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Higher codimension isoperimetric problems

RAFE MAZZEO, FRANK PACARD AND TATIANA ZOLOTAREVA

Abstract. We consider a variational problem for submanifolds Q ⇢ M with
nonempty boundary @Q = K . We propose the definition that the boundary K
of any critical point Q have constant mean curvature, which seems to be a new
perspective when dim Q < dimM . We then construct small nearly-spherical
solutions of this higher codimension CMC problem; these concentrate near the
critical points of a certain curvature function.

Mathematics Subject Classification (2010): 53A10 (primary); 49Q20 (sec-
ondary).

1. Introduction and statement of the result

Constant mean curvature (CMC) hypersurfaces are critical points of the area func-
tional subject to a volume constraint. Examples include sufficiently smooth solu-
tions to the isoperimetric problem. If K is an embedded submanifold in a Rie-
mannian manifold (Mm+1, g), then its mean curvature vector HK is the trace of its
second fundamental form. When K is a hypersurface, then we say that K has CMC
if this vector has constant length, and this is the only sensible definition in this case.
However, when codim K > 1, it is less obvious how to formulate the CMC condi-
tion, since there is more than one way one might regard the mean curvature vector
as being constant. One definition that has perhaps received the most attention is to
require that HK be parallel. This is quite restrictive, and for that reason, not very
satisfactory.

We propose a different, and directly variational definition building on the ideas
of F. Almgren [1]. The classical isoperimetric problem amounts to find m-dimen-
sional hypersurfaces K of least m-dimensional volume enclosing a region of pre-
scribed m+ 1 dimensional volume. F. Almgren generalized the isoperimetric prob-
lem in higher codimension by defining the volume enclosed by S as the infimum of
volumes of (m + 1)-dimensional submanifolds Q with @Q = S.
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Extending the standard characterization of CMC hypersurfaces, we propose
to define constant mean curvature submanifolds to be boundaries of submanifolds
which are critical for a certain energy functional. Roughly speaking, we say that K
has constant mean curvature if K = @Q where Q is minimal, K has CMC in Q,
and HK has no component orthogonal to Q.

Our goal is to show that generic metrics on any compact manifold admit
“small” CMC submanifolds in this sense. The result proved here is a generalization
of the theorem by R. Ye [11] which proves the existence of families of CMC hyper-
surfaces that are small perturbations of geodesic spheres centered at nondegenerate
critical points of the scalar curvature function R of the ambient manifold M . The
more recent paper [8] by F. Pacard and X. Xu obtains such families of CMC hy-
persurfaces when the scalar curvature is not a Morse function; in that case, these
hypersurfaces are centered near critical points of a different curvature invariant.

Let us now introduce the relevant curvature function. For any (k + 1)-dimen-
sional subspace5p ⇢ TpM , define the partial scalar curvature

Rk+1(5p) := �

k+1X
i, j=1

g
�
R(Ei , E j )Ei , E j

�
,

where E1, . . . , Ek+1 is any orthonormal basis for 5p. Note that Rm+1(TpM) is
the standard scalar curvature at p, whileR2(5p) is twice the sectional curvature of
the 2-plane5p. The Grassmann bundle Gk+1(T M) is the fiber bundle over M with
fiber at p 2 M the Grassmannian of all (k + 1)-planes in TpM . We regardRk+1 as
a smooth function on Gk+1(T M).

We denote by Sk" (5p) and Bk+1" (5p) the images of the sphere and ball of
radius " in 5p under the exponential map expp, p 2 M . We can now state our
main result.
Theorem 1.1. If 5p is a nondegenerate critical point of Rk+1, then for all " suf-
ficiently small, there exists a CMC submanifold K"(5p) which is a normal graph
over Sk" (5̃ p̃) by some section with C2,↵ norm bounded by C"3 and dist(5̃ p̃,5p)

c"2.

Our construction of CMC submanifolds generalizes the method introduced in
[8], and can also be carried out in certain cases when the partial scalar curvature
has degenerate critical points, for example when (M, g) has constant partial scalar
curvature.
Theorem 1.2. There exists "0 > 0 and a smooth function

9 : Gk+1(T M) ⇥ (0, "0) �! R,

defined in (4.5) below, such that if " 2 (0, "0), and 5p is a critical point of 9(·, "),
then there exists an embedded k-dimensional submanifold K"(5p) with constant
mean curvature equal to k/". This submanifold is a normal graph over the geodesic
sphere Sk" (5p) of a vector field the C2,↵ norm of which is bounded by c "3. More-
over 9(·, ") = Rm+1 +O("2) in the smooth topology.
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The function 9 is essentially just the associated energy functional restricted to
a particular finite dimensional set of approximately CMC submanifolds.

Existence of CMC submanifolds also follows from the work of F. Morgan and
M.C. Salavessa [6] as smooth solutions to the higher codimension isoperimetric
problem defined by F. Almgren. Observe that these solutions should correspond to
points whereRk+1 has a maximum as in [7].

2. Outline of the paper

The outline of this paper is as follows. We first give a more careful description of our
proposed definition of constant mean curvature and its relationship to the associated
energy functional. We introduce the linearization and the second variation of this
energy, then compute these operators in detail for the round sphere Sk ⇢ Rm+1,
k  m. The construction of “small” solutions of the CMC problem concentrating
around critical points of the function 9 proceeds in stages. We construct a family
of approximate solutions, then solve the problem up to a finite dimensional defect.
This defect depends on certain parameters in the approximate solution, and in the
last step we employ a variational argument to choose the parameters appropriately
to solve the exact problem. Certain long technical calculations are relegated to the
appendices.

3. Preliminaries

In this section we begin by setting notations and recalling some standard formulæ.
This is followed by the introduction of a variational notion of constant mean curva-
ture for closed submanifolds of arbitrary codimension. We compute the first and the
second variations of the associated energy functional, and then explain what these
look like for round spheres (of arbitrary codimension) in Rm+1.

3.1. Mean curvature vector

Let (Mm+1, g) be a compact smooth Riemannian manifold. We write r
6 for the

induced connection on any embedded submanifold 6, and reserve r for the full
Levi-Civita connection on M .

The second fundamental form of 6 is the symmetric bilinear form on T6
taking values in the normal bundle N6 defined by

h6(X,Y ) := rX Y � r
6
X Y = ⇡N6 rX Y, X,Y 2 T6;

here ⇡N6 is the fibrewise orthogonal projection T6M ! N6. The trace of h6 is a
section of N6, and is called the mean curvature vector field

H6 := tr g h6 =

dim6X
i=1

h6(Ei , Ei ),
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where {Ei } is any orthonormal basis for T6. By definition, 6 is minimal provided
H6 ⌘ 0.

3.2. Constant mean curvature in higher codimension

Let us now specialize to the case where Qk+1
⇢ M is a smooth, compact subman-

ifold with boundary, and @Q =: K . The normal bundle NK decomposes as an
orthogonal direct sum

NK = NK?

� NK k ,

where NK k
= NK \ T Q has rank 1, and NK?

= NK \ NQ has rank m� k. We
shall write n for the inward pointing unit normal to K in Q. Thus if 8 2 NK , then

8 = [8]
?

+ [8]
k

= [8]
?

+ � n
for some scalar function �.
Definition 3.1. The closed submanifold K ⇢ M is said to have constant mean
curvature if K = @Q where Q is minimal in M , K has constant mean curvature in
Q and the Q-normal component [HK ]

?
2 NK? vanishes.

A key motivation is that this definition is variational, where the relevant energy
is given by

Eh0(Q) := Volk(@Q) � h0 Volk+1(Q), (3.1)
where h0 is a constant.
Proposition 3.2. The submanifold K = @Q has constant mean curvature h0 (in
the sense of Definition 3.1) if and only if

DEh0
��
Q = 0.

The meaning of the differential here is the usual one. Let 4 be a smooth vector
field on M and denote by ⇠ its associated flow. For t small, write Qt = ⇠(Q, t)
and Kt := @Qt = ⇠(K , t). The requirement in the Proposition is then that for any
smooth vector field 4,

d
dt
Eh0(Qt )

����
t=0

= 0.

The proof is standard. The classical first variation formula (see Appendix 1) states
that

d
dt
Vol(Kt )

����
t=0

= �

Z
K
g(HK ,4) dvolK ,

and
d
dt
Vol(Qt )

����
t=0

= �

Z
Q
g(HQ,4) dvolQ �

Z
K
g(n,4) dvolK .

