Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XVII (2017), 713-761

Homotopy classification of ribbon tubes and welded string links

BENJAMIN AUDOUX, PAOLO BELLINGERI, JEAN-BAPTISTE MEILHAN
AND EMMANUEL WAGNER

Abstract. Ribbon 2-knotted objects are locally flat embeddings of surfaces in
4-space which bound immersed 3-manifolds with only ribbon singularities. They
appear as topological realizations of the theory of welded knotted objects, which
is a natural quotient of virtual knot theory. In this paper we consider ribbon
tubes and ribbon torus-links, which are natural analogues of string links and links,
respectively. We show how ribbon tubes naturally act on the reduced free group,
and how this action classifies ribbon tubes up to link-homotopy, that is when
allowing each component to cross itself. At the combinatorial level, this provides
a classification of welded string links up to self-virtualization. This generalizes a
result of Habegger and Lin on usual string links, and the above-mentioned action
on the reduced free group can be refined to a general “virtual extension” of Milnor
invariants. As an application, we obtain a classification of ribbon torus-links up
to link-homotopy.

Mathematics Subject Classification (2010): 57Q45 (primary); S7TM25, 5TM27,
57Q35 (secondary).

Introduction

The theory of 2-knots, i.e. locally flat embeddings of the 2-sphere in 4-space, takes
its origins in the mid-twenties from the work of Artin [1]. However, the system-
atic study of these objects only really began in the early sixties, notably through the
work of Kervaire, Fox and Milnor [17,27,28], but also in a series of papers from the
Kansai area, Japan, partially referenced below.! From this early stage, the class of
ribbon 2-knots was given a particular attention. Roughly speaking, a 2-knot is rib-
bon if it bounds a locally flat immersed 3-ball whose singular set is a finite number
of ribbon disks. Introduced by T. Yajima [46] under the name of simply knotted 2-
spheres, they were extensively studied by T. Yanagawa in [48—50]. Ribbon 2-knots
admit natural generalizations to ribbon 2-knotted objects, such as links and tangles.

I See Suzuki’s comprehensive survey [43] for a much more complete bibliography on the subject.
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One particularly nice feature of these objects is that they admit a diagrammatic rep-
resentation which allows an explicit presentation of the associated knot groups, via
a Wirtinger-type algorithm.

This diagrammatic representation also allows one to use ribbon 2-knotted ob-
jects as a (partial) topological realization of welded knot theory. Welded knots
are a natural quotient of virtual knots, by the so-called Over Commute relation,
which is one of the two forbidden moves in virtual knot theory. What makes this
Over Commute relation natural is that the virtual knot group, and hence any vir-
tual knot invariant derived from it, factors through it. These welded knotted objects
first appeared in a work of Fenn-Rimanyi-Rourke in the more algebraic context of
braids [14]. Although virtual knot theory can be realized topologically as the theory
of knots in thickened surfaces modulo handle stabilization [10,33], this is no longer
true for the welded quotient. However T. Yajima [46] showed that inflating classi-
cal diagrams defines a map, called the Tube map, which sends knots onto ribbon
torus-knots, an analogue of ribbon 2-knots involving embedded tori. This map has
been generalized by S. Satoh [41] to a surjective map from the welded diagram-
matics. But this map fails to be one-to-one, and its kernel is not fully understood
yet. Ribbon knotted objects in dimension 4 are therefore closely related to both
3-dimensional topology and welded theory.

In the present paper, we consider two classes of ribbon knotted objects with
several components: ribbon tubes and ribbon torus-links. They are the natural
analogues in the ribbon context of string links and links, respectively. As such,
the latter ones can be obtained from the former by a natural braid-type closure
operation.

We give in Theorem 2.36 the classification of ribbon torus-links up to link-
homotopy, that is, up to homotopies in which different components remain disjoint.
This theorem should be compared, on one hand, with the link-homotopy classifica-
tion of links in 3-space by Habegger and Lin [20], and on the other hand, with the re-
sult of Bartels and Teichner proving the triviality of 2-links up to link-homotopy [7].
The dichotomy between these two results is striking, and Theorem 2.36 is closer in
spirit to the one of Habegger and Lin; in particular, ribbon torus-links are far from
being always link-homotopically trivial. Some examples are given in Section 2.5.

The problem of link-homotopy classification in higher dimension, intiated in
[15,35], has developed in various directions, for instance with the construction of
homotopy invariants (see, e.g. [29,30,34,35]), or towards the relationship with link
concordance (e.g. [12]). Vanishing results of homotopy invariants for embeddings
[12,35] have led, on one hand, to consider immersions, and on the other hand,
to the result of Bartels and Teichner for spheres [7]. This also naturally connects
to the general study of embedded surfaces in 4-space, which is a well-developed
subject, see, e.g. [11]. Our result suggests that embedded tori in four space form
a very particular but interesting case of study, which appears as another natural
generalization of 1-dimensional links (as embedded 2-spheres do).

The proof of the above-mentioned Theorem 2.36 closely follows the work of
Habegger and Lin [21]. As such, it naturally involves ribbon tubes and their classi-
fication up to link-homotopy, that we now state.
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Theorem [Theorem 2.34]. There is a group isomorphism between ribbon tubes up
to link-homotopy and the group of basis-conjugating automorphisms of the reduced

free group.

This theorem calls for several comments, which we develop in the next three
paragraphs.

Firstly, this theorem says that ribbon tubes up to link-homotopy form a group,
in fact the quotient of the welded pure braid group by self-virtualization. Actually,
our main results on ribbon tubes are obtained, via the Tube map, as consequences
of similar statements for welded string links; see Theorems 3.10 and 3.11. In this
context, the welded diagrammatics gives a faithful description of ribbon tubes, and
our results can be thus seen as applications of virtual knot theory to the concrete
study of topological objects.

Secondly, the classifying invariant underlying the theorem is a 4-dimensional
version of Milnor numbers. Through the Tube map, we obtain a general and topo-
logically grounded extension of Milnor invariants to virtual/welded objects, which
should be compared with several previous virtual extensions of Milnor invariants
proposed in [13,31,32].

Thirdly, since usual string links sit naturally in the welded string link monoid,
the above theorem is a generalization of the link-homotopy classification of string
links of Habegger and Lin [20]. In particular our 4-dimensional Milnor invariants
have the natural feature that they coincide with the classical ones for usual string
links through the Tube map. However we emphasize here that our proof of Theorem
2.34 is completely independent from the one of [20].

Our link-homotopy classification results for ribbon torus-links and ribbon tubes
lead to two natural questions. The first one is that of the classification in higher
dimension (for instance, for 3-dimensional ribbon tori in 5-space); the algebraic
counterpart of Theorem 2.34 above suggests that the statement would remain true
for codimension two tori in higher dimension. The second question addresses the
general case of tori in four space, by removing the ribbon assumption; this is a
natural question which seems to us worth studying.

The paper is organized as follows. We begin by setting some notation in Sec-
tion 1. Section 2 is devoted to the topological aspects of this paper. We introduce
ribbon tubes, broken surface diagrams and link-homotopy in our context, and pro-
vide various results on these notions. Section 3 focuses on the diagrammatic aspects
of the paper; it addresses welded string links and pure braids and their connections
with ribbon tubes and configuration spaces. The main tool for proving most of the
results of the present paper is the theory of Gauss diagrams, which is reviewed in
details in Section 4. The main proofs of the paper are given there. Finally, in Sec-
tion 5, we define Milnor invariants for ribbon tubes, and show how they provide a
natural and general extension of Milnor invariant to virtual knot theory.

ACKNOWLEDGEMENTS. This work was initiated by an inspiring series of lec-
tures given by Dror Bar-Natan at a workshop organized in Caen in June 2012. The
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Yasuhara, Ester Dalvit and Arnaud Mortier for stimulating comments and conver-
sations during the preparation of this paper. Thanks are also due to the referee for
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1. General settings and notation

Unless otherwise specified, we set n to be a non negative integer, once for all.
We begin with some topological notation and setting. Let I be the unit closed
interval. Let [[1, n]] be the set of integer between 1 and n. We fix n distinct points
{pitieqi,ny in 1. For every i € [[1, n]], we choose a disk D; in the interior of the
2-ball B> = I x I which contains the point p; in its interior, seen in {%} x 1.
We furthermore require that the disks D;, for i € [1, n], are pairwise disjoint.
We denote by C; := 9D, the oriented boundary of D;. We consider the 3-ball
B3 := B? x I and the 4-ball B* = B3 x I. For m a positive integer and for every
submanifold X c B™ = B™~! x I, we set the notation:

doX = X N (B™! x {0}), the “upper boundary” of X;
hX=XnN (B’"_1 x {1}), the “lower boundary” of X
04X = 90X \ (dpX U 91X), the “lateral boundary” of X

o X =X\ (3,X Ud@X) U@ X)).

By a tubular neighborhood of X, we will mean an open set N such that N N B™ is
a tubular neighborhood of X in B™ and 9, N is a tubular neighborhood of 9, X in
0g B™ for both ¢ =0 and 1.

In the following, an immersion Y C X shall be called locally flat if and only if
it is locally homeomorphic to a linear subspace R¥ in R” for some positive integers
k < m,except on X and/or 3Y, where one of the R-summand should be replaced
by R;. An intersection Y| N Y, C X shall be called flatly transverse if and only if
it is locally homeomorphic to the intersection of two linear subspaces R¥ and R*2
in R™ for some positive integers k1, ko < m, except on X, dY; and/or dY;, where
one of the R—summand should be replaced by R .

Throughout this paper, and for various types of objects, diagrammatical or
topological, we will consider local moves. A local move is a transformation that
changes the object only inside a ball of the appropriate dimension. By convention,
we will represent only the ball where the move occurs, and the reader should keep
in mind that there is a non represented part, which is identical for each side of the
move.

We also define some algebraic notation which will be useful throughout the
paper. Let G be a group and a, b € G two of its elements. We denote by:

e a’ := b~'ab the conjugate of a by b;
e [a; b] := a~'b~ab the commutator of a and b;
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e 4G, fork € N*, the k™ term of the lower central series of G inductively defined
by I't41G := [G; T« G] and TG = G;

and, if G is normally generated by elements g1, ..., g,, we further denote by:

e RG = G/{[gl.; gig] }i ell, pl.ge G} the reduced version of G, which is the
smallest quotient where each generator commutes with all its conjugates;

e Autc(G) :={f € Aut(G) | Vi € [1, p]l,3g € G, f(gi) = gF}. the group of
conjugating automorphisms of G.

Moreover, the free group on n generators is denoted by F,,. Unless otherwise spec-
ified, generators of F, will be denoted by x, ..., x,. By abuse of notation, same
notation will be kept for their images under quotients of F,,. More generally, names
of maps and of elements will be kept unchanged when considering quotients.

2. Ribbon tubes

This section is devoted to the topological counterpart of the paper. We first define
the considered objects, namely ribbon tubes, and then classify them up to link-
homotopy, in terms of automorphisms of the reduced free group.

2.1. Ribbon tubes and their homology

In this section we identify B?> < B3 with B2 x {%} so that the disks {D;}ic[1,n]
are canonically seen in the interior of B>.

