
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XVII (2017), 1031-1066

A gradient flow for open elastic curves
with fixed length and clamped ends

ANNA DALL’ACQUA, CHUN-CHI LIN AND PAOLA POZZI

Abstract. We consider regular open curves in Rn with clamped ends subject to a
fixed length constraint and moving according to the L2-gradient flow of the elastic
energy. For this flow we prove a long time existence result and subconvergence to
critical points. In particular our result provides an alternative approach for finding
equilibrium configurations of bending energy.

Mathematics Subject Classification (2010): 35K55 (primary); 35K35, 53C44
(secondary).

1. Introduction

The simplestmodel in elastic rod theory was originally proposed byDaniel Bernoulli
to Leonhard Euler around 1743 [18]: there the shape of elastic rods in equilibrium
was characterised by critical points of the elastic energy functional of curves (or
the centerlines of rods). The elastic energy functional, which is also called bending
energy functional (or Willmore energy), is defined by the integral of the squared
curvature of a curve over its arc-length parameter (see (1.1) below). The equilibrium
configuration is commonly called elastica or elastic curve. Besides classical rod
theory, there are many other applications of elastic energies, e.g., in the mechanical
modeling of DNA [7], in edge completion problems of computer vision [15], and
in the theory of nonlinear splines [10].

In this article, we consider a smooth map f : I ! Rn , n � 2, I = (0, 1),
together with the elastic energy

E( f ) =

1
2

Z
I
|E|

2 ds , (1.1)
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where ds = |@x f |dx denotes the arc-length element and E = @ss f the curva-
ture vector. Since in many physical problems one has to consider boundary value
problems, it is natural for variational problems in elasticity to prescribe the fixed
end-point positions of the curves and fixed tangent vectors at these end-points un-
der a prescribed length. Namely, given f+, f� vectors in Rn and ⌧+, ⌧� vectors in
Sn�1, we consider curves f : I ! Rn satisfying the following clamped boundary
conditions

f (0) = f�, f (1) = f+, @s f (0) = ⌧�, @s f (1) = ⌧+ ,

with @s f = |@x f |�1@x f , and
R
Ī ds = L0 > | f+ � f�|. We refer to such curves as

curves with clamped ends.
In this work we consider the elastic flow of curves with given length and

clamped ends. Apart from its intrinsic interest, the study of a gradient flow in the
setting of parabolic differential equations, is a very powerful method to prove exis-
tence of critical points of the considered energy functional. Indeed, starting from a
smooth initial datum we follow a trajectory in the functional space along which the
energy is decreasing; if this path exists for all time, then under suitable conditions
the limit is a critical point.

In this article, we follow this Ansatz and consider the gradient flow equation,

@t f = �r
2
s E �

1
2
|E|

2
E + �E , (1.2)

with initial smooth datum

f (0, ·) = f0(·) in Ī = [0, 1] , (1.3)

wherers� = @s��h@s�, @s f i@s f denotes the normal component of the full deriva-
tive @s� of a vector field � : I ! Rn and

� = �(t) =

R
I hr

2
s E +

1
2 |E|

2
E, Ei dsR

I |E|
2 ds

, (1.4)

is the Lagrange-multiplier to keep the total length of the curves fixed along the flow
(see (2.9) below). We look for a solution to (1.2), (1.3) subject to the clamped
boundary conditions

f (t, 0) = f�, f (t, 1) = f+ for all t � 0 , (1.5)
@s f (t, 0) = ⌧�, @s f (t, 1) = ⌧+ for all t � 0. (1.6)

In the main Theorem 1.1 we prove that the above flow exists globally in time and
that as the time goes to infinity the curves sub-converge, after reparametrizaton by
arc-length, to open elasticae (see the statement of the theorem for a more precise
formulation). The word “open” is here to be understood in the following sense:
the prescribed two end-points positions f� and f+ are allowed to coincide, but in
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this case no periodicity across the glueing point is required (as in the case of the
so-called closed curves).

The investigation of the elastic flow in the above mentioned spirit has by now a
rich set of contributions by several authors. One usually differentiates between the
case of open and closed curves, the conditions imposed at the boundary, and the way
the length of the curve is controlled, namely by fixing it or by simply penalizing its
growth (in this latter case � is simply a positive fixed number).

The case of closed planar curves was first studied in [19] and [17], and suc-
cessively in [6] in the case of arbitrary dimension. Further results in the setting
of closed curves are presented in [21], where a Willmore-Helfrich type of energy
functional is considered.

The case of open curves was tackled in far more recent years: in [11], the sec-
ond author of this article obtained long-time existence of smooth solution for (1.2)
with fixed positive constant �, clamped ends (1.5), (1.6), and smooth initial data
in Rn . In [3] Dall’Acqua and Pozzi investigated a Willmore-Helfrich type of func-
tional (which entails (1.1) as a special case) and investigated long-time existence for
the evolution of open curves under natural boundary conditions and a fixed positive
parameter �. In [2], Dall’Acqua, Lin, and Pozzi extended the results in [11] to the
case of flow (1.2) with hinged ends and fixed length. The generalization to the case
of clamped boundary conditions is finally achieved in the present work. Before go-
ing into details of the difficulties presented by the treatment of clamped boundary
conditions and the new contribution of this paper, let us briefly mention that in the
literature one finds also several studies concerning flows that approach elasticae but
are geometrically different: see for instance [9] and [8]. In the graph setting the
stationary problem for the elastic energy of open curves subject to different bound-
ary conditions is considered in [4,5], and [13]. Elastic motion of non-closed planar
curve with infinite length is treated in [16]. Numerical simulations for the elastic
flow of open and closed curves in Rn are presented in [1].