It follows directly from this that
d
dt

����
t=0
Eh0(Qt ) = 0,

for all vector fields 4 if and only if HK = h0 n and HQ ⌘ 0, as claimed.
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The definition above coincides with the standard meaning of CMC when K is
a hypersurface in M which is the boundary of a region Q. In particular, if Kk

⇢

Rk+1
⇢ Rm+1 and K has CMC as a hypersurface in Rk+1, then it has CMC in the

sense of Definition 3.1. In particular, any round sphere Sk ⇢ Rm+1 has CMC in
this sense.

A similar result has been obtained in [6] for stationary submanifolds for the
isoperimetric problem in higher codimension.

3.3. Jacobi operator

Let us now study the differential of the mean curvature operator, which is known
as the Jacobi operator. For this subsection, we revert to considering an arbitrary
submanifold 6, either closed or with boundary, and shall now recall the expression
for this operator.

The Jacobi operator J6 is the differential of the mean curvature vector field
with respect to normal perturbations of6. To describe this more carefully, consider
the exponential map exp from an "-neighborhood of the zero section in T6M into
M . Since exp

⇤

��
{v=0} = Id, if 8 2 C2(6; N6) has ||8||C0 sufficiently small, then

68 :=

�
expq(8(q)) : q 2 6

 
is an embedded submanifold. We shall denote the family of submanifolds 6s8 by
6s , and their mean curvature vector fields by Hs . We also write Fs : 6 ! 6s for
the map q 7! expq(s8(q)). By definition,

J6(8) = r@/@s Hs
��
s=0 .

When @6 6= ;, we also require that 8 = 0 on @6. The operator ⇡N6 � J6 will be
denoted J N6 . We recall in Appendix 1 the proof of the standard formula

J N6 = �1N
6 + RicN6 + H(2)

6 , (3.2)

where 1N
6 is the (positive definite) connection Laplacian on sections of N6,

88 2 N6, 1N
6 8 =

dim(6)X
i=1

r
N
Ei r

N
Ei 8 � r

N
r

6
Ei
Ei

8,

where r
N
X Y = ⇡N6 � rXY and the other two terms are the following symmetric

endomorphisms of N6 :

(i) The orthogonal projection RicN6 = ⇡N6 � Ric6 on the normal bundle of 6 of
the partial Ricci curvature Ric6 , defined by

g
�
Ric6 X,Y

�
:= �tr g g

�
R(·, X)·,Y )

�

= �

dim6X
i=1

g
�
R(Ei , X)Ei ,Y

�
, for all X,Y 2 T M,

(3.3)
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(note that the curvature tensor appearing on the right is the one on all of M ,
and is not the curvature tensor for 6);

(ii) the square of the shape operator, defined by

H(2)
6 (X) :=

dim6X
i, j=1

g
�
h(Ei , E j ), X

�
h(Ei , E j ), for all X 2 T M. (3.4)

In general, J6(8) 6= J N6 (8) since J6(8) has a nontrivial component J T6 (8)which
is parallel to 6; as we show later, that part is canceled in our final formula so we
do not need to make it explicit. Note, however, that J T6 (8) vanishes when 6 is
minimal. Indeed, writing the mean curvature vector field to 6s8 in the form

Hs =

X
⌫

g
�
Hs, N⌫(s)

�
N⌫(s),

where N⌫(s), ⌫ = dim6 + 1, . . . ,m + 1 is a local orthonormal frame for N6s8
we find

[J6(8)]T =

X
⌫

h⇣
g
�
r@/@s Hs

��
s=0 , N⌫(0)

�
+ g

�
H6, r@/@s N⌫(s)

��
s=0
� ⌘
N⌫(0)

+ g (H6, N⌫(0)) r@/@s N⌫

��
s=0

iT

=

X
⌫

g (H6, N⌫(0))
⇥
r@/@s N⌫(s)

��
s=0
⇤T

,

and if H6 = 0, we have J T6 = 0.

3.4. Linearization about a constant mean curvature submanifold

Let Q be a smooth compact minimal submanifold with a boundary K such that

HK = h0 n

where n is a unit normal to K in Q and h0 is a constant. We set

C2,↵0 (NQ) :=

�
V 2 C2,↵(NQ) : V |K = 0

 
.

With this notation in mind, we have the :
Definition 3.3. The minimal submanifold Q is nondegenerate if

JQ : C2,↵0 (NQ) �! C0,↵(NQ),

is invertible.
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Lemma 3.4. If Q is nondegenerate, then there is a smooth mapping8 7! Q8 from
a neighborhood of 0 in C2,↵(NK ) into the space of (k + 1)-dimensional minimal
submanifolds of M with C2,↵ boundary, such that Q0 is the initial submanifold Q
and @Q8 = K8.

Proof. Fix a continuous linear extension operator

C2,↵(NK ) 3 8 7! V8 2 C2,↵(TQM).

Thus V8 is a vector field along Q which restricts to 8 on K . Without loss of
generality, we can assume that V8 2 T Q if [8]

?
= 0 and V8 2 NQ when

[8]
k

= 0. Next, let W be a C2,↵ section of NQ which vanishes on K . If both
||8||2,↵ and ||W ||2,↵ are sufficiently small, then expQ(V8 + W ) is an embedded
C2,↵ submanifold QU with U = V8 + W , and K8 := @QU .

Denoting the mean curvature vector of QU by H(8,W ), we find

DW H |(0,0) (W ) = JQW.

Since Q is minimal, DW H |(0,0) (W ) takes values in NQ, whereas H(8,W ) 2

NQU ⇢ TQU M , so we cannot directly apply the implicit function theorem. To rem-
edy this, first let eH(8,W ) be the parallel transport of H(8,W ) along the geodesic
s 7! expq(sU(q)), from s = 1 to s = 0. Parallel transport preserves regularity
(this reduces to the standard result on smooth dependence on initial conditions for
the solutions of a family of ODE’s), so eH(8,W ) is a C0,↵ section of TQM . Now
define bH(8,W ) := ⇡NQ �

eH(8,W ),

where ⇡NQ : TQM ! NQ is the orthogonal projection. Since H(8,W ) 2 NQU M
and since ||U ||C1 is small, H̃(8,W ) lies in the nullspace of ⇡NQ at any q 2 Q if and
only if it actually vanishes. Thus it is enough to look for solutions of bH(8,W ) = 0.
Notice that DW bH |(0,0) = JQ . We can now apply the implicit function theorem
to conclude the existence of a C2,↵ map 8 7! W (8) such that H(8,W (8)) =bH(8,W (8)) ⌘ 0 for all small 8.

We henceforth denote by Q8 the minimal submanifold expQ (V8 + W (8)).
Observe that when [8]

?
= 0, the submanifold parametrized by expQ(V

[8]
k) is

O(k8k
2
C2,↵ ) close to Q8; this is easy to check when 8 := � n where � is small.

Therefore, in this ‘tangential’ case, we conclude that

U8 = V
[8]

k +O(k8k
2
C2,↵ ).

Next, when [8]
k

= 0, we define Z
[8]

? as the solution of

JQ Z[8]
? = 0, Z

[8]
?

��
K = 8,

and it is easy to check that the submanifold parametrized by expQ(Z
[8]

?) is also
O(k8k

2
C2,↵ ) close to Q8. We summarize all this in the
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Lemma 3.5. When k8kC2,↵ is small, we have the decomposition

U8 = V
[8]

k + Z
[8]

? +O
⇣
k8k

2
C2,↵

⌘
.

Now consider the energy Eh0 along a one-parameter family s 7! Qs := Qs8 of
minimal submanifolds with boundaries Ks := @Qs = Ks8. By the formulæ of the
last subsection,

d
ds
Eh0(Qs) = �

Z
Ks
g(Hs � h0 ns, @/@s) dvolKs ,

where Hs is the mean curvature of Ks and ns is the inward pointing unit normal to
Ks in Qs . Note that this first variation of energy is localized to the boundary; the
interior terms vanish because of the minimality of the Qs . Our task is to compute

d2

ds2
Eh0(Qs)

�����
s=0

,

when Q is critical for Eh0 .
Parametrize both Ks and Qs by y 7! Fs(y) := expy(Us8(y)) (with y 2 K or

y 2 Q, respectively). As before, choose a smooth local orthonormal frame E↵ for
T K , so that (Fs)⇤E↵ = E↵(s) is a local (non-orthonormal) frame for T Ks8. We
then include ns , the unit inward normal to Ks in Qs . Moreover, we extend ns to a
vector n̄s 2 T Qs so that it satisfies r

Qs
n̄s n̄s = 0. We supplement this to a complete

local frame for TQs M (at least near points of Ks) by adding a local orthonormal
frame Nµ(s) 2 NQs . Here we let the indexes ↵,�, . . . run from 1 to k while
µ, ⌫, . . . run from k + 2 to m + 1 .
Notation 3.6. SetH(s) = H(Ks) � h0 ns . We also write

LQ = r@/@sHs
��
s=0 .