2.1.1. Definitions

Definition 2.1. A ribbon tube is a locally flat embedding 7 = U | A; of n dis-
N7

iel
*
joint copies of the oriented annulus S' x 7 in B* such that:

e JA; = C; x {0, 1} for all i € [1, n] and the orientation induced by A; on 9 A;
coincides with that of C;;
o there exist n locally flat immersed 3-balls [[L]J | B; such that:
ie[[l,n
- 0,B; = A foralli € [[1,n];
— 0.B; = D; x {e}foralli € [1,n] and € € {0, 1};

n
— the singular set of .Ul B; is a disjoint union of so-called ribbon singularities,
1=
n o
i.e. flatly transverse disks whose preimages are two disks, one in .Ul B; and
1=

nooq
the other with interior in .Ul B;, and with boundary essentially embedded in

i=
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We denote by 1T, the set of ribbon tubes up to isotopy fixing the boundary circles.
It is naturally endowed with a monoidal structure by the stacking product 7 ¢ T’ :=

T U T’,and reparametrization, and with unit element the trivial ribbon tube
01 T=00T'

1,= u C;xI.
ie[[1,n]

Note that this notion of ribbon singularity is a 4-dimensional analogue of the
classical notion of ribbon singularity introduced by R. Fox in [18]. Similar ribbon
knotted objects were studied, for instance, in [47,48] and [25], and a survey can be
found in [43].

Note that the orientation of the /—factor in S! x I induces an order on essential
curves embedded in a tube component, since they are simultaneously homotopic to
S! x {t} for some ¢ € I; we will refer to this order as the “co—orientation order”.
There is also a second, independent, surface orientation on each tube, which we will
not use. The reader is referred to [5, Section 3.4] for a more detailed discussion.

Remark 2.2. There are two natural ways to close a ribbon tube T € rT, into a

closed (ribbon) knotted surface in 4—space. First, by gluing the disks [[|T| | D; x
tefll,n

{0, 1} which bound 99T and 9; T, and gluing a 4—ball along the boundary of B*,one
obtains an n-component ribbon 2-link [46], which we shall call the disk-closure of
T. Second, by gluing a copy of the trivial ribbon tube 1, along T, identifying the
pair (B3 x {0}, 9T) with (B> x {1}, 8;1,) and (B> x {1}, 8, T) with (B3 x {0}, d1,,),
and taking a standard embedding of the resulting > x S! in §#, one obtains an n-
component ribbon torus—link [41], which we shall call the tube-closure of T. This
is a higher dimensional analogue of the usual braid closure operation.

Let us mention here a particular portion of ribbon tube, called wen in the lit-
erature, that may appear in general, and which we shall encounter in the rest of
this paper. Consider an oriented euclidian circle in three-space, and an additional
dimension given by time. While time is running, let the circle make a half-turn; this
path in 4—space is a wen. One can also think of a wen as an embedding in 4—space
of a Klein bottle cut along a meridional circle. There are several topological types
of wens, but it was shown in [25] that there are all isotopic in 4—space, so that we
can speak of a wen unambiguously. Note that a wen is a surface embedded in 4—
space with two boundary components, which do not have the same orientation as is
required in the previous definition. Hence a wen is not an element of 1Ty, but the
square of a wen is. It turns out that the square of a wen is isotopic to the identity
(see [25]), a fact which will be used in some proofs of this section. For a more
detailed treatment of wens, see for instance [25], [4, Section 2.5.4] and [5, Section
4.5].

Definition 2.3. An element of 1T, is said to be monotone if it has a representative
which is flatly transverse to the lamination U B3 x {t} of B*.

We denote by rP, the subset of rT,, whose elements are monotone.

Proposition 2.4. The set tP,, is a group for the stacking product.
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Proof. The product of two monotone elements is obviously monotone, and an in-
verse T ! for a monotone ribbon tube 7 is given by 771N (B3 X {t}) =TN (B3 X
{1 —1}) foreacht € I. O

Remark 2.5. It is worth noting here that two monotone ribbon tubes which are
equivalent in rT, are always related by a monotone isotopy, i.e. by an isotopy
moving only through monotone objects. This is shown in Remark 2.26. As a con-
sequence, 1P, is equal to the group defined as the quotient of monotone ribbon tubes
by monotone isotopies.

Remark 2.6. The monotony condition enables / to be considered as a time param-
eter and the flat transversality forces T N (B x {t}) to be n disjoint circles for all
t € I. A monotone ribbon tube can hence be seen as an element of the fundamental
group of the configuration space of n circles in 3—space, that we will denote by
P R,, according to [8]. But, since the orientation of 97 is prescribed by the one of

. [[|T| ] Ci, these elements are actually in the kernel of the map PR, — Z7 con-
IAS n

structed in the proof of [8, Proposition 2.2]. The group rP, is therefore isomorphic
to the fundamental group of the configuration space of n circles in 3—space lying
in parallel planes, denoted by PU R, in [8]. This fact can be reinterpreted as see-
ing monotone ribbon tubes as motions of horizontal rings intermingled with wens.
Such wens can be pushed above and since the starting and final orientations for a
given circle match, there is an even number of wens and they cancel pairwise.

2.1.2. Homology groups
Let T be a ribbon tube with tube components [[|T| | A;.
ie[[l,n
Since T is locally flat in B*, there is a unique way, up to isotopy, to consider,
foralli € [1, n]], disjoint tubular neighborhoods N (4;) = D?x S x I for A;, with
A; = {0} x S' x I ¢ N(4;). We denote by N(T) := IIITI ]]N(Ai) a reunion of
ie[l,n

*
such tubular neighborhoods and by W = B*\ N(T) the complement of its interior
in B4,
As a direct application of the Mayer—Vietoris exact sequence, we obtain:

Proposition 2.7. The homology groups of W are Hy(W) = Z,
Hi(W)=27"=Zlc; | i € [1,n]), (W) =Z"=Z(x; | i € [1,n]), H3(W) =Z

and H (W) = 0 for k > 4, where c; is the homology class in H (W) of aD? x
{s} x {t} C IN(A;) for any (s, t) € S x I, and 7; of T is the homology class in
Hy(W) of dD* x S' x {t} C 9N (A;) foranyt € I.

2.2. Broken surface diagrams

Links in 3—space can be described using diagrams, which are their generic projec-
tion onto a 2—dimensional plane with extra decoration encoding the 3—dimensional
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information. Similarly, it turns out that ribbon knotted objects, which are surfaces in
4—space, can be described using their generic projection onto a 3—space; this leads
to the following notion of broken surface diagram.

Definition 2.8. A broken surface diagram is a locally flat immersion S of n ori-

*
ented annuli L A; in B3 such that:
ie[[1,n]

e 0A; = C; x {0,1} forall i € [1, n] and the orientation induced by A; on d A;

coincides with that of C;;
e the set X (S) of connected components of singular points in S consists of flatly

transverse circles in 6 A;, called singular circles.
i=

Remark 2.9. Since we are only interested in broken surface diagrams which rep-
resent ribbon tubes, the definition given in this paper is watered down compared
to what is commonly used in the literature. Let us recall that in general, a generic
projection of an embedded surface in 4—space onto a 3—space has three types of
singularities: double points, triple points and branching points (see, for instance,
[11,48]). In our context, only the first type does occur.

Moreover, for each element of X (), a local ordering is given on the two circle
preimages. By convention, this ordering is specified on pictures by erasing a small

neighborhood in ,Lr.lJl A; of the lowest preimage (see Figure 2.1). Note that this is
P

the same convention which is used for usual knot diagrams.

dark - white
preimage preimage

white - dark
preimage preimage

Figure 2.1. Local pictures for a singular circle in a broken surface diagram.

We shall actually consider only a special case of broken surface diagrams, namely
symmetric ones, that we now introduce, following essentially Yajima [47].
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Definition 2.10. A ribbon band is a locally flat immersion F := [[|T| HF,- of n
el l,n

disks I x I in 1*93 such that

e 0. F; = I x {g} is a diameter for D; C B? x {g} for each ¢ € {0, 1} and each
i e[1,n];

e the singular set of U F; is a disjoint union of 1-dimensional ribbon singular-
1t1es i.e. flatly transverse intervals whose preimages are two intervals, one in
U F; and the other with interior in U F; and with boundary intersecting dis-

i=l1 i=1
tinct connected components of 9, F'.

Y Y

— ~outside a—
: annuli

-0 @0 -0 ol 0
- inside
- annulus -
N N
ribbon band symmetric immersion symmetric broken

surface diagram

Figure 2.2. From ribbon bands to symmetric broken surface diagrams.

A symmetric immersion is a locally flat immersion of n oriented annuli obtained by
taking the boundary of a thickening of a ribbon band.

See the left-hand side and middle of Figure 2.2, respectively, for an example
of ribbon band and symmetric immersion.

Remark 2.11. A symmetric immersion is naturally endowed with a notion of “in
side”, which is simply the thickening of the corresponding ribbon band.

As pictured in Figure 2.2, singularities in a symmetric immersion H are singu-
lar circles with exactly one essential preimage in H. These essential preimages cut
H into smaller annuli. Moreover, the singular circles come in pairs, such that the
associated essential preimages delimit an annulus which is entirely contained inside
H . Such annuli are called inside annuli, and those which are not are called outside
annuli. See Figure 2.2. Note that every non essential preimage of a singularity
belongs to an outside annulus.

Definition 2.12. A broken surface diagram S is said to be symmetric if it is a sym-
metric immersion such that, for each inside annulus, the local orderings between
the essential and non essential preimages of its two boundary circles are different.
See the right-hand side of Figure 2.2 for an illustration.
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Let T be a ribbon tube, and suppose that there is a projection B* — B> such
that the image of 7 in B> has singular locus a union of flatly transverse circles.
For each double point, the preimages are naturally ordered by their positions on the
projection rays, as in Figure 2.1, so that the projection naturally yields a broken
surface diagram. This suggests that broken surface diagrams can be thought of as
3—dimensional representations of ribbon tubes. This is indeed the case, as stated in
the next result, which is essentially due to Yanagawa.

Lemma 2.13 ([48]). Any ribbon tube admits, up to isotopy, a projection to B3
which is a broken surface diagram. Conversely any broken surface diagram is the
projection of a unique ribbon tube.

Proof. Yanagawa proves that for locally flat embeddings of 2 spheres in R?, there
is an equivalence between the property of being ribbon (property R(4) in [48]) and
the property of admitting a projection onto an immersion whose only singular points
are transverse double points (property R(3) in [48]). The proof of the equivalence
passes through the equivalence with a third notion, which is the fusion of a trivial
2-link (property F in [48]). [48, Lemma 4.3] proves that R(4) and F are equivalent.
[48, Corollary 3.3] states that F' implies R(3) and Lemma 3.4 states the converse
implication. All the arguments are local and apply to the case of ribbon tubes as
well. O

More specifically, we have the following:

Lemma 2.14 ([25,47]). Any ribbon tube can be represented by a symmetric broken
surface diagram.

Proof. By the previous lemma, any ribbon tube T can be represented by a bro-
ken surface diagram S. Now we prove that S can be transformed into a symmetric
broken surface diagram which still represents the same ribbon tube. For this, we
consider the disk—closure S of 7" as defined in Remark 2.2. We obtain a ribbon
diagram for an n—component ribbon 2-link. Now by [25, Theorem 5.2], this dia-
gram is equivalent to a diagram obtained by closing a symmetric broken surface
diagram. This equivalence is generated by local moves, which we may assume to
avoid a neighborhood of the closing disks except possibly for a finite number of
moves which consist in discarding some wens across closure disks; we do not per-
form these latter moves, and leave such wens near the boundary circles instead. We
obtain in this way a new broken surface diagram which describes a ribbon tube iso-
topic to T, and it only remains to get rid of all residual wens. Following again [25],
all wens can be pushed down near the bottom circles _61 C; x {0}. The orientations
i=
of the two boundary circles of a wen are opposite, and the orientation on 97 in-

duced by T must agree with that of [[|T| | C;, so there are an even number of wens
telll,n

near each bottom circle, and they cancel pairwise. There is thus no more wen and
the resulting broken surface diagram for T is symmetric. O
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Remark 2.15. If two symmetric broken surface diagrams differ by one of the “Rei-
demeister” (RI, RII, RIII) or “virtual” (V) moves shown in Figure 2.3, then the
associated ribbon tubes are isotopic.