Let us finally briefly discuss our main result:

Theorem 1.1. Let vectors f+, f� 2 Rn and ⌧+, ⌧� 2 Sn�1 be given as well as a
smooth regular curve f0 : Ī ! Rn satisfying

f0(0) = f�, f0(1) = f+ ,

⌧ [ f0](0) = ⌧�, ⌧ [ f0](1) = ⌧+ ,

with ⌧ [ f0] the unit tangent vector of f0, together with suitable compatibility condi-
tions. Let the length L( f0) = L0 of the initial curve satisfy L0 > | f+ � f�|. Then
a smooth solution f : [0, T ) ⇥ [0, 1] ! Rn of the initial boundary value problem

8>>><
>>>:

@t f = �r
2
s E �

1
2 |E|

2
E + �E in I ⇥ (0, T )

f (0, x) = f0(x) for x 2 [0, 1]
f (t, 0) = f�, f (t, 1) = f+ for t 2 [0, T )

@s f (t, 0) = ⌧�, @s f (t, 1) = ⌧+ for t 2 [0, T ),

(1.7)
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with

� = �(t) =

R
I

D
r
2
s E +

1
2 |E|

2
E, E

E
dsR

I |E|
2 ds

, (1.8)

exists for all times, that is we may take T = 1. Moreover, as ti ! 1 the curves
f (ti,·) subconverge, when reparametrized by arc-length, to a critical point of the
elastic functional with clamped ends and subject to a fixed length constraint, that is
to a solution of 8><

>:
�r

2
s E �

1
2 |E|

2
E + �E = 0

f (0) = f� f (1) = f+
⌧ (0) = ⌧� ⌧ (1) = ⌧+ ,

(1.9)

for some value � 2 R.

We would like to point out that the long-time existence of smooth solutions is
not generally expected for a fourth-order parabolic equation or system. For exam-
ple, under the fourth-order curve diffusion flow @t f = �r

2
s E there exist initially

immersed smooth curves that develop singularity in finite time (see [20]).
Similarly to many of the works mentioned above, our method of proof for

Theorem 1.1 is based on L2-estimates of the curvature by means of Gagliardo-
Nirenberg-type inequalities. Under the assumption that the flow exists only up to
some positive time T > 0, we obtain uniform bounds for the curvature and all its
derivatives, so that a contradiction argument yields existence of the flow for all time.
Some of the crucial ideas underlying our method of proof are extensively discussed
in [3, Section 1], so we will not repeat all observations here. Let us just mention
that a key starting point is Lemma 2.3, which provides an evolution equation for
the L2-norm of a general normal vector field E� : Ī ! Rn along f . Mimicking
the case of closed curves discussed in [6], one wishes to take E� = r

m
s E for any

m 2 N and obtain the aforementioned uniform bounds by means of interpolation
inequalities, Gronwall arguments, and by exploiting the structure of the equation
(see comments in [3, Section 1]). However, as soon as open curves are treated,
one has to take care of boundary terms, a task that turns out to be rather tricky.
In [2] the boundary terms disappear due to the special choice of hinged boundary
conditions. In [11] the problem is avoided by considering E� = r

m
t f : here the

clamped boundary conditions make sure that the boundary terms do not interfere
(cf. Lemma 2.4 below). In the present setting, where the parameter � is now time-
depending, such an approach is absolutely discouraging, since now r

m
t f contains

also derivatives of � up to order m � 1, which have to be controlled somehow.
Our idea is (after a special “initialization step” with E� = rt f ) to “stick” to

the choice of E� = r
m
s E , but now considering only m = 4 j with j 2 N. In some

sense and very roughly speaking, looking at derivatives in multiple of four is like
looking at subsequent time derivatives of Equation (1.2). Yet, no derivatives of �,
appear in the term E� and this is of great advantage. The derivatives of � appear
instead in the boundary terms and these have to be treated separately and with great
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precision. The successful analysis of the boundary terms exploits the structure of
the considered PDE together with the given boundary conditions (see Lemma 2.6),
strong interpolation inequalities (see Lemma 3.4), and a constant monitoring and
improvement for the bounds obtained for the derivatives of �. Last but not least
the introduction of some smart notation helps in maintaining an overview of the
rapidly growing number of terms in all equations. Let us note that our interpolation
inequalities are more general than the ones used in the literature so far and therefore
they are interesting in their own right.

Our work is organized as follows: in Section 2 we introduce notation and sev-
eral useful geometrical results. All relevant facts about interpolation inequalities
are collected in Section 3. The estimates for � and its derivative are presented in
Section 4: notice that here we also give the generalization of some previous results
reported in [2] without using the information about the boundary conditions (see
Lemma 4.3). Finally in Section 5 the proof of the Theorem 1.1 is discussed.

2. Preliminaries and notation

We consider a time dependent curve f : [0, T )⇥ Ī ! Rn , n � 2, I = (0, 1). For a
curve f let ds = |@x f |dx denote the arc-length element, ⌧ = @s f =

@x f
|@x f | its unit

tangent vector, and E = @ss f its curvature vector. For a vector-field � : [0, 1] !

Rn we set

@s� :=

1
|@x f |

@x� and rs� := @s� � h@s�, @s f i@s f.

Notice that rs� is the normal component of @s�. Similar to rs , let rt be defined
by

rt⌘ := @t⌘ � h@t⌘, @s f i@s f

for any vector field ⌘ defined on the smooth family of curves f .
In the following vector fields with an arrow on the top are normal vector fields.

2.1. Geometrical lemmas

We start by recalling the variation of some geometrical quantities considering
smooth solutions f : [0, T ) ⇥ Ī ! Rn of an arbitrary entirely normal flow

@t f = EV

with EV , h EV , ⌧ i ⌘ 0, the normal velocity. The following lemma is an immediate
consequence of [3, Lemma 2.1] (or [6, Lemma 2.1]).
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Lemma 2.1. Given E� any smooth normal field along f , the following formulas
hold:

@t (ds) = �hE, EV i ds , (2.1)
@t@s � @s@t = hE, EV i@s , (2.2)

@t⌧ = rs EV , (2.3)
@t E� = rt E� � hrs EV , E�i⌧, (2.4)
@t E = @srs EV + hE, EV iE , (2.5)
rt E = r

2
s EV + hE, EV iE , (2.6)

(rtrs � rsrt ) E� = hE, EV irs E� +

h
hE, E�irs EV � hrs EV , E�iE

i
. (2.7)

Furthermore, if EV = 0 at the boundary then we have at the boundary @t@s = @s@t .
If additionally E� = 0 or rs EV = 0 at the boundary, then

rtrs E� = rsrt E� . (2.8)

Remark 2.2. Thanks to the previous lemma we can now show that the value of �
given in (1.4) ensures that the length of the curve L[ f ] =

R
I ds is preserved along

the flow (1.2). Indeed, using (2.1) we infer that

d
dt
L[ f ] =

d
dt

Z
I
ds = �

Z
I

⌧
E,�r

2
s E �

1
2
|E|

2
E + �E

�
ds = 0 . (2.9)

Note also that the elastic energy (1.1) decreases along the flow, i.e.

d
dt
E( f ) = �

Z
I
|@t f |2 ds  0 . (2.10)

This follows for instance from [3, Lemma A.1], (2.9) and Lemma 2.4 below.