Note that we can decompose H0(0) into H0(0)NK +H0(0)TK , its components per-
pendicular and parallel to K . Since H(s) ? Ks , we have that hH(s), E↵(s)i = 0,
so

hH0(0), E↵i + hH(0), E 0

↵(0)i = 0.
SinceH(0) = 0, we obtain ⇡T K � LQ = 0.

Next decompose 8 = [8]
?

+ � n into parts perpendicular and parallel to Q
(along K ). Note that we can choose the vector field U8 extending 8 and defined
in Lemma 3.4 so that its component tangent to Q lies in the span of n̄. More
precisely, we have a decomposition U8 = [U8]

?
+ u� n̄ locally near K8, where

[U8]
?

��
K = [8]

? and u�

��
K = �.

To see that E 0

↵(0) = rE↵8, choose a curve c(t) in K with c(0) = p, c0(0) =

E↵ and define G(t, s) = expc(t)(s8(c(t))); we then obtain that

r@/@s E↵

��
s=0 = r@/@sr@/@t

��
s=t=0 G(t, s) = r@/@t8(c(t))

��
t=0 = rE↵8,
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as claimed. To compute n0(0), observe that (Fs)⇤(n(0)) is always tangent to Qs
and transverse, but not necessarily a unit normal, to Ks . We can adjust it, using the
Gram-Schmidt process, to get that

ns =

⇣
(Fs)⇤(n(0)) �

X
c↵E↵(s)

⌘
/
���((Fs)⇤(n(0)) �

X
c↵E↵(s)

��� ,
where

c↵(s) = hE↵(s), (Fs)⇤n(0)i/|E↵(s)|2.
Arguing as before, take a curve d(t) in Q such that d(0) = p and d 0(0) = n
and define G̃(t, s) = expd(t)(Us8(d(t))). Note that Us8 = s(V

[8]
k + Z

[8]
?) +

O(s2k8k
2
C2,↵ ). We get

r@/@s(Fs)⇤n(0)
��
s=0 = r@/@sr@/@t G̃(t, s)

���
t=s=0

= rn(V[8]
k + Z

[8]
?)

and since c↵(0) = 0, we obtain

[n0(0)]? =

⇥
rnV[8]

k + rn Z[8]
?

⇤��?
K =

h
r

?

n Z8? + � r
?

n n̄
i���
K

.

Finally, the component [n0(0)]k = 0. Combining these calculations gives the

Proposition 3.7. If Q is critical for Eh0 , then

LQ 8 =

�
⇡NK � JK � h0 DQ

�
8,

where
DQ8 =

h
r

?

n Z8 + � r
?

n n̄
i���
K

.

3.5. Linearization about the Euclidean sphere

We conclude this section by discussing the precise form of this linearization, and
its nullspace, when

K = Sk ⇥ {0} ⇢ Q = Bk+1 ⇥ {0} ⇢ Rm+1,

since this is our basic model later. It is easy to see that Bk+1 is critical for Ek .
The unit inward normal to Sk in Bk+1 is nSk (2) = �2. If 8 2 C2,↵(NSk),

then
8 = [8]

?

� � 2,

where the first term on the right is perpendicular to Bk+1. The operator J NSk acts on
these two components separately, via J?

Sk and J
k

Sk , respectively.
The first of these operators acts on sections of the trivial bundle of rank m � k.

Obviously, RicNSk = 0, cf. (3.3), and (H(2)
Sk )? = 0 as well, so

J?

Sk = 1Sk
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acting on (m�k)-tuples of functions. Its eigenvalues are `(k+`�1). The operator
DBk+1 also acts on sections of the trivial bundle NBk+1

��
Sk . In fact, since JBk+1 =

1Bk+1 , this operator is simply the standard Dirichlet-to-Neumann operator for the
Laplacian (acting onRm�k-valued functions). Its eigenfunctions are the restrictions
to r = 1 of the homogeneous harmonic polynomials P(x), x = r2, 2 2 Sk . If
P is homogeneous of order `, then P(x) = r`P(2), so DBk+1P(2) = �`P(2)
(recall we are using the inward-pointing normal). Combining these two operators,
we see that1Sk � kDBk+1 has eigenvalues�`(k+ `� 1)+ k` = �`(`� 1), hence⇣

J?

Sk � kDBk+1
⌘

[8]
?

= 0 ) [8]
?

2 span
n ⇣

bµ + c jµ2 j
⌘
Eµ

o
,

j = 1, . . . , k + 1, µ = k + 2, . . . ,m + 1, where Eµ form an orthonormal basis for
NBk+1 = Rm�k .

The remaining part is
J k

Sk = 1Sk + k,

since RicSk = 0 and H(2)
Sk = k Id. Thus

J k

Sk (� 2) = J k

Sk (�)2 = 0 ) � 2 span
n
21, . . . ,2k+1

o
.

We have now shown that the nullspace K of LBk+1 splits as K?
�Kk. The first of

these summands is comprised by infinitesimal translations in Rm�k and infinitesi-
mal rotations in the jµ planes (now j  k + 1); the second summand corresponds
to infinitesimal translations in Rk+1.

4. Construction of constant mean curvature submanifolds

We now turn to the main task of this paper, which is to construct small constant
mean curvature submanifolds concentrated near the critical points of Rk+1. The
first step is to define a family of approximate solutions, i.e. a family of pairs
(Q", K") where Q" is minimal and has nearly CMC boundary. We then use a
variational argument to perturb this to a minimal submanifold with exactly CMC
boundary.

4.1. Approximate solutions

We adopt all the notations used earlier. Thus we fix 5p 2 Gk+1(T M) and an
orthonormal basis Ei , 1  i  m + 1 of TpM , where E j , 1  j  k + 1 span 5p
and Eµ, µ � k + 2, span 5?

p . This induces a Riemann normal coordinate system
(x1, . . . , xm+1) near p, and it is standard that

gi j (x) = g(@xi , @x j ) = �i j +

1
3
X
k,`

�
Rp
�
ik j` x

kx`
+O

⇣
|x |3

⌘
, (4.1)

where � is the Euclidean metric.
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4.1.1. Rescaling

In terms of the map F" : TpM ! M , F"(v) = expp("v), used earlier, define the
metric

g" = "�2F⇤

" g

on TpM , or equivalently, work in the rescaled coordinates y j = x j/". In either
case,

g" = |dy|2 + "2h"(y, dy), (4.2)
where h" is family of smooth symmetric two-tensors depending smoothly on " 2

[0, "0]. The mean curvature vectors Hg and Hg" with respect to g and g" satisfy

"2 Hg
= (F")⇤ Hg" , and kHg"

kg" = " kHg
kg.

Let Bk+1 = Bk+1(5p) ⇢ 5p be the unit ball and Sk = Sk(5p) = @Bk+1, and de-
note their images under F" by Bk+1" (5p) and Sk+1" (5p). These have parametriza-
tions

Sk 3 2 7�! expgp

 
"
k+1X
j=1

2 j E j

!
, Bk+1 3 y 7�! expgp

 
"
k+1X
j=1

y j E j

!
.

In the Lemmas 4.2 and 4.3 below we give the expansion of the mean curvature of
Bk+1" (5p) and Sk" (5p) in terms of ". To this end we introduce two supplementary
curvature invariants which are restrictions of the Ricci curvature of the ambient
manifold M:
Notation 4.1.

Rick+1(5p)(v1, v2) = �

k+1X
i=1

gp(Rp(Ei , v1)Ei , v2), v1, v2 2 5p,

Ric?k+1(5p)(v, N ) = �

k+1X
i=1

gp(Rp(Ei , v)Ei , N ), v 2 5p, N 2 5?

p .

Note that
Ric?k+1(5p) =


RicNBk+1" (5p)

�
p
.

Moreover, here and below, we write O("k) for a function with C0,↵ norm bounded
by C"k for a constant C > 0 independent of ".
Lemma 4.2. The mean curvature of the geodesic ball Bk+1" (5p)

Hg(Bk+1" (5p))(y) =

m+1X
µ=k+2

✓
2 "

3
Ric?k+1(5p)(y, Eµ) +O("2)

◆
Nµ,

where y 2 Bk+1 and Nµ, k + 2  µ  m + 1 is an orthonormal basis of
NBk+1" (5p).