Indeed, both sides of virtual and Reidemeister RII & RIII moves can be locally
modelized as occurring in the projection of monotone ribbon tubes. Then, one can
use the approach mentioned in Remark 2.6 to prove the statement. Reidemeister
move RI is more tricky but can, for example, be checked using Roseman moves
defined in [40]. Another approach can also be found in [2]. Nevertheless, it is
still unknown whether the correspondence between ribbon tubes and symmetric
broken surface diagrams up to Reidemeister and virtual moves is one-to-one; see,
e.g. [4, Section 3.1.1] or [5, Section 3.1]. This discussion is the key to the relation
between ribbon tubes and welded string links defined in Section 3. However, it
follows from Corollary 4.34 that this correspondence is one-to-one up to the link-
homotopy relation which is defined in the next section.

RII:

Figure 2.3. Reidemeister and virtual moves for broken diagrams.

2.2.1. Fundamental group

Let T be a ribbon tube with tube components [[|T| ]]A,- and consider N(T) :=
S n

*
, [[IT| | N(A;) and W = B* \ N(T) as in Section 2.1.2. We also consider a global
i€ll,n

parametrization (x, y, z, t) of B*, which is compatible with B*~ B3 x I = B?x
I x I near dpB* and 9; B*, and such that the projection along z maps 7 onto a
symmetric broken surface diagram §. We also fix a base point e := (xo, Yo, 20, f0)
with zo greater than the highest z—value taken on N(T).
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Notation 2.16. We set 71 (T) := m1(W) with base point e.
2.2.2. Meridians and longitudes

For every point a := (xq4, Y4, 2a,tq) € T, we define m, € m((T), the meridian
around a, as T, lya T, where

o 17, is the straight path from e to @ := (x4, Ya, 20, ta);
e y, is the loop in W, unique up to isotopy, based at @ and which enlaces positively
T around a.

Definition 2.17. For eachi € [1, n] and ¢ € {0, 1}, we denote by mf the meridian
in 71 (T) defined as M e for any a} € C; x {¢}. If ¢ = 0, we call it a bottom
meridian, and if ¢ = 1, we call it a top meridian.

See the left-hand side of Figure 2.4 for an example of a bottom meridian. Note
that, for any ¢ € {0, 1} and any choice of a;, the fundamental group of 9. W based
at (xp, Yo, 20, €) can be identified with the free group F, = (mf | iel, n]]).

B3 x {1} B3 x {1}

B3 x {0}

ﬁ o

T
-~ =~

0
Ta

0

meridian m; longitude A;

Figure 2.4. Examples of meridians and longitude

Now, we define the notion of longitude for T as follows. First, we fix two points
e? € N (A;) and ei1 € 91N (A;) on each extremity of the boundary of the tubular
neighborhood of A;. A longitude for A; is defined as the isotopy class of an arc on
dN (A;) running from e? to eil. Since N (A;) is homeomorphic to D? x S' x I,we
note that

IN(A) = (" x S' x 1)U (D? x S' x {0}) U (D* x S' x {1}),

so that the choice of a longitude for A; is a priori specified by two coordinates, one
for each of the two S!—factors in S! x S! x I. On one hand, the first S'—factor
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is generated by the meridian m?, so that the first coordinate is given by the linking
number with the tube component A;. It can be easily checked, on the other hand,
that two choices of longitude for A; which only differ by their coordinate in the
second S!—factor are actually isotopic in W.

Definition 2.18. For each i € [1,n]], an i™ longitude of T is the isotopy class
of an arc on dN(A;), running from el(.) to el.l, and closed into a loop with an arc
c? U cl.1 defined as follows. For ¢ € {0, 1}, we denote by €7 the point above e with
z—coordinate zo; then ¢} is the broken line between e, 'éf and e; .
This definition is illustrated on the right-hand side of Figure 2.4.

Remark 2.19. As explained above, any two choices of an i longitude differ by
a power of m?, which is detected by the linking number with the tube component
A;. In particular, there is thus a preferred i™ longitude, which is defined as having

linking number zero with A;. We shall not make use of this fact here, but in Section
5 at the end of this paper.

2.2.3. Wirtinger presentation

In the following, we give a presentation for 71 (7) in terms of broken surface dia-
grams. Let S be a symmetric broken surface diagram representing 7. According to
the notation set in Remark 2.11, we denote by Out(S) the set of outside annuli of §
and by In(S) the set of inside annuli.

For each inside annulus 8 € In(S), we define

° ozg € Out(S), the outside annulus which contains 93;

. C;{, Cj , the connected components of N ozg which, respectively, are closer to
018 and to dpS, according to the co—orientation order (defined after Definition
2.1);

° a;, 0{/; € Out(S), the outside annuli which have C ; and C ﬁ_ as boundary com-
ponents, respectively;

e gg = 1 if, according to the local ordering, the preimage of Cy in B is higher

than the preimage in ag ,and eg = —1 otherwise.
See Figure 2.5 for an illustration.

Proposition 2.20 ([46,48]). Let T be a ribbon tube and S any broken surface rep-
resenting T, then

71(T) = (0ut(S) | af = (a;)®” forall B € In(S)).

In this isomorphism, o € Out(S) is sent to m,, where a is any point on « close to
do.

Proof. By considering, in B*, the union of the projection rays from T C B* to
S C B3 = 9yB*, the result follows from standard techniques (see, e.g., the proof
of [9, Theorem 3 .4]). ]
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g\ 4‘ ! g = +1
cf 1o G
I tois
0 v T H
« B - —
3 C;VV PR a;
i - s ER = —1

Figure 2.5. Signs associated to inside annuli.

Example 2.21. Let H be the ribbon tube represented in Figure 2.4. We have
m(H) = (m?, ml, md | ml = (m?)(mg)il}

Corollary 2.22. The group m(T) is generated by elements {m}qcr , and moreover,
ifa € A; for some i €[[1, n], then m, is a conjugate of m? for both e=0 or 1.

2.24. Reduced fundamental group

In this section, we define and describe a reduced notion of fundamental group for
T. Indeed, Corollary 2.22 states that 1 (7") is normally generated by meridians
mf, .-+, m;, for either ¢ = 0 or 1. Moreover, since top meridians are also conju-
gates of the bottom meridians and vice versa, we can define the following without
ambiguity:
Definition 2.23. The reduced fundamental group of T is defined as Rmy(T), the
reduced version of 1 (7) seen as normally generated by either bottom meridians
or top meridians. For convenience, we also denote Rmi(d, W) by Rm(9.T), for
e € {0, 1}.

It is a consequence of the description of H, (W) given in Proposition 2.7 that,
for ¢ € {0, 1}, the inclusion ¢, : 9;W < W induces isomorphisms at the H; and
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H; levels. Stallings theorem, i.e. Theorem 5.1 in [42], then implies that

(te)k : nl(aEW)/Fknl (0. W) ;) nl(T)/Fknl(T)

are isomorphisms for every k € N*. But 7r1 (3. W) is the free group F,, generated by
meridians m{, - - -, my . It follows from Habegger-Lin’s Lemma 1.3 in [20] that for
k> n,R(Fu/r,E,) = RF,. As a consequence:

Proposition 2.24. The inclusions 1o and 1 induce isomorphisms

RF, = Rm(3T) —> Rm(T) «—— Rm1(8;T) = RF,.
t

X
4

Using the isomorphisms of Proposition 2.24, we define, for every ribbon tube T,
amap ¢r : RF, — RF, by ¢p7 = Lg_l o LT. This can be seen as reading the
top meridians as products of the bottom ones. It is straightforwardly checked that
©Te1 = @71 © @7 and this action on RF, is obviously invariant under isotopies of
ribbon tubes.

It follows from Corollary 2.22 that:

Proposition 2.25. For every ribbon tube T, @7 is an element of Autc(RF,), the
group of conjugating automorphisms. More precisely, the action of T € 1T, on
RF, is given by conjugation of each x;, for i € [1, n], by the image through ij of
an i™ longitude of T .

Note that, in the reduced free group, this conjugation does not depend on the
choice of an i longitude.

Remark 2.26. If the ribbon tube 7 is monotone, then the inclusions ¢, for ¢ €
{0, 1}, actually induce isomorphisms 71(d: W) = F,, = 71(T), so that T defines an
action in Autc (F,) which is left invariant by any (possibly non-monotone) isotopy.
Theorem 2.6 of [4] shows that this induces an isomorphism between the group of
monotone ribbon tubes up to monotone isotopies and Autc(F,), since this group is
isomorphic to the group PU R,, defined in [8] (as noticed in Remark 2.6). It follows
that if two monotone ribbon tubes are equivalent in 1T, , then they induce the same
action on F,, and hence are isotopic through a monotone isotopy. Put differently, we
have that the group PU R, injects in r'T},.

2.3. Classification of ribbon tubes up to link-homotopy

We now give a classification result for ribbon tubes, up to link-homotopy, in terms
of their induced action on the reduced free group.
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2.3.1. Link-homotopy

Definition 2.27. A singular ribbon tube is a locally flat immersion T of n annuli

U A; in B* such that
iel1,n]]
e 0A; = C; x {0, 1} foralli € [1, n] and the orientation induced by A; on dA;
coincides with that of C;;
e the singular set of T is a single flatly transverse circle, called singular loop,
n. o
whose preimages are two circles embedded in .Ul A;, an essential and a non
1=
essential one.
o there exist n locally flat immersed 3-balls “LIJ | B; such that
el l,n
- 0,B; = A; and 9, B; _D x {e} foralli € [1,n] and ¢ € {0, 1};
— the singular set of U B; is a disjoint union of flatly transverse disks, all
of them being rlbbon s1ngu1ar1tles but one, whose prelmages are two disks

bounded by the preimages of the singular loop, one in 'Ul 0« B; and the other
1=

noo
with interior in .Ul B;.
1=
We say that a singular ribbon tube is self-singular if and only if both preimages of
the singular loop belong to the same tube component.

Definition 2.28. Two ribbon tubes 7 and T, are said to be link-homotopic if and
only if there is a 1-parameter family of regular and self-singular ribbon tubes from
T to T, passing through a finite number of self-singular ribbon tubes.

We denote by rTE the quotient of r'T,, by the link-homotopy equivalence, which
is compatible with the monoidal structure of rT,,. Furthermore, we denote by rPI,’l
the image of rP,, in rT".

Proposition 2.29 ([25]). The link-homotopy equivalence is generated by self-circle
crossing changes, which are the operations in B* induced by the local move shown
in Figure 2.6, which switches the local ordering on the preimages of a given singular
circle, where it is required that both preimages are on the same tube component.

Figure 2.6. A circle crossing change at the level of broken surface diagrams.

Note that a circle crossing change can be seen as a local move among symmetric
broken surface diagrams. Indeed, although applying a circle crossing change yields
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a surface diagram which is no longer symmetric (see the middle of Figure 2.7),
the resulting inside annulus correspond to a piece of tube passing entirely above
or below another piece of tube. There is thus no obstruction in B* for pushing
these two pieces of tube apart, so that their projections don’t meet anymore (see the
right-hand side of Figure 2.7).

