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On the Hodge Cycles of Prym Varieties

INDRANIL BISWAS

Abstract. We show that the Néron–Severi group of the Prym variety for a degree
three unramified Galois covering of a hyperelliptic Riemann surface has a distin-
guished subgroup of rank three. For the general hyperelliptic curve, the algebra
of Hodge cycles on the Prym variety is generated by this group of rank three.

Mathematics Subject Classification (2000): 14H40 (primary); 14C30 (secondary).

1. – Introduction

Let X be a hyperelliptic Riemann surface. Let f : Y −→ X be a unramified
Galois covering with Galois group Z/3Z with Y connected. The Néron–Severi
group of the Prym variety Prym( f ) has a certain distinguished subgroup of rank
three. This subgroup is constructed as follows. We first prove that Prym( f ) is
identified with Pic0(Z) × Pic0(Z), where Z is a Riemann surface constructed
from the covering datum (Lemma 3.1). The two projections and the addition
law of Pic0(Z) together give three maps from Pic0(Z)×Pic0(Z) to Pic0(Z). The
pull backs, by these three maps, to Pic0(Z)×Pic0(Z) = Prym( f ) of the natural
polarization on Pic0(Z) give the distinguished subgroup of the Néron–Severi
group of Prym( f ).

For the general hyperelliptic curve X , the algebra of Hodge cycles on
Prym( f ) is generated by this subgroup of rank three of NS(Prym( f )) (The-
orem 4.1). In particular, for general hyperelliptic X , the Néron–Severi group
NS(Prym( f )) is of rank three, and all the Hodge cycles on Prym( f ) are alge-
braic.

We also consider degree three ramified coverings of an arbitrary compact
Riemann surface. Under an assumption on the covering, the algebra of Hodge
cycles of the Prym variety for the general Riemann surface is again generated
by the Néron–Severi group (Lemma 5.1).
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2. – Degree three covering of hyperelliptic curve

Let X be a connected smooth projective curve defined over the field of
complex numbers. Assume that g ≥ 2, where g denotes the genus of X . Let

f : Y −→ X

be an étale covering map of degree d with Y being connected. We have the
norm homomorphism

(2.1) N : Pic0(Y ) −→ Pic0(X)

of abelian varieties. We recall that for any line bundle L on Y , the direct image
f∗L has a reduction of structure group to the monomial group (the group of
d × d invertible complex matrices with exactly one nonzero entry in each row).
For any L ∈ Pic0(Y ) the line bundle

N (L) ∈ Pic0(X)

is the one associated to f∗L for the character of the monomial group defined
by the permanent (the permanent of a matrix in the monomial group is the
product of all its nonzero entries).

The connected component, containing the identity element, of the kernel
of the homomorphism N in (2.1) is called the Prym variety for f . The Prym
variety for the map f will be denoted by Prym( f ).

Assume that the covering f is Galois and that the Galois group for f is
abelian. Also, assume X to be hyperelliptic. We have the following simple
proposition.

Proposition 2.1. The hyperelliptic involution of X lifts to an involution of Y .

Proof. Let σ ∈ Aut(X) be the hyperelliptic involution. Let σ̃ ∈ Aut
(H1(X, Z)) be the involution defined by the action of σ . It is straight–forward
to check that σ̃ is the inversion homomorphism θ �−→ −θ . Consequently, σ̃

preserves the kernel of any homomorphism from H1(X, Z). In particular, it
preserves the kernel of the natural homomorphism H1(X, Z) −→ Gal(Y/X),
where Gal(Y/X) is the Galois group for the covering f . Note that since
the Galois group is abelian, the projection π1(X) −→ Gal(Y/X) induces a
projection from H1(X, Z) to Gal(Y/X).

Now from the homotopy lifting property it follows immediately that σ lifts
to an automorphism of Y .