Lemma 2.3. Suppose @t f = EV on (0, T )⇥ I . Let E� be a normal vector field along
f and Y = rt E� + r

4
s E�. Then

d
dt
1
2

Z
I
| E�|

2 ds +

Z
I
|r
2
s E�|

2 ds = �

h
h E�,r3s E�i

i1
0
+

h
hrs E�,r2s E�i

i1
0

+

Z
I
hY, E�i ds �

1
2

Z
I
| E�|

2
hE, EV i ds.

(2.11)

Proof. The claim follows using (2.1) and integration by parts (cf. also [6, Lemma
2.2], [11, Lemma 3], [3, Lemma 2.3]).

We will use Lemma 2.3 first with E� = rt f and then with E� = r
m
s E , m 2 N.

In both cases we need to understand well the boundary terms and for this purpose
the following lemma is crucial.
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Lemma 2.4. Let f be a smooth solution of (1.2) subject to (1.5), (1.6) and (1.4)
on [0, T ) ⇥ I . Then for all m 2 N

r
m
t f (t, x) = 0, r

m
t ⌧ (t, x) = 0 and rsr

m
t f (t, x) = 0 for x 2 {0, 1} .

This result has already been observed and used in [3, Lemma 2.2 and Remark 2.5]
and [11]. For the sake of readability we give here again the proof.

Proof. We need to prove only the second statement since the first two follow di-
rectly from (1.5) and (1.6). For x 2 {0, 1} using that rt f (t, x) = @t f (t, x) = EV =

0, (2.2) and (1.6) we have

@srt f (t, x) = @s@t f � @s(h@t f, ⌧ i⌧ ) = @t@s f = 0 .

In particular, rsrt f (t, x) = 0 and rs EV (t, x) = 0 for x 2 {0, 1}. For m � 2 the
claim follows by induction from (2.8) as follows

rsr
m
t f (t, x) = rsrt (r

m�1
t f ) = rt (rsr

m�1
t f ) = 0 ,

using in the last equation the induction hypothesis.

2.2. Technical lemmas

In this section we compute the parabolic equations satisfied by r
k
s E and r

m
t f . For

this we need to introduce the following notation.
As in [6], for normal vector fields E�1, . . . , E�k , the product E�1 ⇤ · · · ⇤ E�k defines

for even k a function given by h E�1, E�2i . . . h E�k�1, E�ki , while for k odd it defines a
normal vector field h E�1, E�2i . . . h E�k�2, E�k�1i E�k .

Following the notation adopted in [3], for E� a normal vector field, Pa,cb ( E�)
denotes any linear combination of terms of type

r
i1
s E� ⇤ · · · ⇤ r

ib
s E� with i1 + · · · + ib = a and max i j  c ,

with coefficients bounded by some universal constant. Notice that a gives the total
number of derivatives, b gives the number of factors and c gives the highest number
of derivatives falling on one factor. Notice also that, with a slight abuse of notation,
|Pa,cb ( E�)| denotes any linear combination with non-negative coefficients of terms of
type

|r
i1
s E�| · |r

i2
s E�| · ... · |rib

s E�| with i1 + · · · + ib = a and max i j  c .

Observe that for odd b 2 N we have rs Pa,cb ( E�) = Pa+1,c+1b ( E�). Finally, for sums
over a, b and c we set

X
[[a,b]][[A,B]]

cC

Pa,cb ( E�) :=

AX
a=0

2A+B�2aX
b=1

CX
c=0

Pa,cb ( E�) . (2.12)
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Similarly we set
P

[[a,b]][[A,B]]

cC
|Pa,cb ( E�)|:=

PA
a=0

P2A+B�2a
b=1

PC
c=0 |Pa,cb ( E�)|. As

already mentioned in [3], the relation between A and B in (2.12) can be interpreted
as follows: the more derivatives we take the less factors are present, or equivalently,
if we take one derivative less, then we may allow for two factors more.

Derivatives with respect to time of the parameter � will be denoted by

�( j)
=

d j�
dt j

,

for all j 2 N0. In particular �(0)
= �. Moreover, for all i 2 N, ` 2 N0, we let

Qi (�`) :=

X
�2S`

i

c� ·

Ỳ
a=0

�
�(a)��a ,

where S`
i :=

(
� 2 (N0)`+1 :

X̀
a=0

(4a + 2)�a = 2i

)
,

with constant coefficients c� bounded by some universal constant. Here, we set
(�(a))0 := 1 for a 2 N0; Q0(�`) := 1, 8 ` 2 N0; and Qi (�`) := 0, 8 i 2

N0, and ` < 0. Note that the parameter ` indicates the highest order of derivative
of � possibly present in any of these polynomials, whereas the parameter i takes
into account both the order and the power of the derivatives.

Lemma 2.5. Suppose f : [0, T )⇥ Ī ! Rn is a smooth regular solution to (1.2) in
(0, T ) ⇥ I . Then, the following formulas hold on (0, T ) ⇥ I :

(1) For any k 2 N,h
rtr

k
s � r

k
s rt

i
E =

X
[[a,b]][[k+2,3]]
ck+2, b odd

Pa,cb (E) + �
X

[[a,b]][[k,3]]
ck, b odd

Pa,cb (E) ; (2.13)

(2) For any ` 2 N0, we have that

rtr
`
s E =�r

`+4
s E+�r

`+2
s E+

X
[[a,b]][[`+2,3]]
c`+2, b odd

Pa,cb (E)+�
X

[[a,b]][[`,3]]
c`,b odd

Pa,cb (E); (2.14)

(3) For any A,C 2 N0, B 2 N,

rt
X

[[a,b]][[A,B]]

cC, b odd

Pa,cb (E)=
X

[[a,b]][[A+4,B]]

cC+4, b odd

Pa,cb (E)+�
X

[[a,b]][[A+2,B]]

cC+2, b odd

Pa,cb (E) ; (2.15)

Similarly, for any A,C 2 N0, B 2 N,

@t
X

[[a,b]][[A,B]]

cC, b even

Pa,cb (E)=
X

[[a,b]][[A+4,B]]

cC+4, b even

Pa,cb (E)+�
X

[[a,b]][[A+2,B]]

cC+2, b even

Pa,cb (E) ; (2.16)
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(4) For any i, ` 2 N0,

d
dt
Qi (�`) = Qi+2(�`+1) ; (2.17)

(5) For any m 2 N,

r
m
t f = (�1)mr

4m�2
s E + �(m�1)

E +

X
[[a,b]][[4m�4,3]]
c4m�4, b odd

Pa,cb (E)

+

2m�2X
i=1

Qi (�m�2)
X

[[a,b]][[4m�2i�2,1]]
c4m�2i�2, b odd

Pa,cb (E) ;

(2.18)

(6) For any m 2 N,

r
m
t ⌧ = (�1)mr

4m�1
s E + �(m�1)

rs E +

X
[[a,b]][[4m�3,3]]
c4m�3, b odd

Pa,cb (E)

+

2m�2X
i=1

Qi (�m�2)
X

[[a,b]][[4m�2i�1,1]]
c4m�2i�1, b odd

Pa,cb (E) .