(
\
(

\L

Figure 2.7. A circle crossing change at the symmetric broken surface diagram level.

We now state one of the main results of this paper.
Theorem 2.30. Every ribbon tube is link-homotopic to a monotone ribbon tube.

Proof. Using the surjectivity of the Tube map defined in Section 4.5, this is a direct
consequence of Theorem 4.12. O

Remark 2.31. Theorem 2.30 can be regarded as a higher-dimensional analogue
of Habegger-Lin’s result, stating that any string link is link-homotopic to a pure
braid [20].

Corollary 2.32. The set rTB is a group for the stacking product.

2.3.2. Actions on the reduced free group and link-homotopy

In Section 2.2 4, a conjugating automorphism ¢7 was associated to any ribbon tube
T. It turns out that this automorphism ¢7 is invariant under link-homotopy.

Proposition 2.33. If Ty and T are two link-homotopic ribbon tubes, then @7, =
or, -

Proof. This is a consequence of Lemma 4.20 and the surjectivity of the Tube map
defined in Section 4.5. However, this result can be given a more topological proof
that we will sketch here.

It is sufficient to prove the proposition in the case of a link-homotopy H pass-
ing through a unique singular ribbon tube. We denote then by A the annulus which
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contains the unique singular loop and by &y the disk in A which is bounded by this
singular loop. By abuse of notation, we will also denote by A the annulus in 7y,
in 77 and in any ribbon tube in-between, which are the deformations of A by H.
Moreover, we can assume that the resolution of §¢ in 7y creates a ribbon singularity,
as on the left-hand side of Figure 7, whereas it doesn’t in 77, as on the right-hand
side of the figure.

Following the proof of [20, Lemma 1.6],> we consider the complement Wy of
a tubular neighborhood of H in B> = B* x I, where I represents the 1—parameter
of the link-homotopy. The inclusions (g : Wy — Wy and ¢1 : 0iWy — Wy
induce the following commutative diagram:

Rm1(30To) — Rm1(3oW) = Ry (Tp) <—— R (31 Tp)

” l ”

RF, Rn(H) RF, 2.D

” | ”

Ry (80T)) — R (0; W) = Ry (Ty) <—— R (9 Th),

where R (H) := m1(Wg) /Q with Q the normal subgroup generated by all com-
mutators [m; m8], m being any bottom meridian of Tp and g any element of 71 (Wg).
Note that, since top and bottom meridians of Ty and 77 are equal in 71 (Wg), and
since top meridians are conjugates of the bottom ones, both vertical maps to Rz (H)
in (2.1) are well° defined.

Let B, C B* be a 4-ball so that:

e B, := B, x I C B’ contains 8;

e H is trivial outside B

e 9B, N H is the disjoint union of 4 thickened circles C; x I, Cy x I,C3 x I
and C4 x I where Cy, Cp, C3 and Cy4 are four essential curves in A, numbered
according to the co—orientation order.

Up to symmetry, we can assume that g is totally embedded in «y, the annulus in
A which is cobounded by C; and Cj3, rather than in o5, the annulus in A which is
cobounded by C3 and Cy4. -
Now, we denote by Z := Wg \ B, the complement of H outside B, and by
m;,fori € {1, 2,3, 4}, the meridian in 71 (Wg) which enlaces positively C; x I.
We claim that: -
(1) w1 (@oWh) = nl(Z)/{m2 =mi;my = mgnl b
(2) (01 Wh) = nl(z)/{mz =mj;myg = m3};

@) mWr) = T1D (my = my; ma = my; myms = myma )
2 Asit was already the case in [20], the theorem of Stallings cannot be used here since Hy (Wpgy)

has an extra summand. The retraction argument of Habegger and Lin could not either be used in
our context.
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Using the Seifert—Van Kampen theorem and the Wirtinger presentation for the rib-
bon tube dgH N By and d; H N By, the first two assertions are rather clear since
filling Z with (doH N B,) x I or (31 H N B) x I gives a thickening of, respectively,
30 WH and 31 WH .

Now we focus our attention on Wx DE*. Using standard techniques, borrowed,
e.g., from the proof of [9, Theorem 3.4], it is easily seen that 7;(Wgy N B.) is
generated by m and m; and that m, = m and msq = m3. We consider a point of
080 and a 4-ball b around it which is transverse to 8g. The ball b intersects oy and
o along two transverse disks and b can be seen as the product of these two disks.
This product decomposition of b provides a Heegaard splitting of 3b = S* into two
solid tori whose cores are 0b N« and 0b Ny, and whose meridians are m and m3.
But these cores enlace as an Hopf link and since mr; (Hopflink) = 7%, my and m3
commute. Finally, using the Mayer—Vietoris exact sequence for Wy N B, seen as
(F* \N 1) N (E* \N2) where N and N, are tubular neighborhoods of, respectively,

a1 X I and ap x I, one can compute that the abelianization H;(Wg N B.) of
71 (Wy N By) is Z2, so no other relation can hold in 71 (Wx N B..). By use of the
Seifert—Van Kampen theorem, this proves statement (3).

Now, since m,m2, m3 and my are all conjugates of the top meridian of A, they
commute in the reduced group, and it follows that R (dgWg) = Rm(01Wg) =

Rmi(Wg) =R (ﬂl (Z)/{m2 =m; ma = m3}>- All the maps in the diagram (2.1)

are hence isomorphisms and since g7, and @7, are, respectively, the upper and lower
lines of (2.1), they are equal. O

We can now give the main result of the paper:

Theorem 2.34. The map ¢ : rTE —> Autc(RF,), sending T to ¢t is an isomor-
phism.

As pointed out in Section 4.5, this is a consequence of Theorem 4.17. Some
examples are given in Section 2.5 below.

24. Classification of ribbon torus-links up to link-homotopy

In [21] a structure theorem was given for certain “concordance-type” equivalence
relations on links in 3-space. Here we give an analogous structure theorem in the
higher dimensional case. Actually, we follow the reformulation given in [23], which
was in fact implicit in the proof of [21].

We consider n-component ribbon torus-links, that is, locally flat embeddings
of n disjoint tori in §* which bound locally flat immersed solid tori whose singular
set is a finite number of ribbon disks. Denote by rL,, the set of n-component ribbon
torus-links up to isotopy. The tube-closure operation defined in Remark 2.2 induces
a natural closure map " : rT,, — rL,, which is easily seen to be surjective. Indeed,
given an n-component ribbon torus-link, it is always possible up to isotopy to find a
3-ball intersecting the n components transversally exactly once, along an essential
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circle, so that cutting the ribbon torus-link along this ball provides a preimage for
the closure operation. We shall refer to such a ball as a “base-ball”.

Consider an equivalence relation E on the union, for all n € N*, of the sets
1T, and rL,. We will denote by E(x) the E-equivalence class of a ribbon tube
or torus-link x, and we also denote by E the map which sends a ribbon knotted
object to its equivalence class. We denote respectively by ErT, and EtL, the set of
E-equivalence classes of ribbon tubes and ribbon torus-links.

The Habegger-Lin Classification Scheme relies on the following set of axioms:

(1) The equivalence relation E is local, i.e. for all L1, L, € 1T, such that
E(L) = E(Ly), and for all Ty, T» € 1Ty, such that E(T}) = E(T3), we
have:

() E(L1) = E(Ly);
(1) E1,®L1) = E(1,®L>), where ® denotes the horizontal juxtaposition;

(iii) E(L; <Ty) = E(L, < T») and E(T) > Ly) = E(T> > Ly), where the
left action <1 and right action > of r'T», on 1T, are defined in Figure 2.8;

; TbL= []

Figure 2.8. Schematical representations of the left and right actions of T € 1Ty, on
L erT,.

(2) Forall L € 1T,, there is a ribbon tube L', such that E(L - L") = E(1,);

(2)) Forall L € rT,,, E(L - L) = E(1,), where L denotes the image of L under
the hyperplane reflexion about B3 x {%};

(3) The equivalence relation E on ribbon torus-links is generated by isotopy of
ribbon torus-links and the equivalence relation E on ribbon tubes: if L and
L' are two ribbon torus-links such that E(L) = E(L'), then there is a finite
sequence L1, ..., L,, of ribbon tubes such that L is isotopic to L1, L’ is
isotopic to f,m, and forall i (1 <i < m),either E(L;) = E(L;41) or f,i is
isotopic to ii+ 1

Let E be a local equivalence relation. Denote respectively by E S,If and E SnL the
right and left stabilizers of the trivial ribbon tube in E1T,. One can easily check
that ESX and E St are both submonoid of 1T, . Furthermore, the closure operation
induces amap " : ErT, — ErL, which passes to the quotient by E Sf (respectively
ESL).
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Now, assume in addition that the equivalence relation E satisfies Axiom (2).
Then clearly the monoid E1T,, is a group, and both E S,f and E S,f are subgroups of
ErTy,. If the stronger Axiom (2’) holds, then we actually have ESX = ESL.

Theorem 2.35 (Structure Theorem for ribbon torus-links).

e Let E be a local equivalence relation satisfying axiom (2). Then, for * = R or
L, the quotient map
rTn — ErTn/ES;l"

factors through the closure map, i.e., we have a ribbon torus-link invariant
E:rfL, — ErTn/ES;f-

such that the composite map to E1L,, is E;
e Furthermore, if Axiom (3) also holds, then we have a bijection

Ean/E_g‘;lk = ErL,.

This structure theorem is shown by applying verbatim the arguments of [21], as
reformulated in [23, Theorem 3.2]. Indeed, although these papers only deal with
classical knotted objects, the proof is purely combinatorial and algebraic, and in-
volves no topological argument except for [21, Proposition 2.1], whose ribbon tube
analogue can actually be shown by a straightforward adaptation of Habegger and
Lin’s arguments.

We have the following classification result for ribbon torus-links up to link-
homotopy.

Theorem 2.36. The link-homotopy relation on ribbon tubes satisfies Axioms (1),
(2') and (3) above. Consequently, we have a bijection

I‘TE/S’;}— = rLE’

where rLE is the set of link-homotopy classes of ribbon torus-links and S, denotes

the stabilizer of the trivial ribbon tube in ¥T" with respect to the right (or left) action
of 1Ty, on 1T, defined in Figure 2.8.

Proof. The fact that the link-homotopy relation is local (Axiom (1)) is evident.
Axiom (2') holds as a consequence of Theorem 2.30 and the group structure on
monotone ribbon tubes as described in the proof of Proposition 2.4. To see that
Axiom (3) holds, suppose that the ribbon torus-link L’ is obtained from L by ap-
plying circle crossing changes at a given set S of self-crossing circles. Let L be
the tube-closure of a ribbon tube L. As sketched at the beginning of this section,
L is specified by the choice of a base-ball intersecting each component of L ex-
actly once, and we may assume that this ball is disjoint from §. Thus L’ is the
tube-closure of a ribbon-tube L7, obtained from L; by successive circle crossing
changes at each of the circles in the set S. This shows that link-homotopy for rib-
bon torus-links is implied by link-homotopy for ribbon tubes and isotopy, hence
concludes the proof. O
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2.5. Some examples

We conclude with a few simple examples of applications of the classification The-
orems 2.34 and 2.36.

Let H be the ribbon tube represented in Figure 2.4, and denote by H”" the
stacking product of n copies of H. Using Proposition 2.20, we have that ¢ (H") acts
on RF, by mapping x; to xJx1x," and fixing x,. By Theorem 2.34, this provides
an infinite 1-parameter family of 2-component ribbon tubes that are pairwise non
link-homotopic.

