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Dispersive estimates with loss of derivatives
via the heat semigroup and the wave operator

FRÉDÉRIC BERNICOT AND VALENTIN SAMOYEAU

Abstract. In this paper our aim is to give a general (possibly compact or non-
compact) analog of the Strichartz inequalities with loss of derivatives, obtained
by Burq, Gérard and Tzvetkov [21] and Staffilani and Tataru [56]. Moreover
we present a new approach, relying only on the heat semigroup, in order to
understand the analytic connection between the heat semigroup and the unitary
Schrödinger group (both related to a same self-adjoint operator). One of the nov-
elties is to forget the endpoint L1-L1 dispersive estimate and to look for a weaker
H1-BMO estimate (Hardy and BMO spaces both adapted to the heat semigroup).
This new point of view allows us to give a general framework (infinite metric
spaces, Riemannian manifolds with rough metric, manifolds with boundary, . . . )
where Strichartz inequalities with loss of derivatives can be reduced to microlo-
calized L2-L2 dispersive properties. We also use the link between the wave prop-
agator and the unitary Schrödinger group to prove how short-time dispersion for
waves implies dispersion for the Schrödinger group.

Mathematics Subject Classification (2010): 35B30 (primary); 42B37, 47D03,
47D06 (secondary).

1. Introduction

A powerful tool to study nonlinear Schrödinger equations is the family of so-called
Strichartz estimates. Those estimates allow to control the size of solutions to a
linear problem in terms of the size of the initial data. The “size” notion is usually
given by a suitable functional space L pt L

q
x . Such inequalities were first introduced

by Strichartz in [58] for Schrödinger waves on Euclidean space. They were then
extended by Ginibre and Velo in [38] (and the endpoint is due to Keel and Tao
in [47]) for the propagator operator associated with the linear Schrödinger equation
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in Rd . So for an initial data u0, we are interested in controlling u(t, . ) = eit1u0
which is the solution of the linear Schrödinger equation:

(
i@t u +1u = 0
u|t=0 = u0.

It is well-known that the unitary group eit1 satisfies the following inequality:
���eit1u0

���
L pLq ([�T,T ]⇥Rd )

 CT ku0kL2(Rd )

for every pair (p, q) of admissible exponents which means: 2  p, q  1,
(p, q, d) 6= (2,1, 2), and

2
p

+

d
q

=

d
2
. (1.1)

The Strichartz estimates can be deduced via a T T ⇤ argument from the dispersive
estimates ���eit1u0

���
L1(Rd )

. |t |�
d
2 ku0kL1(Rd ). (1.2)

If supT>0 CT < +1, we will say that a global-in-time Strichartz estimate holds.
Such a global-in-time estimate has been proved by Strichartz for the flat Lapla-
cian on Rd while the local-in-time estimate is known in several geometric situation
where the manifold is nontrapping (asymptotically Euclidean, conic, or hyperbolic,
Heisenberg group); see [8, 18, 19, 41, 56] or for an equation with variable coef-
ficients [52, 60]. The finite volume of the manifold and the presence of trapped
geodesics appear to limit the extent to which dispersion can occur.

The situation for compact manifolds presents a new difficulty, since consider-
ing the constant initial data u0 = 1 yields a contradiction in (1.2) for large time.

Burq, Gérard and Tzvetkov [21] and Staffilani and Tataru [56] proved that
Strichartz estimates hold on compact manifolds for finite time if one considers reg-
ular data u0 2 W 1/p,2. Those are called “with a loss of derivatives”:

���eit1u0
���
L pLq

. ku0kW 1/p,2 .

An interesting problem is to determine for specific situations, which loss of deriva-
tives is optimal (for example the work by Bourgain [20] on the flat torus and [59]
by Takaoka and Tzvetkov).

Numerous recent works aim also to obtain such Strichartz estimates with a loss
of derivatives in various situations, for example corresponding to a Laplacian oper-
ator on a smooth domain with boundary condition (Dirichlet or Neumann); see the
works of Anton [3], Blair-Smith-Sogge [17] and Blair-Ford-Herr-Marzuola [16].
All these works are built on the approach for compact manifolds of [21]. Con-
cerning noncompact manifolds, Strichartz estimates with the same loss of deriva-
tives have been obtained in [22] by Burq-Gérard-Tzvetkov for the complement of a
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smooth and bounded domain in the Euclidean space. Let us precise that for expo-
nents satisfying (1.1), the two approaches [21] (for the compact situation) and [22]
(for the non-compact situation) are completely different, although they give exactly
the same loss of derivatives. Indeed in [21] the loss of derivatives is due to the use
of only the semi-classical dispersive inequality and in [22] the loss of derivatives
is due to the use of Sobolev embeddings together with the local smoothing near
the boundary. Let us point out that in [22], combining with a smoothing effect al-
lows the authors to get around the loss of regularity up to restrict the range of the
available Lebesgue exponents.

The case of unbounded manifolds (with boundary) with one trapped orbit was
considered by Christianson in [30] where a larger loss of derivatives of 1/p + " is
obtained. There the author allows to perturb the Laplacian by a smooth potential.

We remark that, by Sobolev embedding, the loss of 2/p derivatives is straight-
forward. Indeed W

2
p ,2
,! Lq since d(12 �

1
q ) =

2
p so that���eit1u0

���
Lq

.
���eit1u0

���
W

2
p ,2  ku0k

W
2
p ,2 (1.3)

and taking the L p([�T, T ]) norm yields���eit1u0
���
L p([�T,T ],Lq )

 CT ku0k
W

2
p ,2 .

Therefore Strichartz estimates with loss of derivatives are interesting for a loss
smaller than 2/p.

The purpose of this article is multiple:

• To present a general result with loss of derivatives for a (possibly compact or
noncompact) general setting (involving metric space with a self-adjoint opera-
tor);

• To try to understand the link between the heat semigroup and the unitary Schrö-
dinger group, through the use of corresponding Hardy and BMO spaces. Such
spaces allow us to get around the pointwise dispersive estimates and only to
consider L2 � L2 microlocalized estimates (in space and in frequency);

• To connect (short time) dispersive properties for Schrödinger group with disper-
sion for the wave propagator.

Let us set the general framework of our study. Let (X, d, µ) be a metric measured
space of homogeneous type. That is d is a metric on X and µ a nonnegative � -finite
Borel measure satisfying the doubling property:

8x 2 X,8r > 0, µ(B(x, 2r)) . µ(B(x, r)),

where B(x, r) denote the open ball with center x 2 X and radius r > 0. As a
consequence, there exists a homogeneous dimension d > 0, such that

8x 2 X , 8r > 0 , 8t � 1 , µ(B(x, tr)) . tdµ(B(x, r)). (1.4)
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Thus we aim our result to apply in numerous cases of metric spaces such as open
subsets of Rd , smooth d-manifolds, some fractal sets, Lie groups, Heisenberg
group, . . .

Keeping in mind the canonical example of the Laplacian operator in Rd : 1 =P
1 jd @

2
j , we will be more general in the following sense: we consider a nonneg-

ative, self-adjoint operator H on L2 = L2(X, µ) densely defined, which means that
its domain

D(H) :=

�
f 2 L2, H f 2 L2

 
is supposed to be dense in L2. It is known that �H is the generator of a L2-
holomorphic semigroup (e�t H )t�0 (see Definition 2.1 and [31]) and we assume
that it satisfies L2 Davies-Gaffney estimates: for every t > 0 and every subsets
E, F ⇢ X : ���e�t H���

L2(E)!L2(F)
. e�

d(E,F)2
4t (DG)

(with the restriction to t . diam(X) if X is bounded). Without losing generality
(up to consider �H for some positive real � > 0), we assumed that H satisfies the
previous normalized estimates, which are equivalent to a finite speed propagation
property of the associated wave propagator at speed 1 (see later (1.6)).

We will assume also that the heat semigroup (e�t H )t�0 satisfies the typical
upper estimates (for a second order operator): for every t > 0 the operator e�t H
admits a kernel pt with

0  pt (x, x) .
1

µ(B(x,
p

t))
, 8 t > 0, a.e. x 2 X. (DUE)

It is well-known that such on-diagonal pointwise estimates self-improve into the
full pointwise Gaussian estimates (see [39, Theorem 1.1] or [28, Section 4.2], e.g.):

0 pt (x, y).
1

µ(B(x,
p

t))
exp

 
�c

d(x, y)2

t

!
, 8 t>0, a.e. x, y 2 X. (UE)

Before we carry on, let us give some examples to point out that (DUE) is a quite
common estimate:

• It is well known that on a Riemannian manifold [39, Theorem 1.1] or for the
Laplacian on a subset with boundary conditions [40], under very weak con-
ditions the heat kernel satisfies (DUE) and so (UE). It is also the case for
the semigroup generated by a self-adjoint elliptic operator of divergence form
H = �div(Ar) on the Euclidean space with a bounded and real valued elliptic
matrix A (see [4, Theorem 4]);

• If (X1, . . . , Xn) is a family of vector fields satisfying Hörmander condition
and if H := �

Pn
i=1 X2i , then, in the situation of Lie groups or Riemannian

manifolds with bounded geometry, the heat semigroup satisfies Gaussian upper-
bounds (UE) (see [53, Theorem 5.14] and [29, Section 3, Appendix 1]);
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• When one considers an infinite volume Euclidean surface with conic singulari-
ties with H equals to its Laplacian, then it is proved in [16, Section 4] that the
heat kernel satisfies Gaussian pointwise estimates (UE).

Let us now emphasize why we put such importance on those estimates and on the
heat semigroup. The considered operator H is self-adjoint and so admits a C1-
functional calculus, which allows us to control k�(H)kL p!L p for some regular
functions �. Such estimates can be obtained as explained in the Appendix of [44]
as a consequence of pointwise Gaussian estimates (UE) on the heat kernel. More-
over, we aim to use some extrapolation techniques (to go from localized L2 � L2
dispersive estimates to L p � L p0 estimates) which require local information, as off-
diagonal estimates of some functional operators. Such local information could be
transferred from those on the heat semigroup to some operators coming from a C1-
calculus, (see [48] for example). However, it requires to deal with the whole class
of C1 functions (compactly supported) with suitable norms. . . For an easier read-
ability and a more intrinsic method, we prefer to work only with the semigroup and
its time derivatives. We refer the reader to Remark 2.6 for the equivalence between
the two points of view.

In the end, we would like to point out that we assume the operator H to be
self-adjoint to guarantee some useful properties. However, the approach that we
develop here could be extended to a non self-adjoint operator H , as soon as we can
define the Schrödinger group (eit H )t2R as well as the wave propagator with a finite
speed propagation property. In such a setting, a C1-calculus is not available and it
will be important to only use a sectorial functional calculus as we do here.

Motivated by this program, we decide to only work with the holomorphic func-
tional calculus associated with the operator H and more precisely, we will see that
all of our study relies on a (sectorial) functional calculus only involving the heat
semigroup and its time derivatives (and could also be written in terms of a C1-
calculus, see Remark 2.6).

Moreover, we still keep in mind the following very general/interesting ques-
tion: what assumptions on the heat semigroup (e�t H )t�0 could imply dispersive
estimates and Strichartz estimates (possibly with a loss of derivatives) for the uni-
tary Schrödinger group (eit H )t2R? Such a question is natural, since the application
z 7! e�zH is holomorphic on {z 2 C, Re(z) > 0}. Dispersive informations on
Schrödinger group should be connected to some specific properties of the heat ker-
nel.

In the first part of this work, we investigate this question, allowing loss of
derivatives, as in [21], proposing a new approach, related to the heat semigroup
and the use of Hardy-BMO spaces associated with the semigroup. We point out
that our approach gives an “unified” way to prove Strichartz estimates with loss of
derivatives for the compact and noncompact manifolds.

Let us briefly explain the study of Hardy and BMO spaces associated with
such a heat semigroup. The classical Hardy space H1 (also called of Coifman-
Weiss [26]) and BMO (“Bounded Mean Oscillations”, introduced by John and
Nirenberg in [46]) naturally arise (from a point of view of Harmonic Analysis)
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as a “limit/extension” of the Lebesgue spaces scale (L p)1<p<1 when p ! 1 (for
BMO) and p ! 1 (for H1). Indeed, these two spaces have many properties, which
are very useful and which fail for the critical spaces L1 and L1, as Fourier charac-
terization, duality, boundedness of some maximal functions or Calderón-Zygmund
operators, equivalence between several definitions. . . Even if BMO is strictly con-
taining L1 and H1 is strictly contained in L1, these spaces still satisfy a very con-
venient interpolation results: indeed H1 or BMO interpolates with Lebesgue spaces
L p, 1 < p < 1 and the intermediate spaces are the corresponding intermediate
Lebesgue spaces.

However, there are situations where these spaces H1 and BMO are not the right
substitutes to L1 or L1 (for example it can be shown that the Riesz transform may
be not bounded from H1 to L1) and there has been recently numerous works whose
goal is to define Hardy and BMO spaces adapted to the context of a semigroup
(see [5,6,10,13,14,34,35,43]). In [10,13], Bernicot and Zhao have described a very
abstract theory for Hardy spaces (built via atomic decomposition) and interpolation
results with Lebesgue spaces. The main idea is to consider the oscillation given by
the semigroup instead of the classical oscillation involving the average operators.
Then these adapted Hardy and BMO spaces have been extensively studied these last
years (see the previous references) and it is known that an interpolation property still
holds. We refer the reader to Subsection 2.4 for precise definitions and refer to the
previous references for more details on this theory.

We aim to prove a H1 � BMO dispersive estimate and to use an interpolation
result with the trivial L2 � L2 estimate. Even if we loose the endpoint (L1 � L1

estimate), by interpolation we know that we will at least recover the intermediate
L p � L p0 dispersive estimates for all p 2 (1, 2]. Moreover, such an approach has
the advantage to not require any pointwise estimates on the Schrödinger propagator.
We first point out that such Hardy-BMO approach have already been used in [50,61]
to obtain dispersive estimates, but there the authors considered the classical spaces
and not the ones associated with the heat semigroup.

Up to our knowledge the combination of dispersive estimates and H1 � BMO
spaces associated with the heat semigroup is a new program. Due to the novelty
of this approach, we first describe it in a very general setting, by introducing the
following notion: we say that a L2-bounded operator T satisfies Property (Hm(A))
for some integer m � 0 and constant A (which is intended to be |t |�

d
2 in the ap-

plications to dispersive estimates), if for every r > 0 (and r . diam(X) if X is
bounded) ���T m(r2H)

���
L2(Br )!L2(fBr ) . Aµ(Br )

1
2µ
�fBr � 12 (Hm(A))

where Br andfBr are any two balls of radius r and  m(x) := xme�x .
For the first result we assume an uniform lower control of the volume, namely:

it exists ⌫ > 0 such that
8x 2 X, 8r . min(1, diam(X)), r⌫ . µ(B(x, r)). (1.5)
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We then prove:

Theorem 1.1. Assume (1.4), (1.5) with (DUE). Consider a self-adjoint and L2-
bounded operator T (with kTkL2!L2 . 1), which commutes with H and satisfies
Property (Hm(A)) for somem �

d
2 . Then T is bounded from H1 to BMO and from

L p to L p0 for p 2 (1, 2) with

kTkH1!BMO . A and kTkL p!L p0 . A
1
p�

1
p0

if the ambient space X is unbounded and

kTkH1!BMO . max(A, 1) and kTkL p!L p0 . max
✓
A
1
p�

1
p0 , B

◆

if the ambient space X is bounded, and where, for the last inequality, we assumed
that kTkL p!L2 . B.

