(R2) is defined (uniquely) as

(e, u)| =

ey i= Jim o) = tim [ g
k—o00 k—oo Jo

where uy € BV>X(R2) converges to u in BVy(Q2). In particular, if u €

BV(Q2) then
(mszfW,
Q

and moreover, if | is a non-negative measure then, for allu € BVy(R2),

(1, u) =/ utdu.
Q

Proof. Suppose (i) holds. Then for every ¢ € C2°(2) we have

/F-Dwdx:—/god,u.
Q Q

Let UES2 be any open (or closed) set with smooth boundary satisfying H"~1(dU) <
00. We proceed as in Theorem 4.4 and consider the characteristic function xy and
the sequence uy := xy*p1,«. Since U is strictly contained in €2, for k large enough,
the support of {u;} are contained in 2. We can then proceed exactly as in Theorem
4 4 to conclude that

lw(U)] < CH™ 1 @BU),

where C = || F ||y (q) for closed sets U and C = 3 || F[| (g for open sets U.

If w satisfies (ii) with a constant C > 0, then Corollary 4.3 implies that ||u| <
H* 1. Weletu € B V> (£2) and {p, } be a standard sequence of mollifiers. Consider
the convolution p, * u and note that p, % u € C2°(2), for & small enough. Then as
in the proof of Theorem 4.4 we have, for € small enough,

/pe*udﬂ SC/ |Du|.
Q Q
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Sending ¢ to zero and using the dominated convergence theorem yield

/zﬁdu Sci/IDuL
Q Q

with the same constant C as in (ii). This gives (ii) = (iii).
From (iii) we obtain that the linear operator

T W) = {u,u) =/ udp, ue BV (Q) (7.1)
Q

is continuous and hence it can be uniquely extended, since BV () is dense in
BVy(€2) (Corollary 6.8), to the space BVp(£2).

Assume now that u is non-negative. We take u € BVy(2) and consider the
positive and negative parts («*)* and (u*)~ of the representative u*. By Remark
6.4, there is an increasing sequence of non-negative functions {vy} C BV,(2) that
converges to (u*)™ pointwise and in the BV norm. Therefore, using (7.1) we have

U%AD=/WAﬂM,j=le
Q

We first send j to infinity and then k& to infinity. Using the continuity of T, (6.7),
and the monotone convergence theorem we get

T (") = / W) Tdp.
Q
We proceed in the same way for (#*)~ and thus by linearity we conclude
nm=T«fﬁ)—Twm1=/QMﬁ—wﬁwM=/uww
Q Q

Finally, to prove that (iv) implies (i) we take u € BVp(2)*. Since W(}’I(Q) C
BVy(2) then

=l Wyl (Q) € Wyl (@),
and therefore Lemma 7.3 implies that there exists F € L%°(2,R") such that

div F = ji and thus, since C2° C W, (%), we conclude that div F = u in the
sense of distributions. O

Remark 7.5. If ©2 is a bounded domain containing the origin, then the function f
given in Proposition 5.1 belongs to B Vp(£2)* but | f| does not.

Theorem 7.4 and Lemma 7.3 immediately imply the following new result
which states that the set of measures in BV (2)* coincides with that of Wol o1 (Q)*.

Theorem 7.6. The normed spaces Mioc (2) N BVy(2)* and Mo (2) N WO1 o1 ()*
are isometrically isomorphic.

The proof of Theorem 7.6 is similar to that of Theorem 4.7 but this time one
uses Theorem 7.4 and Corollary 6.8 in place of Theorem 4.4 and Theorem 3.1,
respectively. Thus we shall omit its proof.



414 NGUYEN CONG PHUC AND MONICA TORRES

8. Finite measures in BV (2)*

In this section we characterize all finite signed measures that belong to BV (£2)*.
Note that the finiteness condition here is necessary at least for positive measures in
BV (Q2)*. By a measure u € BV (2)* we mean that the inequality

‘/ utdu
Q

holds for all u € BV*°(2). By Lemma 6.5 we see that such a p can be uniquely
extended to be a continuous linear functional in BV (£2).

We will use the following result, whose proof can be found in [23, Lemma
5.10.14]:

< Cllullpv ()

Lemma 8.1. Letr Q be an open set with Lipschitz boundary and u € BV (2). Then,
the extension of u to R" defined by

ux) xe

W=y eRMQ

satisfies ug € BV (R") and
luollav®ny < Cllullpy (),

where C = C(2).

Theorem 8.2. Let Q2 be an open set with Lipschitz boundary and let u be a finite
signed measure in Q. Extend p by zero to R" \ Q by setting ||u||(R" \ ) = 0.
Then, u € BV (0)* if and only if

(@)l = CH'™(U) 8.1)
for every smooth open set U C R" and a constant C = C(2, ).

Proof. Suppose that u € BV(Q2)*. Let u € BV>(R") and assume that u is the
representative that is defined 7"~ !-almost everywhere. Consider v := uyq and
note that v | Q2 € BV () since Dv is a finite vector-measure in R” given by

Dv=uDxq + xqDu,

and therefore,

/IDU|=/ luDxa + xoDul 5/ IMIIDXQH-/ | Dul
Q Q Q Q

(8.2)
=/ | Du| 5/ |Dul = |lullpy®n < +oo.
Q R
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Since u € BV (2)* there exists a constant C = C (€2, u) such that

/ vd
Q

/udu‘ = '/ vdu‘ < Clvllavie). by (83)
Q Q

< Clvlipv()- (8.3)

Then,

/ udu‘ =

<c ||v||L1<Q>+CfR |Dul, by (8.2)

< Cll,

o+ Cf |Du|, since €2 is bounded
n—1 (Q) R~

=C ”u”Lﬁ(]R") +C/Rn [Dul

< C/ |Du| = ||u|l gy wny, by Theorem 2.4,
Rn

which implies that © € BV (R")*. Thus, Theorem 4 .4 gives
lu()] = CH"™(3U)

for every open set U C R” with smooth boundary.

Conversely, assume that u satisfies condition (8.1). Then Theorem 4.4 yields
that u € BV (R")*. Let u € BV °°(2) and consider its extension ug € BV (R") as
in Lemma 8.1. Then, since 1y € BV °(R"), there exists a constant C such that

/ (uo)*dp
R}’l

Now, Lemma 8.1 yields ||uq || gy ®r) < Cllu|lpv(x) and since up = 0 on R"\2 and
uo = u on 2, we obtain from (8.4) the inequality

/ urdu
Q

which means that © € BV (Q2)*. O

< Clluollpv ®n)- (8.4)

< Cllullpv), (8.5)

Remark 8.3. It is easy to see that if  is a positive measure in BV (2)* then its
action on BV (2) is given by
o) = [ wdn
Q

forallu € BV ().
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