This result is easily transferred to the case of ribbon torus-links. Namely, con-
sider the tube-closure of H, which is the ribbon torus-link shown on the right-hand
side of Figure 2.9, and more generally the tube-closure of H" for all n > 1. These
torus-links are pairwise non link-homotopic, which is in striking contrast with the
case of ribbon 2-links, where all objects are link-homotopically trivial [7]. This
can be proved topologically, by considering the homology class of a longitude of a
torus component in the complement of the other component, or algebraically, as an
application of Theorem 2.36.

Figure 2.9. Examples of a ribbon torus-link and a ribbon tube that are not link-
homotopically trivial.

Further examples involving more components can also be provided. For example,
consider the 3-component ribbon tube B shown on the right-hand side of Figure
2.9. Note that B is Brunnian, meaning that removing any component yields the
trivial 2-component ribbon tube. Unlike for the ribbon tube H, the homology class
of a longitude in the complement of the other two components doesn’t detect B.
But using Proposition 2.20, the automorphism ¢(B) of RF;3 fixes x; and x; and
maps x3 to its conjugate by [x, L x| '1. Theorem 2.34 then implies that B is not
link-homotopic to the trivial ribbon tube. One can check that the tube-closure of B
is likewise not link-homotopic to the trivial torus-link. One-parameter families of
pairwise non link-homotopic 3-component ribbon tubes and torus-links can also be
obtained by stacking multiples copies of B.
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3. Welded string links

In this section we introduce two classes of diagrammatic objects, welded string links
and welded pure braids, and we explain how they are related to the topological
objects of the previous section. In particular, we give a classification result for
welded string links up to self-virtualization.

3.1. Definitions

Definition 3.1. An n-component virtual string link diagram is a locally flat immer-

*
sion L of n intervals [[|T| | I; in B2, called strands, such that:
iel,n

e Each strand /; has boundary d1; = {p;} x {0, 1} and is oriented from {p;} x {0}

to {pi} x {1} (¢ € [1, n]);
e The singular set X (L) of L is a finite set of flatly transverse points.

Moreover, for each element of X (L), a partial ordering is given on the two preim-
ages. If the preimages are comparable, the double point is called a classical cross-
ing, if not, it is called a virtual crossing. By convention, this ordering is specified
on pictures by erasing a small neighborhood of the lowest preimage of classical
crossings, and by circling the virtual one (see Figure 3.1).

A classical crossing is said to be positive if and only if the basis made of the
tangent vectors of the highest and lowest preimages is positive. Otherwise, it is

negative (see Figure 3.1).
y : positive
AN

AN _—
X K TN e

virtual classical

Figure 3.1. Virtual and classical crossings.

Up to isotopy, the set of virtual string link diagrams is naturally endowed with a

monoidal structure by the stacking product L ¢ L" := L , Ua /L’ , and with unit
1L=8)L

element the trivial diagram U p; x I.

iel[1,n])
Definition 3.2. A virtual string link diagram is said to be monotone if it is flatly
transverse to the lamination U[ I x {t} of B2.

te
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Definition 3.3. Two virtual string link diagrams are equivalent if they are related by
a finite sequence of the moves, called generalized Reidemeister moves, represented
in Figure 3.2. There, all lines are pieces of strands which may belong to the same
strand or not, and can have any orientation.

We denote by vSL,, the quotient of n-component virtual string link diagrams
up to isotopy and generalized Reidemeister moves, which is compatible with the
stacking product. We call its elements n-component virtual string links.

Virtual string links are interesting objects on their own, but since we are motivated
in the first place by applications to ribbon tubes, we will focus on the following
quotient.

Definition 3.4. We define the Over Commute (OC) move as

\ /
OoC: }X{ <~ }8{ .
AN

/

We denote by wSL,, := VSL, /OC the quotient of vSL, up to OC moves, which
is compatible with the stacking product. We call its elements n-component welded
string links.

We denote by wP,, the subset of wSL,, whose elements admit a monotone
representative.

Warning 3.5.

Rlzkpe‘e(k) RII:‘

\ \ / / \ /
Rllla : /\ - \/ RIIIb : /\ N \/
/ \ \ / \ /
classical Reidemeister moves

vRI : ‘ <—>>@VRII: <—>§VRIII: Eg <~

virtual Reidemeister moves

\ /
mRIIa : { g <~ S</ -/‘E mRIIIb : 2 } pas E( :/‘2
\ /

mixed Reidemeister moves

Figure 3.2. Generalized Reidemeister moves on diagrams.
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e The following Under Commute (UC) move

o XN

was forbidden in the virtual context and is still forbidden in the welded context.
e Virtual and welded notions do not coincide, even for n = 1, where we get
respectively the notion of virtual and welded long knots (see [4]).

Similarly to the ribbon tube case, it is straightforwardly checked that
Proposition 3.6. The set WP, is a group for the stacking product.

Remark 3.7. Note that if two monotone virtual string link diagrams are equivalent
in wSL,,, then they are related by a monotone transformation, that is by a sequence
of isotopies, generalized Reidemeister and OC moves which remain within the set
of monotone virtual string links. Indeed, it is a consequence of Remark 4.24 and
Proposition 4.30 that any element of wP, induces an action in Autc (F,).> But
Autc(F,) is isomorphic to the group PU R,,, according to [4, Theorem 2.6], and a
presentation of the latter is given by monotone virtual string links up to monotone
transformations [8]. Since two equivalent monotone welded string links induce the
same action on F,,, they are related by a monotone transformation (this is the same
argument as in Remark 2.26). It follows that wP,, is isomorphic to the welded pure
braid group studied, for instance, in [4]. In other words, we have that the welded
pure braid group injects into wSL,,. On that account, we will freely call welded
pure braids the elements of wP,,.

Remark 3.8. The subset of vSL,, whose elements admit a monotone representative
is, of course, also defined. It is a group for the stacking product, which maps surjec-
tively onto the virtual pure braid group, introduced in [6]. However, the injectivity
of this map remains an open question. Indeed, unlike in the welded case addressed
in Remark 3.7 above, it is still unknown whether a sequence of isotopies and gener-
alized Reidemeister moves can always be modified into a monotone transformation.

Definition 3.9. Two virtual string link diagrams are related by a self-virtualization
if one can be obtained from the other by turning a classical self-crossing (i.e. a
classical crossing where the two preimages belong to the same component) into a
virtual one. We call v—equivalence the equivalence relation on wSL,, generated by
self-virtualization.

We denote by wSL, the quotient of wSL,, under v—equivalence, which is com-
patible with the stacking product. We also denote by wP}, C wSL, the subset of
elements having a monotone representative.

As we will see in Section 4.5, we have the following result as a straightforward
consequences of Theorem 4.12.

3 This fact can also be checked directly, by a straightforward adaptation of Remark 4.24 and
Proposition 4.30 to welded string links.
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Theorem 3.10. Every welded string link is monotone up to self-virtualization.

Furthermore, Theorem 4.17 implies immediately the following classification
result for welded string links up to self-virtualization.

Theorem 3.11. wSL, = wP} = Autc(RF,) as monoids.

The notions of self-virtualization and self-crossing change for welded string
links and pure braids, as well as for their usual and virtual counterparts, is further
studied in [3].

3.2. Fundamental group for welded string link

Let L be a virtual string link diagram. Any strand of L is cut into smaller pieces
by the classical crossings. More precisely, we call overstrand, any piece of strand
of L whose boundary elements consist of either a strand endpoint or the lowest
preimage of a classical crossing, and such that it contains no other lowest preimage
of any classical crossing in its interior. Note that any highest preimage of a classical
crossing is contained in an overstrand. We denote by Over(L) and Cross(L) the sets
of, respectively, overstrands of L and classical crossings of L.

We orient all strands from dgL to d; L. To any ¢ € Cross(L), we associate, as
show in Figure 3.3:

e ¢, the sign of c;

° s? the overstrand containing the highest preimage of c;

e s, the overstrand whose exiting boundary component is the lowest preimage of
c,

e s the overstrand whose entering boundary component is the lowest preimage
of c.

be
B

—_—

TSi y | b
_ pot

| Sc SC:\ T
a

-—

l

Figure 3.3. Local relations for 71 (L)
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Definition 3.12. We define the fundamental group of L as
mi(L):=(Over(L) | s; = (sc_)(S?)EC forall ¢ € Cross(L)).

See Figure 3.3 for an illustration.

It is well-known that, up to isomorphism, the group associated to a virtual string
link diagram is invariant under classical Reidemeister moves. Kauffman proved that
virtual and mixed Reidemeister moves do not change the group presentation [26].
It turns out that the “virtual knot group” is also invariant under Over Commute, and
is thus a welded invariant, i.e. is well defined on wSL,, [26,41].

3.3. Relations with ribbon tubes

It was shown in Section 2.2 that 4—dimensional ribbon tubes can be described by 3—
dimensional objects, namely symmetric broken surface diagrams. Following [41]
and [46], it is also possible to describe ribbon tubes using 2—dimensional welded
string links.

Indeed, let L be a welded string link diagram. One can associate a symmetric

broken surface diagram by embedding B? into B> as B> x {%} and considering

a tubular neighborhood N (L) of L in B3 so that 3, N(L) = ) IH l]D[- x {e} for
ie[[l,n

¢ € {0,1}. The boundary of N(L) then decomposes as a union of 4—punctured
spheres, one for each crossing. Then, according to the partial order on the associated
crossing, we modify each sphere as shown in Figure 3.4. The result is a symmetric
broken surface diagram, to which we can associate a ribbon tube Tube(L).

O oy xm WU
<~ = -
‘ X
N~ ’ &
K
Figure 3.4. Inflating classical and virtual crossings.

There is a one-to-one correspondence between overstrands of L and the outside
annuli of the associated symmetric broken surface diagram S, and another one-
to-one correspondence between classical crossings of L and inside annuli of S.
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Moreover, signs associated to crossing in the definition of 71 (L) also correspond
to signs associated to inside annuli in the Wirtinger presentation of 7 (Tube(L))
(compare Figures 2.5 and 3.3). Therefore we have:

Proposition 3.13 ([41,46]). For every welded string link diagram L, m(Tube(L)) =
m(L).

But the Tube map is more than just a tool to compute fundamental groups.
Indeed, it provides a way to encode ribbon tubes. This has been pointed out by
Satoh, but some key ideas already appeared in early works [46] of Yajima.

Proposition 3.14 ([41]). The map Tube : wSL,, — 1T, is well defined and surjec-
tive.

Proof. 1t is easily seen that classical Reidemeister moves on welded diagrams cor-
respond to Reidemeister moves on symmetric broken surfaces defined in Remark
2.15, and that virtual and mixed Reidemeister moves, as well as OC, preserve the
associated broken surface diagram. It then follows from Remark 2.15 that the Tube
is well defined on wSL,,.

Now, a symmetric broken surface diagram S can be seen as given by a ribbon
band, in the sense of Figure 2.2. Contracting each band / x I onto its core {%} x I
so that, at each ribbon singularity, the cores intersect transversally, yields a singular
string link. Let D be a diagram for this singular string link. By turning the classical
crossings of D into virtual ones and its singular crossings into classical with signs
corresponding to the initial local ordering on S, we obtain a welded string link
diagram which is sent to S by the above process. This operation is illustrated in
Figure 3.5.

Figure 3.5. Contracting symmetric broken surface diagrams.

Note however that some inside annuli of S may have to be turned around so that the
sign rule given in Figure 3.4 can be reversed, as illustrated in Figure 3.6. Surjectivity
of the Tube map then follows from Lemma 2.14. O
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Figure 3.6. Turning inside annuli around.

