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A Geometric Application of Nori’s Connectivity Theorem

CLAIRE VOISIN

Abstract. We study (rational) sweeping out of general hypersurfaces by varieties
having small moduli spaces.
As a consequence, we show that general K -trivial hypersurfaces are not rationally
swept out by abelian varieties of dimension at least two.
As a corollary, we show that Clemens’ conjecture on the finiteness of rational
curves of given degree in a general quintic threefold, and Lang’s conjecture saying
that such varieties should be rationally swept-out by abelian varieties, contradict.
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0. – Introduction

Our purpose in this paper is to contribute to the study of rational maps
from r -dimensional varieties to general hypersurfaces in projective space (cf [5],
[20], [12], [4]). In the last section, we shall eventually extend this to the study
of correspondences instead of rational maps. The problem we consider is the
following: given a family Y → S of r-dimensional smooth projective varieties,
when is a general hypersurface X of degree d in projective space Pn+1 swept out by
images of rational maps from one member of this family to X?

(Recall that the word “general” in this context means “away from countably
many proper Zariski closed subsets of the moduli space”.)

Our approach to this problem is Hodge theoretic. Unlike [5], [20], [12], [4],
the result has nothing to do with the canonical bundle of the varieties Yt , t ∈ S.
Instead, our answer will depend only on the dimension of the moduli space S.
Roughly speaking, the idea is as follows: assume that dim S is small, but the
general X is covered by images of rational maps from one member of this
family to X ; then there is a universal dominating rational map � fitting in the
following commutative diagram

� :K ��� XU

↓ π ↓
B → U,
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where π : K → B is induced by the family Y → S via a certain map B →
S, and XU → U is the universal family of hypersurfaces of degree d in
Pn+1. Here U is the open set of P(H 0(Pn+1,OPn+1(d))) parameterizing smooth
hypersurfaces.

If we fix a point s ∈ S, we have now Bs , which is the fiber of the map
B → S, and XBs , which is the fibered product

Bs ×U X .

The � above restricts to

�s : Ys × Bs → XBs .

The point now is that if dimS is small, then the corank of the map Bs → U is
small, so that an adaptation of Nori’s connectivity theorem [18] will show that
the cohomology groups of XBs , modulo the cohomology of Pn+1 ×Bs , are 0 or
have small Hodge level. Studying the cohomology class of the graph of � in

H 2n(K ×B XB, Q)

via the Leray spectral sequence of the map

K ×B XB → S,

with fiber Ys × XBs , we will deduce a contradiction with the fact that our
initial � was dominating.

Let us now state our precise results:

Definition 1. Let Y → S be a family of r -dimensional smooth projective
varieties. We say that a n-dimensional variety X is rationally swept out by vari-
eties parametrized by S, if there exist a quasiprojective variety B of dimension
n − r , a family K → B which is the pull-back of the family Y via a morphism
ψ : B → S, and a dominant rational map

φ : K ��� X,

(which is necessarily generically finite on the generic fiber Kb since dim K =
dim X ).

Remark 1. One can show that this property is equivalent to the fact that the
union of the images of generically finite rational maps from a variety Yt , t ∈ S,
to X contains a Zariski open set of X .

With this definition, we show:

Theorem 1. Fix an integer 1 ≤ r ≤ n. Let γ = r−1
2 , r odd, or γ = r

2 , r
even, that is γ is the round-up of r−1

2 . Let Y → S, dimS = C, be a family of
r-dimensional smooth projective varieties. Then the general hypersurface of degree
d in Pn+1 is not rationally swept out by varieties parameterized by S if

(0.1)
(d + 1)r ≥ 2n + C + 2,

(γ + 1)d ≥ 2n − r + 1 + C.

(Note that except for r = 1, 2, the second inequality implies the first.)
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Remark 2. One could of course prove a similar statement for sufficiently
ample hypersurfaces in any smooth variety. In the case of projective space, the
estimates on d are sharp, and allow applications to the Calabi-Yau case, which
is never considered in the papers quoted above (see Section 3).

So let us consider the case of Calabi-Yau hypersurfaces. Because of the
Lang conjecture that we shall recall below, we will be mainly interested into the
case where the family Y → S is a family of abelian varieties. Our Theorem 1
implies in this case:

Theorem 2. Let X be a general Calabi-Yau hypersurface in projective space
Pn+1, that is d = n +2. Then X is not rationally swept out by r-dimensional abelian
varieties, for any r ≥ 2.

In the paper [16], Lang formulates a number of conjectures concerning
smooth projective complex varieties X . One of them is that the analytic closure
of the union of the images of holomorphic maps from C to X is equal to the
union of the images of non constant rational maps from an abelian variety to X .
Another one is that this locus is equal to X itself if and only if X is not of
general type.