This theorem allows to reduce L p � L p0 dispersive estimates to microlocal-
ized L2 � L2 estimates (localized in the frequency through the operators  (r2H)
and in the physical space through the balls Br and fBr , respecting the Heisenberg
uncertainty principle).

Note that Property (Hm(A)) is weaker than (or necessary to have) a L1 � L1

estimate. Indeed if T is supposed to map L1 to L1 with a bound lower than A then
Cauchy-Schwarz inequality leads us to Property (Hm(A)): for every balls Br ,fBr
and every function f 2 L2(Br ):

���T (r2H) f
���
L2(fBr )  A

��� �r2H� f ���
L1

µ(fBr )1/2
. Aµ

�fBr � 12 k f kL1(Br )
 Aµ

�fBr � 12µ(Br )
1
2 k f kL2(Br ).

For the L1 � L1 continuity of  (r2H) see Corollary 2.4.

Our goal is to obtain the dispersive estimate

kTt (H)kH1!BMO . |t |�
d
2 ,

where Tt (H) = eit H m(h2H), h > 0. The case of the full range |t |  1 (that is t
independent of h) is the most difficult. However the case |t |  h2 is straightforward:
indeed for m = 0 (m 6= 0 then deduces easily) we have Tt (H) = eit He�h2H =

e�zH with z = h2 � i t . The key observation is that |z| =

p

h4 + t2 . h2 = Re(z).
Thus (the complex time z lives into a sector far away from the axis of imaginary
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complex numbers) by analyticity, Property (UE) can be extended to complex time
semigroup and so

kTt (H)kL1!L1 

1

Re(z)
d
2

.
1

|z|
d
2



1

|t |
d
2
.

So the full L1 � L1 (and so Property (Hm(A)) which is weaker, as we have just
seen) are obviously satisfied in the range |t |  h2.

The intermediate case h2  |t |  h is treated in the particular case of compact
Riemannian manifolds in [21] together with the implicated Strichartz estimates with
a nontrivial loss of derivatives. We will focus on this interesting situation and will
describe in this very general setting how dispersive estimates imply these Strichartz
estimates (see Theorem 4.5).

The second goal we have in mind, is also to emphasize the link between the
heat semigroup and the wave operator. In the second part of the paper (from Sec-
tion 5) we aim to study which dispersive properties on the wave equation would
be sufficient to ensure our hypothesis (Hm(A)) for T = eit H m(h2H), in order
to regain the dispersive estimates and then Strichartz estimates for the Schrödinger
group. Mainly, we are interested in the wave propagator cos(t

p

H)which is defined
as follows: for any f 2 L2, u(t) := t 7! cos(t

p

H) f is the unique solution of the
linear wave equation: 8><

>:
@2t u + Hu = 0
u|t=0 = f
@t u|t=0 = 0.

One can find the explicit solution of this problem in [37] for the Euclidean case and
in [9] for the compact Riemannian manifold case through precise formula for the
kernel of the wave propagator. The remarkable property of this operator comes from
its finite speed propagation. We know that Davies-Gaffney estimates (DG) imply
(and indeed are equivalent to [28, Theorem 3.4] to) the finite speed propagation
property at a speed equal to 1: namely, for every disjoint open subsets U1,U2 ⇢ X ,
every function fi 2 L2(Ui ), i = 1, 2, thenD

cos
�
t
p

H
�
f1, f2

E
= 0, (1.6)

for all 0 < t < d(U1,U2). If cos(t
p

H) is an integral operator with kernel Kt , then
(1.6) simply means that Kt is supported in the “light cone”

Dt :=

n
(x, y) 2 X2, d(x, y)  t

o
.

To apply Theorem 1.1 in order to get dispersive estimates, we first have to prove
that Schrödinger propagators satisfy Property (Hm(A)) for some suitable constant
A. The following formula (see Section 5): for all z 2 C with Re(z) > 0:

e�zH =

1
p

⇡

Z
+1

0
cos

⇣
s
p

H
⌘
e�

s2
4z
ds
p

z
,

allows to describe the link between Schrödinger propagators and wave propagators.
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We will need extra assumptions (deeper than just the finite speed propagation
property), in order to be able to check Property (Hm(A)). More precisely, we need
the following short time L2 � L2 dispersive estimate:
Assumption 1.2. There exist  2 (0,1] and an integer m0 such that for every
s 2 (0, ) we have: for every r > 0, every balls Br ,fBr of radius r then

���cos(spH) m0
�
r2H

����
L2(Br )!L2(fBr ) .

✓
r

s + r

◆ d�1
2
✓
1+

|L � s|
r

◆
�
d+1
2

where L = d(Br ,fBr ).
To obtain our second result we will need more regularity on the measure than

(1.5). For the next theorem assume that µ is Ahlfors regular, that is: there exist two
absolute positive constants c and C such that for all x 2 X and r > 0:

crd  µ(B(x, r))  Crd . (1.7)

Then our second main theorem is the following:

Theorem 1.3. Suppose (1.7) with d > 1, (DUE) and Assumption 1.2 with  2

(0,1]. Then for every integer m � max(d2 ,m0 + d
d�1
2 e) we have

• If  = 1: the propagator eit H satisfies Property (Hm(|t |�
d
2 )) for every t 2 R⇤

and so we have Strichartz estimates without loss of derivatives;
• If  < 1: for every " > 0, every 0 < h  1 with h2  |t |  h1+" and every
integer m0

� 0 the propagator eit H m0(h2H) satisfies Property (Hm(|t |�
d
2 ))

and so we have Strichartz estimates with loss of 1+"p derivatives.

It is worth noting that, in the proof, the same approach raises the two cases:

•  < +1 which leads to Strichartz estimates with loss of derivatives;
•  = +1 which leads to estimates without loss of derivatives.

The general setting we work with allows our result to apply in many situations.
For instance Assumption 1.2 holds in the context of smooth compact Riemannian
manifold with  given by the injectivity radius and in the Euclidean situation with
 = 1 (also with smooth perturbation and there  < 1).

As an example, note that in the case of the Euclidean space with an operator
of the form H = �divAr, where A is a matrix with variable and C1,1 coefficients,
then Smith has built a short time parametrix [54] of the corresponding wave equa-
tion (see also the work of Blair [15]), which yields in particular our Assumption 1.2
for some  < 1. As a consequence, we deduce that the solutions of Schrödinger
equation satisfies Strichartz estimates with loss of 1+"p derivatives for every " > 0.

Moreover, properties of the spectral measure (more precisely the microlocal-
ized dispersive estimates in [62, Proposition 3.3]) obtained by Zhang allow to re-
cover Assumption 1.2 with  = +1 and to have a new demonstration of the result
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of Hassel-Zhang in [42], namely global-in-time Strichartz estimates without loss of
derivatives on non-trapping asymptotically conic Riemannian manifolds (except for
q = 1).

By this way, we have a unified approach to deal with compact or noncompact
situations and we recover (up to a loss " as small as we want) the Strichartz esti-
mates with loss of derivatives for a compact smooth manifold due to [21, 56] and
full Strichartz estimates for the Euclidean or non-trapping setting. However even if
the obtained estimates do not improve the ones already known in the literature for
specific situations (some of them optimal), our results take place in a much more
general framework and are derived from a new method relying on the heat semi-
group. Moreover, the link between dispersion for waves and dispersive estimates
for Schrödinger equation was unknown in such a general framework.

The plan of this article is as follow: In Section 2 we first set the notation and
definitions used throughout the paper. Then we describe the assumptions required
on the heat semigroup (e�t H )t�0 together with some basic properties about Hardy-
BMO spaces and functional calculus associated with H . Theorem 1.1 is proved in
Section 3 and we apply it in Section 4 to prove Strichartz estimates (with a possible
loss of derivatives). Section 5 shows Theorem 1.3, and Section 6 how the hypothesis
(Hm(A)) can be derived from the small time parametrix of the associated wave
operator.

2. Definitions and preliminaries

2.1. Notation

For B(x, r) a ball (x 2 X and r > 0) and any parameter � > 0, we denote
�B(x, r) := B(x, �r) the dilated and concentric ball. As a consequence of the
doubling property, a ball B(x, �r) can be covered by C�d balls of radius r , uni-
formly in x 2 X , r > 0 and � > 1 (C is a constant only dependent on the ambient
space). Moreover, the volume of the balls satisfies the following behavior:

µ(B(y, r)) .
✓
1+

d(x, y)
r

◆d
µ(B(x, r)) (2.1)

uniformly for all x, y 2 X and r > 0.
For a ball Q, and an integer i � 1, we denote Ci (Q) the i th dyadic corona

around Q:
Ci (Q) := 2i Q\2i�1Q.

We also set C0(Q) = Q.
If no confusion arises, we will note L p instead of L p(X, µ) for p 2 [1 , 1].

For a set �, we say that f 2 L p(�) if f is supported in � and if

k f kL p(�) :=

✓Z
�

| f |pdµ

◆ 1
p

< +1.
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Notice that if f 2 L p, we can compute k f kL p(�) even if f is not supported in �.
We will use u . v to say that there exists a constant C (independent of the

important parameters) such that u  Cv and u ' v to say that u . v and v . u.
If � is a set, 11� is the characteristic function of �, defined by

11�(x) =

(
1 if x 2 �

0 if x /2 �.

The Hardy-Littlewood maximal operator is denoted byM and is given for every
x 2 X and function f 2 L1loc by:

M( f )(x) := sup
B ball
x2B

✓
1

µ(B)

Z
B

| f |dµ

◆
= sup

B ball
x2B

�

Z
B

| f |dµ.

Since the space is of homogeneous type, it is well-known that this maximal operator
is bounded in any L p spaces, for p 2 (1,1].

2.2. The heat semigroup and associated functional calculus

We recall the definition of a L2-holomorphic semigroup:
Definition 2.1. A family of operators (S(z))Re(z)�0 on L(L2) is said to be a holo-
morphic semigroup on L2 if (with 0 := {z 2 C, Re(z) � 0}):

(1) S(0) = id;
(2) 8z1, z2 2 0 , S(z1 + z2) = S(z1) � S(z2);
(3) 8 f 2 L2 , lim

z!0
z20

kS(z) f � f kL2 = 0;

(4) 8 f, g 2 L2, the map z 7! hS(z) f, gi is holomorphic on the interior Int(0).

We recall the bounded functional calculus theorem from [51]:

Theorem 2.2. Since H is a nonnegative self-adjoint operator, it admits a L1-
functional calculus: if ⇢ 2 L1(R+), then we may consider the operator ⇢(H)
as a L2-bounded operator and

k⇢(H)kL2!L2  k⇢kL1 .

For any integer m � 1 and real n > 0, we set  m,n(x) = xme�nx and  m :=

 m,1. These smooth functions  m,n 2 C1(R+), vanish at 0 and at infinity; more-
over k m,nkL1(R+) . 1. The previous theorem allows us to define the operators
 m,n(t H) for any t � 0 and m 2 N, n > 0.

From the Gaussian estimates of the heat kernel (UE) and the analyticity of the
semigroup (see [31, Corollary 5] or [25]) it comes that for every integer m 2 N and
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n > 0 the operator  m,n(t H) has a kernel pm,n,t also satisfying upper Gaussian
estimates:

|pm,n,t (x, y)|.
1

µ(B(x,
p

t))
exp

 
�c

d(x, y)2

t

!
, 8 t > 0, a.e. x, y 2 X. (2.2)

We now give some basic results about the semigroup thanks to our assumptions.

Proposition 2.3. Under (1.4) and (UE), the heat semigroup is pointwisely bounded
by the Hardy-Littlewood maximal operator and is uniformly bounded in every L p-
spaces for p 2 [1,1]: for every locally integrable function f and every x0 2 X ,
we have

sup
t>0

���e�t H f
���
L1(B(x0,

p

t))
.M( f )(x0) and sup

t>0
ke�t H f kL p . k f kL p .

Proof. The pointwise boundedness by the maximal function is an easy consequence
of (UE) with the doubling property (1.4). As a consequence, the L p-boundedness
of the maximal operator yields the uniform L p-boundedness of the heat semigroup,
for p > 1. Let us now check the L1-boundedness. By (UE), we have:
Z
x2X

|e�t H f (x)|dµ(x) .
Z
x2X

Z
y2X

1
µ(B(x,

p

t))
e�c

d(x,y)2
t | f (y)|dµ(y)dµ(x)

.
Z
y2X

| f (y)|
1

µ(B(y,
p

t))

Z
x2X

✓
1+

d(x, y)
p

t

◆d
e�c

d(x,y)2
t dµ(x)dµ(y).

A decomposition in coronas around B(y,
p

t) allows us to control the integral
over x :

Z
B(y,

p

t)

✓
1+

d(x, y)
p

t

◆d
e�c

d(x,y)2
t dµ(x)

+

X
j�1

Z
C j (B(y,

p

t))

✓
1+

d(x, y)
p

t

◆d
e�

d(x,y)2
t dµ(x)

 2dµ(B(y,
p

t)) +

X
j�1

⇣
1+ 2 j

⌘d
e�c2

2 j
µ(B(y, 2 j

p

t))

.

 
2d +

X
j�1

(1+ 2 j )d2 jde�c2
2 j
!

µ(B(y,
p

t)) . µ(B(y,
p

t)),

where the last line results from the doubling property of µ. Hence, uniformly in
t > 0

ke�t HkL1!L1 . 1.
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Corollary 2.4. For m 2 N and n > 0, since  m,n(t H) satisfies (UE), we deduce
that the operators  m,n(t H) also satisfy the same estimates.

Since H is a self-adjoint operator on L2, it admits a bounded Borel functional
calculus on L2. Under the additional assumption of (1.4) and (UE), it is known
that H can be extended to an unbounded operator acting on L p, for p 2 (1,+1),
with a bounded H1 functional calculus on L p as shown in [33, Theorem 3.1]. It
also admits a bounded Hörmander-type functional calculus on L p, see [33] and [32,
Theorem 3.1]. We refer to [1] and references in [1] for more details on functional
calculus. In the sequel, we will mostly make use of H1 functional calculus rather
than Hörmander-type functional calculus.

Let us now give some basic properties about the functions  m,n , which are a
consequence of the L p holomorphic functional calculus:

Proposition 2.5. Under (1.4) and (UE), we have:

(a) For all k 2 N⇤, m 2 N and n > 0 then  km,kn =

�
 m,n

�k
;

(b) For all m,m0
2 N and n, n0, u, v > 0 then:

 m,n(u·) m0,n0(v·) =

umvm
0

(nu + n0v)m+m0
 m+m0,1((nu + n0v)·);

(c) For every r > 0 and every f 2 L2 then:

(1� e�r
2H ) f =

Z r2

0
He�sH f ds =

Z r2

0
 1,1(sH) f

ds
s

;

(d) For m 2 N⇤, n > 0 and f 2 L2, then
⇣R

+1

0 k m,n(vH) f k2L2
dv
v

⌘ 1
2

+

kPN (H) f kL2 . k f kL2; where PN (H) is the projector on the kernel of H :
N (H) := { f 2 L2 \D(H), H f = 0};

(e) For m 2 N⇤, n > 0, up to a constant cm,n , we have the decomposition (usually
called Calderón reproducing formula):

I d = cm,n

Z
+1

0
 m,n(sH)

ds
s

+ PN (H).