Remark 3.15. The injectivity of the Tube map is still an open question; see [4,5].%
However, Brendle and Hatcher proved in [8] that it is an isomorphism when restrict-
ing to monotone objects on both sides. This can be compared with the following
proposition, although it is a not a consequence of Brendle—Hatcher’s result since
link-homotopy is inherently a non-monotone transformation.

Proposition 3.16. The map Tube : wSL, — TP is a well defined group isomor-
phism.

Proof. 1tis easily seen that a self-virtualization corresponds to a self-circle crossing
change, see Figure 2.7. It is a surjective group homomorphism by Proposition 3.14.
Injectivity is immediate after Corollary 4.34 and Proposition 4.30. O

4. Gauss diagrams

Our main tool for the study of ribbon tubes and welded knotted objects is the theory
of Gauss diagrams [16,19,39].

4.1. Definitions

Definition 4.1. A Gauss diagram is a set of signed and oriented (thin) arrows be-
tween points of n ordered and oriented vertical (thick) strands, up to isotopy of the
underlying strands. Endpoints of arrows are called ends and are divided in two parts,
heads and tails, defined by the orientation of the arrow (which goes by convention
from the tail to the head).

This definition is illustrated on the left-hand side of Figure 4.7.

For all i € [[1, n]], we will denote the i strand by I;. An arrow is said to be
connected to a strand if it has an end on this strand. An arrow having both ends on
the same strand is called a self-arrow.

4 In the knot case, the Tube map is known to have nontrivial kernel; see for example [24].
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There is a natural stacking product operation, denoted by e, for Gauss diagrams
defined by gluing the top endpoints of the strands of the first summand to the bottom
endpoints of the strands of the second.

Definition 4.2. A Gauss diagram is said to be horizontal if all of its arrows are
horizontal.

Remark 4.3. An alternative definition for a Gauss diagram G being horizontal
would be to ask for a global order on the set of its arrows such that if two arrows a;
and ap with a; < ap have ends ¢ and e on a same strand, then ¢; is below ¢, on
this strand. Note in particular that it forbids self-arrows. In the proof of Theorem
4.12, we shall refer to this global order.

Definition 4.4. Two Gauss diagrams are equivalent if they are related by a finite
sequence of the following moves, called Reidemeister moves:

€1 €3

R1: <> R2 : <> R3 <>

€ €2 €2

€3 €1

Here, all vertical lines are pieces of strands which may belong to the same strand
or not, and can be oriented upward or downward; each ¢, for * € {4, 1,2, 3}, is
either 1 or —1. Moreover, there is an additional condition for applying move R3:
it is required that 7161 = &y = 1363, where 7; = 1 if the i th strand (from left to
right) is oriented upwards, and —1 otherwise.

We denote by GD,, the quotient of Gauss diagrams up to isotopy and Reide-
meister moves, which is compatible with the stacking product.

For the study of ribbon tubes and welded string links, we consider the follow-
ing quotient of Gauss diagrams.

Definition 4.5. We define the Tail Commute (TC) move as

TC: K <« © ,
€ n

where &, 7 € {£1}. We denote by wGD,, := GD, /7 the quotient of GD, by
relation TC, which is compatible with the stacking product. We call its elements
welded Gauss diagrams. We also denote by wGP,, C wGD,, the subset of elements
which have a horizontal representative.
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Remark 4.6. In the welded case, that is when quotiented by TC, the condition
7181 = 1262 = 1383 for move R3 can be simplified to e,63 = 1 73. In other words,
the signs of the two arrows which have their tails on the same strand should agree
if and only if the two others strands have parallel orientations.

The following can be easily checked:
Proposition 4.7. The set wGP,, is a group for the stacking product.

Definition 4.8. Two Gauss diagrams are related by a self-arrow move, denoted by
SA, if one can be obtained from the other by removing a self-arrow.

We denote by wGD? the quotient of wGD,, by SA, which is compatible with
the stacking product. We also denote by wGP% C wGDj? the subset of elements
which have a horizontal representative.

Two elements of wGD,, are said to be a—equivalent if they are sent to the same
element in wGD?,.

4.2. Commutation of arrows

In this section, we address the notion of commutation of arrows, which means swap-
ping the relative position of two adjacent arrow ends on a strand. The Tail Commute
move is a special case of such a commutation, when both ends are tails. More gen-
erally, and even in the non welded case, commutations of arrows can always be
performed at the cost of some additional surrounding arrows. In the welded case,
these additional arrows can be conveniently positioned, as shown below:

Definition 4.9. The C> moves are local moves on Gauss diagrams defined in three
versions, shown in Figure 4.1. There, ¢ and n are either 1 or —1, all strands are as-
sumed to be simultaneously upward or downward oriented, and non oriented arrows
can have either orientation.

>
0 B =
C? "l — [ — [ — [
R2 < R3 n TC n
= = =
4’77
= N
5 — 7 —]
3
" l—] Cl NE
K n

Figure 4.1. The C> moves on welded Gauss diagrams.
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The C3 moves can be seen as pushing one arrow across another, at the cost of several

additional arrows located below the pushed one. Note that C> moves are supported

by three pieces of strands, which may or may not belong to the same components.
By iterated C3 moves, one has the following general commutation rule:

Corollary 4.10. In wGD,,, commuting an arrow with a bunch of adjacent arrows
all connected to a far away strand is achieved at the cost of additional arrows
connected to the far away strand, as shown below:

where I:I: denotes a bunch of arrows (not necessarily with the same number of

arrows), € is either 1 or —1, and all orientations are arbitrary.

Proof. 1f the two strands are simultaneously upward or downward, it is a direct
applications of the C> moves as described in Figure 4.1, where the far away strand
is the rightmost one. If not, the final step of moves C? and C% have to be changed
consequently. O

When working up to SA, and dealing with arrows whose ends are on the same
two strands, a genuine commutation result holds (without additional arrows), even
in the non welded case. We shall refer to such a commutation as a C2 move.

Proposition 4.11. Up to self-arrow moves, two arrows with adjacent ends can com-
mute whenever the other two ends are on the same strand.

Proof. The strategy is to add a self arrow on the strand which does not support the
adjacent ends, so that an R3 move involving the three arrows can be performed,
and finally to remove the self-arrow. See Figure 4.2 for an example. Nonetheless,
the self-arrow has to be choosen so that the R3 move is valid. This means that the
global position of the three arrows should be as in the definition of an R3 move
(Definition 4.4), and the condition 161 = 1262 = 1383 should hold. However, we
have a complete freedom in choosing the self—arrow: orientation, sign, and relative
position to the adjacent arrow ends. The choice of orientation ensures that the
arrows are in position of a R3 move, while the sign and positions give independant
control on t1€1, 7267 and T3€3. O
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4
— * S — - —
SA \ R3 SA

Figure 4.2. Example of a C? move.

4.3. Reduction of welded Gauss diagrams to horizontal Gauss diagrams
The main result of this section is the following:

Theorem 4.12. Every welded Gauss diagram is a—equivalent to a horizontal Gauss
diagram. Equivalently, the natural inclusion wGP%, — wGDj, is onto, that is
wGP; = wGD3.

Proof. We prove the statement by induction on n. For n = 1 the statement is trivial
since wGDj is reduced to one element.

Now, we assume that the result is true for n € N and we consider G €
wGD,,41. We choose a strand / of G and we call I—arrow the arrows connected to
I. We denote by G7 the Gauss diagram obtained from G by removing the strand
I, that is, by removing all /—arrows and forgetting /. The welded Gauss diagram
G is then a diagram on n strands, and by the induction hypothesis, there is a finite
sequence S of moves R1,R2, R3, TC and SA which transforms Gr into a horizon-
tal Gauss diagram B. Now, this sequence cannot be directly performed on 7', since
most moves require that some ends of arrows are adjacent on strands, and /—arrows
may interfere in that. Nevertheless, Figure 4.3 illustrates how to use Corollary 4.10
to push away such /—arrows at the cost of additional /—arrows, and perform the

desired moves. There, boxes I:I} stand for bunches of /—arrows.

It follows that the whole sequence S can be performed on T', giving a repre-
sentative of T obtained by adding /—arrows to B.

Now, since B is horizontal, there is a natural total order, from bottom to top, on
its arrows. The arrows of B can then be pushed up above the /—arrows, successively
in decreasing order, using moves C> (for I being the strand on the right). This leads
to the following decomposition:
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Figure 4.3. Performing Reidemeister and TC moves obstructed by I-arrows.

where B is horizontal and G contains only /—arrows. Now, for any strand J # [
restricted to G, all arrows connected to J are also connected to 7, so that one can
use moves C? (for I being the strand on the right), to rearrange the ends on strand
J so that their order corresponds to the order induced by /. Applying this operation
for all strands J # I, we eventually obtain a horizontal Gauss diagram G, such
that G is a—equivalent to the product of G; with B, which is still horizontal. This
concludes the proof. ]

Remark 4.13. As noted above, C2 moves still hold in GD%, i.e. without using TC
moves. This implies that any element of GDj, is a—equivalent to a horizontal Gauss
diagram. This is not likely to hold for GD with n > 3.

Corollary 4.14. The set wGDj, is a group for the stacking product.
We now establish a second normalized form for welded Gauss diagrams up to

a—equivalence.

Definition 4.15. A Gauss diagram is said to be ascending if all tails belong to the
lowest halves of the strands, whereas all heads are on the highest halves, that is, if
any tail is below any head.

Lemma 4.16. Every welded Gauss diagram is a-equivalent to an ascending Gauss
diagram.
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Proof. Consider a Gauss diagram and choose an arbitrary order for its strands.
Then, using move C? repeatedly, each strand can be successively sorted, in the sense
that all tails can be pushed below all heads. When performing such C? moves, the
tails (respectively heads) of added arrows are in the neighborhood of a tail (respec-
tively head) of a pre-existent arrow, so none of the performed C? moves will unsort
the already sorted strands. U

44. Classification of welded Gauss diagram up to a-equivalence
In this section we prove the following:
Theorem 4.17. There is a group isomorphism wGD?, = Autc(RF,).

Recall that Autc(RF,) is the group of conjugating automorphisms defined
in Section 1. The isomorphism between wGD? and Autc(RF,) is given ex-
plicitely. In Section 4.4.1 we establish the existence of a group homomorphism
¢G—A: WGDi, —> Autc(RF,), and in Section 4.4.2 we construct an inverse gA .G
for pg—A-

4.4.1. Definition of oG-

To construct the map @G, A, we need some notation.

Definition 4.18. Let G be a Gauss diagram. A tail interval is a pair (hy, hy) such
that one of the following holds:

e /1 and hy are heads on a same strand, with & lower than /,, and there is no
other head between them;

e /1 is a head and A is the top endpoint of the strand containing /41, and there is
no other head on this strand above /;

e /1p is a head and / is the bottom endpoint of the strand containing /7, and there
is no other head on this strand below /5,;

e /11 and hy are respectively the bottom and top endpoints of a strand that doesn’t
contain any head.

Graphically, tail intervals are portions of strand comprised between two successive

heads and/or strand endpoints. A tail interval may contain some tails, but no head.
We denote by T the set of all tail intervals of G.

Notation 4.19. Let G be a Gauss diagram. For every head /i, we denote by Th+

(respectively 7)) the unique tail interval of the form (h, .) (respectively ( . , h))

and by T}? the unique tail interval that contains the tail which is connected to & by
an arrow, as illustrated below:
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Finally, for every i € [1, n]l, we denote by TiJr and T;~ the unique tail intervals
containing respectively the top and bottom endpoint of the i strand (note that

TiJr =T, if the i strand contains no arrow head).