830 RAFE MAZZEO, FRANK PACARD AND TATIANA ZOLOTAREVA

Proof. Recall that

Hg
⇣
Bk+1" (5p)

⌘
=

1
"2

(F")⇤ Hg"

⇣
Bk+1

⌘
.

We denoteN "
µ, k + 1 < µ < m + 1 the orthonormal basis of the normal bundle of

Bk+1 with respect to the metric g" obtained by applying the Gram-Schmidt process
to the vectors Ei (p), 1  i  m + 1. Remark that

g"(N "
µ, E⌫) = �µ⌫ +O("2), µ = k + 2, . . . ,m + 1,

while the vector fieldsNµ=
1
" (F")⇤(N "

µ) form an orthonormal basis of NBk+1" (5p)
with respect to the metric g.

The Christoffel symbols corresponding to the metric g" are:

(0g")`i j (y) =

1
2
g`q
"

�
@y j (g")iq + @yi (g") jq � @yq (g")i j

�

= �`q "2

6
y p
�
Ri jqp+ Ripq j+ R jiqp+ R jpqi� Riq jp� Ripjq

�
+O("3)

= �

"2

3
�
Ripj` + Ri`j p

�
y p +O("3),

whence
g"

⇣
r
g"

@yi
@y j ,N "

µ

⌘
=

�
0g"

�µ
i j +O

⇣
"4
⌘

.

Taking the trace in the indexes i, j = 1, . . . , k + 1 with respect to g" gives the
result.

Lemma 4.3. The mean curvature of the geodesic sphere Sk" (5p) satisfies

Hg(Sk" (5p)) =

✓
k
"

�

"

3
Rick+1

�
5p
�
(2,2) +O

⇣
"2
⌘◆

nS

+

m+1X
µ=k+2

✓
2 "

3
Ric?k+1

�
5p
� �

2, Eµ

�
+O

⇣
"2
⌘◆

Nµ, 2 2 Sk,

where nS is a unit normal vector field to Sk" (5p) in Bk+1" (5p) with respect to the
metric g.

Proof. The proof is similar to that of the previous lemma, but with several changes.
Let u1, . . . , uk 7! 2(u1, . . . , uk) be a local parametrization of Sk ⇢ 5p. The
tangent bundle T Sk is spanned by the vector fields 2↵ = @u↵2, ↵ = 1, . . . , k. We
remark that

Hg
⇣
Sk" (5p)

⌘
=

1
"2

(F")⇤ Hg
"

⇣
Sk
⌘

.
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By Gauss’s lemma,

g
�
(F")⇤2↵, (F")⇤2

��
F"(2)

�
= gp(2↵,2) = 0,

for ↵ = 1, . . . , k, hence, we put nS := �
1
" (F")⇤2. We have

r
g"

@u↵
@u� = @u↵ @u� 2 +

�
0g"

�`
i j (2↵)i

�
2�

� j E`,

where ↵,� = 1, . . . , k; i, j, ` = 1, . . . ,m + 1. Since the vector field @u↵ @u� 2 is
tangent to Bk+1(2), we find

g"

⇣
r
g"

@u↵
@u� ,N "

µ

⌘
=

�
0g"

�µ
ab (2↵)a

�
2�

�b
+O

⇣
"3
⌘

.

Taking trace in the indexes ↵,� with respect to the metric induced on Sk from g"

we get

g"

⇣
Hg"(Sk),N "

µ

⌘
=

2 "2

3
Ric?k+1(5p)

�
2, Eµ

�
+O

⇣
"3
⌘

.

In order to find [Hg"(Sk(5p))]
||, recall the standard fact that if 6 ⇢ M is an

oriented hypersurface with unit inward pointing normal N6 , and if 6z is the family
of hypersurfaces defined by

6 ⇥ R(q, z) 7! expq
�
zN6(q)

�
2 6z,

with induced metric gz , then

|H6| = �

d
dz

log
p
det gz .

In our case, considering Sk = @Bk+1 with metric g", let g"z be the induced metrics
on the Euclidean sphere of radius 1� z. Then,

det g"z = (1� z)2k det gS
 
1�

"2(1� z)2

3
RicSk

�
5p
�
(2,2) +O

⇣
"3
⌘!

,

where gS is the standard spherical metric on Sk(5p). From this we deduce that

g"

⇣
Hg"(Sk),�2

⌘
= k �

"2

3
Rick+1

�
5p
�
(2,2) +O

⇣
"3
⌘

.

This completes the proof.
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Proposition 4.4. Fix 5p 2 Gk+1(T M). Then for " > 0 small enough, there exists
a minimal submanifold Q"(5p) which is a small perturbation of Bk+1" (5p), whose
boundary K"(5p) = @Q"(5p) is a normal graph over Sk" (5p) and whose mean
curvature vector field satisfies

Hg �K"(5p)
�
(2) �

k
"
nK = hEa,2i nK +

m+1X
µ=k+2

�
hEcµ,2i + dµ

�
Nµ, (4.3)

for some constant vectors Ea = Ea(",5p), Ecµ = Ecµ(",5p) 2 Rk+1 and constants
dµ = dµ(",5p) 2 R and where by h·, ·i we denote the scalar product in Rm+1.
Here nK is a normal vector field to K"(5p) in Q"(5p) and Nµ, µ = k+2, . . . ,m+

1 form an orthonormal basis of
⇥
NK"(5p)

⇤
?.

Proof. Take a vector field 8 2 C2,↵(TpM) defined along the unit sphere Sk(5p),
such that

8(2) = ��(2)2 +

m+1X
µ=k+2

8µ(2) Eµ,

and write
Sk8 =

n
2 + 8(2), 2 2 Sk

o
.

Then there exists a submanifold Bk+1",8 such that @Bk+1",8 = Sk8 and which is minimal
with respect to g". The proof of this fact is almost the same as the proof of the
Lemma 3.4; the only difference is that we use a “perturbed” metric and the starting
submanifold is no longer minimal. Let V8 be a linear extension of 8 in Bk+1 and
take

W 2 C2,↵(TpM), W =

m+1X
µ=k+2

Wµ Eµ, W |Sk = 0.

We putU(y) := V8(y)+W (y) and let H(",8,W ) denote the mean curvature with
respect to the metric g" of the submanifold

Bk+1U :=

n
y +U(y), y 2 Bk+1

o
.

Note that H(0, 0, 0) = 0 and

D3H |(0,0,0) = JBk+1 = 1Bk+1 .

We can then apply the implicit function theorem to Ĥ(",8,W ) = ⇡ �H(",8,W ),
where ⇡ is the orthogonal projection onto the subspace of TpM spanned by Eµ,
k + 2  µ  m + 1. Then for " and k8kC2,↵ small enough, there exists a mapping
(",8) 7! W (",8) such that

Ĥ(",8,W (",8)) = 0 and H(",8,W (",8)) = 0.
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Moreover, we can write

U",8 = V8 +W (",8) = V� + Z8 +W" +O
⇣
k"3k

⌘
+O

⇣
"2k8k

⌘
+O

⇣
k82

k

⌘
,

where V�(y) = ��(y/kyk) y, the vector field Z8 is the harmonic extension of 8

in Bk+1 and W" satisfies

1Bk+1 W
µ
" = �

2 "2

3
Ric?k+1

�
5p
� �
y, Eµ

�
in Bk+1, W"|Sk = 0.

Remark 4.5. A simple calculation shows that

W"(y) =

"2

3
1

k + 3

⇣
1� |y|2

⌘ m+1X
µ=k+2

Ric?k+1
�
5p
� �
y, Eµ

�
Eµ.