Next, by a standard countability argument for Chow varieties (similar to
the one given in the beginning of Section 2), we see that, according to these
conjectures, if X is not of general type, there should exist a quasiprojective
variety B, a family K → B of abelian varieties, and a dominating rational map

φ : K ��� X,

which is non constant on the generic fiber Kb, b ∈ B.
Let us now consider the case where X is a Calabi-Yau variety, that is K X is

trivial. We claim that if a map φ as above exists, then we may assume that φ|Kb

is generically finite, for generic b ∈ B. Indeed, because H 0(X, K X ) �= 0, for
generic b ∈ B, the image φ(Kb) has effective canonical bundle, in the sense that
any desingularization Zb of it has effective canonical bundle, as follows from
adjunction formula and the fact that the φ(Kb) cover X . Now it is immediate
to prove that any dominant rational map

Kb ��� Zb,

where Kb is an abelian variety and Zb has effective canonical bundle, factors
through some quotient map Kb → K ′

b, where K ′
b is an abelian variety which

is a quotient of Kb, and has the same dimension as Zb. Replacing the family
of abelian varieties (Kb)b∈B , by the family (K ′

b)b∈B gives the desired φ′.
In other words, Lang’s conjecture asserts in particular that a Calabi-Yau

variety should be rationally swept out by r -dimensional abelian varieties, for
some r ≥ 1. Hence, if Lang’s conjecture is true, such an X should be swept
out by elliptic curves.
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On the other hand, the following is proved in [7], lecture 22:

Proposition 1. If a general Calabi-Yau hypersurface of dimension ≥ 2 is
rationally swept-out by elliptic curves, then it contains a divisor which is uniruled.

In dimension 3, this proposition combined with Theorem 2 shows that
Lang’s conjecture and Clemens’ conjecture (see [6]) on the finiteness of rational
curves of fixed degree in a general quintic threefold, contradict.

In the case of hypersurfaces of general type, inequality (0.1) can be applied
to give a non trivial estimate on the minimal genus of covering families of
curves, but the estimate is not sharp and could be obtained directly by geometry.
What is interesting however is that looking more precisely at the proof of
Theorem 1, we shall see that the result concerns in fact only the Hodge structure
on H n(X)prim and not the effective geometry of X . In fact we get as well:

Theorem 3. Let X be a general hypersurface of degree d ≥ 2n−2+3g, g ≥ 2
or d ≥ 2n + 2, g = 1, in Pn+1. Then there exists no non-zero morphism of Hodge
structures

H n(X, Q)prim → H n(Y, Q),

where Y is rationally swept out by curves of genus g.

Combining this statement with the higher dimensional generalization of
Mumford’s theorem on 0-cycles on surfaces [17], this implies in particular that
for d ≥ 2n + 2, X general, there exists no correspondence � ∈ C H n(Y × X)

inducing a surjective map

�∗ : C H0(Y )0 → C H0(X)0,

where Y admits an elliptic fibration. Similarly, if g ≥ 2 and d ≥ 2n − 2 + 3g,
there exists no such correspondence � ∈ C H n(Y × X) where Y admits a
fibration whose generic fiber is a genus g curve. One may wonder whether
these statements are true for any such hypersurface or only for the general one.

The paper is organized as follows: in Section 1, we recall briefly the proof
of Nori’s connectivity theorem for hypersurfaces in projective space, in order
to prove a variant of it concerning families of hypersurfaces parameterized by
subvarieties of the moduli space which are of small codimension. This will
show us that for any family of hypersurfaces parameterized by a subvariety
of the moduli space which is of small codimension, the Hodge level of the
cohomology groups of the total space of the family is small.

The next section is devoted to the proof of Theorem 1.
In Section 3, we prove the applications of this result described above.

Acknowledgements. I would like to thank J. Harris who started me
thinking to these problems and H. Clemens for very interesting discussions and
comments.
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1. – Nori’s connectivity theorem for hypersurfaces

This section is devoted to an intermediate result (Theorem 4) toward the
proof of Theorem 1. This result is a variant of Nori’s connectivity theorem [18],
or more precisely of its explicit version for hypersurfaces in projective space
(cf [21], 8.1, [22]). In [1], [19], a sharper study of similar explicit bounds can
be found.

Nori’s theorem concerns the cohomology of locally complete families of
sufficiently ample complete intersections in any smooth complex projective va-
riety, parameterized by a smooth quasiprojective basis. The explicit version in
case of hypersurfaces in projective space makes precise how ample the hyper-
surfaces must be.

Here, we consider a variant of this explicit version, where instead of locally
complete families, we consider families of hypersurfaces whose moduli are of
small codimension in the moduli space of all hypersurfaces.

We consider hypersurfaces of degree d in Pn+1, and we assume that d ≥
n + 2. Fix an integer r such that 1 ≤ r ≤ n, and let γ be the round-up of r−1

2 .
Denote by U ⊂ H 0(OPn+1(d)) the open set parametrizing smooth hypersurfaces.
Let ρ : M → U be a morphism, where M is smooth quasi-projective. We
assume that Corank ρ is constant equal to C . We also assume for simplicity
that I m ρ is stable under the action of Gl(n + 2). Let XU be the universal
hypersurface parameterized by U and

XM := XU ×U M.

Let
j : XM ↪→ M × Pn+1

be the natural embedding. XM is a smooth quasi-projective variety, hence
its cohomology groups carry mixed Hodge structures with associated Hodge
filtration Fi H k(XM, C).

Theorem 4.
i) Assume that

(1.2) (d + 1)r ≥ 2n + C + 2.