Lemma 4.20. For any Gauss diagram G, there is a unique coloring map &g : Tg —
RF,, such that

(1) foreveryi € [[1,n]], &6(T;") = x;;
(2) for every head h, &g (Th+) =&g (Thf)sc (7)) , Where gy, is the sign of the arrow
that contains h.

Moreover, for every i € [[1,n], EG(TI-JF) only depends on the a—equivalence class
of G.

See Remark 4.23 for an example. Note that condition (2), together with con-
dition (1), imply that, for each i € [[1, n]], every tail interval which belongs to I; is
necessarily mapped to a conjugate of x;.

Proof. First, we deal with the case of horizontal Gauss diagrams. If G contains a
single e-labelled non self-arrow, then the lemma is clear. Indeed, the only possible

&
coloring sends 7 to xy, T1+ to xfz and all other TkJr = T, to x, as pictured below:

T3

By induction on the number of arrows the result then follows whenever G is hori-
zontal.

Now, each Reidemeister, TC or SA move between two Gauss diagrams G| and
G induces a one-to-one correspondence between the coloring maps on G and on
G2. These correspondences are shown in Figure 4.4. As usual, for every picture,
there is a non represented part which is identical on both side of each move. Note
that this is consistent since the ends of the represented tail intervals are pairwise
coherently labelled. In particular, in the case of moves SA and R1, the equality
b? = b holds in RF,, since a and b are both conjugate of a same generator x; for
some i € [[1,n]l. By Theorem 4.12, this implies that any Gauss diagram has a
unique coloring & with the desired property. Moreover, Figure 4.4 also shows that
only tail intervals which are not of the form Ti+ or T;~ are possibly modified by
Reidemeister, TC and SA moves. As a matter of fact, S(Tﬁ) is kept unchanged for
every i € [1, n]], and depends on the a—equivalency class of G only. O
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a

a c

TC
b b =b b =)
T b <
< = pas N
|a a a b a b
SA and R1 R2
I “,'b’l«f y I (:«15(1171)“5 — et y I c kf)‘f c
5 7 € n ,
e € o —€ —& o
v d e &
7 € 7 ¢ €
a b c a b c a [ a b 2GR
R3, case 1 R3, case 2

Figure 4.4. One-to-one correspondence between the coloring maps .

Remark 4.21. The above proof of Lemma 4.20 can be easily adapted to show that
the number of F,—coloring map &g : T¢ — F, for a given Gauss diagram G
is a well defined invariant on GD,. Moreover, when such an F,—coloring map is
unique, for instance when G € GP,, then the value (SG(Ti))i ] € F7 is also a

well-defined invariant.

Definition 4.22. For every G € wGD{, we define ¢GA(G) € Autc(RF,) as
the automorphism of RF,, which sends, for every i € [1, n], the generator x; to

EG(T/).

It is easily checked that g, o : WGD} — Autc(RF,) is a group homomor-
phism, so that it defines an action of wGD? on RF,,.

Remark 4.23. If G is ascending, as defined in Definition 4.15, then, for any i €
[1,~1, the element gi € RF,, by which ¢g_a(G) conjugates x; can be read directly
on G as x x * where T, contains exactly the tails #1, - - - , fs in this order and
for each k € [[1 s]] Iy is connected by a ex—signed arrow to a head on /;,. For
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example,
xzx;l
_ Xy > ox
by PYG—A x1
=) x2 X,
x{l
X3 > Xy

Remark 4.24. According to Remark 4.21, ¢g_, o can be refined into an action of
GP,onF,.

4.4.2. Definition of pa—G

We will now define an inverse for ¢, 5. Let us first define, for every i € [[1, n]l,
the map

pi: Autc(RF,) —> RFY = R(xy, -, &, -+, xn)

k(@)
; .

as the unique function such that, for every ¢ € Autc(RF,), we have ¢(x;) = x
Lemma 4.25. Foralli € [[1, n]l, the map p; is well defined.

Proof. By definition of Autc(RF,), there exists some g € RF, such that p(x;) =
xf. Since for every g1, g2 € RF, and every ¢ € {£1}, we have the equality

81%; &2 —1.—e —1 & -1 -1 —¢ ¢ -1 -1 8182
X; T =8y X gy Xig1X; 82 =8, 8 Xig1X; X;82 =8, & Xig18&2=X;

in RF,,;, we may assume that g is represented by a word which does not contain x;,
ie. that g € RFSL. Now, it remains to prove that this g is uniquely defined in

RF,?_)]. Suppose that there exists g1, g2 € RFEQ] such that xf' = x%*. Then x;

commutes with g; g, ! that is, [x;, 818, =1 Applying the Magnus expansion
E, defined in Section 5.1, to the latter equality gives that X;.G — G.X; = 0, where
E(x)) =1+ X; and E(gig;") = 1 + G. Butsince g1g, "' € Rng], the power
series G does not contain the variable X;, which implies that X;.G = G.X; =
0. So G = 0, which by injectivity of the Magnus expansion (see [45]) implies

81 = §2. |

Now, we define a map

n
n: I_IRFEQ1 —> wGD}
i=1

as follows. Letl(gl, <--,8n) € ]_[?:1 RF,(Q]. For each i € [[1, n]], choose a word

i &5 . . .
j,' ---xj’,-‘ representing g;. Then we define n(gy, --- , gn) as the image in
1 Si

8i =
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wGD}, of the Gauss diagram obtained from the trivial one by adding successively,
according to the lexicographical order on {(z k)|z e [1,n],k € [1, sl]]} an g;—
signed arrow with head at the very top of /; and tail at the very bottom of I; i
Note that this actually defines an ascending Gauss diagram. See Figure 4.6 for an
example.

Lemma 4.26. The map n is well defined.

Proof. The fact that 1 does not depend on the order of the strands is guaranteed by
relation TC, so we only have to show that n(gy, --- , g,) does not depend on the
words representing the n variables. Fix i € [1, n]]. Any two words representing g;
differ by a finite number of the following moves:

1) (1< xj_ng),for some j € [1, n] and some ¢ € {#1};

2) (xjxf < x‘;’xj), for some j € [1,n] and some word g := x{'---x° €

1 Ls
@)
RF® .

So we only need to check invariance of 1 under these two types of moves. Invari-

ance under move (1) follows easily from move R2 on Gauss diagrams. Now, let
+1

1% 8 _ x;gflgz

word g involved in the move is in RF,(1 12) = R{(x1,---, X, Xj, -+, x,). We need

to prove that the following equality holds in wGD?,

bttt et

. . T
us consider move (2). Using the identity X; , we can assume that the

Bl e...e B
i1 is
Bl e...e B
" i is
—> = - , 4.1)
—>|

B se...eB, 1

where B} stands for the Gauss diagram with only one e—labeled arrow whose tail is

on I; and head on /;. Note that, in particular, all arrows in the boxes have their head
on strand /;. The proof is done by proving each side to be equal to a third Gauss
diagram. This is shown in two main steps, and the reader is encouraged to consult
the example given in Figure 4.5 while reading the following proof.

First, we pull the lowest (+-signed) arrow in the left-hand side Gauss diagram
in (4.1) across the lowest block (i.e. across Bl.:% .- -oBiTEI) by a sequence of moves

TC and C? (with, in Figure 4.1, I; being the rightmost strand, /; the middle one,
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and with all strands oriented downwards), and then use move C% to commute the
heads of the two pictured +-signed arrows. This produces the following equality
in wGD{, where By is obtained from B, by moving the head of each arrow lying on
I; to the strand /; (preserving the horizontality and height of the arrow):

111 -t 14

T.-.T T T Bf]*o---oBi" B;"""stf
+ +
lelo---ost +

n Bile---e B Bile---eB
F—> = =
B;ES e -0 BI._61
s 1 B0 B Bt e--e B
+
" > ] || ] ||
B~ e---eB; " B ~e-.-eB "

Next, we consider the right-hand side Gauss diagram in (4.1). Using TC moves,
we pull the tail of the highest (+-signed) arrow just below the tail of the middle
(+-signed) arrow. Then, we pull its head across the highest block, using moves C?
(with, in Figure 4.1, I; the rightmost strand, /; the middle one, but with all strands
oriented upwards). This leads to

{111

B R r e s

. Bl e...e B ‘
B'le...0B5® ‘1 s §

i1 is Ble.-. ® B

= + = s
> = | [ M
Bi_SES o....B;lal B;SES OH-OB;sl Blre- e B
] 1 1
LT
b B e e B

and proves that (4.1) holds in wGDj. O
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The example in Figure 4.5 illustrates both steps of the above proof.

+
+ + -
+ _ _ _
+ - - - E
- - . |+, . |, RN
- 3 + 3 3 -
B I TC EN G B
+ —> + s ey —_—> —> EN
+ REN - ) TC REN
- E + +
1= =] + =] =]
il k - 1= + +
- - +
2
G
+
+ = —
> + — - t
+ — — E
- - 3 3 + 3 -
- TC G G - G -
21 — | — LI —— IN —— /A
I N TC Ty T L TC N
+ + ] B |
- + . + B
- — + +
- +

Figure 4.5. Illustration of the two-step procedure in the proof of equality (4.1).

Definition 4.27. The map ¢a—.G: Autc(RF,) —> wGDj, is defined as the com-
position n o ([Tr_; pi)-

The example for pa_.g given in Figure 4.6 is to be compared with Remark
4.23.

X2X
xp > x

—1 [1oi ( -1 -1 n
ot P (xox3, Xy L X3, X5 X)) o
X2 x23 3 3

X3 = X3 |

PA—>G

x;1x1
X4 > Xy

Figure 4.6. An example for pa_.G.

Lemma 4.28. The map oa—G is an inverse for G— A .-
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Proof. The relation ¢G> A © a6 = Idau(rRF,) holds by construction. The fact
that pa—G © 96~ = ldygps is clear for ascending Gauss diagrams, which is
enough, by Lemma 4.16. O

We conclude with the following corollary which, curiously enough, is not easily
checked directly.

Corollary 4.29. The map ¢a—G is a group homomorphism.

4.5. Relation with welded string link and ribbon tubes

As the notation suggests, welded Gauss diagrams are merely combinatorial tools
for describing and studying welded string links. Indeed, to a string link D, one can
associate a Gauss diagram G by considering the strands of G as parametrization
intervals for the strands of D and add arrows between the preimages of each clas-
sical crossing of D, oriented from the overpassing strand to the underpassing one,
and signed by the sign of the corresponding crossing. Then Reidemeister moves on
D correspond to the eponymous moves on G, OC corresponds to TC and a self-
virtualization corresponds to the addition or removal of a self-arrow.

Conversely, to a Gauss diagram G, one can associate a string link by drawing
one crossing ¢, for each arrow a labelled by the sign of a, and then, for each piece
of strand of G comprised between two ends e and e; —with e lower than e, and
a) and ap the arrows that respectively contain e; and e;— connecting the outgo-
ing endpoint of the overpassing (respectively underpassing) strand of ¢,, if e is a
tail (respectively a head), to the ingoing endpoint of the overpassing (respectively
underpassing) strand of c,, if e; is a tail (respectively a head) —this can always
be done at the cost of adding some virtual crossings— and finally closing similarly
the string link to its bottom and top endpoints according to the lowest and highest
portions of strands of G. See Figure 4.7 for an example. This is well defined up to
virtual moves and the correspondence between moves on diagrams and moves on
Gauss diagrams mentioned above also holds.