Proof. (a), (b), (c) and (e) are straightforward and refer the reader to [11, Proposi-
tion 2.11]. (d) is classical and a direct application of (e) with the almost-orthogo-
nality of  m,n(vH) operators: for every u, v > 0

k m,n(uH) m,n(vH)kL2!L2 . min
⇣u

v
,
v

u

⌘m
;

for which we refer to , e.g., [7]
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It is crucial to keep in mind that by the holomorphic functional calculus, item
(e) gives a decomposition of the identity, the following Calderón reproducing for-
mula:

I d = cm,n

Z
1

0
 m,n(sH)

ds
s

+ PN (H),

which has to be seen/thought as a smooth version of the spectral decomposition.
Indeed the operator m,n(sH) plays the role of a regularized version of the projector
11

[s�1,2s�1](H).
Remark 2.6. We would like to emphasize that the use of  m,n functions is exactly
equivalent to the use of smooth compactly supported cut-off functions. Indeed, it is
easy by a smooth partition of the unity to build m,n by an absolutely convergent se-
rie of smooth and compactly supported cut-off functions. From functional calculus,
we also know how we can build a smooth and compactly supported function by the
resolvent of H (using the semigroup) and so the m,n functions (see [44, Appendix]
or [48], e.g.).

We have chosen to work with  m,n functions to enlighten the connection be-
tween dispersive estimates and heat semigroup and also to get around the different
norms that we have to consider on the C1 space.

2.3. Quadratic functionals associated with
the heat semigroup and Sobolev spaces

Let us define some tools for the next theorem, for all � > 0:

'(�) :=

Z
+1

�
 m,n(u)

du
u

,

'̃(�) :=

Z �

0
 m,n(v)

dv

v
=

Z 1

0
 m,n(�u)

du
u

.

Remark 2.7. Notice that ' is, by integration by parts, a finite linear combination
of functions  k,` for k 2 {0, ..,m} and ` > 0. Moreover for every � 2 R+,

'̃(�) + '(�) =

Z
+1

0
um�1e�nudu =

0(m)

nm
:= cm,n.

The following theorem will be useful to estimate the L p-norm through the heat
semigroup:

Theorem 2.8. Assume (1.4) and (DUE). For every integer m � 1, real number
n > 0 and all p 2 (1,1), we have

k f kL p ' k'(H) f kL p +

������
 Z 1

0
| m,n(uH) f |2

du
u

! 1
2
������
L p

.
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So if q � 2

k f kLq . k'(H) f kLq +

 Z 1

0
k m,n(uH) f k2Lq

du
u

! 1
2

.

Such a result can be seen as a semigroup version of the Littlewood-Paley character-
ization of Lebesgue spaces.

Proof. We give the sketch of the proof (and refer to [5, Chapter 6, Theorem 6.1]
and [7, Proposition 2.12] for more details where it is proved that such inequalities
hold for every exponent p belonging to the range dictated by the heat semigroup
(e�t H )t�0; here (1,1)). We aim to study the boundedness of the quadratic func-
tional

T : f 7!

 Z 1

0

��� m,n
�
s2H

�
f
���2 dss

! 1
2

.

Indeed T is a horizontal square function (or Littlewood-Paley-Stein g-function),
and its L p-boundedness is well-known by functional calculus theory (see [49, 57]
and references therein) when the semigroup is Submarkovian and conservative.

We aim here to quickly explain another approach (more analytic) of its bound-
edness, which does not require submarkovian property and conservativeness but
relies on Gaussian estimates (UE). We are looking to apply extrapolation result [5,
Theorem 1.1] or [13] to T with p0 = 1. To keep the notation of [5] we recall that

Ar := I d �

⇣
I d � e�r

2H
⌘M

and Br := I d � Ar =

⇣
I d � e�r

2H
⌘M

,

with M a large enough integer. First by L2 holomorphic functional calculus, it is
known that T is bounded on L2 (see [7], e.g.). We now have to check the two main
hypothesis of [5, Theorem 1.1].

By expanding, Ar behaves like e�r
2H , in the sense that it admits a kernel sat-

isfying the Gaussian upper estimates at the scale r . Note B a ball of radius r , and
f supported in B. For all j � 1 and for all x 2 C j (B), we have

|Ar f (x)| .
Z
B

1
µ(B(x, r))

e�c
d(x,y)2

r2 | f (y)|dµ(y)

.
1

µ(B(x, r))

Z
B
e�c2

2 j
| f |dµ.

If z denotes the center of B, then by the doubling property (2.1) of the measure it
comes

µ(B) .
✓
1+

d(z, x)
r

◆d
µ(B(x, r)),
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so that

µ(B(x, r))�1 .
✓
1+

d(z, x)
r

◆d
µ(B)�1 . 2 jdµ(B)�1,

where we used that z 2 B and x 2 C j (B) so d(z, x) . 2 j r . Hence,

 
1

µ(2 j+1B)

Z
C j (B)

|Ar f |2dµ

! 1
2

. g( j)
1

µ(B)

Z
B

| f |dµ,

with g( j) . e�c4 j 2 jd satisfying
X
j
g( j)2d j < +1.

That is the first assumption required in [5, Theorem 1.1].
Then the second (and last) assumption of [5, Theorem 1.1] has been weakened

in [13] and we only have to check that for all j � 2:
 

1
µ(2 j+1B)

Z
C j (B)

��T (Br f )
��2dµ

! 1
2

 g( j)
✓

1
µ(B)

Z
B

| f |2dµ

◆1/2
.

We refer the reader to [5, Step 3, item 1, Theorem 6.1] and also [27] and [6], where
such inequalities are proved, and the arguments only rely on the Davies-Gaffney
estimates (DG) for  m,n(t H).

By this way, we may apply [5, Theorem 1.1] and deduce that the square func-
tion T is bounded on L p for every p 2 (1, 2]. For p > 2, we have to apply [5, The-
orem 1.2] and this is also detailed in [5, Step 2, Theorem 6.1]. Thus, if p 2 (1,1)
then ������

 Z 1

0

��� m,n
�
s2H

�
f
���2 dss

! 1
2
������
L p

. k f kL p . (2.3)

It remains to check the reverse inequalities. We proceed by duality to finish the
proof. Since '(x) +

R 1
0  m,n(t x)dtt = cm,n is a constant independent of x , then:

cm,nh f, gi =

*
f,'(H)g +

Z 1

0
 m,n(t H)g

dt
t

+

= h'(H) f, gi +

Z 1

0

D
 m

2 , n2
(t H) f, m

2 , n2
(t H)g

E dt
t

.

We should decompose m = m1 + m2 with 2 integers m1, m2 comparable to m
2 .

For simplicity we take m1 = m2 =
m
2 and assume they are integers. We let to
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the reader the minor modifications. The Cauchy-Schwarz inequality for the scalar
product (u, v) =

R 1
0 u(t)v(t)dtt gives then:

|h f, gi|. |h'(H) f, gi|+
Z  Z 1

0

�� m
2 , n2

(t H) f
��2 dt
t

!1
2
 Z 1

0

�� m
2 , n2

(t H)g
��2 dt
t

!1
2

dµ

k'(H) f kL pkgkL p0+

������
 Z 1

0

�� m
2 , n2

(t H) f
��2 dt
t

!1
2
������
L p

������
 Z 1

0

�� m
2 , n2

(t H)g
��2 dt
t

!1
2
������
L p0

. k'(H) f kL pkgkL p0 +

������
 Z 1

0

�� m
2 , n2

(t H) f
��2 dt
t

! 1
2
������
L p

kgkL p0 ,

where 1p +
1
p0

= 1 and we used (2.3) for p0.
Thus, by duality

k f kL p = sup
kgk

L p0
1

| < f, g > | . k'(H) f kL p +

������
 Z 1

0
| m

2 , n2
(t H) f |2

dt
t

! 1
2
������
L p

.

That concludes the proof of the characterization of the Lebesgue norms, via these
square functionals.

Then in particular for q 2 [2,+1), Minkowski generalized inequality finally
gives

k f kLq (M) . k'(H) f kLq +

 Z 1

0
k m,n(uH) f k2Lq (M)

du
u

! 1
2

.

We will also work with the inhomogeneous Sobolev spaces associated with H ,
defined in terms of Bessel type: for s � 0 and p 2 (1,1), Ws,p

H which will be
noted Ws,p is the Sobolev space of order s associated/equipped with the norm

k f kWs,p :=

���(1+ H)
s
2 f
���
L p

' k f kL p +

���H s
2 f
���
L p

.

The equivalence of the norms are a direct consequence of the L p holomorphic func-
tional calculu, applied to the functions

z 7! (1+ z)�s/2, z 7! [z(1+ z)]�s/2 and z 7! (1+ z)s/2/
�
1+ zs/2

�

which are holomorphic and bounded in some small conical neighborhood (in C) of
(0,1) and so generate L p-bounded operators.
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Following the previous result, it comes

k f kWs,p ' k'(H) f kL p +

������
 

+1X
k=1

22ks | m,n(2�2k H) f |2
! 1
2
������
L p

' k'(H) f kL p +

������
 Z 1

0
u�2s

| m,n(u2H) f |2
du
u

! 1
2
������
L p

.

We refer the reader to [7] for more details about such Sobolev spaces. We can move
from the discrete to the continuous case of those partitions of “Littlewood-Paley”
writing:

+1X
k=1

Z 2

1
 m,n

�
2�2ku2�

�du
u

=

+1X
k=1

Z 2�(k�1)

2�k
 m,n

�
�v2

�dv

v
=

Z 1

0
 m,n

�
�v2

�dv

v

=

Z �

0
 m,n(u)

du
2u

=

Z 1

0
 (�u)

du
2u

.

Remark 2.9. The left hand integral works over u 2 [1, 2], so we can pass from
information on the discrete case to the same information on the continuous case.

2.4. Hardy and BMO spaces

We define now atomic Hardy spaces adapted to our situation (dictated by a semi-
group on a doubling space) using the construction introduced in [13]. LetQ be the
family of all balls of X :

Q := {B(x, r) , x 2 X , r > 0}.

We define
�
BQ
�
Q2Q the family of :

8Q 2 Q , BQ :=

⇣
1� e�r

2H
⌘M

,

where r is the radius of the ball Q and M is an integer (large enough: M �

min(34 +
3d
8 , 3) is sufficient). Those operators are bounded on L2 uniformly in

r . Indeed, by expanding, BQ is a finite linear combination of operators e�kr
2H with

k 2 {0, . . . ,M} and Theorem 2.2 gives
���e�kr2H���

L2!L2


���x 7! e�kr
2x
���
L1(R+)

 1,

because H is nonnegative.
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Remark 2.10. M �
3
4 +

3d
8 ensures that

4M
3 �

d
2 � 1 so there exists an integer

m 2 [
d
2 ,

4M
3 ]. This property will be needed in Section 3.

Definition 2.11. A function a 2 L1loc is an atom associated with the ball Q if there
exists a function fQ whose support is included in Q such that a = BQ( fQ), with

k fQkL2(Q)  (µ(Q))�
1
2 .

That last condition allows us to normalize fQ in L1. Indeed by the Cauchy-Schwarz
inequality

k fQkL1  k fQkL2(Q)µ(Q)
1
2  1.

Moreover, BQ is bounded on L1 so every atom is in L1 and they are also normalized
in L1:

sup
a

kakL1 . 1, (2.4)

where we take the supremum over all the atoms. Indeed, consider an atom a =

BQ( fQ) = (1� e�r2H )M fQ with suitable function fQ supported on a ball Q. By
the binomial theorem, BQ behaves like e�kr

2H . So Proposition 2.3 gives

kakL1(X) = kBQ( fQ)kL1(X) 

MX
k=1

✓
M
k

◆
ke�kr

2H fQkL1 . k fQkL1 . 1.

We may now define the Hardy space by atomic decomposition:
Definition 2.12. A measurable function h belongs to the atomic Hardy space H1ato,
which will be denoted H1, if there exists a decomposition

h =

X
i2N

�i ai µ � a.e.

where ai are atoms and �i real numbers satisfying:X
i2N

|�i | < +1.

We equip the space H1 with the norm:

khkH1 := inf
h=
P

i �i ai

X
i2N

|�i |,

where we take the infimum over all the atomic decompositions.
For a more general definition and some properties about atomic spaces we refer

to [10,13], and the references therein. From (2.4), we deduce:
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Corollary 2.13. The Hardy space is continuously embedded into L1:

k f kL1 . k f kH1 .

From [13, Corollary 7.2], the Hardy space H1 is also a Banach space.

We refer the reader to [13, Section 8], for details about the problem of identi-
fying the dual space (H1)⇤ with a BMO space. For a L1-function, we may define
the BMO norm

k f kBMO := sup
Q

✓
�

Z
Q

|BQ( f )|2 dµ

◆1/2
,

where the supremum is taken over all the balls. If f 2 L1 then BQ( f ) is also uni-
formly bounded (with respect to the ball Q), since the heat semigroup is uniformly
bounded in L1 (see Proposition 2.3) and so k f kBMO is finite.
Definition 2.14. The functional space BMO is defined as the closure

BMO :=

�
f 2 L1

+ L2, k f kBMO < 1

 
,

for the BMO norm.
Remark 2.15. The following characterization of the BMO norm will be useful: for
f 2 L2 then

k f kBMO = sup
a atom

|h f, ai|, (2.5)

and f belongs to BMO if and only if the right hand side is finite. Indeed if f 2 L2
then for all ball Q

µ(Q)�
1
2 kBQ( f )kL2(Q) = µ(Q)�

1
2 sup

g2L2(Q)
kgkL2(Q)

1

|hBQ( f ), gi|

= sup
g2L2(Q)

kgkL2(Q)
1

���D f, BQ ⇣µ(Q)�
1
2 g
⌘E��� ,

where we used that BQ is self-adjoint. One can check that the collection of atoms
exactly corresponds to the collection of functions of type BQ(µ(Q)�

1
2 g) with g 2

L2(Q) and kgkL2  1.
Following [13, Section 8], it comes that BMO is continuously embedded into

the dual space (H1)⇤ and contains L1:

L1 ,! BMO ,!
�
H1
�
⇤

.

Hence
kTkH1!(H1)⇤ . kTkH1!BMO, (2.6)
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and
8✓ 2 (0, 1),

�
L2,BMO

�
✓
,!

⇣
L2,

�
H1
�
⇤

⌘
✓
. (2.7)

The following interpolation theorem between Hardy spaces and Lebesgue spaces is
the key of our study:

Theorem 2.16. For all ✓ 2 (0, 1), consider the exponent p 2 (1, 2) and q = p0
2

(2,1) given by
1
p

=

1� ✓

2
+ ✓ and

1
q

=

1� ✓

2
.

Then (using the interpolation notation), we have
�
L2, H1

�
✓

= L p and
⇣
L2,

�
H1
�
⇤

⌘
✓
,! Lq ,

if the ambient space X is non-bounded and

L p ,! L2 +

�
L2, H1

�
✓

and L2 \

⇣
L2,

�
H1
�
⇤

⌘
✓
,! Lq ,

if the space X is bounded.
The same results hold replacing (H1)⇤ by BMO thanks to (2.7).