As a next step, we calculate the mean curvature of Sk8 with respect to the metric g".
First note that the vector fields

⌧↵ = (1� �)2↵ � @u↵� 2 +

m+1X
µ=k+2

@u↵8
µ Eµ,

locally frame T Sk8, while

28 = 2 +

1
1� �

rSk�, and (Eµ)8 = Eµ �

1
1� �

rSk8
µ

are a local basis for the normal bundle of Sk8 with respect to the Euclidean metric.
Applying the Gram-Schmidt process with respect to the metric g" to these local
frames we obtain the unit normal n"

8 to Sk8 in Bk+1",8 and an orthonormal frame
(N8)"µ for the normal bundle of B

k+1
",8 along Sk8 with respect to g". It is clear that

⌦
n"

8,�28/|28|geucl
↵
g"

= 1+O("2),

⌦
(Nµ)"8, (Eµ)8/|(Eµ)8|geucl

↵
g"

= 1+O("2),

and n"
0 = �2 and (Nµ)"0 = N "

µ. We can then write

Hg"(Sk8) � k n"
8 =

⇣
g"

⇣
Hg"(Sk8), n"

8

⌘
� k

⌘
n"

8

+

m+1X
µ=k+2

g"

⇣
Hg"(Sk8), (N8)"µ

⌘
(N8)"µ.
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Notation 4.6. We let L5p (8) denote any second order linear differential operator
acting on 8. The coefficients of L5p (8) may depend on 5p 2 Gk+1(T M) and
" 2 (0, 1), but for all j 2 N there exists a constant C j > 0 independent of 5p and
" such that

kL5p (8)kC j,↵(Sk)  C j k8kC j+2,↵(NSk).

Similarly, for ` 2 N, Q`
5p

(8) denotes some nonlinear operator in 8, depending
also on 5p and ", such that Q`

5p
(0) = 0 and which has the following properties.

The coefficients of the Taylor expansion of Q`
5p

(8) in powers of the components
of 8 and its derivatives satisfy that for any j � 0, there exists a constant C j > 0,
independent of5p 2 Gk+1(T M) and " 2 (0, 1),

kQ`
5p (81) �Q`

5p (82)kC j,↵(Sk)  C j
�
k81kC j+2,↵(NSk) + k82kC j+k,↵(NSk)

�`�1
⇥ k81 � 82kC j+k,↵(NSk)

provided k8ikC1(NSk)  1, i = 1, 2.
Using the fact that the Christoffel symbols associated to the metric g" are of

orderO("2), we obtain

g"

⇣
Hg"(Sk8), n"

8

⌘
� k = �

"2

3
Rick+1(5p)(2,2) + J k

Sk�

+O("3) + "2L5p (8) +Q25p (8),

g"

⇣
Hg"(Sk8), (N8)"µ

⌘
=

2"2

3
Ric?k+1(5p)(2, Eµ) + L?

Bk+1 8µ

+O("3) + "2L5p (8) +Q25p (8).

As before, we let Kk and K? be the null-spaces of the operators

J k

Sk = 1Sk + k and L?

Bk+1 = 1Sk � DBk+1,

and writePk andP? for the L2 orthogonal complements ofKk andK? in C2,↵(Sk).
Define the space

E := Rk+1
⇥

⇣
Rk+1

� R
⌘m�k

⇥ Pk

⇥

⇣
P?

⌘m�k
. (4.4)

There exists an operator

G :

⇣
C0,↵

⇣
Sk
⌘⌘m�k

�! E,
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such that

G( f0, f1,..., fm�k)=
⇣
Ea(5p, f ),Ecµ(5p, f ),dµ(5p, f ),�(5p, f ),8?(5p, f )

⌘

is the solution to 8<
:
J k

Sk � = hEa,2i + f0

L?

Bk+1 8µ
= hEcµ,2i + dµ + fµ�k .

Applying a standard fixed point theorem for contraction mappings, we find that
there exist c > 0 and "0 2 (0, 1) such that for every " 2 (0, "0) and 5p 2

Gk+1(T M) there is a unique element
⇣
Ea(",5p), Ecµ(",5p), dµ(",5p),�(",5p),8

?(",5p)
⌘

,

in a closed ball of radius c "2 centered at 0 in E (for some constant c > 0) such that

Hg"(Sk8) = k n"
8 + hEa,2i n"

8 +

m+1X
µ=k+2

�
hEcµ,2i + dµ

�
(N8)"µ.

Finally, to finish the proof we put

nK =

1
"

(F")⇤ n"
8 and Nµ =

1
"

(F")⇤ (Nµ)"8

and K"(5p) := F"(Sk8(",5p)
), Q"(5p) := F"(Bk+1",8(",5p)

).

Remark 4.7. Using the fact that

Rick+1(5p)(2,2) 2 Pk and Ric?k+1(5p)(2, Eµ) 2 K?,

and decomposing

Rick+1(5p)(2,2) =

k+1X
a=1

Rick+1(5p)aa (2a)2 +

k+1X
a 6=b=1

Rick+1(5p)ab 2a 2b,

one can easily verify that the vector field8",5p obtained in Proposition 4.4, satisfies

�",5p =

"2

3

✓
2

k(k + 2)
Rk+1(5p) �

1
k + 2

Rick+1(5p)(2,2)

◆
+O("3),

[8]
?

",5p = O("3).
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4.2. Variational argument

We now employ a variational argument to prove that one can choose 5p 2 Gk(M)
in such a way that the submanifold K"(5p) obtained in the previous Proposition
has constant mean curvature.

To state our result, we introduce the following restrictions of the Riemann
tensor of M:
Notation 4.8.

Rk+1(5p)(v1,v2,v3,v4)=gp(Rp(v1,v2)v3,v4), v1,v2,v3,v425p,

R?

k+1(5p)(v1,v2,v3,N )=gp(Rp(v1,v2)v3,N ), v1,v2,v325p, N 25?

p ,

Finally, we introduce the function r on Gk+1(T M):

r(5p) =
1

36(k+5)


8 kRick+1(5p)k

2
� 18

k+1P
i, j,`=1

rEirEi g(R(E j , E`)E j , E`)
��
p

�3 kRk+1(5p)k
2
+ 5Rk+1(5p)

2
+ 24 k+1

k+3 kRic?k+1(5p)k
2

+12 kR?

k+1(5p)k
2
�

+

"4

18
1

(k + 2)(k + 3)


k+6
k R2

k+1(5p) � 2 kRick+1(5p)k
2
�
.

Now consider the energy E" restricted to this finite dimensional space of submani-
folds,

E"(5p) := Volk
�
K"(5p)

�
�

k
"
Volk+1

�
Q"(5p)

�
,

which is a function onGk+1(T M). Tracing through the construction of K"(5p) one
obtains the relationship of this function to the curvature functions defined above.

Lemma 4.9. There is an expansion

(k + 1)E"(5p)

"k Vol(Sk)
=

 
1�

"2

2(k + 3)
Rk+1

�
5p
�
+

"4

2(k + 3)
r(5p) +O

⇣
"5
⌘!

.

Proof. The proof is a technical calculation, contained in the Appendix.

The main result of this section is the following proposition

Proposition 4.10. If 5p is a critical point of E", then K"(5p) has constant mean
curvature.
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Remark 4.11. Theorems 1.1 and 1.2 are corollaries of Proposition 4.10. Indeed, if
we define

9(",5p) = 2 "�2 (k + 3)
✓
1� (k + 1)

E"(5p)

"kVol(Sk)

◆
; (4.5)

then for any j � 0, there exists a constant C j which is independent of " such that

k9(", ·) �Rk+1(·) + "2r(·)kC j (Gk+1(T M))  C j "
3.

Proof of the Proposition 4.10. Let 5p be a critical point of E". We show that the
parameters Ea, Ec and d must then necessarily vanish. We do this by considering
various types of perturbations of5p.

First consider the perturbations inGk+1(M)which correspond to parallel trans-
lations of 5p. In other words, we suppose that the family of planes 5expp(t⇠) in
Gk+1(M) are parallel translates of5p along the geodesic expp(t⇠).

The submanifold K"(5expp(t⇠)) is a normal graph over K"(5p) by a vector
field9",5p,⇠,t which depends smoothly on t . This defines a vector field on K"(5p)
by

Z",5p,⇠ = @t9",5p,⇠,t
��
t=0 .

The first variation of the volume formula yields

0 = DE"|5p (⇠)

=

Z
K"(5p)

✓
g
�
H
�
K"

�
5p
��

, Z",5p,⇠
�
�

k
"
g
�
n, Z",5p,⇠

�◆
dvolK"(5p)

�

k
"

Z
Q"(5p)

g
�
H
�
Q"

�
5p
��

, Z",5p,⇠
�
dvolQ"(5p),

(4.6)

and then the construction of Q"(5p) and K"(5p) gives that

Z
K"(5p)

 
hEa,2ig

�
n, Z",5p,⇠

�
+

m+1X
µ=k+2

�
hEcµ,2i + dµ

�
g
�
Z",5p,⇠ , Nµ

�!
= 0.

Let 4 be the vector field obtained by parallel transport of ⇠ along geodesics issuing
from p, and suppose that c is a constant independent of " and ⇠ . Then

kZ",5p,⇠ � 4kg  c "2 k⇠k.