SRR
)
| A

Figure 4.7. Correspondence between string link diagrams and Gauss diagrams.

Moreover, it is easily seen that horizontality for Gauss diagrams corresponds to
monotony for string links. As a consequence we have the following statement,
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which is considered as folklore in the literature:

Proposition 4.30. wSL, = wGD,,, wP, = wGP,, wSL, = wGD} and wP, =
WGP?! as monoids. Moreover, under these isomorphisms, there is a one-to-one
correspondence between

e classical crossings and arrows;
e overstrands and tail intervals.

Note that these correspondences already hold in the virtual setting.

Using these correspondences, constructions and results on welded string link
can be transferred to Gauss diagrams and vice versa. In particular, we obtain Theo-
rems 3.10 and 3.11 as direct corollaries of Theorems 4.12 and 4.17, respectively.

Furthermore, Satoh’s Tube map can now be defined on wGD,,. By abuse of
notation, we will still denote it by Tube. Using Notation 4.19, it is a consequence
of Proposition 3.13 that

Proposition 4.31. For every Gauss diagram G one has
T (Tube(G)) = (TG | Th+ = (Th_)(Tf?)sh for each arrow head h of G),

where ey, is the sign of the arrow that contains the head h. Moreover, through
this isomorphism and for every i € [[1, nll, the generator T;  (respectively Tl-Jr )
corresponds to the loop that positively enlaces the i™ bottom (respectively top)
meridian of Tube(G).
Notation 4.32. For every Gauss diagram G, we denote by Wg : Tg — R (Tube(G))
the map induced by the isomorphism mentioned in the previous proposition.

Recall that ¢ denotes the isomorphism of the classification Theorem 2.34. We
have

Lemma 4.33. ¢g_o = ¢ o Tube.

Proof. We freely use the notation of Section 2.3.2. Let G be a Gauss diagram. We
consider ¢ and ¢; the inclusion maps associated to Tube(G). It follows from the
Wirtinger presentation that the map 1371 o W satisfies conditions (1) and (2) of

Lemma 4.20. By uniqueness, it follows that Lé_l o W is the coloring map &g of
this lemma. Moreover, by Proposition 4.31 and the definition of ¢;, we also know
that ¢} (x;) = WG(Ti+). So, finally, we get

¢(Tube(G)) () = (5" 0 ) x) = ¢~ (Wa (1)) = &6(T;). O

Since ¢G—sa 1S an isomorphism, we obtain:
Corollary 4.34. The map Tube : WGD? — 1T is injective.

Since Tube was already known to be surjective, we obtain that the map ¢ :
rTE — Autc(RF,) is a group isomorphism, as stated in Theorem 2.34.
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5. Virtual Milnor invariants

John Milnor defined in the fifties a family of link invariants, known today as Mil-
nor’s p-invariants [36,37]. Given an n—component link L in the 3—sphere, Milnor
invariants p; (L) of L are defined for any finite sequence / of (possibly repeating)
indices in [[1, n]l. Roughly speaking, Milnor’s i—invariants measure the longitudes
in the lower central series of the fundamental group of the link complement. These
invariants, however, are in general not well-defined integers, and their definition
contains a rather intricate self-recurrent indeterminacy A. In [21], Habegger and
Lin showed that the indeterminacy in Milnor invariants of a link is equivalent to the
indeterminacy in representing this link as the closure of a string link, and that Mil-
nor invariants are actually well defined invariants of string links; the latter integer—
valued string link invariants are usually denoted 1.

Several authors have given tentative extensions of Milnor invariants to virtual
knot theory [13,31,32]. They are all based on various combinatorial approaches of
Milnor invariants, and are only partial extensions; in particular, they are limited to
the case of link-homotopy invariants, that is, to the case of Milnor invariants indexed
by sequences with no repetition. In this section, we give a full extension of Milnor
invariants to the virtual setting, in what seems to be the most natural way. Habegger
and Lin’s observation mentioned above suggests that it is most natural to consider
the string link case. Moreover, we have seen in the introduction that we are actually
seeking for an invariant of welded string links, rather than virtual, since Milnor
invariant are extracted from the fundamental group, which is a welded invariant.
Finally, our construction is purely topological, as we shall see below, and well-
behaved with respect to the Tube map, so that it naturally coincides with Milnor’s
original invariants when restricted to classical string links (see Theorem 5.4).

5.1. Milnor invariants for ribbon tubes

In this subsection we develop a higher-dimensional analogue of Milnor invariants
for ribbon tubes. This follows closely, and generalizes the construction given in
Section 2.2.4 in the case of the reduced free group. As a consequence, we freely
borrow all notation from there.

*
Let T be a ribbon tube with tube components LI A; andlet W = B4\N (T)

iell,n]]
be the complement of an open tubular neighborhood of 7' in B*. By Proposition
2.7, the inclusion ¢, : ;W — W (¢ € {0, 1}) induces isomorphisms both at the
level of the first and second homology groups, so by Stallings theorem the maps

i : T @W 1y (9, W) —— T1 (D0, (T)

are isomorphisms for every k € N*.
Recall from Remark 2.19 that the preferred i longitude A; of 7T is the longi-
tude of A; having linking number zero with A;. Forany k € Nand i € [1, n]|, we

define A¥ := (Lo)k_l()\i) € F’l/l"an-
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Denote by Z{(X1,---, X)) the ring of formal power series in non-commu-
tative variables X1, - - - , X,,. The Magnus expansion E : F, — Z{{X1, -+, Xp)) is
the injective group homomorphism which maps x; to 1+ X; and x; "to > (-1 kX f‘

keN
foreachi € [[1, n].

Proposition 5.1. For any m € N*, any (i1, - ,in) € [1,n]", any j € [1,n]
and any integer k > m, the coefficient Ml(f) ’imj(L) of Xiy -+ X
expansion E ()J;) is a well-defined invariant of T .

in the Magnus

im

Definition 5.2. The coefficient ,uﬁ.)

i of Xiy -+ Xi, in EGX) is called a Milnor

Im
u®—invariant of length m + 1.
Here, the (4)-exponent refers to the 4—dimensional nature of ribbon tubes.

For each non negative integer k, we define 1T, (k) to be the submonoid of T},
consisting of elements with vanishing Milnor u®—invariants of length lower than
k. We thus have a descending filtration of monoids 1T, = T,(1) D T,(2) D
-+« D1Ty(k) D -- -, called the Milnor filtration.

Now, we generalize the construction given in Section 2.3.2. Indeed, for each
non negative integer, a ribbon tube 7 induces an automorphism (l())k_l o (11)g of
Fy /ran. Actually, this automorphism maps x; to its conjugate by Af, for each
i € [1, n], so that we have defined a monoid homomorphism

Ag 21T, — Autc(Fu/r,E,).

One can check that T is in 1T, (k) if and only if )Li.‘ is trivial modulo I'tF,, for all
i € [1,n]. So for all non negative integer k, we have 1T, (k) = Ker(Ay), and we
can consider the map

4
#ill 1Ty (k) = Fu/ryF, ® TiFu/ry -

which maps T to the sum

4 1
uid (1) = > merth
ie[[1,n]

C))

k+1

equivalent to the collection of all Milnor u®—invariants of length k + 1, via the

formula ;L,((?I(L) = > xi®E (Af“), where Ej denotes the composition of
ie[l,n]

E with the projection onto the degree k part, that is

4
Efhy = Y uf? X X

i, igelln]k

We call it the universal length k + 1 Milnor invariant. This map p, ., is strictly

Note that Ej (A];.+1) lives in the isomorphic image of FkF”/Fk+1 E,in Z{(X1, -+ X))
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5.2. Milnor invariants for welded string links

The above 4-dimensional version ;1 of Milnor invariants provides, through the
Tube map, a natural and general extension u* of Milnor invariants to virtual/welded
string links.

Definition 5.3. For any sequence [ of (possibly repeating) indices in [ 1, n]], Milnor
invariant |1y of n-component welded string links is defined by

uy = M?) o Tube.

The construction of Milnor invariants for ribbon tubes given in Section 5.1 is
completely parallel to the definition of Milnor invariants of classical string links (as
given, e.g., in [20,22]). Moreover, the Tube map is well-behaved with respect to
the fundamental group of the complement; not only does it induce an isomorphism
of m1’s, but it also maps meridians to meridians and (preferred) longitudes to (pre-
ferred) longitudes, so that the Wirtinger presentations are in one—to—one correspon-
dence (see Proposition 3.13 and the discussion preceding it). As a consequence, we
have the following.

Theorem 5.4. For any sequence I of (possibly repeating) indices in [[1, n]|, the
restriction of uy to classical string links coincides with Milnor invariant:

wy (L) = (L) , for any classical string link L.

5.3. Comparison with previous works

Let us now discuss previously existing (partial) virtual extensions of Milnor invari-
ants.

The first virtual extension of Milnor invariants is due to Dye and Kauffman
[13]. There, it is already noted that these are actually welded invariants. The au-
thors, however, restricted themselves to link—homotopy invariants, and focussed on
the link case. This means in particular that the Dye-Kauffman extensions are de-
fined modulo a certain indeterminacy A. Their construction follows very closely
Milnor’s original work [37], using the virtual knot group, and actually only slightly
deviates from [37] in the definition of the indeterminacy A: since the authors only
seek a link—homotopy invariant, a simpler definition can indeed be used. However,
the Dye-Kauffman extension does not always coincide with Milnor invariants for
classical links, precisely because of this different choice of indeterminacy. Con-
sider for example a 3-component link L obtained from the Borromean rings by
inserting a positive clasp between the first and second components; according to
Milnor’s definition we have A(123) = 1, but in Dye—Kauffman’s definition we
have A(123) = 0, so that the invariants [z;,3 of the link L do not agree in both
definitions.

Recently, Kotorii gave in [31] another virtual extension of Milnor invariants,
using Turaev’s theory of nanowords [44] to describe and study virtual links. This
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extension is thus purely combinatorial and, again, addresses the link case and is only
valid for link—-homotopy invariants. Although it indeed coincides with Milnor’s
original invariants when restricted to classical links, it seems quite challenging to
us to generalize directly the Kotorii extension to all Milnor invariants. Indeed, the
fact that Milnor invariants are indexed by sequences with no repetition is used to
ensure invariance under Reidemeister 3 move (see [31, Propositions 6.4]).

The third virtual extension of Milnor invariants is due to Kravchenko and
Polyak [32]. The authors actually provides Gauss diagram formula for p-invariants,
and their extension is therefore closest to the extension given above. The result
of [32] holds for string links (i.e. provides integer—valued virtual extensions), but
as the preceding ones it is only valid for Milnor link—homotopy invariants. Indeed,
identifying the Gauss diagram invariants defined in [32] with Milnor invariants re-
lies on Polyak’s skein formula [38], which is only valid for sequences without rep-
etitions.

It would be interesting to generalize the Kravchenko—Polyak extension to all
sequences (or at least, to identify the resulting Gauss diagram formulas with Milnor
invariants). This seem to be a non-obvious problem, in particular because the string
link analogue of [37, Theorem 7] (which, roughly speaking, shows how Milnor’s
link—homotopy invariants suffice to generate all zz—invariants of links via cabling)
does not hold in full generality, as outlined in [51, Section 3]. Actually, we ex-
pect that one way to address this question would be by identifying the extension of
Kravchenko—Polyak’s Gauss diagram formulas with the topologically—defined use
extension u' of the present paper; this identification is at least clear in the case of
non-repeated indices.
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