We can choose the lift of σ to be an involution of Y . Indeed, take
a Weierstrass point x0 ∈ X (that is, fixed point for σ ), and take any point
y0 ∈ f −1(x0). Let σY be the (unique) lift of σ with σY (y0) = y0. Since
σY ◦ σY ∈ Gal(Y/X) and σY ◦ σY (y0) = y0, this lift σY must be an involution.
This completes the proof of the proposition.
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After fixing a point y0 ∈ f −1(x0) as in the proof of Proposition 2.1,
the fiber f −1(x0) gets identified with Gal(Y/X). Since the action of σ on
H1(X, Z) is multiplication by −1, the action of the lift σY (the involution
constructed in the proof of Proposition 2.1 that fixes y0) on f −1(x0) is the
inversion homomorphism θ �−→ −θ in terms of the identification of f −1(x0)

with Gal(Y/X).
Take any lift σ ′ ∈ Aut(Y ) of σ . So we have σ ′ = γ ◦σY , where γ is some

element of Gal(Y/X).
Now assume that Gal(Y/X) ∼= Z/3Z. From the above description of the

action of σY on f −1(x0) it can be deduced that the automorphism σ ′ = γ ◦ σY

on f −1(x0) has exactly one fixed point, namely γ −1(y0). Indeed, it is easy to
see that

(2.2) δ ◦ σY = σY ◦ δ−1

on f −1(x0) for all δ ∈ Gal(Y/X). As γ 2 = γ −1 and σY (y0) = y0, from (2.2)
it follows immediately that γ −1(y0) is the unique fixed point for the action of
γ ◦ σY on f −1(x0).

Since σ−1
Y ◦ γ ◦ σY ∈ Gal(Y/X), from the equality (2.2) on f −1(x0) it

follows that

(2.3) γ ◦ σY = σY ◦ γ −1

on Y . Note that (2.3) implies that γ ◦ σY is an involution. Since x0 is an
arbitrary Weierstrass point of X , we have following proposition.

Proposition 2.2. Assume that Gal(Y/X) ∼= Z/3Z. Let x0 ∈ X be a fixed point
of the hyperelliptic involution σ of X. Then for any lift σ ′ ∈ Aut(Y ) of σ, the action
of σ ′ on f −1(x0) has exactly one fixed point. Furthermore, σ ′ itself is an involution.

The genus of Y is 3g −2, where g is the genus of X . The Proposition 2.2
implies that there are exactly 2g+2 fixed points of the involution σ ′ (the number
of Weierstrass points of X ). This in turn implies that the quotient Riemann
surface Y/σ ′ is of genus g − 1.

3. – Prym for degree three covering

As before, let f be an étale Galois covering of the hyperelliptic Riemann
surface X with Galois group Gal(Y/X) ∼= Z/3Z. Fix a lift σY of the hyperelliptic
involution σ . Let

(3.1) Z := Y/σY

be the quotient of Y by the involution σY (see Proposition 2.2).
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Lemma 3.1. The Prym variety Prym( f ) is canonically isomorphic to the self
product Pic0(Z) × Pic0(Z), where Z is the curve defined in (3.1).

Proof. Let γ ∈ Gal(Y/X) be a nontrivial element. So σ ′ := γ ◦ σY is
another lift of σ distinct from σY . It was noted in Proposition 2.2 that σ ′ is
also an involution of Y . Let

(3.2) q1 : Y −→ Z1 := Y/σ ′

be the quotient map. We will show that Z1 is isomorphic to Z defined in (3.1).
Let

(3.3) q : Y −→ Z

be the quotient map in (3.1). Take any point z ∈ Z . Let {y1, y2} = q−1(z) ⊂ Y
(if q is ramified over z, then y1 = y2). In other words, y2 = σY (y1).

Set σ ′′ := γ ◦ γ ◦ σY , which is in fact the third lift of σ (apart from σY

and σ ′). Set y′
1 := σ ′′(y1) and y′

2 := σ ′′(y2). We will prove that

(3.4) σ ′(y′
1) = y′

2.

To prove this, first note that

(3.5) σ ′(y′
1) = γ ◦ σY ◦ σ ′′(y1) = σY ◦ γ −1 ◦ γ ◦ γ ◦ σY (y1) = σY ◦ γ ◦ σY (y1)

because γ ◦ σY = σY ◦ γ −1 (see (2.3)) and both σY and σ ′ are involutions (see
Proposition 2.2). Now,

(3.6) σY ◦ γ ◦ σY (y1) = γ −1 ◦ σY ◦ σY (y1) = γ −1(y1)

as σY is an involution. On the other hand,

(3.7) y′
2 = σ ′′(y2) = γ ◦ γ ◦ σY ◦ σY (y1) = γ ◦ γ (y1) = γ −1(y1)

because γ 3 = 1. Comparing (3.5), (3.6) and (3.7) we conclude that (3.4) is
valid (as σ ′(y′

1) = σY ◦ γ ◦ σY (y1) = γ −1(y1) = y′
2).