Proof. The result follows directly from [10, Theorems 4 and 5] (and we keep here
its notation). To ensure that it applies in our setting, we have to check that H1 ,!
L1 (which we knew from Corollary 2.13), and that the maximal function M1 is
bounded byM, where we recall that

M1( f )(x) = sup
Q3x

��A⇤

Q( f )
��
L1(Q)

,

with

AQ = I d �

⇣
I d � e�r

2H
⌘M

is self-adjoint and r denotes the radius of Q.

The binomial theorem shows that AQ is a linear combination of operators e�kr
2H

for k 2 {1, . . . ,M}. So the property that M1 is pointwisely controlled byM is a
direct consequence of Proposition 2.3.

In the situation of bounded space (with a finite measure), interpolation is more
delicate since the previous result does not give a complete characterization of L p as
an intermediate space. We have the following:

Theorem 2.17. Assume that the space is bounded (or equivalently that µ(X) <
+1) and consider a self-adjoint operator T satisfying the following boundedness:8><

>:
kTkL2!L2 . 1
kTkH1!(H1)⇤ . A < +1

kTkL p!L2 . B < +1 for p 2 (1, 2)
,
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then T is bounded from L p to L p0 with

kTkL p!L p0 . B + A
1
p�

1
p0 .

The same result holds with BMO instead of (H1)⇤ by (2.7).

Proof. Let p 2 (1, 2). We aim to apply Theorem 2.16 to T . Pick ✓ 2 (0, 1) such
that 1�✓2 = 1�

1
p . Then ✓ =

1
p �

1
p0
. Let f 2 L p ,! L2 + (L2, H1)✓ . We choose

a decomposition f = a + b with a 2 L2 and b 2 (L2, H1)✓ such that

kakL2 + kbk(L2,H1)✓ . k f kL p .

Since T is self-adjoint, T is bounded from L2 to L p0 with a norm at most B. Thus

kTakL p0 . BkakL2 .

Similarly, by Theorem 2.16:

kTbkL p0 . kTbkL2 + kTbk(L2,(H1)⇤)✓ . BkbkL p + A
1
p�

1
p0

kbk(L2,H1)✓ .

Moreover H1 ,! L1 so (L2, H1)✓ ,! (L2, L1)✓ = L p. Consequently,

kTbkL p0 .
✓
B + A

1
p�

1
p0
◆

kbk(L2,H1)✓ .

Hence

kT f kL p0 .BkakL2 +

✓
B + A

1
p�

1
p0
◆

kbk(L2,H1)✓ .
✓
B + A

1
p�

1
p0
◆

k f kL p .

2.5. On the hypothesis (Hm(A))

We aim here to study the behavior of Assumption (Hm,n(A)) with respect to the
parameters m, n.

Consider a fixed operator T , a positive real A > 0 and let us define property
(Hm,n(A)) for m 2 N and n > 0:

���T m,n(r2H)
���
L2(Br )!L2(fBr ) . Aµ(Br )

1
2µ
�fBr � 12 , (Hm,n(A))

where Br andfBr are any two balls of radius r > 0.

Proposition 2.18. For all integer m � 0 and n > 0:

(Hm,1(A)) ) (Hm,n(A)).
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Proof. Assume Property (Hm,1(A)). Since

 m,n(x) = xme�nx = (nx)me�nxn�m
= n�m m,1(nx),

it comes
T m,n

�
r2H

�
= n�mT m,1

�
nr2H

�
.

If n � 1 then Br ⇢

p

nBr andfBr ⇢

p

nfBr . Hence, using the doubling property we
get

kT m,n
�
r2H

�
kL2(Br )!L2(fBr ) =n�m

���T m,1
�
nr2H

����
L2(Br )!L2(fBr )

n�m
���T m,1

�
nr2H

����
L2(

p

nBr )!L2(
p

nfBr )
n�m Aµ

�p
nBr

� 1
2µ
�p

nfBr � 12 . Aµ(Br )
1
2µ
�fBr � 12 .

If n  1 then
p

nfBr ⇢
fBr . We cover fBr by N '

⇣
r

p

nr

⌘d
= n�

d
2 balls fBj of

radius
p

nr and Br by N balls Bk of radius
p

nr (satisfying the bounded overlap
property). Thus

���T⇣ m,n
�
r2H

�
f
⌘���

L2(fBr ) 

X
j

X
k

���T⇣ m,n
�
r2H

�
f.11Bk

⌘���
L2(fBj ) .

Finally:
���T m,n

�
r2H

����
L2(Br )!L2(fBr ) 

X
j

X
k
n�m

���T m,1
�
nr2H

����
L2(Bk)!L2(fBj )

.
X
j

X
k
n�m Aµ(Bk)

1
2µ
�fBj� 12

. A

 X
j

µ(fBj )
! 1
2
 X

k
µ(Bk)

! 1
2

. Aµ(Br )
1
2µ(fBr ) 12 .

We will now be able to focus on (Hm,1(A)) and functions  m,1 =  m rather than
keeping the dependence in the parameter n.

Proposition 2.19. If m0 > m � 0 are two integers then

(Hm,1(A)) ) (Hm0,1(A)).
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Proof. Assume (Hm,1(A)) is satisfied. Then, by Proposition 2.18, (Hm,n(A)) is
also true for all n > 0. First we remark that

T m0,1
�
r2H

�
= T m, 12

�
r2H

�
 m0

�m, 12

�
r2H

�
.

Hence, decomposing X in dyadic coronas around Br :���T m0,1
�
r2H

����
L2(Br )!L2(fBr )



+1X
j=0

���T m, 12

�
r2H

����
L2(C j (Br ))!L2(fBr )

��� m0
�m, 12

�
r2H

����
L2(Br )!L2(C j (Br ))

.

Let f 2 L2(Br ). We treat the case j = 0 with Proposition 2.3 and (Hm, 12
(A)):

���T m, 12

�
r2H

����
L2(Br )!L2(fBr )

��� m0
�m, 12

�
r2H

����
L2(Br )!L2(Br )

. Aµ(Br )
1
2µ(fBr ) 12 .

Assume now that j � 1. If x 2 C j (Br ), then by Cauchy-Schwarz inequality:
��� m0

�m, 12

�
r2H

�
f (x)

��� 

Z
Br

1
µ(B(x, r))

e�c
d(x,y)2

r2 | f (y)|dµ(y)



e�c22 jµ(Br )
1
2

µ(B(x, r))
k f kL2(Br ).

By (2.1), we have already seen that for every x 2 C j (Br )

µ(Br ) . 2 jdµ(B(x, r)),

which yields ��� m0
�m, 12

�
r2H

�
f (x)

��� . e�c2
2 j
2 jdµ(Br )�

1
2 k f kL2(Br ).

Hence, by the doubling property:��� m0
�m, 12

�
r2H

�
f
���
L2(Br )!L2(C j (Br ))

. e�c2
2 j
2
3 jd
2 . (2.8)

Consider (Bk)k=0,...,K a collection of balls of radius r (with a bounded overlap prop-
erty so K . 2 jd ) which covers C j (Br ) with, by the doubling property: µ(Bk) .
2 jdµ(Br ). From (Hm, 12

) it follows

���T m, 12

�
r2H

����
L2(C j (Br ))!L2(fBr ) 

KX
k=0

���T m, 12

�
r2H

����
L2(Bk)!L2(fBr )



KX
k=0

Aµ(Bk)
1
2µ(fBr ) 12

. A2
3
2 jdµ(Br )

1
2µ(fBr ) 12 . (2.9)
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Thus, combining (2.8) and (2.9), it comes

���T m0,1
�
r2H

����
L2(Br )!L2(fBr ) .

 
1+

X
j�1

e�c2
2 j
23 jd

!
Aµ(Br )

1
2µ(fBr ) 12

. Aµ(Br )
1
2µ(fBr ) 12 ,

which ends the proof of Property (Hm0,1(A)).

We sum up Propositions 2.18 and 2.19 in:

Theorem 2.20. Assume (1.4). For every integer m � 0, Property (Hm,n(A)) is
independent on n > 0. So let us call (Hm(A)) this property. It is “increasing in
m”, since for two integers m0 > m � 0

(Hm(A)) ) (Hm0(A)).

3. Dispersion inequality from Property (Hm(A))

The aim of this section is to show Theorem 1.1, more precisely that Property
(Hm(A)) implies a H1 � BMO and L p � L p0 dispersive estimates. The main idea
is first to prove boundedness of the operator on atoms, then to deduce boundedness
on the whole Hardy space H1, and finally to interpolate with the L2-boundedness.

In all this section, we fix a large enough integer M � max(3, 34 +
3d
8 ), which

allows us to consider the notions of atoms and Hardy spaces H1, built with this
parameter. As pointed out in Remark 2.10, that also allows us to find an integer
m 2 [

d
2 ,

4M
3 ].

3.1. Boundedness on atoms

Theorem 3.1. Assume (1.4) and (DUE). Let T be a L2-bounded operator, which
commutes with H . If T satisfies Property (Hm(A)) for a certain integer m 

4M
3 ,

then one gets
sup
a,b

|hTa, bi| . A,

where the supremum is taken over all atoms a, b.

Proof. Let a and b be two atoms. By definition, there exists B1 and B2 two balls
with radii r1 and r2 respectively, and f 2 L2(B1) , g 2 L2(B2), such that

(
a =

�
1� e�r21H

�M f with k f kL2(B1)  µ(B1)�
1
2

b =

�
1� e�r22H

�Mg with kgkL2(B2)  µ(B2)�
1
2 .
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We first remark by (c) of Proposition 2.5 that:

a =

 Z r21

0
He�sHds

!M
f =

Z r21

0
. . .

Z r21

0
HMe�(s1+...+sM )H f ds1 . . . dsM

=

Z Mr21

0

0
BB@
Z
s1+...+sM=u

0sir21

ds1 . . . dsM�1

1
CCA

| {z }
=IM (u)

HMe�uH f du.

As si � 0 for all i 2 {1, . . . ,M} with s1 + · · · + sM = u, we have: 0  si  u.
Hence

IM(u)  uM�1.

Thus

hTa, bi =

Z Mr21

0

Z Mr22

0
IM(u)IM(v)hT M(uH) f, M(vH)gi

dv

vM
du
uM

.

Moreover  M is continuous and H is self-adjoint, so  M(uH) and  M(vH) are
also self-adjoint. Using (a) and (b) of Proposition 2.5 and the fact that T commutes
with H (and so with every operator  m,n(H)), we get:

|hTa, bi|



Z Mr21

0

Z Mr22

0

���DT M,1(uH) M
3 , 13

(vH) M
3 , 13

(vH) f, M
3 , 13

(vh)g
E��� duu

dv

v

=

ZZ �����
*
T

(uv
1
3 )M

(u +
v
3 )

4M
3
 4M

3 ,1

⇣⇣
u +

v

3

⌘
H
⌘
 M

3 , 13
(vH) f, M

3 , 13
(vh)g

+�����
du
u
dv

v
.

Here we have decomposed  M,1 in three terms involving  M
3 , 13
. We aim to use

in particular the Gaussian estimates (2.2), which hold only if M
3 is an integer. We

should decompose M = M1 + M2 + M3 with 3 integers M1,M2,M3 which are
comparable to M/3 (that is why we picked M � 3). For simplicity we take M1 =

M2 = M3 = M/3 and assume that they are integers. We let to the reader the minor
modifications.

Without loss of generality because the problem is symmetric in u and v, we

can assume that u  v so that v
3  u +

v
3 

4v
3 . Hence

uv
1
3

(u+ v
3 )
4
3

'
u
v . We cover

the whole space X by balls Bj and Bk of radius
q
u +

v
3 . The covering satisfies

the bounded overlap property. We use Cauchy-Schwarz inequality and Property
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(Hm(A)) to obtain:

|hTa, bi|

.
ZZ X

j,k

⇣u
v

⌘M ���D11Bk T 4M
3 ,1

⇣⇣
u +

v

3

⌘
H
⌘
11Bj M

3 , 13
(vH) f,

11Bk M
3 , 13

(vH)g
E���duu

dv

v

.
ZZ X

j,k

⇣u
v

⌘M ���T 4M
3 ,1

⇣⇣
u +

v

3

⌘
H
⌘
11Bj M

3 , 13
(vH) f

���
L2(Bk)

·

��� M
3 , 13

(vH)g
���
L2(Bk)

du
u
dv

v

.
ZZ X

j,k

⇣u
v

⌘M
Aµ(Bk)

1
2µ(Bj )

1
2
��� M

3 , 13
(vH) f

���
L2(Bj )

·

��� M
3 , 13

(vH)g
���
L2(Bk)

du
u
dv

v
,

where we have used that T satisfies Property (H4M/3). Indeed T satisfies property
(Hm(A)) form  4M/3 (so T satisfies also (H4M/3) by Theorem 2.20). To simplify
the notation we will now note  M

3 , 13
=  . We use a decomposition in dyadic

coronas around B1:

X
j2J

µ
�
Bj
� 1
2
k (vH) f kL2(Bj ) 

X
j2J

+1X
l=0

µ
�
Bj
� 1
2
k11Cl (B1) (vH) f kL2(Bj ).

We study the terms l = 0 and l � 1 separately.
First when l = 0:X

j2J
µ
�
Bj
� 1
2
k11C0(B1) (vH) f kL2(Bj )



 X
J

µ(Bj )

! 1
2
 X

J
k11B1 (vH) f k2L2(Bj )

! 1
2

. µ(B1)
1
2

 X
J

Z
Bj

|11B1(x) (vH) f (x)|2dµ(x)

! 1
2

. µ(B1)
1
2 k (vH) f kL2 .

Now when l � 1 the number of indices in J for which the sum is nonzero is
equivalent to the number of balls of radius

q
u +

v
3 we need to cover Cl(B1), that

is |J | '

✓
2l r1

p

u+ v
3

◆d
.
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Now, remark that by the doubling property of the measure and (2.1), since Bj
is a ball of radius

p

u + v/3 '

p

v we deduce that for x 2 Bj \ Cl(B1) then

µ
⇣
B(x,

p

v)
⌘

' µ
�
Bj
�
.

By (2.2), we have:

X
j2J

+1X
l=1

µ
�
Bj
� 1
2
k11Cl (B1) (vH) f kL2(Bj )

.
X
j2J

+1X
l=1

µ
�
Bj
� 1
2

������
11Cl (B1)(x)

µ
⇣
B(x,

p

v)
⌘e� 22l r21

v k f kL1(B1)

������
L2x (Bj )

.
X
j2J

+1X
l=1

µ
�
Bj
� 1
2µ
�
Bj
� 1
2

1
µ
�
Bj
�e� 22l r21

v

.
X
l�1

0
@ 2lr1q

u +
v
3

1
A
d

e�
22l r21

v .
X
l�1

✓
2lr1
p

v

◆d
e�

22l r21
v ,

where we have used the L2-normalization of f , which yields that k f kL1 . 1.
We then refer the reader to Lemma 3.2 to estimate the sum and it comes

X
j2J

+1X
l=1

µ
�
Bj
� 1
2
k1Cl (B1) (vH) f kL2(Bj ) .

✓
r1
p

v

◆
�1

.

Thus X
j2J

µ
�
Bj
� 1
2
k (vH) f kL2(Bj )  µ(B1)

1
2 k (vH) f kL2 +

p

v

r1
.

Similarly for B2 and the sum over k 2 K :

X
k2K

µ(Bk)
1
2 k (vH)gkL2(Bk)  µ(B2)

1
2 k (vH)gkL2 +

p

v

r2
.