Then, the restriction map

j∗ : Fn H 2n−r (M × Pn+1, C) → Fn H 2n−r (XM, C)

is surjective.
ii) If

(1.3) (γ + 1)d ≥ 2n + 1 − r + C,

then for any i ≥ 1, the restriction map

j∗ : H 2n−r−i (M × Pn+1, C) → H 2n−r−i (XM, C)

is surjective.
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The proof mimics the proof given in [21], 8.1 (which is nothing but the
original proof of Nori, in the case of hypersurfaces of projective space). For
the reader who knows already the arguments given there, let us just say that
the proof in [21], 8.1 reduces first to showing that complexes built from the
infinitesimal variations of Hodge structures (IVHS) on the primitive part of the
cohomology of hypersurfaces are exact in a certain range. Via Carlson-Griffiths
descrition of these IVHS, using the Griffiths description of the Hodge structure
of an hypersurface via residues, these complexes are pointwise identified to
Koszul complexes of the Jacobian ring of the considered hypersurface. The
exactness of these Koszul complexes then uses a theorem due to M. Green
on the Koszul cohomology of projective space. Our variant is then obtained
by applying Green’s refined theorem, which concerns Koszul cohomology of
projective space, with respect to a non-complete base point free linear system
of small codimension.

We try now to go a little more into the details, without reproducing the
whole proof in [21], 8.1. We refer to loc. cit. for complete proofs of the steps
sketched below.

Proof of Theorem 4.
i) One first reduces the assertion, as in [18], to proving:

Under the assumption (1.2), the restriction map

j∗ : Hl(	k
M×Pn+1) → Hl(	k

XM)

is bijective, for l ≤ n − r, k + l ≤ 2n − r .

This step uses the mixed Hodge structure on relative cohomology and the
Frölicher spectral sequence: the relative cohomology of the pair (M×Pn+1,XM)

is equal to the hypercohomology of the complex

	·
M×Pn+1,XM

:= K er ( j∗ : 	·
M×Pn+1 → 	·

XM).

The Frölicher spectral sequence considered here is the spectral sequence asso-
ciated to the naı̈ve filtration on 	·

M×Pn+1,XM
.

Next denote respectively by πX , πP the natural maps

XM → M, M × Pn+1 → M.

A Leray spectral sequence argument shows that it suffices to prove that under
the assumption (1.2) one has:

(1.4) The restriction map j∗ : RlπP∗(	k
M×Pd+1) → RlπX∗(	k

XM) is bijective

for l ≤ n − r, k + l ≤ 2n − r .
Let now Hn

prim, Hp,q
prim, p + q = n be the Hodge bundles associated to

the variation of Hodge structure on the primitive cohomology of the family
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πX : XM → M. The infinitesimal variation of Hodge structure on the primitive
cohomology of the fibers of πX is described by maps

(1.5) ∇ : Hp,q
prim → Hp−1,q+1

prim ⊗ 	M,

and they can be extended in the obvious way to produce a complex:

(1.6) . . .Hp+1,q−1
prim ⊗ 	s−1

M
∇→ Hp,q

prim ⊗ 	s
M

∇→ Hp−1,q+1
prim ⊗ 	s+1

M . . .

One shows, using the filtration of 	k
XM by the subbundles π∗

X	s
B ∧ 	k−s

XMand
the associated spectral sequence (cf [21], 5.2.1), that (1.4) is equivalent to the
following

The sequence (1.6) is exact at the middle for q ≤ n − r, p + s + q ≤ 2n − r .

Note that since p + q = n, the last inequality reduces to s ≤ n − r .
It is convenient to dualize (1.6) using Serre duality, which gives:

(1.7) Hq+1,p−1
prim ⊗

s+1∧
TM

t ∇→ Hq,p
prim ⊗

s∧
T s
M

t ∇→ Hq−1,p+1
prim ⊗

s−1∧
T s+1
M .

We finally use Griffiths, Griffiths-Carlson description of the IVHS of hypersur-
faces ([15], [2]) to describe the complex (1.7) at the point f ∈ M as follows.
We have the map ρ∗ : TM, f → TU, f = Sd , where S is the polynomial ring in
n + 2 variables. Next the residue map provides isomorphisms

R−n−2+d(p+1)
f

∼= Hq,p
prim(X f ),

where Rf := S/Jf is the Jacobian ideal of f , and Rk
f denotes its degree k

component. The map ∇ in (1.5) identifies then, up to a coefficient, to the map
given by ρ∗ and multiplication:

R−n−2+d(p+1)
f → Hom (TM, f , R−n−2+d(p+2)

f ).

It follows from this that the sequence (1.7) identifies to the following piece of
the Koszul complex of the Jacobian ring Rf with respect to the action of TM, f

on it by multiplication:

(1.8)
R−n−2+dp

f ⊗
s+1∧

TM, f
δ→ R−n−2+d(p+1)

f ⊗
s∧

TM, f

δ→ R−n−2+d(p+2)
f ⊗

s−1∧
TM, f .

Now, by assumption, if W is the image of ρ∗, W ⊂ Sd is a base-point free linear
system, because it contains the jacobian ideal J d

f , and it satisfies codim W = C .
One verifies that it suffices to check exactness at the middle of the exact

sequences (1.8) in the considered range, with TM, f replaced with W . This last
fact is then a consequence of the following theorem due to M. Green:



644 CLAIRE VOISIN

Theorem 5 [14]. Let W ⊂ Sd be a base-point free linear system. Then the
following sequence, where the differentials are the Koszul differentials

(1.9) S−n−2+dp ⊗
s+1∧

W
δ→ S−n−2+d(p+1) ⊗

s∧
W

δ→ S−n−2+d(p+2) ⊗
s−1∧

W

is exact for −n − 2 + dp ≥ s + codim W .