Note that since σ ′ is an involution, (3.4) implies that σ ′(y′
2) = y′

1. Conse-
quently, there is a (unique) point z1 ∈ Z1 such that

q−1
1 (z1) = {y′

1, y′
2} ⊂ Y

where q1 is defined in (3.2).
Let T : Z −→ Z1 be the morphism that sends any point z to the point z1

constructed above from z. This map T is clearly an isomorphism. Consequently,
the curve Z is isomorphic to Z1.

Let

(3.8) F : Pic0(Z) × Pic0(Z1) −→ Pic(Y )
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be the morphism defined by (L , L1) �−→ q∗L ⊗ q∗
1 L1, where q and q1 are

defined in (3.3) and (3.2) respectively.
Since Z is canonically isomorphic to Z1 (the isomorphism T is constructed

above), to prove the lemma it suffices to show that the map F defined in (3.8)
is an isomorphism of Pic0(Z) × Pic0(Z1) with the Prym variety Prym( f ).

For that first note that we have a commutative diagram of maps

Z
q←− Y

f−→ X�
�

�
X/σ ∼= CP1 ∼= X/σ

Take any line bundle L ∈ Pic0(Z). Using the above diagram it follows imme-
diately that the line bundle

⊗

γ∈Gal(Y/X)

γ ∗q∗L

on Y descends to X/σ . Since Pic0(X/σ) = 0, we conclude that q∗L ∈ Prym( f ).
(As Pic0(Z) is connected and q∗OZ = OY , it follows that q∗L belongs to the
component of the kernel of the norm map (defined in (2.1)) containing the
identity element.)

Similarly, we have q∗
1 L1 ∈ Prym( f ) for any L1 ∈ Pic0(Z1). Consequently,

the image of F defined in (3.8) is contained in the subabelian variety Prym( f ) ⊂
Pic(Y ).

Since both Prym( f ) and Pic0(Z) × Pic0(Z1) are of dimension 2(g − 1)

with g being the genus of X , to prove that F is an isomorphism it is enough
to show that the map F is injective.

To prove that F is injective we need to show that if

ξ ∈ Prym( f )

is contained in the images of both Pic0(Z) and Pic0(Z1), that is, there is
L ∈ Pic0(Z) and L1 ∈ Pic0(Z1) with F(L) = F(L1) = ξ , then L = 0 and
L1 = 0.

Since ξ = F(L) (respectively, ξ = F(L1)), the action of σY (respectively,
σ ′) on Pic(Y ) fixes ξ . Therefore, from the identity σ ′ = γ ◦ σY it follows that
the action of γ on Pic(Y ) fixes ξ .

Now, γ , being nontrivial, is a generator of the Galois group Gal(Y/X).
Therefore, both L and L1 descends to X/σ . Consequently, we have L = 0 and
L1 = 0. This completes the proof of the lemma.

The isomorphism in Lemma 3.1 is canonical in the sense that no choices are
involved in the construction of the isomorphism F . Note that if genus(X) = 1,
then clearly Prym( f ) = e.

The Hodge cycles on the general Prym variety will be described using the
above isomorphism F .
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4. – Hodge cycles on the general Prym

From Lemma 3.1 it follows that the rank of the Néron–Severi group

NS(Prym( f )) := H 1,1(Prym( f )) ∩ H 2(Prym( f ), 2π
√−1Z)

is at least three. To explain this, let � denote the theta line bundle on Pic0(Z).
On Pic0(Z) × Pic0(Z) we have three line bundles p∗

1�, p∗
2� and s∗�, where

pi : Pic0(Z) × Pic0(Z) −→ Pic0(Z)

is the projection to the i-th factor and s is the group law on the abelian group
Pic0(Z). It is easy to see that the rank of the subgroup of the Néron–Severi
group of Pic0(Z) × Pic0(Z) generated by the first Chern class of these three
line bundles is three. Now, using the isomorphism in Lemma 3.1, we have a
rank three subgroup of NS(Prym( f )).

Let

(4.1) C ⊂
⊕

p≥0

H p,p(Prym( f )) ∩ H 2p(Prym( f ), (2π
√−1)pQ)

denote the subalgebra of the algebra of Hodge cycles on Prym( f ) generated by
the above three elements of the Néron–Severi group and 1 ∈ H 0(Prym( f ), Q).