Hence, one concludes:

|hTa, bi| . A
ZZ ⇣u

v

⌘M ✓
µ(B1)

1
2 k (vH) f kL2 +

p

v

r1

◆

·

✓
µ(B2)

1
2 k (vH)gkL2 +

p

v

r2

◆
du
u
dv

v
.



DISPERSION VIA THE HEAT SEMIGROUP 997

We then develop the product to split the problem into four different terms:

I =

ZZ ⇣u
v

⌘M
µ(B1)

1
2µ(B2)

1
2 k (vH) f kL2k (vH)gkL2

du
u
dv

v
,

I I =

ZZ ⇣u
v

⌘M
µ(B1)

1
2 k (vH) f kL2

p

v

r2
du
u
dv

v
,

I I I =

ZZ ⇣u
v

⌘M
µ(B2)

1
2 k (vH)gkL2

p

v

r1
du
u
dv

v
,

I V =

ZZ ⇣u
v

⌘M p

v

r1

p

v

r2
du
u
dv

v
.

We discern now two cases:

Case 1: 0  u  v  R = min(Mr21 ,Mr
2
2 )

Then Item (d) of Proposition 2.5 yields

I =

Z R

v=0

Z v

u=0

⇣u
v

⌘M
µ(B1)

1
2µ(B2)

1
2 k (vH) f kL2k (vH)gkL2

du
u
dv

v

' µ(B1)
1
2µ(B2)

1
2

Z R

0
k (vH) f kL2k (vH)gkL2

dv

v

 µ(B1)
1
2µ(B2)

1
2

✓Z
+1

0
k (vH) f k2L2

dv

v

◆ 1
2
✓Z

+1

0
k (vH)gk2L2

dv

v

◆ 1
2

 µ(B1)
1
2 k f kL2µ(B2)

1
2 kgkL2 . 1,

similarly for the second term,

I I =µ(B1)
1
2
1
r2

Z R

0
k (vH) f kL2

p

v
dv

v

 µ(B1)
1
2
1
r2

k f kL2
✓Z R

0
v
dv

v

◆ 1
2



R
1
2

r2


q
Mr22
r2

. 1.

The third term is treated the same way. The fourth term gives:

I V =

1
r1r2

Z R

0

p

v
p

v
dv

v
=

R
r1r2



min(Mr21 ,Mr
2
2 )q

min(r21 , r
2
2 )
q
min(r21 , r

2
2 )

. 1.

So in this first case, we obtain

I + I I + I I I + I V . 1. (3.1)
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Case 2: 0  u  Mr21  v  Mr22
Similarly we get:

I = µ(B1)
1
2µ(B2)

1
2

Z Mr22

v=Mr21

Z Mr21

u=0

⇣u
v

⌘M
k (vH) f kL2k (vH)gkL2

du
u
dv

v

 µ(B1)
1
2µ(B2)

1
2

Z Mr22

v=Mr21

Z Mr21

u=0

uvM�1

vM
k (vH) f kL2k (vH)gkL2

du
u
dv

v

= µ(B1)
1
2µ(B2)

1
2

Z Mr22

v=Mr21

Mr21
v

k (vH) f kL2k (vH)gkL2
dv

v

 µ(B1)
1
2µ(B2)

1
2Mr21 sup

v2[Mr21 ,Mr
2
2 ]

1
v

 Z Mr22

0
k (vH) f k2L2

dv

v

! 1
2

·

 Z Mr22

0
k (vH)gk2L2

dv

v

! 1
2



Mr21
Mr21

= 1.

For the second term, since r1  r2:

I I  µ(B1)
1
2
Mr21
r2

 Z Mr21

0
k (vH) f k2L2

dv

v

! 1
2
 Z

+1

Mr21

1
v

dv

v

! 1
2

.
r21
r2r1

 1.

The third term is similar:

I I I µ(B2)
1
2Mr21

Z Mr22

Mr21

1
v
k (vH)gkL2

p

v

r1
dv

v
. r1

 Z
+1

Mr21

1
v

dv

v

! 1
2

.
r1
r1

= 1.

Finally we treat the last term:

I V 

Z Mr22

Mr21

Mr21
v

p

v

r1

p

v

r2
dv

v
.
r1
r2

Z Mr22

Mr21

1
v

dv

v
= 2

r1
r2
ln
✓
r2
r1

◆
. 1,

because x 7!
ln x
x is continuous if x � 1, equals 0 if x = 1 and tends to 0 as x tends

to +1, so is bounded uniformly in x � 1 (here r2
r1 � 1).
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Thus, in this second case, we also conclude that

I + I I + I I I + I V . 1. (3.2)

Since u  v (which was assumed at the beginning by symmetry), cases 1 and 2
cover all the possible situations. Consequently, we deduce that for all atoms a and
b, we have

|hTa, bi| . A,

where the implicit constant does not depend on the atoms (but maybe on the param-
eters M and m).

We used the following lemma with N = 1 and x =
r

p

v
:

Lemma 3.2. Let x > 0 and d 2 N. For all N 2 N⇤:

+1X
l=0

�
2l x
�de�(2l x)2 . x�N .

Proof. We remark that
R 2l+1
2l

dt
t = ln

⇣
2l+1
2l

⌘
= ln 2. Thus:

+1X
l=0

�
2l x
�de�(2l x)2

=

1
ln 2

+1X
l=0

�
2l x
�de�(2l x)2

Z 2l+1

2l

dt
t

.

2l  t  2l+1 yields (2l x)d  (t x)d and e�(t x)2
� e�(2l+1x)2 . So we have

e�(2l x)2
 e�

(t x)2
4 .

Hence:
+1X
l=0

�
2l x
�de�(2l x)2 .

Z
+1

1
(t x)de�

(t x)2
4
dt
t

=

Z
+1

x
2

(2u)de�u
2 du
u

.
Z

+1

x
2

1
uN

du
u

=


u�N

�N

�+1

x
2

. x�N

for N 2 N⇤ as large as we want.

3.2. Boundedness on Hardy space

After having proved that the operator T (of Theorem 1.1) is bounded on atoms, we
now aim to show that T is bounded from the Hardy space H1 to its dual (H1)⇤ (and
more precisely to BMO) with a norm controlled by A. If f 2 H1 then there exists
an atomic decomposition f =

P
+1

i=0 �i ai where ai are atoms and
P

+1

i=0 |�i | <
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2k f kH1 . We know how to bound the operator on atoms, we would like to extend it
passing to the limit in

T

 
NX
i=0

�i ai

!
=

NX
i=0

�i T ai ,

in order to apply Theorem 3.1. As N goes to+1, that last equality may not be true.
Indeed, one can find in [24] an example (due to Meyer) of a linear form bounded on
atoms, which is not bounded on the whole Hardy space. So to rigorously check this
step, we need to prove it using specificities of our situation. Aiming that, we are
going to use an approximation of the identity well suited to our frame: (e�sH )s>0.

We start by showing that Te�sH (the regularized version of T ) satisfies the
same estimate as the one in Theorem 3.1:

Theorem 3.3. Assume (1.4) and (DUE). Consider a fixed operator T, L2-bounded,
commuting with H and satisfying Property (Hm(A)) for some integer m 2 [

d
2 ,

4M
3 ].

Then uniformly with respect to s > 0, the operator Te�sH satisfies Property
(Hm(A)) and so by Theorem 3.1:

sup
s>0

sup
a,b

���DTe�sHa, bE��� . A,

where the supremum is taken over all the atoms a, b.

Proof. Set Us := Te�sH . It suffices to check that Us satisfies Property (Hm(A))
uniformly in s, which is

���Us m,1
�
r2H

����
L2(Br )!L2(fBr ) . Aµ(Br )

1
2µ(fBr ) 12 ,

for any two balls Br andfBr with radius r > 0. First, remark that

Us m,1
�
r2H

�
= Te�sH

�
r2H

�me�r2H = T m,1
��
r2 + s

�
H
�  r2

r2 + s

!m
,

so that

���Us m,1
�
r2H

����
L2(Br )!L2(fBr ) =

 
r2

r2 + s

!m���T m,1
��
r2 + s

�
H
����

L2(Br )!L2(fBr ) .

As r2 < r2 + s, the balls of radius r are included into the balls with same centers
and radius

p

r2 + s denoted Bp

r2+s and B̂
p

r2+s . Then it comes (with Property
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(Hm(A)) for T and the doubling property)
���Us m,1

�
r2H

����
L2(Br )!L2(fBr )



 
r2

r2 + s

!m ���T m,1
��
r2 + s

�
H
����

L2
�
Bp

r2+s

�
!L2

�
B̂p

r2+s

�



 
r2

r2 + s

!m
Aµ

⇣
Bp

r2+s

⌘ 1
2
µ
⇣
B̂p

r2+s

⌘ 1
2

.

 
r2

r2 + s

!m
A

s
r2 + s
r2

d
2

µ(Br )
1
2

s
r2 + s
r2

d
2

µ(fBr ) 12

 A

 
r2

r2 + s

!m�
d
2

µ(Br )
1
2µ(fBr ) 12  Aµ(Br )

1
2µ(fBr ) 12 ,

where the last inequality comes from m �
d
2 . That concludes the proof of Prop-

erty (Hm(A)) for the operator Us and all the estimates are uniform with respect to
s > 0.

In order to prove that we can pass to the limit as N goes to +1 in

Te�sH
 

NX
i=0

�i ai

!
=

NX
i=0

�i T e�sHai

for atoms ai , we have to show some continuity of the operator Te�sH .

Theorem 3.4. If T is a L2-bounded operator which commutes with H and the am-
bient space X satisfies the uniform control of the volume (1.5), then for all s > 0:
Te�sH maps L1 to L1 and

��Te�sH��L1!L1
. s�

⌫
2 .

Proof. By the commutativity property, we write Te�sH = e�sH/2Te�sH/2. Hence
��Te�sH��L1!L1



��e� s
2 H
��
L1!L2kTkL2!L2

��e� s
2 H
��
L2!L1

.

Using the Gaussian pointwise estimates of the heat kernel and (1.5), we deduce by
a T ⇤T argument that

��e� s
2 H
��2
L1!L2 =

��e�sH��L1!L1

= sup
x,y

ps(x, y) . s�
⌫
2 ,
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and by duality ��e� s
2 H
��
L1!L2 =

��e� s
2 H
��
L2!L1

. s�
⌫
4 .

As a consequence, we deduce the desired estimate.

We are now able to establish the result on the whole Hardy space H1:

Theorem 3.5. Assume (1.4), (1.5) and (DUE). Consider a L2-bounded operator
T , which commutes with H and which satisfies Property (Hm(A)) for some integer
m 2 [

d
2 ,

4M
3 ]. Then T and Te�sH , for all s > 0, can be continuously extended from

H1 to BMO (and so in particular to its dual (H1)⇤) and we have

kTkH1!BMO + sup
s>0

��Te�sH��H1!BMO . A.

Proof. Let f 2 H1 and consider an atomic decomposition. The atoms are uni-
formly bounded in L1 so the limit

f =

+1X
i=0

�i ai = lim
N!+1

NX
i=0

�i ai ,

takes place in L1.
Moreover ai 2 L1 implies Te�sH (ai ) 2 L1 due to Theorem 3.4. Hence the

limit

Te�sH
 

lim
N!+1

NX
i=0

�i ai

!
= lim

N!+1

Te�sH
 

NX
i=0

�i ai

!
= lim

N!+1

NX
i=0

�i T e�sH (ai ),

is valid and takes place in L1 for every s > 0 fixed. Thus

Te�sH ( f ) =

+1X
i=0

�i T e�sH (ai ).

Let f 2 H1. There exists a decomposition f =

P
i �i ai with ai atoms,

P
i |�i | <

+1 and
P

i |�i |  2k f kH1 . We want to estimate��Te�sH f
��
BMO = sup

b

��⌦Te�sH f, b
↵��

where the supremum is taken over all atoms b (see Remark 2.15). By Theorem 3.3,
and what we just proved, we have:�����

*
Te�sH

X
i
�i ai , b

+����� 

X
i

|�i |
��⌦Te�sHai , b↵��

.
X
i

|�i |A . Ak f kH1 .
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Hence ��Te�sH��H1!BMO . A,

and the implicit constant is uniform in s > 0.
Let us now consider the boundedness of the operator T . We know (see [13],

e.g.) that H1 \ L2 is dense in H1 (since every atoms are L2 functions). Moreover
(e�sH )s�0 is a strongly continuous semigroup on L(L2) so:

8 f 2 L2 , lim
s!0

��e�sH f � f
��
L2 = 0.

Let f 2 H1 \ L2 so that T f 2 L2 and let a be an atom. We also have
��⌦Te�sH f � T f , a

↵��


��e�sH T f � T f
��
L2kakL2 !

s!0
0.

Consequently, uniformly with respect to the atom a, we have

|hT f , ai| = lim
s!0

��⌦Te�sH f , a
↵�� . Ak f kH1 .

Then for all f 2 H1 \ L2:

kT f kBMO . Ak f kH1 .

As BMO is a Banach space, T admits an extension (still denoted T ) which is
bounded from H1 toBMOand then from H1 to (H1)⇤ because BMO ,!(H1)⇤.

3.3. Interpolation

Having obtained a bound on the Hardy space, we now aim to use interpolation to
conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. Consider a L2-bounded operator T , which commutes with
H and satisfies Property (Hm(A)) for some m 2 [

d
2 ,

4M
3 ]. Then Theorem 3.5 shows

that T admits a continuous extension from H1 to (H1)⇤. So we aim now to inter-
polate the two following continuities:

(
kTkL2!L2 . 1
kTkH1!(H1)⇤ . A.

Let p be fixed in (1, 2). Then by choosing ✓ =
2
p � 1 2 (0, 1) and 1

q = 1�
1
p (that

is q = p0) in Theorem 2.16, if µ(X) = +1, we have

T :

�
L2, H1

�
✓

= L p !

�
L2,

�
H1
�
⇤
�
✓
,! Lq .
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It follows the boundedness of T from L p to L p0 . More precisely, if the space X is
unbounded then

kTkL p!L p0 . kTk
✓
H1!(H1)⇤kTk

1�✓
L2!L2 . A✓ = A

1
p�

1
p0 .

If the space X is bounded, then Theorem 2.17 shows

kTkL p!L p0 . A
1
p�

1
p0

+ B,

provided that kTkL p!L2 . B.

4. Application to Strichartz estimates

In this section we aim to take advantage of the dispersive estimates previously ob-
tained in the particular situation where T is given by the Schrödinger propagator, to
deduce some Strichartz estimates with loss of derivatives, as introduced in [21].

In particular, we are looking to dispersive estimates L p � L p0 with polynomial
bound. It is also natural to work in the setting of an Ahlfors regular space (and not
only in the doubling situation). The space X of homogeneous type is said Ahlfors
regular if there exist two absolute positive constants c and C such that for all x 2 X
and r > 0:

crd  µ(B(x, r))  Crd . (4.1)

From now on, we will assume this property.
To establish Strichartz estimates from dispersive inequalities we adapt the re-

sult by Keel-Tao in [47], namely:
Consider (U(t))t2R a collection of uniformly L2-bounded operators, i.e.

sup
t2R

kU(t)kL2!L2 . 1 (4.2)

and such that for a certain � > 0

8t 6= s 2 R, kU(s)U(t)⇤kL1!L1 . |t � s|�� . (4.3)

Then in [47], it is proved that for all pair of exponents (p, q) satisfying 1
p +

�
q =

�
2 ,

we have
kU(t) f kL pt Lqx . k f kL2 .