(2.19)

Proof. Formula (2.13) is proven in [3, Lemma 3.1] or [11]. By (2.6) and (1.2), we
have

rt E = �r
4
s E + �r

2
s E +

X
[[a,b]][[2,3]]
c2, b odd

Pa,cb (E) + �
X

[[a,b]][[0,3]]
c0, b odd

Pa,cb (E), (2.20)

that is (2.14) for ` = 0. For ` 2 N we find by (2.13) and (2.20)

rtr
`
s E = r

`
s

h
� r

4
s E + �r

2
s E +

X
[[a,b]][[2,3]]
c2, b odd

Pa,cb (E) + �
X

[[a,b]][[0,3]]
c0, b odd

Pa,cb (E)
i

+

X
[[a,b]][[`+2,3]]
c`+2, b odd

Pa,cb (E) + �
X

[[a,b]][[`,3]]
c`, b odd

Pa,cb (E),

from which (2.14) follows. A proof of (2.15) can be found in [3, Lemma 3.1]
or [11].
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To prove (2.16) observe that @t (P↵,⇣
� (E)) (with ↵, ⇣ 2 N0, � 2 N an even

number) is given by a linear combination of terms of type
D
r
i1
s E,ri2

s E
E
· · ·

D
rtr

i j
s E,r

i j+1
s E

E
· · ·

D
r

i��1
s E,r

i�
s E

E

where i1 + . . . + i� = ↵, as well as i`  ⇣ for all ` = 1, . . . ,�. Using (2.14) one
obtains

@t (P↵,⇣
� (E)) = P↵+4,⇣+4

� (E) + �P↵+2,⇣+2
� (E)

+

X
[[a,b]][[↵+2,�+2]]

c⇣+2, b even

Pa,cb (E) + �
X

[[a,b]][[↵,�+2]]
c⇣, b even

Pa,cb (E)

=

X
[[a,b]][[↵+4,�]]

c⇣+4, b even

Pa,cb (E) + �
X

[[a,b]][[↵+2,�]]

c⇣+2, b even

Pa,cb (E).

Equation (2.16) now follows.
Formula (2.17) follows since by the definition of Qi (�`) we get (formally)

d
dt
Qi (�`) =

X̀
k=0

X
�2S`

i

c� ·

Ỳ
a=0

(�(a))�a · �k

 
�(k+1)

�(k)

!
= Qi+2(�`+1),

using that

2(i + 2) =

X̀
a=0

(4a + 2)�a + 4

=

X̀
a=0

a 6=k,k+1

(4a + 2)�a + (4k + 2)(�k � 1) + (4(k + 1) + 2)(�k+1 + 1) .

Equation (2.18) for m = 1 is (1.2). For general m we proceed by induction. For
m � 2 by induction hypothesis, we have

r
m
t f = rt

2
664(�1)m�1

r
4m�6
s E + �(m�2)

E +

X
[[a,b]][[4m�8,3]]
c4m�8, b odd

Pa,cb (E)

+

2m�4X
i=1

Qi (�m�3)
X

[[a,b]][[4m�2i�6,1]]
c4m�2i�6, b odd

Pa,cb (E)

3
775 .

(2.21)
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By (2.14), (2.15) and (2.17) we get

r
m
t f = (�1)mr

4m�2
s E + (�1)m�1�r

4m�4
s E

+

X
[[a,b]][[4m�4,3]]
c4m�4, b odd

Pa,cb (E) + �
X

[[a,b]][[4m�6,3]]
c4m�6,b odd

Pa,cb (E)

+ �(m�1)
E + �(m�2)

0
BB@

X
[[a,b]][[4,1]]
c4, b odd

Pa,cb (E) + �
X

[[a,b]][[2,1]]
c2,b odd

Pa,cb (E)

1
CCA

+

2m�4X
i=1

Qi+2(�m�2)
X

[[a,b]][[4m�2i�6,1]]
c4m�2i�6, b odd

Pa,cb (E)

+

2m�4X
i=1

Qi (�m�3)

2
664

X
[[a,b]][[4m�2i�2,1]]
c4m�2i�2, b odd

Pa,cb (E)+�
X

[[a,b]][[4m�2i�4,1]]
c4m�2i�4, b odd

Pa,cb (E)

3
775 ,

from which (2.18) follows since � = Q1(�m�2) and
�(m�2)

= Q2m�3(�m�2), ��(m�2)
= Q2m�2(�m�2)

and �Qi (�m�3) = Qi+1(�m�3).
(2.22)

The proof of (2.19) is very similar to the proof of (2.18). For m = 1 the equation
follows from (2.3), (1.2) and the definition of rt . By induction we find for m � 2
using (2.14), (2.15) and (2.17)

r
m
t ⌧ = (�1)mr

4m�1
s E + (�1)m�1�r

4m�3
s E

+

X
[[a,b]][[4m�3,3]]
c4m�3, b odd

Pa,cb (E) + �
X

[[a,b]][[4m�5,3]]
c4m�5,b odd

Pa,cb (E)

+ �(m�1)
rs E + �(m�2)

2
664

X
[[a,b]][[5,1]]
c5, b odd

Pa,cb (E) + �
X

[[a,b]][[3,1]]
c3,b odd

Pa,cb (E)

3
775

+

2m�4X
i=1

Qi+2(�m�2)
X

[[a,b]][[4m�2i�5,1]]
c4m�2i�5, b odd

Pa,cb (E)

+

2m�4X
i=1

Qi (�m�3)