Theorem 4.1. For the general hyperelliptic Riemann surface X, the subalge-
bra C defined in (4.1) coincides with the space of all Hodge cycles on Prym( f ).

Proof. Consider the family of abelian varieties Prym( f ) as f runs over
all connected étale Galois covers of degree three of all hyperelliptic curves of
genus g. Using Lemma 3.1 it can be deduced that the monodromy of this
family is Zariski dense in Sp(2(g − 1), C) for the diagonal action of Sp(2(g −
1), C) on C2(g−1)

⊕
C2(g−1). Indeed, using the decomposition of the Prym

variety Prym( f ) given in Lemma 3.1 it follows immediately that the monodromy
is contained in Sp(2(g − 1), C) (with Sp(2(g − 1), C) acting diagonally on
C2(g−1)

⊕
C2(g−1)). Now using degeneration of a hyperelliptic curve it can be

seen that the Zariski closure coincides with Sp(2(g − 1), C).
To prove the above assertion that the Zariski closure is indeed Sp(2(g −

1), C), let E be an elliptic curve and τ an element of E of order three. Let X0
be an arbitrary smooth hyperelliptic curve of genus g − 1. Fix a Weierstrass
point x0 of X0. Set

Y = E ∪ X0 ∪ X0 ∪ X0

to be the tree–like nodal curve obtained by identifying the point x0 in the i-th
component X0, i ∈ [1, 3], with the point iτ of E . So Z/3Z acts on Y using
translation by τ on E and using cyclic permutation of the three ordered copies
of X0. The quotient, curve, which we will denote by X , has two irreducible
components, namely E/〈τ 〉 and X0, and both components are smooth. The
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quotient X has exactly one singular point (the identification of 0 ∈ E/〈τ 〉 with
x0). Clearly, the Prym variety for this covering Y −→ X is Pic0(X0)×Pic0(X0).
It is well–known that the monodromy for hyperelliptic curves of genus g − 1 is
Zariski dense in Sp(2(g −1), C) (c.f. [BP]). This immediately implies the above
assertion that the monodromy for the family of Prym varieties is Zariski dense in
Sp(2(g −1), C) for the diagonal action of Sp(2(g −1), C) on C2(g−1)

⊕
C2(g−1).

Consider the action of Sp(2(g − 1), C) on the exterior algebra
∧

(C2(g−1)
⊕

C2(g−1)) induced by the diagonal action on C2(g−1)
⊕

C2(g−1). The algebra
of invariants for this action is generated by the three elements in

∧2
(C2(g−1)

⊕
C2(g−1)) constructed using the standard symplectic structure on C2(g−1) [Ho,

p. 543, Theorem 2]. These three elements in
∧2

(C2(g−1)
⊕

C2(g−1)) correspond
to the three elements in the Néron–Severi group of Pic0(Z)×Pic0(Z) described
earlier.

Given any irreducible Sp(2(g−1), C)–submodule W of
∧

(C2(g−1)
⊕

C2(g−1)),
either W is contained in

(∧(C2(g−1) ⊕ C2(g−1)))Sp(2(g−1),C)

(the algebra of invariants for the action of the symplectic group) or W contains
some vectors that are not of (p, p)–type for the Hodge type decomposition
[BN, Theorem 3.2]. This implies that for the general Prym variety, the space
all Hodge cycles coincide with C (see [BN, Theorem 5.1]). This completes the
proof of the theorem.

In the next section we will consider a class of ramified covers of degree
there that are not Galois.

5. – Degree three ramified coverings

Let X be a connected smooth projective curve defined over C of genus g and

(5.1) f0 : Z −→ X

a covering of degree two, possibly ramified, with Z connected and smooth.
Take two distinct points x1, x2 ∈ X and a smooth embedding

γ : [0, 1] −→ X

with γ (0) = x1 and γ (1) = x2. Assume that the image of γ does not intersect
the divisor on X over which the covering f0 in (5.1) is ramified. In particular,
neither of x1 and x2 is a ramification point for f0. Consider

f −1
0 (γ ([0, 1])) ⊂ Z
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which is a disjoint union of two copies of γ ([0, 1]). Choose one of the two
arcs. So γ defines an embedding of [0, 1] in Z with this chosen arc as the
image. This embedding of [0, 1] in Z will be denoted by γZ .