By the exact same proof, we have the following:

Theorem 4.1. Suppose that the collection (U(t))t satisfies (4.2) and for some
� > 0

8t 6= s 2 R, kU(s)U(t)⇤kH1!(H1)⇤ . |t � s|�� . (4.4)
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Then for all pair (p, q) satisfying 1
p +

�
q =

�
2 with q 6= +1, we have

kU(t) f kL pt Lqx . k f kL2,

where we assume in addition that

8t 6= s 2 R, kU(s)U(t)⇤kL p0!L2 . |t � s|��
⇣
1
p0 �

1
p

⌘
(4.5)

if X is bounded.

We do not give a proof of this result, since it is exactly the same as the one
in [47] by replacing the space L1 with the Hardy space H1. The proof relies on
interpolating the two boundedness (4.2) and (4.4), which is still possible with the
Hardy space, due to Theorem 2.16.

We are now in position to prove the following result:

Theorem 4.2. Assume (4.1) with (DUE). Consider an integer ` � 0. Assume
that the operator Tt (H) := eit H 2`(h2H) satisfies Property (Hm(|t |�

d
2 )) for some

m �
d
2 and every t 2 [�1, 1], t 6= 0. Then for all pair (p, q) satisfying (1.1) with

q 6= +1 we have:

 Z 1

�1

���eit H 2`�h2H� f
���p
Lq
dt

! 1
p

.
��� `, 12

�
h2H

�
f
���
L2

.

We also have the “semi-classical” version, involving a loss of derivatives:

Theorem 4.3. Assume (4.1) with (DUE). Consider an integer ` � 0. Assume
that for some h0 > 0 and � 2 [0, 2) (or � 2 [1, 2) if X is bounded) the operator
Tt (H) := eit H 2`(h2H) satisfies Property (Hm(|t |�

d
2 )) for some m �

d
2 and every

t satisfying
h2  |t |  h� and h  h0.

Then for all pair (p, q) satisfying (1.1) with q 6= +1 we have

 Z 1

�1

���eit H 2`�h2H� f
���p
Lq
dt

! 1
p

. h�
�
p
��� `, 12

�
h2H

�
f
���
L2

.

Remark 4.4.

(1) Following the arguments of Proposition 2.19, if eit H 2`(h2H) satisfies Prop-
erty (Hm(|t |�

d
2 )) for some integer ` � 0 then eit H 2`0(h2H) also satisfies

Property (Hm(|t |�
d
2 )) for every integer `0 � `;

(2) The case � � 2 is easy (as explained in the Introduction). When X is bounded,
one cannot expect � = 0 because of the example of a constant initial data (see
Introduction).
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Proof of Theorems 4.2 and 4.3. We only detail the proof of Theorem 4.3 which is
slightly more technical, we let the minor modifications to the reader to prove Theo-
rem 4.2.

Fix an interval J ⇢ [�1, 1] of length |J | = h� and consider

U(t) = 11J (t)eit H `, 12
�
h2H

�
.

We aim to apply Theorem 4.1 with � =
d
2 and a suitable large enough integer

M (defining the Hardy space). So fix this integer M �
3m
4 large enough which

allows us to consider atoms and Hardy space, related to this parameter and we have
m 2 [

d
2 ,

4M
3 ] as required in Theorem 3.5.

Since x 7! eitx `, 12 (x) 2 L1(R+) is uniformly bounded, with respect to t ,
then Theorem 2.2 yields that

sup
t>0

kU(t) f kL2 =

���11J (t)eit H `, 12
�
h2H

�
f
���
L2

. k f kL2,

which is (4.2).
Then let us check (4.4). We have

U(t)U(s)⇤ = 11J (t)11J (s)eit H `, 12
�
h2H

�⇣
eisH `, 12

�
h2H

�⌘⇤

= 11J (t)11J (s)Tt�s(H),

where we used that H is self-adjoint and | `, 12
|
2

=  2`. Since J has a length equal
to h� thenU(t)U(s)⇤ is vanishing or else |t � s|  h� . In this last case,U(t)U(s)⇤

satisfies Property (Hm(|t � s|�
d
2 )), by assumption. Hence, by Theorem 3.5, we

deduce that
kU(t)U(s)⇤ f k(H1)⇤ .

1

|t � s|
d
2
k f kH1,

which is (4.4). Let us check (4.5) in case X is bounded: similarly since the Schrö-
dinger propagators are unitary in L2, we have

kU(t)U(s)⇤kL p0!L2 

��� �h2H����
L p0!L2

with |t � s|  h� . 1. Recall that for all p0
2 [1, 2):

��� �h2H� f ���
L p

. h�d
⇣
1
p0 �

1
p

⌘
k f kL p0 .

By a T T ⇤ argument we have:
��� �h2H����

L p0!L p
=

��� �h2H����2
L p0!L2

.
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Hence

kU(t)U(s)⇤kL p0!L2 . h�
d
2

⇣
1
p0 �

1
p

⌘
 |t � s|�

d
2�

⇣
1
p0 �

1
p

⌘
. |t � s|�

d
2

⇣
1
p0 �

1
p

⌘

as soon as � � 1.
Thus we can apply Theorem 4.1. For all pair (p, q) satisfying (1.1) with q 6=

+1, then ✓Z
R

kU(t)gkpLq dt
◆ 1

p
. kgkL2 .

That is ✓Z
J

���eit H `, 12
�
h2H

�
g
���p
Lq
dt
◆ 1

p
. kgkL2 .

Take g =  `, 12
(h2H) f then  `, 12 (h

2H)g =  2`(h2H) f and so

✓Z
J

���eit H 2`�h2H� f
���p
Lq
dt
◆ 1

p
.
��� `, 12

�
h2H

�
f
���
L2

. (4.6)

We write [�1, 1] =

SN
k=1 Jk, where Jk are disjoint intervals with a length smaller

than h� , so the number of intervals satisfies N . 1
h� .

Hence, by (4.6)
Z 1

�1

���eit H 2`�h2H� f
���p
Lq
dt.

NX
k=1

Z
Jk

���eit H 2`�h2H� f
���p
Lq
dt.N

��� `, 12
�
h2H

�
f
���p
L2

,

and so  Z 1

�1

���eit H 2`�h2H� f
���p
Lq
dt

! 1
p

.
1

h
�
p

��� `, 12
�
h2H

�
f
���
L2

.

We can now prove the main result of this section: How Property (Hm(|t |�
d
2 )) im-

plies Strichartz estimates with loss of �p derivatives:

Theorem 4.5. Assume (4.1) with (DUE). Consider an integer ` � 0. Assume that
for some h0 > 0 and � 2 [0, 2) the operator Tt (H) := eit H 2`(h2H) satisfies
Property (Hm(|t |�

d
2 )) for some m �

d
2 and every t satisfying

h2  |t |  h� and h  h0.

Then for all pair (p, q) satisfying (1.1) with q 6= +1, every solution u = eit Hu0
of the problem (

i@t u + Hu = 0
u|t=0 = u0

satisfies
kukL p([�1,1],Lq ) . ku0kW

�
p ,2 .
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Remark 4.6. We can consider more regular initial data, in the sense that if for some
� > 0

2
p

+

d
q

=

d
2

� �,

then we have
kukL p([�1,1],Lq ) . ku0kW �+

�
p ,2 .

Proof. Apply Theorem 2.8 to u(t) = eit Hu0

ku(t)kLq . k'(H)u(t)kLq +

������
✓Z h0

0
| 2`(s2H)u(t)|2

ds
s

◆ 1
2

������
Lq

.

The function ' is also depending of the parameters h0, `. We omit this dependence.
Take the L p([�1, 1]) norm in time of that expression. Minkowski inequality leads
to

kukL p([�1,1],Lq ) . k'(H)ukL p([�1,1],Lq )| {z }
=I

+

������
✓Z h0

0
k 2`(s2H)uk2Lq

ds
s

◆ 1
2

������
L p([�1,1])| {z }

=I I

.

Then (UE) with (4.1) yields that '(H) has a kernel satisfying Gaussian pointwise
estimate (2.2) at the scale 1 (or more precisely h0 but we forget this dependence) so
is in particular bounded from L2 to Lq (since q � 2) and so

I .
���eit Hu0

���
L p([�1,1],L2)

. ku0kL2 . ku0kW
�
p ,2,

because the Schrödinger group is an isometry on L2.
Since p � 2, generalized Minkowski inequality and Theorem 4.3 yield

I I 

✓Z h0

0

��� 2`�s2H�u
���2
L p([�1,1],Lq )

ds
s

◆ 1
2

.
✓Z h0

0
s�

2�
p
��� `, 12

�
s2H

�
u0
���2
L2
ds
s

◆ 1
2

.

������
✓Z h0

0
s�

2�
p
��� `, 12

�
s2H

�
u0
���2 dss

◆ 1
2

������
L2

. ku0kW
�
p ,2,
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where we used ` > �
p (since ` � 1, � 2 [0, 2) and p � 2) and the fact that

s�
�
p `, 12

�
s2H

�
=  `� �

2p , 12

�
s2H

�
H

�
2p

with Theorem 2.8. Finally, we get

kukL p([�1,1],Lq ) . ku0kW
�
p ,2 .

5. Dispersive estimates for the Schrödinger operator
through wave operator

In this section, we show that a suitable dispersive property on the wave propagator
imply dispersive estimates for the Schrödinger unitary group. Namely, a refined ver-
sion of the finite speed propagation property for waves implies Property (Hm(A)).

5.1. Dispersive estimates from wave to Schrödinger propagators

We recall that we want to obtain

kTt (H)kH1!BMO . |t |�
d
2 ,

where Tt (H) = eit H 2`(h2H) for t belonging to an interval, as large as possible.
In regard of the previous section, it suffices to check that eit H 2`(h2H) satisfies
Property (Hm(|t |�

d
2 )) (for some parameters `,m, � , h0), which may be written with

(4.1) as: for every balls Br ,fBr
���eit H 2`�h2H� m�r2H�

���
L2(Br )!L2(fBr ) .

 
r2

|t |

! d
2

. (5.1)

We aim to use the Hadamard formula, which describes how the Schrödinger prop-
agator may be built using the wave propagator. Let us quickly recall it: the Cauchy
formula gives that for any a 2 C with Re(a) > 0

a�
1
2 e�

⇠2
2a = (2⇡)�

1
2

Z
R
e�i x⇠e�

ax2
2 dx .

Using imparity and noting z =
1
2a , we get

e�z⇠
2

=

1
p

⇡

Z
+1

0
cos(s⇠)e�

s2
4z
ds
p

z
.

Since H is a self-adjoint nonnegative operator admitting a L1-functional calculus,
one deduces the Hadamard transmutation formula:

e�zH =

1
p

⇡

Z
+1

0
cos

⇣
s
p

H
⌘
e�

s2
4z
ds
p

z
. (5.2)
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We now give a suitable condition on the wave propagators, under which (5.1) can be
proved through (5.2). The next section aims to check that this assumption is satisfied
in well-known situations as Euclidean space or smooth Riemannian manifolds.
Assumption 5.1. There exists  2 (0,1] and an integer m0 such that for every
s 2 (0, ) we have: for every r > 0, every balls Br ,fBr of radius r then
��� cos �spH

�
 m0

�
r2H

����
L2(Br )!L2(fBr ) .

✓
r

s + r

◆ d�1
2
✓
1+

|L � s|
r

◆
�
d+1
2

,

where L = d(Br ,fBr ).
Remark 5.2. Using the same arguments as in Proposition 2.19, one can show that
if Assumption 5.1 is true for an integer m0 then it also holds for every integer
m � m0.

The main result of this section is the following:

Theorem 5.3. Suppose (4.1) with d > 1, (DUE) and Assumption 5.1 with  = 1.
Then for every integer m � max(d2 ,m0 + d

d�1
2 e) (where the integer m0 is the one

given by Assumption 5.1) we have for every t 2 R⇤

���eit H m�r2H�
���
L2(Br )!L2(fBr ) .

 
r2

|t |

! d
2

, (5.3)

where the implicit constant only depends on integers m,m0. Consequently, eit H

satisfies Property (Hm(|t |�
d
2 )) for every t 2 R⇤.

Theorem 5.4. Suppose (4.1) with d > 1, (DUE) and Assumption 5.1 with  2

(0,1). Then for every " > 0, every h > 0 with h2  |t |  h1+", and for every
integers m0

� 0 and m � max(d2 ,m0 + d
d�1
2 e) (where the integer m0 is the one

given by Assumption 5.1) we have

���eit H m0

�
h2H

�
 m
�
r2H

����
L2(Br )!L2(fBr ) .

 
r2

|t |

! d
2

, (5.4)

where the implicit constant only depends on " > 0 and integers m, m0. Conse-
quently, eit H m0(h2H) satisfies Property (Hm(|t |�

d
2 )) for every h2  |t |  h1+"

and every " > 0.

Proof of Theorems 5.3 and 5.4. We only prove Theorem 5.4, which is more diffi-
cult and let the reader to check that the exact same proof allows us to get Theorem
5.3, which is indeed easier since the quantity I (defined later in the proof) is van-
ishing.
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Step 1: Some easy reductions
Remark that the case r �

p

|t | is easy via the bounded functional calculus, indeed
���eit H m0

�
h2H

�
 m
�
r2H

����
L2(Br )!L2(fBr )



���eit · m0

�
h2·

�
 m
�
r2·
����

L1(R+)
. 1 .

 
r2

|t |

! d
2

.

So now we only restrict our attention and assume that r2  |t |.
Then assume that (5.4) is proved for every h 2 (0, r]. We aim to check that it

also holds for h > r . So fix balls Br andfBr of radius r < h. It comes���eit H m0

�
h2H

�
 m
�
r2H

����
L2(Br )!L2(fBr )

.
r2m⇣

h2
2 + r2

⌘m
�����eit H m0

 
h2

2
H

!
 m

  
h2

2
+ r2

!
H

!�����
L2(Br )!L2(fBr )

.
✓
r
h

◆2m �����eit H m0

 
h2

2
H

!
 m

  
h2

2
+ r2

!
H

!�����
L2(B⇢)!L2(fB⇢)

,

where ⇢ =

q
h2
2 + r2 � r , ⇢ ' h and we write B⇢ =

⇢
r Br the dilated ball (similar

notation forfB⇢). Using (5.4) at the scale ⇢ (since ⇢ � h/
p

2) yields

���eit H m0

�
h2H

�
 m
�
r2H

����
L2(Br )!L2(fBr ) .

✓
r
h

◆2m  ⇢2
|t |

! d
2

.
✓
r
h

◆2m  h2
|t |

! d
2

.

 
r2

|t |

! d
2

,

where we have used that m � d/2 and (since r < h)

r2m

h2m
hd = rd

r2m�d

h2m�d  rd .

So as soon as (5.4) will be proved for h  r , then the other case immediately
follows.

Consequently, we can restrict our study to h  r and r2  |t |, that we now
assume for the sequel.
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For an integer m0
6= 0, we have

eit H m0

�
h2H

�
 m
�
r2H

�
=

 
h2

r2

!m0

eit He�h
2H m0

+m
�
r2H

�
.

Using h  r , it comes

���eit H m0

�
h2H

�
 m(r2H)

���
L2(Br )!L2(fBr )

.
���e(i t�h2)H m0

+m
�
r2H

����
L2(Br )!L2(fBr ).