Using the fact that the Jacobian ideal is generated by a regular sequence
in degree d − 1, which provides a very simple resolution of Rf by graded free
S-modules, one then shows that the same is true when Si is replaced with Ri

f
in (1.9), at least if −n − 2 + d(p + 1) ≥ d − 1.

We now conclude the proof of i). We just proved that (1.6) is exact at the
middle if

−n − 2 + dp ≥ s + C, −n − 2 + d(p + 1) ≥ d − 1.

Since we assumed d ≥ n + 2, the second inequality is satisfied when p ≥ 1.
Next, if q ≤ n − r, s ≤ n − r , we have

p ≥ r ≥ 1, s ≤ n − r.

Hence, the exactness of (1.6) in the range q ≤ n − r, s ≤ n − r will follow
from the inequality

−n − 2 + dr ≥ n − r + C,

that is (1.2).

ii) The proof is entirely similar, and we just sketch it in order to see where
the numerical assumption is used. Following [18], we first observe that, in
order to get the surjectivity of the restriction map:

j∗ : H 2n−r−i (M × Pn+1, C) → H 2n−r−i (XM, C),

it suffices to show the surjectivity of the restriction map:

(1.10) j∗ : Fn−r+γi H 2n−r−i (M × Pn+1, C) → Fn−r+γi H 2n−r−i (XM, C),

where γi is the round-up of r−i
2 . Indeed, let K be the cokernel

H 2n−r−i (XM, Q)/j∗ H 2n−r−i (M × Pn+1, Q).

It has a quotient mixed Hodge structure whose weights are ≥ 2n−r −i , because
XM is smooth (cf [10]). The surjectivity of

j∗ : Fn−r+γi H 2n−r−i (M × Pn+1, C) → Fn−r+γi H 2n−r−i (XM, C),
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then says that Fn−r+γi KC = 0. But the round-up of 2n−r−i
2 is n − r + γi .

Applying Hodge symmetry to the weight graded pieces of K (which carry pure
Hodge structures of weight ≥ 2n − r − i), we see that

Fn−r+γi KC = 0 ⇒ K = 0.

As in the previous proof, we reduce now the proof of the surjectivity of (1.10)
to showing:

(1.11) The restriction map j∗ : RlπP∗(	k
M×Pn+1) → RlπX∗(	k

XM) is bijective

for l ≤ n − i − γi , k + l ≤ 2n − r − i .
Expressing as in the previous proof the cohomology groups above with

the help of the IVHS on the primitive cohomology of the fibers of πX , this is
reduced to proving:

The sequence (1.6) is exact at the middle for q ≤ n− i −γi , p+q = n, p+s +q ≤
2n − r − i .

Using the Carlson-Griffiths theory, we are now reduced to prove:

The following sequence:

(1.12)
R−n−2+dp

f ⊗
s+1∧

TM, f
δ→ R−n−2+d(p+1)

f ⊗
s∧

TM, f

δ→ R−n−2+d(p+2)
f ⊗

s−1∧
TM, f .

is exact for p ≥ γi + i , s ≤ n − r − i .

As in the previous proof, we now apply Theorem 5 and conclude that the
last statement is true if

(1.13) −n − 2 + d(γi + i) ≥ C + n − r − i.

Now it is clear that the γi + i are increasing with i , while the C + n − r − i are
decreasing with i . Hence it suffices to have (1.13) satisfied for i = 1, which is
exactly inequality (1.13).

Denoting by H 2n−r (XM)prim the quotient

H 2n−r (XM)/j∗(H 2n−r (M × Pn+1)),

we shall only be interested with the pure part

W2n−r H 2n−r (XM)prim,

which is the part of the cohomology which comes from any smooth projective
compactification of XM [10]. It carries a pure Hodge structure of weight 2n−r .
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Corollary 1. Under the assumptions of Theorem 4, the Hodge structure on
W2n−r H 2n−r (XM)prim is of Hodge level ≤ r − 2.

Proof. Recall that the Hodge level of a pure Hodge structure H, HC =
⊕H p,q is

Max {p − q, H p,q �= 0}.
Since we know that FnW2n−r H 2n−r (XM)prim = 0, we have

H p,q(W2n−r H 2n−r (XM)prim) = 0, for p ≥ n.

Since H p,q = 0 for p + q �= 2n − r , it follows that the Hodge level is
≤ n − 1 − (2n − r − (n − 1)) = r − 2.

2. – Proof of Theorem 1

We prove Theorem 1 by contradiction. So assume the assumptions (0.1)
are satisfied, but that the general X of degree d in Pn+1 is rationally swept-out
by varieties from the family Y .

Using Chow varieties, or relative Hilbert schemes, we see that there exist
countably many quasi-projective varieties Bk parameterizing triples (t, f, φs),
where t ∈ S, f ∈ U , and φs is a rational map φs : Ys ��� X f which is
generically finite onto its image. Indeed, such a φs can be identified to its
graph, which is a r -dimensional subvariety of the product Ys × X f , which has
to be of degree 1 over the first factor.

For fixed generic f , our assumption implies that the images of such φs

fill-in X f .
For each k, let

πk : Kk → Bk

be the family which is pulled-back, via the first projection Bk → S, from the
family Y → S. By definition of Bk as a Hilbert scheme, there is the universal
rational map

�k : Kk ��� XU ,

where, as in the previous section, XU is the universal hypersurface parameterized
by U . Note that �k makes the following diagram commutative:

(2.14)
�k : Kk ��� XU

↓ πk ↓
pr2 :Bk → U.