2
664

X
[[a,b]][[4m�2i�1,1]]
c4m�2i�1, b odd

Pa,cb (E)+�
X

[[a,b]][[4m�2i�3,1]]
c4m�2i�3, b odd

Pa,cb (E)

3
775 ,

from which (2.19) follows by (2.22).
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Lemma 2.4 gives us also some information about the derivatives of the curva-
ture vector at the boundary. More precisely we see the following:

Lemma 2.6. Suppose f : [0, T )⇥ Ī ! Rn is a smooth regular solution to (1.2) in
(0, T ) ⇥ I . At the boundary we have that for m 2 N0,

r
4m+2
s E =

X
[[a,b]][[4m,3]]
c4m, b odd

Pa,cb (E) +

2mX
i=1

Qi (�m�1)
X

[[a,b]][[4m�2i+2,1]]
c4m�2i+2, b odd

Pa,cb (E)

+ (�1)m�(m)
E ,

r
4m+3
s E =

X
[[a,b]][[4m+1,3]]
c4m+1, b odd

Pa,cb (E) +

2mX
i=1

Qi (�m�1)
X

[[a,b]][[4m�2i+3,1]]
c4m�2i+3, b odd

Pa,cb (E)

+ (�1)m�(m)
rs E .

Proof. The claim follows directly from Lemma 2.4, (2.18) and (2.19) replacing m
by m + 1 in these formulas.

Note that from the above lemma we infer that some derivatives of the curvature
at the boundary are actually of lower order than at first sight. We close this section
by comparing r

m
s E with the full derivative @ms E . This will be needed in the main

theorem.

Lemma 2.7. We have the identities

@s E = rs E � |E|
2⌧,

@ms E = r
m
s E + ⌧

X
[[a,b]][[m�1,2]]
cm�1, b even

Pa,cb (E) +

X
[[a,b]][[m�2,3]]
cm�2 b odd

Pa,cb (E) for m � 2 .

Proof. The proof can be found for instance in [3, Lemma 4.5]. The first claim is
obtained directly using that

@s E = rs E + h@s E, ⌧ i⌧ = rs E � |E|
2⌧ .

The second claim follows by induction.

3. Interpolation inequalities

Here we report briefly some fundamental interpolation inequalities which will be
used repeatedly in the main proof. Note that all results stated in this section ac-
tually hold for closed and open curves (independently of the prescribed boundary
conditions) without imposing any special constraint on the length.
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As in [6] it is useful to introduce the following scale invariant norms for k 2 N0
and p 2 [1,1)

kEkk,p :=

kX
i=0

kr
i
s Ekp with kr

i
s Ekp := L[ f ]i+1�1/p

✓Z
I
|r

i
s E|

p ds
◆1/p

,

as opposed to

kr
i
s EkL p :=

✓Z
I
|r

i
s E|

p ds
◆1/p

.

The following Lemma 3.1 and Lemma 3.3 are adaptations to the present setting and
notation of those used in [6] for closed curves and in [11] and [3] for open ones.

Lemma 3.1. Let f : I ! Rn be a smooth regular curve. Then for all k 2 N,
p � 2 and 0  i < k we have

kr
i
s Ekp  CkEk

1�↵
2 kEk

↵
k,2 ,

with ↵ = (i +
1
2 �

1
p )/k and C = C(n, k, p).

Proof. A proof of this fact is hinted at in [6, Lemma 2.4] and [11, Lemma 5]. All
details are given in [3, Appendix].

Corollary 3.2. Let f : I ! Rn be a smooth regular curve. Then for all k 2 N we
have

kEkk,2  C
⇣
kr

k
s Ek2 + kEk2

⌘
,

with C = C(n, k).

Proof. The claim follows by an induction argument: see [3, Corollary 4.2].

Lemma 3.3. Let f : I ! Rn be a smooth regular curve. For any a, c 2 N0,
k, b 2 N, b � 2, c  k � 1 we find

Z
I

��Pa,cb (E)
�� ds  CL[ f ]1�a�bkEk

b��
2 kEk

�
k,2 , (3.1)

with � = (a +
1
2b � 1)/k and C = C(n, k, a, b).

Proof. See for instance [3, Lemma 4.3].

It turns out that inequality (3.1) can be generalized in some cases also to allow
c = k by applying directly Cauchy-Schwarz inequality. The sharper version of this
inequality (as stated in Lemma 3.4 below) will be useful in many parts of the proof.
In the next statement we “rename” the parameter k as ` + 2.
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Lemma 3.4. Let f : I ! Rn be a smooth regular curve. For any a, c, ` 2 N0,
b 2 N, b � 2, c  ` + 2 and a < 2(` + 2) we find

Z
I

��Pa,cb (E)
�� ds  CL[ f ]1�a�bkEk

b��
2 kEk

�
`+2,2 , (3.2)

with � = (a+
1
2b� 1)/(`+ 2) and C = C(n, `, a, b). Further if a+

1
2b < 2`+ 5,

then for any " > 0
Z
I

��Pa,cb (E)
�� ds  "

Z
I

���r`+2
s E

���2 ds + C"
�

�
2��

⇣
kEk

2
L2

⌘ b��
2��

+ CL[ f ]1�a�
b
2 kEk

b
L2 ,

(3.3)

with C = C(n, `, a, b).

Proof. We start with the proof of (3.2). If c < ` + 2, this is exactly (3.1) with
k = ` + 2. If c = ` + 2, then since a < 2(` + 2) there exists c̃  ` + 1 such that

Z
I

��Pa,cb (E)
�� ds =

Z
I

���r`+2
s E

��� ���Pa�`�2,c̃
b�1 (E)

��� ds +

Z
I

���Pa,c̃b (E)
��� ds.

The treatment of the second integral is clear, hence we neglect it in the following
computations. By Cauchy-Schwarz inequality, the definition of the scale invariant
norms and (3.1) (with k = ` + 2) we get

Z
I
|Pa,cb (E)| ds  kr

`+2
s EkL2

✓Z
I
|P2(a�`�2),c̃
2(b�1) (E)| ds

◆ 1
2

 Ckr
`+2
s Ek2L[ f ]�`�2� 1

2
⇣
L[ f ]1�2(a�`�2)�2(b�1)

kEk
2(b�1)��̃
2 kEk

�̃
`+2,2

⌘ 1
2

,

with
�̃ =

2(a � ` � 2) + b � 2
` + 2

.

Since � = 1 +
1
2 �̃ , we get (3.2). Inequality (3.3) follows from Corollary 3.2,

Young-inequality and � < 2.