So if (5.4) is proved for m0
= 0 and some integer m then by Theorem 2.20, it also

holds for m0
= 0 and any integer m00

� m. Hence, by the previous observation,
(5.4) will hold for every m0

= m00
� m � 0.

Finally, we can restrict our attention to prove (5.4) for m0
= 0 with h  r and

r2  |t |, which is now supposed for the rest of the proof.

Step 2: Decomposition into three regimes

We fix the parameter h and consider eit He�h2H = e�zH with z = h2 � i t . By the
representation (5.2), it comes

e�zH =

Z
1

0
cos(s

p

H)e�
s2
4z

ds
p

⇡z
.

We split this integral into three ranges. Let us consider a smooth cut-off function

� 2C1(R+) such that

8><
>:
0  �  1
�(x)=1 if x 2 [0, |t |

r ]

�(x)=0 if x 2 [
2|t |
r ,+1]

,with 8n2N, k� (n)
kL1 .

⇣
r
|t |

⌘n
.

We split the integral into three terms

e�zH =

Z
�(s) cos

�
s
p

H
�
e�

s2
4z

ds
p

⇡z
+

Z 

|t |
r

(1��(s)) cos
�
s
p

H
�
e�

s2
4z

ds
p

⇡z
+I(H),

where I = 0 if  = 1 and else

I(H) :=

Z
1


(1� �(s)) cos

�
s
p

H
�
e�

s2
4z

ds
p

⇡z
.
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Step 3: The two last regimes
The second term is estimated using Assumption 5.1 as follows (we recall that z =

h2 � i t so that |z| ' |t |):�����
Z 

|t |
r

(1� �(s)) cos
�
s
p

H
�
 m
�
r2H

�
e�

s2
4z
ds
p

z

�����
L2(Br )!L2(fBr )

.
Z 

|t |
r

⇣r
s

⌘ d�1
2
✓
1+

|L � s|
r

◆
�
d+1
2 ds

p

|t |

.
Z 

|t |
r

 
r
|t |
r

! d�1
2 ✓

1+

|L � s|
r

◆
�
d+1
2 ds

p

|t |

.
Z

1

0

 
r2

|t |

! d�1
2

(1+ u)�
d+1
2
rdu
p

|t |

.

 
r2

|t |

! d
2

.

The last term I(H) is estimated by only using the L2-boundedness of the wave
propagator:

kI(H) m
�
r2H

�
kL2(Br )!L2(fBr )

.
Z

+1



��� cos �spH
�
 m
�
r2H

����
L2(Br )!L2(fBr )e

�
s2
4 Re(

1
z )

ds
p

|z|

.
Z

+1



q
Re( 14z )

e�u
2 dur
Re
⇣
1
z

⌘
p

|z|

.
✓Z

+1

0
e�

u2
2 du

◆
e�

2 Re( 14z )

2

 s
Re
✓
1
z

◆p
|t |

!�1

.

Given that Re(1z ) =
h2

h4+t2 & h2
t2 (since we assumed |t | � h2, see Step 1), we get

���I(H) m
�
r2H

����
L2(Br )!L2(fBr ) .

|t |
1
2

h

✓
h
|t |

◆
�k

,

for k > 0 as large as we want because h
|t | & 1 (indeed |t |  h1+"  h). Note that

the implicit constant here may depend on  .
Since we have reduced the situation to h  r , it comes

|t |
1
2

h

✓
|t |
h

◆k
.
✓

h
p

|t |

◆d
.
✓

r
p

|t |

◆d
,
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as soon as |t |
1
2+k+

d
2  h1+k+d , i.e., |t |  h

1+k+d
1
2+k+ d

2  h
1+

1
2+

d
2

1
2+k+ d

2 which is true for k
large enough since |t |  h1+".

So we have obtained the desired bound for the two last terms. It remains to
study the first and more difficult one.
Step 4: The first regime
We aim to use integration by parts in s. For all integer n � 0, all s > 0 and
Re(z) > 0, we have

@ns

✓
e�

s2
4z

◆
= e�

s2
4z

 
cn
sn

zn
+ cn�1

sn�2

zn�1
+ . . . + cn�2b n2 c

sn�2b
n
2 c

zn�b
n
2 c

!
,

where (c j ) j are numerical constants. Making 2n integrations by parts gives (as
soon as m � n)Z

1

0
cos

⇣
s
p

H
⌘
 m
�
r2H

�
�(s)e�

s2
4z ds

=

Z
1

0

cos
�
s
p

H
�

Hn  m
�
r2H

�
@2ns


�(s)e�

s2
4z

�
ds

=

Z
1

0
cos

�
s
p

H
�
r2n m�n

�
r2H

� 2nX
k=0

ck� (2n�k)(s)@ks
✓
e�

s2
4z

◆
ds

=

Z
1

0
cos

�
s
p

H
�
r2n m�n

�
r2H

� 2nX
k=0

� (2n�k)(s)e�
s2
4z

·

 
ck
sk

zk
+ . . . + cn�2b n2 c

sk�2b
k
2 c

zk�b
k
2 c

!
ds,

where c j always denotes some numerical constants, possibly changing from line to
line. The behaviour of the sum over k is governed by its two extremal terms (that
is k = 0 and k = 2n where we only keep the first and last terms of the sum) which
leads us to (since |z| ' |t |)����
Z

+1

0
cos

⇣
s
p

H
⌘
 m
�
r2H

�
�(s)e�

s2
4z
ds
p

z

����
L2(Br )!L2(fBr )

.
Z 2 |t |

r

0
k cos

⇣
s
p

H
⌘
 m�n

�
r2H

�
kL2(Br )!L2(fBr )r2n

·

"✓
r
|t |

◆2n
+

✓
s
|t |

◆2n
+

1
|t |n

#
ds

p

|t |

.
Z 2 |t |

r

0

✓
r

r + s

◆ d�1
2
✓
1+

|L � s|
r

◆
�
d+1
2
r2n

"✓
r
|t |

◆2n
+

✓
s
|t |

◆2n
+

1
|t |n

#
ds

p

|t |
,
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where we used Assumption 5.1 (this is allowed ifm�n � m0) and L := d(Br ,fBr ).
If n = d

d�1
2 e, then firstly

Z 2 |t |
r

0

✓
r

s + r

◆ d�1
2
✓
1+

|L � s|
r

◆
�
d+1
2
 
r2

|t |

!2n
ds

p

|t |



Z
+1

0
(1+ u)�

d+1
2
rdu
p

|t |

 
r2

|t |

!2n

.

 
r2

|t |

!2n+ 1
2



 
r2

|t |

! d
2

,

since d > 1 and 2n +
1
2 �

d
2 . For the second term, we have

Z |t |
r

0

✓
r

r + s

◆ d�1
2
✓
1+

|L � s|
r

◆
�
d+1
2
✓
rs
|t |

◆2n ds
p

|t |



r
d�1
2 +2n

|t |2n

Z |t |
r

0

✓
1+

|L � s|
r

◆
�
d+1
2
s2n�

d�1
2

ds
p

|t |

.
r
d�1
2 +2n

|t |2n

✓
|t |
r

◆2n� d�1
2
Z

+1

0
(1+ u)�

d+1
2
rdu
p

|t |
.

 
r2

|t |

! d
2

,

since 2n �
d�1
2 � 0. And for the third and last term, it comes

Z |t |
r

0

✓
r

r + s

◆d�1
2
✓
1+

|L � s|
r

◆
�
d+1
2 r2n

|t |n
ds

p

|t |


 
r2

|t |

!n Z
+1

0
(1+ u)�

d+1
2
rdu
p

|t |

.

 
r2

|t |

!n+ 1
2



 
r2

|t |

! d
2

,

since n +
1
2 �

d
2 . The intermediate terms in the integrations by parts have an

intermediate behavior. We point out that these last computations required m � n �

m0 which is true, since m � m0 +

l
d�1
2

m
and n = d

d�1
2 e.

That concludes the proof, since each of the three terms have a satisfying
bound.
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5.2. A digression about these dispersive properties and the spectral measure

Let us assume Assumption 5.1 for  = 1.
Following the same reasoning as in Sections 3 and 4, it comes that the assumed

inequality

��� cos �spH
�
 m0(r

2H)
���
L2(B)!L2(eB)

.
✓

r
s + r

◆ d�1
2
✓
1+

|L � s|
r

◆
�
d+1
2

allows us to prove that cos(s
p

H) is bounded from the Hardy space H1 to BMO
(built with some parameter M sufficiently large) with��� cos(spH) 1

�
r2H

����
H1!BMO

. r�
d+1
2 (s + r)�

d�1
2 , 8|s|  1.

That corresponds to the H1 ! BMO counterpart of more classical L1 ! L1

dispersive estimates. Following interpolation and Keel-Tao’s argument (as detailed
previously) for the wave propagator, it allows us to deduce Strichartz estimates for
the wave equations: for exponents p, q wave-admissible and � � 0 satisfying

1
p

+

d
q

=

d
2

� �,

every solution u = cos(t
p

H)u0 of the problem8><
>:
@2t t u + Hu = 0
u|t=0 = u0
@t u|t=0 = 0,

satisfies:
kukL p([�1,1],Lq ) . ku0kW �,2 . (5.5)

Such Strichartz estimates for the wave equation, allow us to deduce some sharp
L2� Lq estimates for the spectral projector (introduced by Sogge [55]), as detailed
by Smith in [54]. Without details, we just sketch the proof of [54] to check that it
can be adapted to this very general setting.

Indeed, consider � > 0 and the spectral projector

5� = 11[�,�+1)
⇣p

H
⌘
.

Define the function
⇢�(x) :=

Z 1

�1
e�i t� cos(t x)dt

which a direct computation gives

⇢�(x) =

sin(�� x)
�� x

+

sin(�+ x)
�+ x

.
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So we observe that ⇢�(x) 2 [
1
2 , 2] if x 2 [�, �+ 1). As a consequence, by bounded

L2-functional calculus, we deduce that for f 2 L2

5�( f ) =

Z 1

�1
e�i t� cos

⇣
t
p

H
⌘ h
⇢�(

p

H)�15� f
i
dt,

with ⇢�(
p

H)�15� a uniformly L2-bounded operator (and also in any L2 Sobolev
space since it commutes with H ).

By applying (5.5), we deduce that for q 2 [
2(d+1)
d�1 ,1)

k5�( f )kLq .
����cos

⇣
t
p

H
⌘ 
⇢�

⇣p
H
⌘

�1
5� f

�����
L2([�1,1],Lq )

.
����⇢�

⇣p
H
⌘

�1
5� f

����
W �(q),2

. k5� f kW �(q),2 . ��(q)
k f kL2,

where �(q) is given by
1
2

+

d
q

=

d
2

� �(q).

If in addition, we assume the so-called “square function estimates” (see [54]), then
by interpolating with the trivial L2 � L2 bound, Strichartz estimates yield (as ex-
plained in [54]):

k5�kL2!Lq .

8>><
>>:
�
d�1
2

⇣
1
2�

1
q

⌘
if 2  q  2

d + 1
d � 1

�
d
⇣
1
2�

1
q

⌘
�
1
2 if q � 2

d + 1
d � 1

.

(5.6)

Let us point out that if now we only assume Assumption 5.1 for  = 1, then by
combining Theorems 4.5 and 5.3 we get free dispersive estimates without loss of
derivatives: for p 2 (1, 2] then

��eit H��L p!L p0 . |t |�
d
2

⇣
1
p�

1
p0

⌘
,

uniformly with respect to t 2 R. Then if the operator H (or
p

H ) has a spectral
measure with a Radon-Nicodym derivative, then following [12, Corollary 3.3], we
know that Restriction estimates hold which are:

����dEH (�)

d�

����
L p!L p0

. �
d
2 ( 1p�

1
p0 )�1,
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where EH (�) is the spectral measure of H and p 2 [1, 2d
d+2 ). We also have other

estimates for higher order derivatives and we refer to [12] for more details. Such
estimates give in particular for � � 1

k5�kL p!L p0 .
Z (�+1)2

�2

����dEH (s)
ds

����
L p!L p0

ds

.
Z (�+1)2

�2
s
d
2 ( 1p�

1
p0 )
ds
s

. �
d( 1p�

1
p0 )�1 . �

2d( 1p�
1
2 )�1. (5.7)

Thus, Assumption 5.1 alone allows to recover the estimate in (5.6) but with a
smaller range for q = p0 (than the one obtained by assuming the “square func-
tion estimates”). Indeed the range in (5.6) is given by the sharp critical exponent
1  p  2d+1

d+3 .

6. The Euclidean and Riemannian cases

To enhance the legitimacy of Assumption 5.1, we check its validity for the Laplace-
Beltrami operator H = �1 in four situations:

• The Euclidean space X = Rd with  = 1;
• Any smooth compact Riemannian manifold of dimension d and  is given by
the injectivity radius;

• Any smooth noncompact Riemannian manifold of dimension d, withC1

b -geom-
etry and  given by the geometry;

• Smooth perturbation of the Euclidean space X = Rd , H = �
1
⇢r · (Ar·) (for

uniformly nondegenerate function ⇢ and matrix A, with bounded derivatives)
which is a self-adjoint operator on Rd , equipped with the measure dµ = ⇢dx ,
with  < 1 (given by A and ⇢).

Proposition 6.1. In these four previous cases, Assumption 5.1 is satisfied.

The proof is based on the following properties (which are a refinement of the
finite speed propagation property): for B, eB two balls of radius r , then with L =

d(B, eB) and s 2 (0, ):

• If L > s + 2r then the finite speed propagation property occurs

k cos(s
p

H)kL2(B)!L2(eB) = 0; (6.1)

• If L  s � 10r then

k cos(s
p

H)kL2(B)!L2(eB) .
✓

r
r + s

◆ d�1
2
✓
1+

|L � s|
r

◆
�
d+1
2

. (6.2)
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We refer the reader to the introduction for more details about the finite speed prop-
agation property, which yields (6.1). Property (6.2) is quite standard, see for ex-
ample [9] for the case of a compact Riemannian manifold (where a short time
parametrix is detailed) and Appendix A where we detail computations in the Eu-
clidean situation.

In particular, we partly recover the results of [21, 56] (up to a loss " > 0 as
small as we want). Indeed, by combining Proposition 6.1 with Theorems 4.5 and
5.4 (with � = 1+ "), we have the following:
Corollary 6.2. Any smooth compact Riemannian manifold or non-compact Rie-
mannian manifold with a C1

b geometry (or as previously for a smooth perturbation
of the Euclidean setting with suitable functions ⇢, A) satisfy Strichartz estimates
with a loss of derivatives 1p + ", for every " > 0.

As a conclusion, we have obtained that as soon as we have suitable (short
time) L2� L2 microlocalized dispersive properties on the wave equation (Assump-
tion 5.1) then we can obtain their Strichartz estimates and dispersive estimates for
Schrödinger equation (with an eventual loss of derivatives if  < 1). We just
point out that in the case of a convex subset of the Euclidean space with a bound-
ary, then wave operators for the Dirichlet Laplacian do not satisfy Assumption 5.1
(since there is a loss of 1/4 in the main exponent), see [45] by Ivanovici, Lebeau
and Planchon.