By construction of K"(5p), we have

kn +

1
"

(F")⇤2kg  c "2, and kNµ �

1
"

(F")⇤Eµkg  c "2.
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Now take ⇠ 2 5p ⇢ T Mp, so that

g(n, Z",5p,⇠ ) = g
✓

�

1
"

(F")⇤2 +

✓
n +

1
"

(F)⇤2

◆
, 4 +

�
Z",5p,⇠ � 4

�◆
,

and

g(Nµ, Z",5p,⇠ ) = g
✓
1
"

(F")⇤Eµ +

✓
Nµ �

1
"

(F")⇤ EEµ, 4 +

�
Z",5p,⇠ � 4

�◆◆
.

We conclude that
��g(n, Z",5p,⇠ ) + gp(⇠,2)

��
 c "2k⇠k, and

��g(Nµ, Z",5p,⇠ )
��
 c "2k⇠k,

hence
Z

K"(5p)

hEa,2i gp(⇠,2) 

����
Z

K"(5p)

hEa,2i gp(⇠,2) +

Z
K"(5p)

hEa,2i g(Z",5p,⇠ , n)

+

m+1X
µ=k+2

Z
K"(5p)

�
hEcµ,2i + dµ

�
g(Z",5p,⇠ , Nµ)

����

 c "2 k⇠k

0
B@

Z
K"(5p)

|hEa,2i| +

m+1X
µ=k+2

Z
K"(5p)

��
hEcµ,2i + dµ

��
1
CA .

Now taking ⇠ =

Pk+1
i=1 a

i Ei we obtain

Z
K"(5p)

hEa,2i
2

 c "2 kEak

0
B@

Z
K"(5p)

|hEa,2i| +

m+1X
µ=k+2

Z
K"(5p)

��
hEcµ,2i + dµ

��
1
CA .

In Euclidean space, we have the equality

Volk(Sk)kvk
2

= (k + 1)
Z
Sk

hv,2i
2, for all v 2 Rk+1.

By the expansion of the induced metric, we obtain for " small enough

1
2
Volk

⇣
Sk
⌘

"k kvk
2

 (k + 1)
Z
K"(5p)

hv,2i
2.
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Also, since Volk(K"(5p)) = O("k), we deduce

kEak  c "2
⇣
kEak +

m+1X
µ=k+2

�
kEcµk + |dµ|

� ⌘
. (4.7)

Now move p in the direction of a vector ⇠ 2 5?

p to get��g(Z",5p,⇠ , Nµ) � gp(⇠, Eµ)
��
 c "2k⇠k, and |g(n, Z",5p,⇠ )|  c "2k⇠k.

We can write
m+1X

µ=k+2

Z
K"(5p)

�
hEcµ,2i + dµ

�
gp(⇠, Eµ)



��� m+1X
µ=k+2

Z
K"(5p)

�
hEcµ,2i + dµ

�
g(Z",5p,⇠ , Nµ)

�

m+1X
µ=k+2

Z
K"(5p)

�
hEcµ,2i + dµ

�
gp(⇠, Eµ)

+

Z
K"(5p)

hEa,2i g(Z",5p,⇠ , n)
���

 c "2 k⇠k

Z
K"(5p)

⇣
|hEa,2i| +

m+1X
µ=k+2

|hEcµ,2i + dµ|

⌘
.

Taking ⇠ = d⌫ E⌫ gives
Z
K"(5p)

d⌫ hEc⌫,2i + d⌫
2

 c "2 |d⌫ |

 Z
K"(5p)

|hEa,2i|

+

m+1P
µ=k+2

Z
K"(5p)

|hEcµ,2i + dµ|

!
.

(4.8)

Next consider a perturbation of 5p by a one-parameter family of rotations of 5p
in TpM generated by an (m + 1) ⇥ (m + 1) skew matrix A. Then

DE"|5p (A)=
d
dt

����
t=0
E"

⇣⇣
I + t A + O

⇣
t2
⌘⌘

5p
⌘

=

d
dt

����
t=0
E
�
At
�
K"

�
5p
���

,

where, in geodesic normal coordinates

At (x) = x + t Ax +O
⇣
t2
⌘

.
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The coordinates of the vector field associated to this flow are

Z",5p,⇠ (x) =

d
dt

����
t=0

At (x) = Ax .

Considering only matrices A 2 o(m) such that A : 5p ! 5?

p , we obtain
��g(Z",5p,⇠ , n)

��
c "2kA2k, and

��g(Z",5p,⇠ , Nµ) � hA2, Eµi

��
c "2kA2k.

This gives the

m+1X
µ=k+2

Z
K"(5p)

�
hEcµ,2i + dµ

�
hA2, Eµi



��� m+1X
µ=k+2

Z
K"(5p)

�
hEcµ,2i + dµ

�
g(Z",5p,⇠ , Nµ)

�

m+1X
µ=k+2

Z
K"(5p)

�
hEcµ,2i + dµ

�
hA2, Eµi

+

Z
K"(5p)

hEa,2i g(Z",5p,⇠ , n)
���

 c "2
Z
K"(5p)

 
kA2k |hEa,2i| +

m+1X
µ=k+2

kA2k |hEcµ,2i + dµ|

!
.

Let C⌫ be the (m�k)⇥(k+1)matrix with column ⌫ equal to the vector Ec⌫ 2 Rk+1,
and all other columns equal to 0. Then if

A =

✓
0 �CT

⌫
C⌫ 0

◆
,

we get

Z
K"(5p)

hEc⌫, i2 + hEc⌫,2id⌫  C "2

0
B@

Z
K"(5p)

|hEc⌫,2i| |gp(Ea,2)|

+

m+1P
µ=k+2

Z
K"(5p)

|hEc⌫,2i|

��
hEcµ,2i + dµ

��
1
CA

(4.9)
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Adding (4.8) and (4.9) now givesZ
K"(5p)

|d⌫ + hEc⌫,2i|
2

 c "2

 Z
K"(5p)

(|d⌫ | + |hEc⌫,2i|) |hEa,2i|

+

m+1X
µ=k+2

(|d⌫ | + |hEc⌫,2i|)
��
hEcµ,2i + dµ

��
!

.

In Euclidean space, if v 2 Rk+1 and ↵ 2 R are arbitrary, thenZ
Sk

|↵ + hv,2i|
2

=

✓
↵2 +

1
k + 1

kvk
2
◆
Volk(Sk).

Using once again the decomposition of the induced metric on K"(5p) we find for
" small enough

1
2(k + 1)

"k Volk(Sk)
⇣
↵2 + kvk

2
⌘



Z
K"(5p)

|↵ + hv,2i|
2 . (4.10)

which gives

"2�k kEc⌫k2+|d⌫ |
2
c (kEc⌫k+|d⌫ |)

0
B@

Z
K"(5p)

|hEa,2i|+

m+1X
µ=k+2

Z
K"(5p)

|hEcµ,2i+dµ|

1
CA.

Since Volk(K"(5p)) = O("k), we get

kEc⌫k + |d⌫ |  c "2

 
kEak +

m+1X
µ=k+2

�
kEcµk + |dµ|

�!
. (4.11)

Adding (4.7) and (4.11) gives 
kEak +

m+1X
µ=k+2

�
kEcµk + |dµ|

�!
 c "2

 
kEak +

m+1X
µ=k+2

�
kEcµk + |dµ|

�!
,

which implies finally that kEak = 0, kEcµk = 0 and |dµ| = 0, k + 1  µ.
We conclude that if5p is a critical point of the functional E", then the manifold

K"(5p) is a constant mean curvature submanifold of M .

Appendix

A. Mean curvature of submanifolds

Let6k
⇢ Mm+1 be an embedded submanifold. Let x1, . . . , xk be local coordinates

on 6 and
E↵ = @x↵ ,
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the corresponding coordinate vector fields. Suppose that Ek+1, . . . , Em+1 is a local
frame for N6. This gives local coordinates transverse to 6 by

p 2 6 7�! expp

 
m+1X
j=k+1

x j E j

!
.

We make the convention that Greek indexes run from 1 to k, while Latin indexes
run from k + 1 to m + 1. The induced metric on 6 has coefficients ḡ↵� , while

h̄i↵� := 0i
↵� = g(rE↵ E�, Ei ),

are the coefficients of the second fundamental form. We also record the Christoffel
symbols

0
j
↵i = g(rE↵ Ei , E j ).

The following result is standard, cf. [5] for a proof.