Lemma 3.5. Let f : I ! Rn be a smooth regular curve and ` 2 N0. If A, B 2 N
with B � 2 and A +

1
2 B < 2` + 5 then we have

X
[[a,b]][[A,B]]

c`+2, 2b

Z
I
|Pa,cb (E)| ds

 C min{1,L([ f ])}1�2A�B max{1, kEk2}
2A+B max{1, kEk`+2,2}

� ,

(3.4)
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and for any " 2 (0, 1)

X
[[a,b]][[A,B]]

c`+2,2b

Z
I

��Pa,cb (E)
��ds"

Z
I

���r`+2
s E

���2ds

+C"
�

�
2�� max

n
1,kEk

2
L2

o 2A+B
2��

+Cmin{1,L[ f ]}1�A�
B
2 max

�
1,kEkL2

 2A+B
,

(3.5)

with � = (A +
1
2 B � 1)/(` + 2) and C = C(n, `, A, B).

Proof. Formulas (3.4) and (3.5) follow from (3.2) and (3.3) respectively using the
fact that for each a, b in the sum we have a +

1
2b � 1  A +

B
2 � 1 and b,

a+b  2A+ B and 2  b  max{2, 2A+ B�a}. Moreover a < 2(`+2) for all a
in the sum since a+1  a+b/2  a+(B+2A�2a)/2 = A+B/2 < 2`+5.

From the above estimates we easily infer the following bounds at the boundary.

Lemma 3.6. Let f : I ! Rn be a smooth regular curve and ` 2 N0. If A, B 2 N
with B � 2 and A +

1
2 B < 2` + 4 then we have

����������
X

[[a,b]][[A,B]]

c`+1, 2b
b even

Pa,cb (E)
��1
0

����������
 C min{1,L([ f ])}�1�2A�B max{1, kEk2}

2A+2+B max{1, kEk`+2,2}
� ,

(3.6)

and for any " 2 (0, 1)
����������

X
[[a,b]][[A,B]]

c`+1, 2b
b even

Pa,cb (E)
��1
0

����������
 "

Z
I

���r`+2
s E

���2 ds + C"
�

�
2�� max

n
1, kEk

2
L2

o 2A+2+B
2��

+ C min{1,L[ f ]}�A�
B
2 max

�
1, kEkL2

 2A+2+B
,

(3.7)

with � = (A +
1
2 B)/(` + 2) and C = C(n, `, A, B).
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Proof. Since each term in the sum has an even number of factors, we have
����������

X
[[a,b]][[A,B]]

c`+1, 2b
b even

Pa,cb (E)
��1
0

����������
=

����������
X

[[a,b]][[A,B]]

c`+1, 2b
b even

Z
I
@s(Pa,cb (E)) ds

����������

=

��������
X

[[a,b]][[A,B]]

c`+1, 2b

Z
I

⇣
Pa+1,c+1b (E)

⌘
ds

��������


X
[[a,b]][[A+1,B]]

c`+2, 2b

Z
I

��Pa,cb (E)
�� ds .

The claim follows directly from Lemma 3.5.

In our case, where the length is constant along the flow, we trivially have
L[ f ] = L0.

In the proof of the main result, it will be convenient to derive pointwise esti-
mates from bounds on the (scale invariant) Sobolev norms of the curvature . This is
done in the spirit of the following results.

Lemma 3.7 ([3, Lemma C.1, C.2]). Let J ⇢ R be a bounded open interval and
g : J ! Rn , g(x), be a sufficiently smooth function. Then

kgkC0( J̄ )  c(n)k@x gkL1(J ) +

c(n)
|J |

kgkL1(J ) ,

and for any " 2 (0, 1)

kgkC0( J̄ )  "k@x gkL2(J ) +

c
"
kgkL2(J ) ,

with c = c(J, n).

Lemma 3.8. Let f : I ! Rn be a smooth regular curve such that L[ f ] = L0 and
kEkm,2  C1 for some m 2 N and C1 > 0. Then for ` 2 N0, `  m � 1, we have

kr
`
s EkC0(I )  C2 ,

with C2 = C2(n, L0,C1).

Proof. We parametrize the curve such that f : [0, L0] ! Rn and |@y f | = 1 for all
y 2 [0, L0]. In this way, @y = @s . By the first estimate in Lemma 3.7 we find for



A GRADIENT FLOW FOR OPEN ELASTIC CURVES 1047

`  m � 1���r`
s E

���
C0(I )

 c(n)
���@s |r`

s E|

���
L1([0,L0])

+

c(n)
L0

���r`
s E

���
L1([0,L0])

 c(n)L
1
2
0

���@s |r`
s E|

���
L2([0,L0])

+

c(n)

L
1
2
0

���r`
s E

���
L2([0,L0])

 c(n)L
1
2
0

���r`+1
s E

���
L2([0,L0])

+

c(n)

L
1
2
0

���r`
s E

���
L2([0,L0])

CkEkm,2C,

using that @s | E�|  |rs E�| holds almost everywhere in [0, L0] for a normal vector
field E� (see [3, Lemma C.3]).

Lemma 3.9. Let f : I ! Rn be a smooth regular curve such that L[ f ] = L0.
Then for any ` 2 N0 and " 2 (0, 1)���r`

s E
���
C0(I )

 "
���r`+1

s E
���
L2

+

C3
"

���r`
s E

���
L2

,

with C3 = C3(n, L0).

Proof. Using the same ideas as in the proof of Lemma 3.8 and the second estimate
in Lemma 3.7 the claim follows directly.

4. Estimates on the time-dependent parameter �

The results we give in this section do not use any information regarding the condi-
tions imposed at the boundary (except of course for (1.5)). Thus they generalize the
results given in [2, Section 2], where analogous results were given for the special
case of hinged boundary conditions. We give here two different estimates for the
absolute value of �.

Lemma 4.1. Let f be a smooth solution of (1.2) subject to (1.4), (1.3)withL[ f0]=
L0, and assume that there exists � > 0 such that 0 < �  kEk

2
L2  ��1 for all times.

Then for � = �(t) we have that

|�|  CkEk

2
m+2
m+2,2 + C  C

✓��
r
m+2
s E

�� 2
m+2
L2 + 1

◆
for all m 2 N0 , (4.1)

where C = C(L0, �, n,m).