Using the above data, we have a degree three covering of X . To explain
this, set

Y = (Z \ γZ ([0, 1])) ∪ (X \ γ ((0, 1))) ∪ (0, 1) ∪ (0, 1)

and attach one side of γZ ([0, 1]) in Z and the opposite side of γ ([0, 1]) in X
along a copy of (0, 1). This gives a ramified covering map

(5.2) f : Y −→ X

of degree three which is defined using f0 (defined in (5.1)) over Z \ γZ ([0, 1])
and using the inclusion map of X \ γ ((0, 1)) in X over X \ γ ((0, 1)) ⊂ Y .
Therefore, f is ramified over x1 and x2 of index 1 apart from having the
ramifications coming from f0.

For the dependence on γ of the pair Y and f , it is easy to see that if γ1 is
another arc connecting x1 with x2 which is homotopic to γ (fixing x1 and x2),
then the corresponding Riemann surface and the covering map are canonically
identified with Y and f respectively. In other words, the above construction
depends only on the homotopy class of γ (with fixed end points).

The covering map f in (5.2) does not admit any nontrivial deck trans-
formation. Indeed, this is an immediate consequence of the fact that over the
point x1 ∈ X there is a unramified point and a ramified point of index 1.

It is easy to see that the moduli space of all coverings (without fixing X )
of degree three of the above type is irreducible. Fixing X , f0 and x1, if the
point x2 approaches x1 and γ approaches the constant map, then in the limit,
the base of the covering map becomes the nodal curve X ∪ CP1 with x1 as the
unique singular point. Then the covering curve is the tree–like nodal curve

X ∪ Z ∪ CP1 ∪ CP1

with one CP1 touching Z at the unramified point over x1 (the other point in Z
over x1 not in the image of γZ ) and the other CP1 touching X and Z at x1
and the ramified point over x1 respectively; so there are exactly three singular
points.

We now consider the family of all coverings of degree three of singular
curves obtained this way. So the target of such a covering map f is a connected
nodal curve of the form

(5.3) X ′ = X ∪ CP1

with one singular point, where X is some smooth curve of genus g. The domain
of f is

Y ′ = Z ∪ X ∪ CP1 ∪ CP1
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where

(5.4) f0 = f |Z : Z −→ X

is a (possibly ramified) double cover of X as above; the curve Y ′ has exactly
three singular points, and they are of the above type.

For this covering map f between singular curves, since

(5.5) Prym( f ) = Pic0(X) × Prym( f0),

the Mumford–Tate group of Prym( f ) is contained in Sp(2g, C) × Sp(2g′, C),
where g′ = dimC Prym( f0). Consider the moduli space of all such coverings.

Lemma 5.1. For the general point of the moduli space of all coverings of
the above type, the Mumford–Tate group of Prym( f ) coincides with Sp(2g, C) ×
Sp(2g′, C).

Proof. Theorem 5 of [BP] (see [BP, p. 38]) says that the projection of the
Mumford–Tate group of Prym( f ) to the factor Sp(2g′, C) is surjective for the
general point of the moduli space. On the other hand, the projection of the
Mumford–Tate group of Prym( f ) to the factor Sp(2g, C) is also surjective for
the general point of the moduli space since the mapping class group for the
general smooth genus g curve surjects on to Sp(2g, C).

Now we need the following simple group theoretic result for the proof of
Lemma 5.1.

Proposition 5.2. Let G be a connected Lie subgroup of Sp(2m, C)×Sp(2(m +
n), C), with n > 0, such that the natural projections of G to both Sp(2m, C) and
Sp(2(m+n), C) are surjective. Then G coincides with Sp(2m, C)×Sp(2(m+n), C).

Proof. To prove the proposition, consider the exact sequence

(5.6) e −→ K −→ G −→ Sp(2m, C) −→ e

obtained from the projection Sp(2m, C) × Sp(2(m + n) −→ Sp(2m, C). Note
that K �= e as n ≥ 1.

Identify Sp(2(m + n), C) with its image in Sp(2m, C) × Sp(2(m + n), C)

for by the map that sends any h to (e, h). Using this identification, K in (5.6)
is a subgroup of Sp(2(m + n), C).

We will now show that K is a normal subgroup of Sp(2(m + n), C).
For any h ∈ Sp(2(m + n), C), take h̄ ∈ G that projects to h (recall the

hypothesis that the projection from G is surjective). For any k ∈ K, consider
h̄kh̄−1 ∈ K. It is straight–forward to check that h̄kh̄−1 commutes with the factor
Sp(2m, C). Therefore, it follows that hkh−1 ∈ K.