Lemma A.1. If X =

m+1P
j=k+1

x j E j , then

g↵� = ḡ↵� � 2 ḡ(h̄↵�, X) + g
�
R(E↵, X)E�, X

�
+ g(rE↵ X,rE� X) +O

⇣
|x |3

⌘

= ḡ↵� � 2 h̄i↵� x
i
+

⇣
g
�
R(E↵, Ei )E�, E j

�
+ g� � 0

h̄i↵� h̄
j
� 0� + 0i

↵` 0
j
`�

⌘
xi x j

+O
⇣
|x |3

⌘

g↵ j = �0i
↵ j x

i
+O

⇣
|x |2

⌘

gi j = �i j +

1
3
g
�
R(Ei , E`)E j , E`0

�
x` x`0

+O
⇣
|x |3

⌘
.

Let8 be a smooth section of N6 and consider the normal graph68={expp(8(p)) :
p 2 6}. Now let us use the previous lemma to expand the metric and volume form
on 68. To state this result properly, introduce r

N , the induced connection on N6,

r
N8 = ⇡N6 � r8.

Using the definitions of Section 2, we find that

Lemma A.2.

Volk(68) = Volk(6) �

Z
6
g(H(6),8) dvol6

+

1
2

Z
6

⇣
|r

N8|
2
g � g

�
(Ric6 + H26)8,8

�⌘
dvol6

+

1
2

Z
6

�
g (H(6),8)

�2 dvol6 + ...
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Proof. First of all we expand the induced metric on 68. Using the result of the
previous Lemma, we find
(ḡ8)↵� = ḡ↵� � 2 g

�
h̄↵�,8

�
+ g

�
R (E↵,8) E�,8

�
+ g

�
rE↵8,rE� 8

�
+ . . .

= ḡ↵� � 2 g
�
h̄↵�,8

�
+ g

�
R (E↵,8) E�,8

�
+ ḡ� � 0

g
�
h̄↵� ,8

�
g
�
h̄��,8

�
+ g

⇣
r
N
E↵

8,rN
E�

8
⌘

+ . . .

Next we use the well known expansion

p
det(I + A) = 1+

1
2
Tr A +

1
8

(TrA)2 �

1
4

⇣
Tr
⇣
A2
⌘⌘

+ . . .

to find

p
det ḡ8 =

✓
1� g(H(6),8) +

1
2

⇣
|r

N8|
2
g � g

⇣⇣
Ric6 + (H)26

⌘
8,8

⌘

+ (g (H (6) ,8))2
⌘

+ . . .

◆ p
det ḡ.

This completes the proof.

From this we obtain the first and second variations of the volume functional,

D8Volk(68)|89 = �

Z
6
g(H(68),9) dvol68, (A.1)

and

D28Volk(68)|8=0(9,9) =

Z
6

⇣
|r

N9|
2
� g

⇣⇣
Ric6 + H26

⌘
9,9

⌘⌘
dvol6

+

Z
6

(g (H (6) ,9))2 dvol6 .

On the other hand, differentiating (A.1) once more gives

D28Volk(68)|8=0(9,9) = �

Z
6
g (D8H (68) |8=09,9) dvol6

+

Z
6

(g (H (6) ,9))2 dvolK .

Comparing the two formulæ implies that the orthogonal projection of the Jacobi
operator to N6 equals

J N6 := D8H(68)|8=0 = 1N
g + RicN6 + H26 .
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B. Appendix

We give here the proof of Lemma 4.9, namely the proof of the formula

(k + 1)E"

�
5p
�

"k Vol(Sk)
=

 
1�

"2

2(k + 3)
Rk+1

�
5p
�
+

"4

2(k + 3)
r
�
5p
�
+O

⇣
"5
⌘!

and find the expression of the function r . Let K"(5p) be the constant mean curva-
ture submanifold constructed in Proposition 4.4 and consider the mapping

F : Rm+1
! M, F(v) = expp

 
m+1X
i=1

vi Ei

!
,

where Ei , i = 1, . . . ,m + 1 is an orthonormal basis of TpM . Recall that

K"(5p) = F(Sk",8),

where Sk",8 ⇢ Rm+1 is parametrized by
�
" (1� �)2 + " 8?, 2 2 Sk

 
. It follows

from the proof of that proposition that

�(2) =

"2

3

✓
2

k(k + 2)
Rk+1(5p) �

1
k + 2

Ric(5p)(2,2)

◆
+O("3),

8?

= O
⇣
"3
⌘

.

Next, consider the minimal submanifold

Q"(5p) = F
⇣
Bk+1",8

⌘
,

where Bk+1",8 =

�
" y + "U8(y), y 2 Bk+1

 
and recall that

U8(y) = � (y/kyk) + W (y) +O
⇣
"3
⌘

,

W (y) =

"2

(k + 3)

m+1X
µ=k+2

k+1X
i=1

Ric?(5p)iµ
⇣
|y|2 � 1

⌘
yi Eµ.

We shall calculate the volume forms of Sk",8 and B
k+1
",8 with respect to F⇤g. Recall

that in the neighborhood of x = 0 we have

(F⇤g)i j = �i j +

1
3
gp
�
Rp(x, Ei )x, E j

�
+

1
6
gp
�
rx Rp(x, Ei )x, E j

�

+

1
20

gp
�
rxrx Rp(x, Ei )x, E j

�

+

m+1X
`=1

2
45

gp
�
Rp(x, Ei )x, E`

�
gp
�
Rp(x, E j )x, E`

�
+Op

⇣
|x |5

⌘
,

where Rp is the curvature tensor of M at the point p, cf. [9].
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Volume of the CMC sphere

We first find the expansion of the metric induced on Sk",8. To this end we express
the tangent vector fields to Sk",8 in terms of the vector fields 2↵, ↵ = 1, . . . , k
tangent to the unit sphere Sk :

⌧↵ = " (1� �(2))2↵ � " @↵ � 2 +

m+1X
µ=k+2

" @↵8µ Eµ, ↵ = 1, . . . , k.

The metric coefficients then satisfy

gK↵� ="2(1��)2gS↵� +"2@↵�@��+

"4

3
(1��)4gp

�
Rp(2,2↵)2,2�

�

+

"5

6
gp
�
r2Rp (2,2↵)2,2�

�
+

"6

20
gp
�
r2r2Rp (2,2↵)2,2�

�

+

k+1X
l=1

2"6

45
gp
�
Rp (2,2↵)2,El

�
gp
�
Rp
�
2,2�

�
2,El

�

+

m+1X
µ=k+2

2"6

45
gp
�
Rp (2,2↵)2,Eµ

�
gp
�
Rp
�
2,2�

�
2,Eµ

�
+O

⇣
"7
⌘
.

Using p
det(I + A) = 1+

1
2
trA +

1
8
(trA)2 �

1
4
tr(A2) +O(|A|

3),

we get

"�k
p
detgKp
detgS

=1�k�+

k(k�1)
2

�2+
1
2
|rSk�|

2

�

"2

6
(1�(k+2)�)Rick+1(5p)(2,2)

�

"3

12
r2Rick+1(5p)(2,2)

�

"4

40
r
2
2Rick+1(5p)(2,2)+

"4

72
�
Rick+1(5p)(2,2)

�2

�

"4

180

k+1X
i, j=1

gp(Rp(2,Ei )2,E j )
2

+

"4

45

k+1X
i=1

m+1X
µ=k+2

gp(Rp(2,Ei )2,Eµ)2+Op
�
"5
�
.
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Volume of the minimal ball

Now let us calculate the volume element of Q"(5p). Take u(y) = �(y/|y|). The
tangent vectors to Bk+1",8 are given by

Ti (y) = " (1� u(y)) Ei + " @yi u(y) y + "
m+1X

µ=k+2
@yi Wµ(y) Eµ +Op

�
"4
�
.

The corresponding expansion of metric coefficients is
"�2gQi j =(1�u)2�i j+(1�u)

�
@yi u y j+@y j u yi

�
+|y|2@yi u@y j u

+

m+1X
µ=k+2

@yi W
µ@y j W

µ
+

"2

3
(1�u)4gp(Rp(y,Ei )y,E j )

+

"2

3

m+1X
µ=k+2

h
Wµgp(Rp(Eµ,Ei )y,E j )+Wµgp(Rp(y,Ei )Eµ,E j )

+@yi Wµgp(Rp(y,Eµ)y,E j )+@y j Wµgp(Rp(y,Ei )y,Eµ)
i

+

"3

6
gp(ry Rp(y,Ei )y,E j )+

"4

20
gp(ryry Rp(y,Ei )y,E j )

+

2"4

45

k+1X
l=1

gp(Rp(y,Ei )y,El)gp(Rp(y,Ei )y,El)

+

2"4

45

m+1X
µ=k+2

gp(Rp(y,Ei )y,Eµ)gp(Rp(y,Ei )y,Eµ)+O
�
"5
�
.