Our assumption implies that the union of the images of �k contains a subset
of XU which is the complementary set of a countable union of proper closed
algebraic subsets. By Baire, it follows that for some k0, �k0 is dominating.



A GEOMETRIC APPLICATION OF NORI’S CONNECTIVITY THEOREM 647

In the sequel, we shall use the notations π, B, K, �, for πk0, Bk0, Kk0, �k0
respectively.

We shall denote by Bf the (generic) fiber of the second projection B → U
and π f : K f → Bf the induced family. By taking desingularizations, we may
assume that B is smooth, and since by assumption the map π is smooth, K
is smooth too. Since f is generic, Bf and K f are then also smooth. Finally,
we may, up to replacing B by a closed subvariety, assume that the restriction
� f : K f ��� X f of � to K f is generically finite and dominating. (This is
because the restriction of � to the generic fibers of π is generically finite.) In
particular, dim Bf = n − r .

We fix now a generic point t ∈ I m pr1 ⊂ S. We let

Bt := pr−1
1 (t), Kt := π−1(Bt ).

We observe that Kt is naturally isomorphic to Yt × Bt . Furthermore, since

dim I m pr1 ≤ dim S ≤ C,

we have codim (Bt ⊂ B) ≤ C .
The second projection pr2 : B → U is dominating, so can be assumed to

be submersive, after shrinking B. It follows that the corank of pr2|Bt is ≤ C ,
and after shrinking Bt , we may assume it is constant and ≤ C on Bt .

Let XBt := XU ×U Bt . The map � : K ��� XU lifts to a map

�̃ : K ��� XB,

because of the commutativity of the diagram (2.14). �̃ takes the value φs at
the point (t, f, φs) of B.

This map restricts in turn to a map

�̃t : Kt
∼= Yt × Bt ��� XBt ,

which is over Bt .
The relative graph of �̃t provides then a codimension n subvariety in the

fibred product
Kt ×Bt XBt

∼= Yt × XBt .

The proof concludes now as follows: we know that the map Bt → U is
of constant corank ≤ C , and by assumption, the inequality (1.2) needed in
Corollary 1 is satisfied, so Corollary 1 holds, that is, the Hodge structure on
W2n−r H 2n−r (XBt , Q)prim has Hodge level < r . This contradicts the following
Proposition 2.

Proposition 2. The point t ∈ S being generic as above, let

γt ∈ H 2n(Yt × XBt , Q)

be the rational cohomology class of the graph of �̃t . Then γt induces a morphism
of mixed Hodge structures

(2.15) γt∗ : Hr (Yt , Q) → H 2n−r (XBt , Q)prim,

whose image has Hodge level r .
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Remark 3. The mixed Hodge structure on Hr (Yt , Q) is pure as is the
mixed Hodge structure on I m γt∗. Hence it makes sense to speak of the Hodge
level of the image.

Remark 4. The fact that I m γt∗ has Hodge level r is equivalent to the
fact that γt∗ does not vanish identically on Hr,0(Yt ), or more generally on the
subspace Hr (Yt , Q)tr introduced later on in the proof.

Proof of Proposition 2. The graph of �̃ lies in K ×B XB and is of
codimension n there. Let γ ∈ H 2n(K ×B XB, Q) be its rational cohomology
class. Of course

γt = γ|XBt
.

Let π̃ : K ×B XB → XB be the second projection. Our first task is basically to
replace γ by a class γ ′ which lies in the r -th Leray level of H 2n(K×B XB, Q)

with respect to π̃ : Let L be a relatively ample line bundle on Y → S, and let
L̃ be its pull-back to K ×B XB via the natural composite map

K ×B XB → K → Y.

Then L̃ is relatively ample w.r.t. π̃ .
The hard Lefschetz theorem provides isomorphisms

c1(L)i∪ : Rr−i π̃∗Q ∼= Rr+i π̃∗Q, i ≥ 0,

and correspondingly isomorphisms:

c1(L)i∪ : H 2n−r−i (XB, Rr−i π̃∗Q) ∼= H 2n−r−i (XB, Rr+i π̃∗Q), i ≥ 0.

These isomorphisms are isomorphisms of mixed Hodge structures. Furthermore,
by Deligne’s theorem [9], the Leray spectral sequence of π̃ degenerates at E2,
so that the above groups are graded pieces of

H 2n−2i (K ×B XB, Q), H 2n(K ×B XB, Q)

respectively. It follows that we can write

(2.16) γ = γ ′ +
∑

r≥i>0

c1(L̃)i ∪ γi ,

where γ ′ ∈ H 2n(K×BXB, Q) lies in the r -th level of the Leray filtration relative
to π̃ , and γi ∈ H 2n−2i (K ×B XB, Q). By strictness of the morphisms of mixed
Hodge structures with respect to both filtrations, we may even assume that γ ′
and γi are Hodge classes, that is lie respectively in

W2n H 2n(K ×B XB, Q) ∩ Fn H 2n(K ×B XB, Q),

W2n−2i H 2n−2i (K ×B XB, Q) ∩ Fn−i H 2n−2i (K ×B XB, Q).
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Restrict now everything to

(2.17) Kt ×Bt XBt
∼= Yt × XBt .