Since K �= e is a normal subgroup of Sp(2(m+n), C) of positive dimension,
we conclude that K = Sp(2(m + n), C). In view of the given condition that G
surjects on to Sp(2m, C), from this it follows immediately that G = Sp(2m, C)

× Sp(2(m + n), C). This completes the proof of the proposition.
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Continuing with the proof of Lemma 5.1, first note that if the number of
ramification points of the covering map f0 = f |Z : Z −→ X in (5.4) is different
from two, then g �= g′.

Since the Mumford–Tate group of Prym( f ) projects surjectively to both
Sp(2g′, C) and Sp(2g, C) for the general f , from Proposition 5.2 it follows
immediately that if the number of ramification points of the covering map f0
is different from two, then the Mumford–Tate group of Prym( f ) coincides with
Sp(2g′, C) × Sp(2g, C) for the general f .

For the remaining case where f0 has exactly two ramification points, first
note that from the proof of Proposition 5.2 it follows that a connected Lie
subgroup G of Sp(2m, C) × Sp(2m, C) that projects surjectively to both the
factors must coincide with Sp(2m, C) × Sp(2m, C) unless it is the graph of
some automorphism of Sp(2m, C).

Fix X ′ as in (5.3). Let y1 and y2 be two points of X over which f0
in (5.4) is ramified. Now, fixing X ′ move the pair of ramification points y1
and y2 in a (real) one–parameter family so that they interchange positions. For
example, take a smooth embedding ψ of the disk

D2 := {z ∈ C||z|2 ≤ 1}
in X with ψ(1) = y1 and ψ(−1) = y2. Now for θ ∈ [0, 1] set y1(θ) =
ψ(exp(π

√−1θ)) and y2(θ) = ψ(− exp(π
√−1θ)).

Consider the closed loop in the moduli space obtained by this family
parametrized by [0, 1]. For this family, the monodromy of H∗(Prym( f ), C) is
an element of Sp(2g, C) × Sp(2g′, C) which projects to the identity element in
Sp(2g, C) (as X is kept fixed) and project to a nontrivial element in Sp(2g′, C)

(as H 1(Z , C) has nontrivial monodromy).
Therefore, the Mumford–Tate group for the general f cannot be a graph

of an automorphism of Sp(2g, C). This completes the proof of the lemma.

Consider the covering map f : Y −→ constructed in (5.2) using f0 :
Z −→ X in (5.1). We have Prym( f ) = Pic0(X) × Prym( f0) (see (5.5)). On
the other hand, for the covering f0, Pic0(Z) is isogenus to Pic0(X)×Prym( f0).
Therefore, Pic0(Z) is isogenus to Prym( f ). Since the Mumford–Tate group of
Prym( f ) coincides with Sp(2g, C) × Sp(2g′, C) for the general covering of the
type f0 (Lemma 5.1), we conclude that the Mumford–Tate group of Pic0(Z)

coincides with Sp(2g, C) × Sp(2g′, C) for the general covering of the type
f0 (Mumford–Tate group). The Mumford–Tate group of two isogenus abelian
varieties coincide. For a product of abelian varieties whose Mumford–Tate group
is the full group (product of symplectic groups of corresponding dimensions),
the algebra of all Hodge cycles on it is generated by the Hodge cycles on
the individual factors. Consequently, we have the following corollary on the
Jacobian of the general double cover (with arbitrary ramification).

Corollary 5.3. For the moduli space of double covers of connected smooth
projective curves of genus g (with fixed arbitrary ramification), the Néron–Severi
group of the Jacobian of the general double cover is generated by two elements; the
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two elements are obtained from the decomposition (up to isogeny) of the Jacobian
of a covering curve. Furthermore, the Néron–Severi group generates the algebra of
Hodge cycles (of positive degree) on the Jacobian of the general double cover.

Now consider the family of degree three covering maps as in (5.2) between
smooth curves considered at the beginning of this section. Degenerating such
covers to covering maps between singular curves (by moving x2 close to x1),
and then using Lemma 5.1 we have the following corollary.

Corollary 5.4. The Néron–Severi group of Prym( f ) for the general covering
f (as in (5.2)) generates the algebra of all Hodge cycles (of positive degree) on
Prym( f ).
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