Using the fact hru, yi = 0 and the fact that for the matrix Ai j = yi @y j u + y j @yi u
we have 14 tr(A

2) =
1
2 |y|2 |ru|2, we calculate the volume element of Q"(5p):

"�(k+1)
q
detgQ=1�(k+1)u+

k(k+1)
2

u2+
m+1X

µ=k+2

1
2
|rSkWµ

|
2

�

"2

6
(1�(k+3)u)Rick+1(5p)(y,y)

+

"2

3

k+1X
i=1

m+1X
µ=k+2

h
Wµgp(Rp(y,Ei ,Eµ,Ei )

�

"3

12
ryRick+1(5p)(y,y)�

"4

40
r
2
yRick+1(5p)(y,y)

+

"4

72
�
Rick+1(5p)(y,y)

�2
�

"4

180

k+1X
i, j=1

gp(Rp(y,Ei )y,E j )
2

+

"4

45

k+1X
i=1

m+1X
µ=k+2

gp(Rp(y,Ei )y,Eµ)2+Op("
5).
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Expansion of the energy functional

Collecting the results obtained above, we find

"�k
⇣
Vol(K"(5p)) �

k
"
Vol(Q"(5p))

⌘
=

1
k + 1

Vol(Sk)

�

"2

2(k + 3)

Z
Sk
Rick+1(5p)(2,2) d� +

"2

3

Z
Sk
Rick+1(5p)(2,2)� d�

+

5 "4

k + 5

Z
Sk

h
�

1
40

r
2
2Rick+1(5p)(2,2) +

1
72

�
Rick+1(5p)(2,2)

�2

�

1
180

k+1X
i, j=1

gp(Rp(2, Ei )2, E j )
2
+

1
45

k+1X
i=1

m+1X
µ=k+2

gp(Rp(2, Ei )2, Eµ)2
i
d�

�

"2 k
3

k+1X
i=1

⇣
Wµ gp(Rp(2, Ei , Eµ, Ei ) + @yi W

µ Rp(2, Ei ,2, Eµ)
⌘
dy

+

m+1X
µ=k+2

Z
Bk+1

hk
2
Wµ 1Bk+1 W

µ
i

�

1
2

Z
Sk

� 1Sk � �

k
2

Z
Sk

�2 d� +O("5).

We now recall some identities:
Z
Sk

(2i )2 d� =

1
k + 1

Vol(Sk),
Z
Sk

(2i )4 d� = 3
Z
Sk

(2i 2 j )2 d� =

3
(k + 1)(k + 3)

Vol(Sk);

and if ai jpq 2 R i, j, p, q = 1, . . . , k + 1, then

k+1X
p,q,l,n=1

Z
Sk
apqln 2p 2q 2l 2n d�

=

3
(k + 1)(k + 3)

Vol(Sk)
k+1X
i=1

apppp

+

1
(k + 1)(k + 3)

Vol(Sk)
k+1X

q 6=p=1

�
appqq + apqpq + apqqp

�

=

1
(k + 1)(k + 3)

Vol(Sk)
k+1X
p,q=1

�
appqq + apqpq + apqqp

�
;
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and develop each term:Z
Sk
Rick+1(5p)(2,2)d� =

k+1X
i, j=1

Z
Sk
Rick+1(5p)(Ei ,E j )2

k2l d�

=

k+1X
i=1
Rick+1(5p)(Ei ,Ei )(2i )2d� =

1
k+1

Vol(Sk)Rk+1(5p);

Z
Sk

(Rick+1(5p)(2,2))2d�

=

1
(k+1)(k+3)

Vol(Sk)
h
2
k+1X
i, j=1

(Rick+1(5p)(Ei ,E j ))
2

+

k+1X
i, j=1

Rick+1(5p)(Ei ,Ei )Rick+1(5p)(E j ,E j )
i

=

1
(k+1)(k+3)

Vol(Sk)
⇣
2
��Rick+1(5p)

��2
+Rk+1(5p)

2
⌘
;

k+1X
i, j=1

Z
Sk
gp(Rp(2,Ei )2,E j )

2d�

=

1
(k+1)(k+3)

Vol(Sk)
k+1X

i, j,p,q=1

⇣
R2i pjq+Ripjp Riq jq+Ripjq Riq jp

⌘

=

1
(k+1)(k+3)

Vol(Sk)
✓��Rick+1(5p)

��2
+

3
2
��Rk+1(5p)

��2◆
;

(we use here that R2i j pq = (Ripjq � Riq jp)2 = R2i pjq + R2iq jp � 2 Ripjq Riq jp);

k+1X
i=1

m+1X
µ=k+2

Z
Sk
gp(Rp(2, Ei )2, Eµ)2 d�

=

1
(k + 1)(k + 3)

Vol(Sk)
✓���Ric?k+1(5p)

���2 +

3
2

���R?

k+1(5p)
���2
◆

;

Z
Sk

r
2
2Rick+1(2,2)d�

=

1
(k+1)(k+3)

k+1X
i, j=1

⇣
r
2
EiRick+1(5p)(E j ,E j )+2rEirE jRick+1(Ei ,E j )

⌘

=

2
(k+1)(k+3)

Vol(Sk)
k+1X

i, j,`=1
rEirEi g(R(Ek,El)Ek,El)

��
p ;
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m+1X
µ=k+2

Z
Bk+1

Wµ 1Bk+1W
µ dy

= �

2 "4

9
1

k + 3

m+1X
µ=k+2

Z
Bk+1

k+1X
j=1

⇣
Ric?k+1(E j , Eµ)

⌘2
(y j )2 (1� |y|2) dy

= �

2 "4

9
1

(k + 3)(k + 1)
Vol(Sk) kRic?k+1k2

✓
1

k + 3
�

1
k + 5

◆

= �

"4

9
4

(k + 1)(k + 3)2(k + 5)
Vol(Sk) kRic?k+1k2;

m+1X
µ=k+2

Z
Bk+1

Wµ
k+1X
i,p=1

Ripiµ y p dy

= �

"2

3
1

(k + 3)

Z
Bk+1

m+1X
µ=k+2

k+1X
j=1

⇣
Ric?k+1(E j , Eµ)

⌘2
(y j )2(1� |y|2) dy

= �

"2

3
2

(k + 1)(k + 3)2(k + 5)
Vol(Sk) kRic?k+1k2;

and
m+1X

µ=k+2

Z
Bk+1

@yi WµRpiqµ y p yq dy

=

"2

3
1

(k + 3)

m+1X
µ=k+2

Z
Bk+1

k+1X
i,p,q=1

⇣
Ric(5p)

?

iµ Rpiqµ y p yq (1� |y|2)

� 2
k+1X
j=1
Ric(5p)

?

jµ Rpiqµ y j yi y p yq
⌘
dy

=

"2

3
2

(k + 1)(k + 3)2(k + 5)
Vol(Sk)


� kRic?k+1k2

�

k+1X
p,q=1

m+1X
µ=k+2

⇣
Ric(5p)

?

pµ Rqpqµ +Ric(5p)
?

qµ Rppqµ

+Ric(5p)
?

qµ Rqppµ
⌘�

= �

2 "2

3
1

(k + 1)(k + 3)2(k + 5)
Vol(Sk) kRic?k+1k2.
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This finally gives

(k + 1)E(5p)

"k Vol(Sk)
= 1�

"2

2
1

k + 3
Rk+1(5p)

+

"4

72
1

(k + 3)(k + 5)

h
8 kRick+1(5p)k

2

� 18
k+1X

i, j,`=1
rEirEi g(R(E j , E`)E j , E`)

��
p

� 3 kRk+1(5p)k
2
+ 5Rk+1(5p)

2

+ 24
k + 1
k + 3

kRic?k+1(5p)k
2
+ 12 kR?

k+1(5p)k
2
i

+

"4

18
1

(k + 2)(k + 3)


k + 6
k

R2
k+1(5p) � 2 kRick+1(5p)k

2
�

+O
�
"5
�

= 1�

"2

2(k + 3)
Rk+1(5p) +

"4

2(k + 3)
r(5p) +O

�
"5
�
.
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