Since L̃ is the pull-back of a line bundle on Y , its restriction L̃t to Kt ×Bt XBt
is of the form pr∗

1 L , for some line bundle L on Yt , where pr1 is defined using
the isomorphism (2.17). It follows that each

γi,t := c1(L̃)i ∪ γi |Kt ×Bt XBt

induces a morphism of mixed Hodge structures

Hr (Yt , Q) → H 2n−r (XBt , Q),

which factors through the map c1(L)i∪ : Hr (Yt , Q) → Hr+2i (Yt , Q). So, since
dim Yt = r , each such morphism has an image which is of Hodge level < r
for i > 0. It follows that it suffices to prove the conclusion of Proposition 2
for γ ′.

We observe now the following: γ ′ lies in the r -th level of the Leray
filtration of H 2n(K×B XB, Q) relative to π̃ , hence, using the degeneracy at E2
of this Leray spectral sequence, it projects to an element γ ′′ in

H 2n−r (XB, Rr π̃∗Q),

which is the Er,n−r
2 = Er,n−r

∞ term of the Leray spectral sequence of π̃ .
Denote by ψ the composite map

XB → B → S.

Observe that the family
π̃ : K ×B XB → XB

is pulled-back via ψ from the family Y → S. It follows that the local system
is also pulled-back:

Rr π̃∗Q = ψ−1 Hr ,

for some local system Hr of Q-vector spaces on S. Hence the E2 terms of
the Leray spectral sequence relative to ψ and to the sheaf Rr π̃∗Q on XB are

Hi (S, R2n−r−iψ∗Q ⊗Q Hr ).

From now on we assume that the map pr1 : B → S is surjective, and topo-
logically locally trivial, which we can do, replacing S by a Zariski open set in
I m pr1. The local system Hr contains a sub-local system which via Poincaré
duality is also canonically a direct summand, whose fiber at the general point
of S is the maximal sub-Hodge structure of Hr (Yt , Q) which is not of maximal
Hodge level. Let us denote this sub-local system by Hr

<r , and the quotient
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by Hr
tr . Hr

tr can also be defined as the minimal sub-variation of Hodge struc-
ture of Hr whose corresponding (r, 0)-part contains the whole bundle Hr,0 with
fiber Hr,0(Yt ) at t ∈ S. So we have an orthogonal decomposition:

Hr = Hr
<r ⊕ Hr

tr .

Let Rr π̃∗Qtr := ψ−1 Hr
tr . With these notations, we have the component γ ′′

tr
of γ ′′, which lies in

H 2n−r (XB, Rr π̃∗Qtr ),

and as above, the spectral sequence abutting to this last group has E2-term

(2.18) Hi (S, R2n−r−iψ∗Q ⊗Q Hr
tr ).

We apply now Theorem 4, ii). The fibers of the maps ψ are the XBt hence
they satisfy the vanishing

H 2n−r−i (XBt , Q)prim = 0, i > 0.

It follows that for i > 0, we have

Hi (S, R2n−r−iψ∗Qprim ⊗Q Hr
tr ) = 0.

Hence we conclude that up to classes coming from

H 2n−r (Pn+1 × B, Rr (I d × π)∗Qtr ),

the class γ ′′
tr is determined by its 0-th Leray component, namely

γ ′′′ ∈ H 0(S, R2n−rψ∗Qprim ⊗Q Hr
tr ).

Note that the value of γ ′′′ at the general point t ∈ S is, (using Poincaré
duality on Yt ,) nothing but the restriction of the map γ ′

t∗ or γt∗ of (2.15) to the
transcendental part Hr (Yt , Q)tr .

Let us now conclude the proof by contradiction: assume the γ ′
t∗ has

an image which is of Hodge level < r for general t . Then equivalently,
its restriction to Hr (Yt , Q)tr vanishes. This means that γ ′′′ = 0, and by
the reasoning above, this implies that γ ′′

tr = 0 modulo classes coming from
H 2n−r (Pn+1 × B, Rr (I d × π)∗Qtr ).

We restrict now everything to the fibers of

XB → B → U, K → B → U

over f ∈ U . The fiber of XB over f is Bf × X f , the fiber of K over f is K f ,
and correspondingly the fiber of K ×B XB over f is K f × X f . The restriction
of �̃ to K f is the map (π f , � f ) : K f ��� Bf × X f and so the graph of �̃ in
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K ×B XB restricts to the graph of � f in K f × X f . The class γ restricts to the
class γ f of this graph.

Denote by γ ′
f , γ ′′

f , γ ′′
f,tr the restrictions of the classes γ ′, γ ′′, γ ′′

tr respec-
tively to K f × X f . The vanishing γ ′′

tr = 0 implies the vanishing γ ′′
f,tr = 0.

Retracing through the definitions, the class

γ f ∈ H n(K f , Q) ⊗ H n(X f , Q)prim,

where the subscript “prim” here means “the orthogonal part to H∗(Pn+1, Q)|X f ”,
decomposes as

γ f =
∑
i>0

li ∪ γi, f + γ ′
f ,

where l is the first Chern class of the line bundle on K f induced by L via the
map K f → Y . Here the γi, f , γ ′ are the restriction to K f × X f of the classes
γi , γ ′ of (2.16). The class γ ′

f belongs to Lr H n(K f , Q)⊗ H n(X f , Q)prim, where
Lr H n(K f , Q) is the r -th Leray level of H n(K f , Q) with respect to the Leray
filtration relative to the map π f : K f → Bf , and our conclusion is that its
projection in

H n−r (Bf , Rrπ f ∗Q) ⊗ H n(X f , Q)prim

lies in H n−r (Bf , Rrπ f ∗Q<r ) ⊗ H n(X f , Q)prim.
The contradiction now comes from the fact that since � f is a dominating

rational map, and the Hodge structure on H n(X f , Q)prim has Hodge level n,
(because d ≥ n + 2,) the associated map γ ∗

f has an image which is of Hodge
level n.