Proof. Using (2.9) we obtain

�(t)
Z
I
|E|

2 ds =

Z
I
hr

2
s E, Ei ds +

1
2

Z
I
|E|

4 ds. (4.2)

The claim follows using (3.2), L[ f ] = L0, the bounds on the elastic energy and
Corollary 3.2 for the second estimate in the claim.
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As already observed in [2], in the main proof it will be important to have an
estimate for the absolute value of �, which is linear in k@t f k2. A straightforward
computation, that does not use any information on the boundary conditions but only
integration by parts and the fact that r2s E +

1
2 |E|

2
E = @s(rs E +

1
2 |E|

2⌧ ), gives

Lemma 4.2. Suppose f : [0, T )⇥ Ī ! Rn is a smooth regular solution to (1.2) in
(0, T ) ⇥ I . For any smooth function g : Ī ! Rn , we have
Z
I
h@t f, f � gi ds =

⌧✓
� �

1
2
|E|

2
◆

⌧ � rs E, f � g
�����

@ I
+

1
2

Z
I
|E|

2 ds � �

Z
I
ds

�

Z
I

⌧
rs E +

1
2
|E|

2⌧ � �⌧, @sg
�
ds .

Note that if the curve is closed in the sense that f� = f+ (however it does not have
to be smooth across the point f� = f+), then we obtain the same result as in [6] by
taking g to be the constant function g = f� = f+ =: p, namelyZ

I
h@t f, f � pi ds =

1
2

Z
I
|E|

2 ds � �

Z
I
ds.

If we allow for the more general situation where f� 6= f+, we can show stillwithout
using any boundary conditions (except for (1.5)) that the following holds.

Lemma 4.3. Suppose f : [0, T ) ⇥ Ī ! Rn is a smooth regular solution to (1.2),
(1.4) in (0, T ) ⇥ I . Let

R
I ds = L0 with L0 > | f� � f+|, (1.5), and kEkL2  ��1

hold along the flow. Then for all m 2 N0

|�|(L0 � | f+ � f�|)  Ck@t f kL2 + C + CkEk

1
m+2
m+2,2 ,

 Ck@t f kL2 + C + Ckr
m+2
s Ek

1
m+2
L2 ,

with constants depending only on L0, n,m, ��1 and | f+ � f�|.

Proof. Let l : [0, T ) ⇥ [0, 1] ! [0, L0] be the parametrization of the line segment
from f� to f+ given by

l(t, x) = f� +

'(t, x)
L0

( f+ � f�) , (4.3)

with '(t, ⇠) =

R ⇠
0 |@x f |dx for all ⇠ 2 [0, 1] and t 2 [0, T ). Notice that the

parametrization depends on t , l(t, 0) = f�, l(t, 1) = f+ for all t 2 [0, T ) and
@sl(t, ·) =

1
L0 ( f+ � f�). Hence, Lemma 4.2, with g(·) = l(t, ·) for t 2 (0, T )

fixed, yields
Z
I
h@t f, f �li ds=

1
2

Z
I
|E|

2 ds��

Z
I
ds�

1
L0

Z
I

⌧
rs E+

1
2
|E|

2⌧ ��⌧, f+� f�
�
ds ,
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which is equivalent to

�

Z
I

✓
1�

1
L0

h⌧, f+ � f�i

◆
ds =

1
2

Z
I
|E|

2 ds �

Z
I
h@t f, f � li ds

�

1
L0

Z
I

⌧
rs E +

1
2
|E|

2⌧, f+ � f�
�
ds .

Since | f+ � f�| < L0 and L0 =

R
I ds we find

|�|(L0 � | f+ � f�|)  |�|

Z
I

✓
1�

1
L0

h⌧, f+ � f�i

◆
ds

=

����12
Z
I
|E|

2 ds �

Z
I
h@t f, f � li ds �

1
L0

Z
I

⌧
rs E +

1
2
|E|

2⌧, f+ � f�
�
ds

���� ,

from which we infer

|�|(L0 � | f+ � f�|) 

1
2

Z
I
|E|

2 ds + k@t f kL2k f � lk1L
1
2
0

+

| f+ � f�|

2L0

Z
I
|E|

2 ds +

| f+ � f�|

L0
L
1
2
0 krs EkL2

 Ck@t f kL2 + C + CkEk

1
m+2
m+2,2 ,

using (3.1) in the last inequality.

4.1. Estimates for the derivatives of �

Lemma 4.4. For any ` 2 N,

�(`)

Z
I
|E|

2 ds = (�1)`
Z
I

D
E,r4`+2s E

E
ds

+

2X̀
i=0

Qi (�`�1)

Z
I

X
[[a,b]][[4`+2�2i,2]]
c4`, b�2, b even

Pa,cb (E) ds .
(4.4)

Proof. We prove the claim by induction on ` 2 N. For this it is useful to notice first
that by (1.2) and (2.1) we find

@

@t
(ds) =

1X
i=0

�i
X

[[a,b]][[2�2i,2]]
c2�2i, b even

Pa,cb (E) ds

so that together with (2.16) we obtain

@t

0
BB@

X
[[a,b]][[A,B]]

cC, b even

Pa,cb (E) ds

1
CCA =

1X
i=0

�i
X

[[a,b]][[A+4�2i,B]]

cC+4�2i, b even

Pa,cb (E) ds .
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Then differentiating (4.2) with respect to time we find (using also (2.6) and again
(2.16))

�0(t)
Z
I
|E|

2 ds + �
1X
i=0

�i
Z
I

X
[[a,b]][[4�2i,2]]
c4�2i, b even

Pa,cb (E) ds

=

Z
I

D
rtr

2
s E, E

E
ds +

1X
i=0

�i
Z
I

X
[[a,b]][[6�2i,2]]
c4�2i, b even

Pa,cb (E) ds ,

where �0(t) =
d
dt �(t) = �(1). Using (2.14) (with ` = 2) we find

�0(t)
Z
I
|E|

2 ds = �

Z
I

D
r
6
s E, E

E
ds +

2X
i=0

�i
Z
I

X
[[a,b]][[6�2i,2]]

c4, b even

Pa,cb (E) ds .