Proof of Proposition 6.1. We detail the proof in the Euclidean case with  = 1.
We let the reader to check that everything still holds (up to some change of notation)
for a compact Riemannian manifold with  given by the injectivity radius. Indeed,
the proof relies on (6.2) and a precise formulation of the wave kernel around the
light cone, which is obtained by the Hadamard parametrix (and has the same form
as in the Euclidean case), see [9]. So let us focus on the Euclidean situation.

First, if s  10r then by the finite speed propagation property and Davies-
Gaffney estimates, we have��� cos �spH

�
 
�
r2H

����
L2(B)!L2(eB)



��� �r2H����
L2(B)!L2(10eB)

. e�
d(B,10eB)2

4r2 .

 
1+

d(B, eB)

r

!
�
d+1
2

=

✓
1+

L � s + s
r

◆
�
d+1
2

.
✓

r
r + s

◆ d�1
2
✓
1+

|L � s|
r

◆
�
d+1
2

,

since s . r , which is the desired estimate.
So we now only focus in the situation where s � 10r and consider (Bk)k a

bounded covering of X , by balls of radius r . Let �Bk be a smooth partition of the
unity, adapted to this covering: so �Bk is supported in 2Bk , takes values in [0, 1]
and satisfies for all n 2 N

kr
n�BkkL1 

1
rn

. (6.3)
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We decompose
���cos�spH

�
 
�
r2H

����
L2(B)!L2(eB)



X
Bk

��� cos �spH
��
�Bk . 

�
r2H

�����
L2(B)!L2(eB)

.

Due to (6.1), the sum is restricted to balls Bk such that d(Bk, eB)  s + 2r .

Step 1: The case d(Bk, eB)  s � 10r
Using (6.2) and Davies-Gaffney estimates, it comes

X
d(Bk ,eB)s�10r

��� cos �spH
��
�Bk . 

�
r2H

�����
L2(B)!L2(eB)



X
d(Bk ,eB)s�10r

��� cos �spH
����

L2(Bk)!L2(eB)

��� �r2H����
L2(B)!L2(Bk)

.
X

d(Bk ,eB)s�10r

✓
r

r + s

◆ d�1
2
 
1+

s � d(Bk, eB)

r

!
�
d+1
2

e�
d(B,Bk )2

4r2 .

Note that s � d(Bk, eB) � 10r � 0.
We can evaluate the following sum

X
k
e�

d(B,Bk )2

4r2 

+1X
l=0

e�2
2l
]

⇢
k,
d(B, Bk)
2r

⇠ 2l
�

.
+1X
l=0

2lde�2
2l

< +1. (6.4)

We distinguish two cases. If s � d(eB, Bk) �
1
2 |s � d(B, eB)| =

1
2 |s � L| then

X
d(Bk ,eB)s�10r

⇣r
s

⌘ d�1
2

 
1+

s � d(Bk, eB)

r

!
�
d+1
2

e�
d(B,Bk )2

4r2



X
k

⇣r
s

⌘ d�1
2
✓
1+

|s � L|

2r

◆
�
d+1
2
e�

d(B,Bk )2

4r2

.
⇣r
s

⌘ d�1
2
✓
1+

|s � L|

r

◆
�
d+1
2

.

If s � d(eB, Bk) 
1
2 |s � d(B, eB)| then

d(B, Bk) �

���d�Bk, eB�� d
�
B, eB���� =

���(s � L) �

�
s � d

�eB, Bk
����� �

1
2
|s � L|.
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Hence

X
d(Bk ,eB)s�10r

⇣r
s

⌘ d�1
2

 
1+

s � d(Bk, eB)

r

!
�
d+1
2

e�
d(B,Bk )2

4r2

.
⇣r
s

⌘ d�1
2 X

d(Bk ,eB)s�10r

✓
1+

10r
r

◆
�
d+1
2
e�

d(B,Bk )2

8r2 e�
d(B,Bk )2

8r2| {z }
e

�
|s�L|

2
16r2

.
⇣r
s

⌘ d�1
2
✓
1+

|s � L|

r

◆
�
d+1
2

,

because for every x � 0, e�x2 . (1+ x)�↵ for all ↵ > 1.
Step 2: The case s � 10r  d(Bk, eB)  s + 2r with an odd dimension d � 3
In this case, we have to use a sharp expression of the kernel of the wave propagator.
It is known that the behavior of the kernel is different according to the parity of the
dimension. Let us start with the case of an odd dimension d � 3. In the Euclidean
situation, we have an exact representation of the kernel (see [37], e.g.): for every
s � 0 and every sufficiently smooth function g

cos
⇣
s
p

H
⌘
g(x) = @s

✓
1
s
@s

◆ d�3
2
✓
sd�2

Z
|y|=1

g(x + sy)dy
◆

=

d�1
2X

n=0
cnsn

Z
|y|=1

@ns (g(x + sy))dy,

where cn are some numerical constants.
Consider g = �Bk (r2H) f ; then it satisfies the following regularity estimates

(with a slight abuse of notation): for every integer n � 0
���@ns ��Bk (x + sy) 

�
r2H

�
f (x + sy)

���� . 1
rn
e�Bk (x + sy)e �r2H� f (x + sy).

Let us explain this point. Indeed, we can control the derivatives of �Bk by (6.3). It
remains to explain the behavior of the derivatives of  (r2H) f (x + sy). The kernel
of the heat semigroup, for t > 0, is

pt (x, y) =

1

(4⇡ t)
d
2
e�

|x�y|2
4t .

Thus for all r > 0:

@s(pr2(x + sy, z)) =

1

(4⇡r2)
d
2
e�

|x+sy�z|2

4r2
(x + sy � z)y

2r2
.
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Hence

|@s(pr2(x + sy, z)| .
1

(4⇡r2)
d
2

1
2r2

e�
|x+sy�z|2

4r2 |x + sy � z|

=

1
r

1

(4⇡r2)
d
2

|x + sy � z|
2r

e�
⇣

|x+sy�z|
2r

⌘2

.
1
r

1

(4⇡r2)
d
2
e�

|x+sy�z|2

8r2 ,

which means that, up to some numerical constants, the n-th derivative of
 (r2H) f (x + sy) behaves as 1

rn (r2H) f (x + sy) in the sense that their ker-
nels have both similar Gaussian pointwise decays. Such a property also holds on a
compact smooth Riemannian manifold.

So we have for f 2 L2(B) a function supported on B,
���cos ⇣spH

⌘⇣
�Bk . (r2H) f

⌘���
L2(eB)

.

d�1
2X

n=0

⇣ s
r

⌘n Z
|y|=1

ke�Bk (x + sy)e (r2H) f (· + sy)kL2(eB)dy

.

d�1
2X

n=0

⇣ s
r

⌘n Z
S(0,1)\A

���e (r2H) f
���
L2(Bk)

dy,

where S(0, 1) is the unit sphere and A =
1
s (Bk �

eB). Hence from the exponential
decay of the kernel of e (r2H), we get

���cos ⇣spH
⌘⇣
�Bk . 

�
r2H

�
f
⌘���

L2(eB)
.

d�1
2X

n=0

⇣ s
r

⌘n
|S(0, 1)\A|e�c

d(B,Bk )2

r2 k f kL2(B)

. k f kL2(B)

d�1
2X

n=0

⇣r
s

⌘d�1�n
e�c

d(B,Bk )2

r2

. k f kL2(B)

⇣r
s

⌘ d�1
2 e�c

d(B,Bk )2

r2 ,

where we have used that the (d�1)-dimensional volume of S(0, 1)\ A = S(0, 1)\
1
s (Bk �

eB) is equivalent to
� r
s
�d�1 and

� r
s
�d�1�n



� r
s
� d�1

2 . Hence, it remains to
evaluate the sum X

s�10rd(eB,Bk)s+2r

e�c
d(B,Bk )2

r2 .
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Since
d(B, Bk) � |d

�
B, eB�� d

�eB, Bk
�
| � 2r � |L � s| � 4r.

Then
|L � s|2  2

�
d(B, Bk)2 + 16r2

�
that is

d(B, Bk)2 �

|L � s|2

2
� 16r2.

Thus, we deduce

X
Bk

s�10rd(eB,Bk )s+2r

e�c
d(B,Bk )2

r2 

X
Bk

e�c
d(B,Bk )2

2r2 e�c
|L�s|2

2r2

.
✓
1+

|L � s|
r

◆
�
d+1
2

.

In the end, we have obtained that
X

s�10rd(eB,Bk)s+2r

���cos �spH
�⇣
�Bk . 

�
r2H

�
f
⌘���

L2(eB)

.
⇣r
s

⌘ d�1
2
✓
1+

|L � s|
r

◆
�
d+1
2

k f kL2(B)

which gives the desired estimate (for an odd dimension).
Step 3: The case s � 10r  d(Bk, eB)  s + 2r with an even dimension d � 2
In this case the wave propagator is given by

cos
⇣
s
p

H
⌘
g(x) = @s

✓
1
s
@s

◆ d�2
2
 
sd�1

Z
|y|<1

g(x + sy)
dyp
1� |y|2

!

=

d
2X

n=0
cnsn

Z
|y|<1

@s(g(x + sy))
dyp
1� |y|2

,

with some numerical constants cn . The same arguments as above give
���cos ⇣spH

⌘⇣
�Bk . 

�
r2H

�
f
⌘���

L2(eB)

. k f kL2(B)

d
2X

n=0

⇣ s
r

⌘n
e�c

d(Bk ,B)2

r2

Z
y2A\B(0,1)

dyp
1� |y|2

,
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where A =
1
s (Bk �

eB). Moreover
Z
A\B(0,1)

dyp
1� |y|2



Z
A\B(0,1� r

s )

dyp
1� |y|2

+

Z 1

1� r
s

|S(0, ⇢) \ A|

d⇢p
1� ⇢2



Z
A\B(0,1)

⇣ s
r

⌘ 1
2 dy +

⇣r
s

⌘d�1 Z 1

1� r
s

d⇢
p

1� ⇢

.
⇣r
s

⌘d�
1
2

+

⇣r
s

⌘d�1 hp
1� ⇢

i1
1� r

s
.
⇣r
s

⌘d�
1
2
.

Hence, X
s�10rd(eB,Bk)s+2r

���cos ⇣spH
⌘⇣
�Bk . 

�
r2H

�
f
⌘���

L2(eB)

.
X
Bk

⇣r
s

⌘ d�1
2 e�c

d(B,Bk )2

r2 k f kL2(B)

.
⇣r
s

⌘ d�1
2
✓
1+

|s � L|

r

◆
�
d+1
2

k f kL2(B),

which gives the desired estimate.
Note that since r . s we have r

s . r
r+s so in any dimension d > 1:

���cos ⇣spH
⌘
 
�
r2H

����
L2(B)!L2(eB)

.
✓

r
r + s

◆ d�1
2
✓
1+

|L � s|
r

◆
�
d+1
2

.

Appendix

A. Wave propagation in the Euclidean setting

In this appendix we aim to check (6.2) in the Euclidean situation, from the exact
and global formula giving the wave operators. Let us consider the Euclidean space
X = Rd , equipped with its canonical structure and H = �1.

Proposition A.1. For every balls Br ,fBr of radius r > 0 and every s > 0, if L :=

d(Br ,fBr )  s � 10r then

���cos ⇣spH
⌘���

L2(Br )!L2(fBr ) .
✓

r
r + s

◆ d�1
2
✓
1+

|L � s|
r

◆
�
d+1
2

.

Proof. Let f 2 L2(Br ). If d � 3 is odd then the wave propagator is given by

cos
⇣
s
p

H
⌘
f (x) =

d�1
2X

n=0
cnsn

Z
|y|=1

@s( f (x + sy)) dy,
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for some numerical constants cn . If x 2
fBr and x + sy 2 Br then y =

x+sy�x
s 2

B�
eB

s hence

|y| 

d(B, eB) + 2r
s



s � 8r
s

< 1. (A.1)

Thus
cos

⇣
s
p

H
⌘
f (x) = 0.

If d � 2 is even then the wave propagator is given by

cos
⇣
s
p

H
⌘
f (x) = @s

✓
1
s
@s

◆ d�2
2
 
sd�1

Z
|y|<1

f (x + sy)
dyp
1� |y|2

!
.

Set
In,m :=

Z
|y|<1

f (x + sy)
|y|2m

(1� |y|2)n
dy.

Since

cos
⇣
s
p

H
⌘
f (x) = @s

✓
1
s
@s

◆ d�2
2 ⇣

sd�1 I 1
2 ,0

⌘
,

we want to evaluate

@s In,m =

Z
|y|<1

r f (x + sy).y
|y|2m

(1� |y|2)n
dy.

By (A.1) the boundary term in Green’s formula vanishes and so

@s In,m = �

Z
|y|<1

f (x + sy)
s

r ·

 
y|y|2m

(1� |y|2)n

!
dy.

Consequently, it comes with numerical constants ↵n,m,↵n+1,m+1

@s In,m =

1
s
(↵n,m In,m + ↵n+1,m+1 In+1,m+1).

It follows that (with other coefficients but for simplicity we keep the same notation)
✓
1
s
@s

◆
(sd�1 In,m) = sd�3(↵n,m In,m + ↵n+1,m+1 In+1,m+1).

By iterating, we deduce that for n =
1
2 and m = 0

✓
1
s
@s

◆ d�2
2 ⇣

sd�1 I 1
2 ,0

⌘
= sd�1�(d�2)

⇣
↵ 1
2 ,0
I 1
2 ,0

+ · · · + ↵ 1
2+

d�2
2 , d�2

2
I 1
2+

d�2
2 , d�2

2

⌘
.
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Hence,
cos

⇣
s
p

H
⌘
f (x) = ↵ 1

2 ,0
I 1
2 ,0

+ · · · + ↵ d+1
2 , d2

I d+1
2 , d2

,

where coefficients ↵n,m are some numerical constants, possibly changing from line
to line.

Since 1
1�|y|2 � 1 and |y|  1 we have:

���cos ⇣spH
⌘
f
���
L2(fBr ) .

�����
Z

|y|<1
| f (x + sy)|

dy

(1� |y|2)
d+1
2

�����
L2(fBr )

.
Z
B(0,1)\A

k f (· + sy)kL2(fBr )
dy

((1+ |y|)(1� |y|))
d+1
2

,

where A :=
1
s (Br �

fBr ) so that |y| �
d(Br ,fBr )�2r

s . Moreover

k f (· + sy)kL2(fBr )  k f kL2(Br ).

Hence: ���cos ⇣spH
⌘���

L2(B)!L2(eB)
.

1⇣
1�

L�2r
s

⌘ d+1
2

|B(0, 1) \ A|

.
✓
s � L + 2r

s

◆
�
d+1
2 ⇣r

s

⌘d
.
✓
1+

|s � L|

r

◆
�
d+1
2 ⇣r

s

⌘ d�1
2

.
✓

r
r + s

◆ d�1
2
✓
1+

|s � L|

r

◆
�
d+1
2

,

where the last inequality holds if r  s. If s  r then use |B(0, 1) \ A| 

|B(0, 1)| . 1 to get the same estimation with 1 . r
r+s instead of

r
s .
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2006, 291–313.

[61] M. TAYLOR, Hardy Spaces and Bmo on manifolds with bounded geometry, J. Geom. Anal.
19 (2009), 137–190.

[62] J. ZHANG, Strichartz estimates and nonlinear wave equation on nontrapping asymptotically
conic manifolds, Adv. Math. 271 (2015), 91–111.

CNRS - Université de Nantes
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