On the other hand, the maps of the form li ∪ γ ∗
i, f have images of Hodge

level < n, as do the maps γ ∗
i, f . Next, the only Leray piece of H n(K f , Q) whose

weight n part is of Hodge level n is H n−r (Rrπ f ∗Q), (because dim Bf = n −r ,)
and inside H n−r (Rrπ f ∗Q), the subspace H n−r (Rrπ f ∗Q<r ) has Hodge level
< n.

3. – Rational maps from abelian varieties to Calabi-Yau hypersurfaces and
other applications

Proof of Theorem 2. We want to show that for r ≥ 2, the general
Calabi-Yau hypersurfaces, that is hypersurfaces of degree d = n + 2 in Pn+1

are not rationally swept-out by r -dimensional abelian varieties. We apply Theo-
rem 1: the family Y → S we consider is any locally universal family of abelian
varieties. The moduli space of r -dimensional abelian varieties with given polar-
ization type is of dimension r(r+1)

2 . Hence the inequalities needed in Theorem 1
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become in this case:

(n + 3)r ≥ 2n + r(r + 1)

2
+ 2,

(γ + 1)(n + 2) ≥ 2n − r + 1 + r(r + 1)

2
.

It is not hard to check that this is satisfied for 2 ≤ r ≤ n.

When r = 1, inequality (0.1) is never satisfied so that our argument defi-
nitely does not apply to the study of elliptic curves in Calabi-Yau hypersurfaces.
In fact we could adapt our proof of Theorem 2 to work as well for Calabi-Yau
hypersurfaces in a product of projective spaces. On the other hand, certain
generic Calabi-Yau hypersurfaces in a product of projective spaces are swept
out by elliptic curves, eg the hypersurface of bidegree (3, 3) in P2 × P2. This
shows that for r = 1, a different argument has to be found. Note however that
Theorem 2 has the following corollary, which says that Lang’s and Clemens’
conjectures contradict:

Corollary 2. If Lang’s conjecture is true, any Calabi-Yau hypersurface X of
dimension ≥ 2 has a divisor which is uniruled.

Proof. Indeed, if Lang’s conjecture is true, then by Theorem 2, the gen-
eral X is rationally swept out by elliptic curves. One then applies the following
result, which is proved in the three dimensional case in [7], lecture 22 (the
proof however applies to any dimension ≥ 2):

Proposition 3. If a general Calabi-Yau hypersurface is rationally swept-out by
elliptic curves, then it contains a divisor which is rationally swept-out by rational
curves.

For completeness, we sketch here the argument for the proof of Proposi-
tion 3. The first step is to prove:

Lemma 1. If X is a general Calabi-Yau hypersurface of dimension ≥ 2, X is
not rationally swept out by elliptic curves of fixed modulus.

Proof. Indeed, fixing otherwise the modulus of the elliptic curve, we would
get, for at least one elliptic curve E , an hypersurface ME in the moduli space
M of X consisting of X f ’s which are rationally dominated by some E × B. For
such an X f , there must be an inclusion of rational Hodge structures induced
by the dominant rational map φ : E × B ��� X f :

(3.19) φ∗ : H n(X f )prim ↪→ H 1(E) ⊗ H n−1(B),

because the Hodge structure on H n(X)prim is simple for general X .
If we now let f vary in ME , only B deforms with f , not E , and it

follows that the infinitesimal variation of Hodge structure on H 1(E)⊗ H n−1(B)

∇ : H p,q(H 1(E) ⊗ H n−1(B)) → H p−1,q+1(H 1(E) ⊗ H n−1(B)) ⊗ 	ME
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has the following form at the point f ∈ ME :

∇(α ⊗ β) = α ⊗ ∇B(β)

for α ∈ Hr,s(E), β ∈ H p−r,q−s(B), where ∇B is the infinitesimal variation of
Hodge structure on H n−1(B). Hence the Yukawa couplings of the IVHS on
H 1(E) ⊗ H n−1(B), that is the iterations of ∇, have the following property:

∀η ∈ H n,0(H 1(E) ⊗ H n−1(B)), the map

∇n
(η) : SnTME , f → H 0,n(H 1(E) ⊗ H n−1(B))

vanishes.

If there is along ME an injective morphism of Hodge structures (3.19),
it follows that the same property is true for the IVHS of the family of X f ’s
parameterized by ME , which implies that the Yukawa couplings of X f vanish
on the hyperplane K := TME , f ⊂ Sn+2. The Carlson-Griffiths theory [15], [2]
shows easily that this is not the case. Indeed, these Yukawa couplings identify
to the multiplication map

Sn(Sn+2) → Rn(n+2)
f .

Assume they vanish on K . Since K is a hyperplane in Sn+2, the subspace

K ′ := [K : S1] ⊂ Sn+1

has codimension ≤ n + 2. It is without base-point, since TME , f contains Jf .
It follows then from [13], that Sn+3 K ′ = S2n+4. But K 2 contains S1 K ′ · K =
K ′ · S1 K = K ′ · Sn+3 = S2n+4. Hence K 2 = S2n+4 and similarly K n = Sn(n+2)

contradicting the fact that K n ⊂ J n(n+2)
f .

The second step is the following

Lemma 2. Assume a variety is rationally swept-out by elliptic curves, but not
by elliptic curves with constant modulus. Then it admits a divisor which is rationally
swept out by rational curves.

Proof. By assumption there is a diagram

K̃ φ−−−→ X

π

�
B̃

where we may assume that K̃ and B̃ are smooth, projective, where K̃ is a
smooth projective model of the family K → B on which φ is defined, and that
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the map j : B̃ → P1 is defined and non constant. Now, since φ is generically

finite, for generic t ∈ P1, the divisor K̃t := ( j ◦π)−1(t) must be sent by φ onto
a divisor of X , and it follows that for any t the image by φ of the divisor

K̃t := ( j ◦π)−1(t) must contain a divisor of X . Taking t = ∞, and noting that

any component of K̃∞ has a normalization which is uniruled, gives the result.

Proof of Theorem 3. In the proof of Theorem 1, we used first a count-
ability argument for Chow varieties to show that if a dominating rational map

φ : K ��� X

exists for a general X , with K fibred into varieties from the family Y , there
exists a universal dominating rational map

� : K ��� X .

But the same argument can be applied as well to any codimension n cycle
in some K × X , and even more generally to Hodge classes of degree 2n on
some K × X . Indeed, the only point is to know that there are countably many
quasi-projective varieties parameterizing the following data:

1. A n-dimensional variety K which is fibred into varieties from the family Y .
2. A smooth hypersurface X f .
3. A dominating rational map from K to X f , or more generally a codimension

n cycle in K × X f , or even more generally a degree 2n Hodge class γ in
K × X f , inducing a non-zero morphism of Hodge structures H n(X f )prim →
H n(K ).

For the last case, one uses [3].
Furthermore, we need to know that on each quasi-projective variety as

above there exists a universal object. In the case of Hodge classes, this is due
to the global invariant cycle theorem of Deligne.

Next, at the end of the argument, we used the fact that the rational map
φ f : K f ��� X f is dominating only to deduce that it induces inclusion

φ∗
f : H n(X f )prim → H n(K f )

of Hodge structures.
Hence, the whole argument works in fact with “graphs of rational maps”

replaced by “codimension n algebraic cycles or degree 2n Hodge classes in some
product K ×X inducing a non-zero morphism of Hodge structures H n(X)prim →
H n(K )”, or more generally by “non-zero Hodge classes in H n(X)prim⊗H n(K )”.

(Note that such a morphism, once it is assumed to be non-zero, would
always have an image which is of Hodge level n, because the Hodge structure
on H n(X)prim is simple for generic X .)

Using the fact that the moduli space of curves of genus g ≥ 1 has dimension
3g − 3, g ≥ 2 or 1, g = 1, we see that Theorem 3 is then a consequence of
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Theorem 1, where the family Y → S is the family of curves of genus g, and
where we replace as explained above dominating rational maps with degree 2n
non zero Hodge classes in H n(K ) ⊗ H n(X f )prim.
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166, SMF (1988).

[8] H. Clemens – Z. Ran, Twisted genus bounds for subvarieties of generic hypersurfaces,
Amer. J. Math. 126 (2004), 89-120.
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[10] P. Deligne, Théorie de Hodge II, Publ. Math. Inst. Hautes Études Sci. 40 (1971), 5-57.

[11] P. Deligne, La conjecture de Weil pour les surfaces K 3, Invent. Math. 15 (1972), 206-226.

[12] L. Ein, Subvarieties of generic complete intersections, Invent. Math. 94 (1988), 163-169.

[13] M. Green, Restrictions of linear series to hyperplanes, and some results of Macaulay and
Gotzmann, In: “Algebraic curves and projective geometry”, E. Ballico – C. Ciliberto (eds.),
Lecture Notes in Mathematics 1389, Springer-Verlag 1989, pp. 76-86.

[14] M. Green, A new proof of the explicit Noether-Lefschetz theorem, J. Differential Geom. 27
(1988), 155-159.

[15] Ph. Griffiths, Periods of certain rational integrals, I, II, Ann. of Math. 90 (1969), 460-541.

[16] S. Lang, Hyperbolic and diophantine Analysis, Bull. Amer. Math. Soc. (2) 14 (1986),
159-205.

[17] D. Mumford, Rational equivalence of zero-cycles on surfaces, J. Math. Kyoto Univ. 9
(1968), 195-204.

[18] M. Nori, Algebraic cycles and Hodge theoretic connectivity, Invent. Math. 111 (1993),
349-373.

[19] A. Otwinowska, Asymptotic bounds for Nori’s connectivity theorem, preprint 2002.

[20] C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential
Geom. 44 (1996), 200-214, 49 (1998), 601-611.



656 CLAIRE VOISIN

[21] C. Voisin, “Hodge Theory and Complex Algebraic Geometry II”, Cambridge University
Press, 2003.

[22] C. Voisin, Nori’s connectivity theorem and higher Chow groups, J. Inst. Math. Jussieu (2)
1 (2002), 307-329.
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