Assume now that the claim is true up to some ` 2 N. We prove it for ` + 1.
Differentiating (4.4) with respect to time, proceeding similarly as before and using
now also (2.17) we find

�(`+1)
Z
I
|E|

2 ds + �(`)
1X
i=0

�i
Z
I

X
[[a,b]][[4�2i,2]]
c4�2i, b even

Pa,cb (E) ds

= (�1)`
Z
I

D
E,rtr

4`+2
s E

E
ds

+

1X
i=0

�i
Z
I

* X
[[a,b]][[4�2i,1]]
c4�2i, b even

Pa,cb (E),r4`+2s E

+
ds

+

2X̀
i=0

Qi+2(�`)

Z
I

X
[[a,b]][[4`+2�2i,2]]

c4`, b even

Pa,cb (E) ds

+

2X̀
i=0

Qi (�`�1)

Z
I

1X
j=0

� j
X

[[a,b]][[4(`+1)+2�2i�2 j,2]]
c4(`+1)�2 j, b even

Pa,cb (E) ds .

Since �(`)
= Q2`+1(�`), ��(`)

= Q2`+2(�`) and �Qi (�`�1) = Qi+1(�`�1), using
(2.14) the previous formula simplifies to

�(`+1)
Z
I
|E|

2 ds = (�1)`+1
Z
I

D
E,r4(`+1)+2s E

E
ds

+

2(`+1)X
i=0

Qi (�`)

Z
I

X
[[a,b]][[4(`+1)+2�2i,2]]

c4(`+1), b even

Pa,cb (E) ds .

The claim follows.
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Lemma 4.5. Assume that there exists � > 0 such that 0 < �  kEkL2  ��1 holds
along the flow. Then, for any m 2 N and ` 2 {0, 1, ...,m},

|�(`)
|  C

⇣
kr

4m+2
s Ek

(4`+2)/(4m+2)
L2 + 1

⌘
,

where C = C(L0, �, n,m).
Proof. We prove the claim by induction on m. In the proof we denote by C a
constant that might change at each inequality but that is allowed to depend only on
L0, �, n and m. For m = 1, the bound for ` = 0 is established in (4.1) taking in
that estimate m = 4. For m = 1 and ` = 1, by (4.4), the uniform bounds on kEkL2
together with (3.4) we find

�2|�0(t)|  ��1
���r6s E

���
L2

+

2X
i=0

|Qi (�0)|C
✓
1+ kEk

6�2i
6

6,2

◆
.

Now since for i 2 {0, 1, 2} by definition Qi (�0) = ci�i , by the estimate already
obtained for ` = 0 and Corollary 3.2 it follows

�2|�0(t)|  ��1
���r6s E

���
L2

+

2X
i=0

C̃
⇣
kr

6
s Ek

2/6
L2 + 1

⌘i
C
✓
1+ kEk

6�2i
6

6,2

◆

 C
⇣
1+ kr

6
s EkL2

⌘
.

Assume the claim is true up to m and let’s prove it for m + 1. If ` 2 {0, . . . ,m}

then by the induction hypothesis, (3.1) and Corollary 3.2

|�(`)
|  C

⇣
kr

4m+2
s Ek

(4`+2)/(4m+2)
L2 + 1

⌘

 C
⇣
kr

4(m+1)+2
s Ek

(4`+2)/(4(m+1)+2)
L2 + 1

⌘
.

(4.5)

Hence it remains to prove the claim for ` = m + 1. By (4.4), the uniform bounds
on kEkL2 , (3.4) and Corollary 3.2 we obtain

�2
����(m+1)(t)

���  ��1
���r4(m+1)+2

s E
���
L2

+

2(m+1)X
i=0

|Qi (�m)|C

 
1+

���r4(m+1)+2
s E

��� 4(m+1)+2�2i
4(m+1)+2

L2

!
.

(4.6)

By (4.5) and the definition of Qi (�m) we find

|Qi (�m)|  C
mY
a=0

✓���r4(m+1)+2
s E

���(4a+2)/(4(m+1)+2)

L2
+ 1

◆�a

 C
✓���r4(m+1)+2

s E
���2i/(4(m+1)+2)

L2
+ 1

◆
.

(4.7)

The claim follows by combining (4.6) and (4.7).
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The following lemma is important for the induction argument in the proof of
the main result.

Lemma 4.6. Assume that there exists � > 0 such that 0 < �  kEkL2  ��1 holds
along the flow and also kEk4m,2  M for some m 2 N and a positive constant M .
Then,

���(`)
��
 C for all ` 2 {0, . . . ,m � 1},

2mX
i=1

|Qi (�m)|  C ,

and |Qi (�m)|  C
���(m)

�� for i = 2m + 1, 2m + 2 ,

(4.8)

with C = C(L0, �, n,m,M). Moreover for any " > 0 there exists a positive
constant C" = C(", L0, �, n,m,M) such that

���(m)
��
 "

���r4(m+1)+2
s E

���(4m+2)/(4(m+1)+2)

L2
+ C" . (4.9)

Proof. In the proof we denote by C a constant that might change at each inequality
but that is allowed to depend only on L0, �, n, m and M .

From Lemma 4.5 and the assumption kEk4m,2  M it follows directly for
` 2 {0, . . . ,m � 1} that

|�(`)
|  C ·

⇣
kr

4(m�1)+2
s Ek

(4`+2)/(4(m�1)+2)
L2 + 1

⌘
 C .

In Qi (�m), � and its derivatives with respect to time up to order m appear. The only
one that is not already bounded is �(m). Such a factor might appear in Qi (�m) when
i = 2m + 1 or 2m + 2 and, if it appears, only to the power one. These observations
give the second and third estimate in (4.8).

It remains to prove (4.9). By (4.4), the uniform bound from below on kEkL2
and (4.8) it follows

�2
����(m)

��


����
Z
I

D
E,r4m+2

s E
E
ds

���� + C

��������
Z
I

X
[[a,b]][[4m+2,2]]

c4m, b�2

Pa,cb (E) ds

��������
. (4.10)

The second term on the right hand side is uniformly bounded since by Lemma 3.5
��������
Z
I

X
[[a,b]][[4m+2,2]]

c4m, b�2

Pa,cb (E) ds

��������
 C

✓
kEk

4m+2
4m
4m,2 + 1

◆
 C . (4.11)
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In the first term on the right hand side of (4.10) we gain an " integrating by parts.
Indeed, we find using kEkC0, krs EkC0  C(L0,M, n) (which follows from by
Lemma 3.8) and Lemma 3.9
����
Z
I
hE,r4m+2

s Ei ds
���� =

���DE,r4m+1
s E

E���1
0
�

Z
I

D
rs E,r4m+1

s E
E
ds

���
 C

���r4m+1
s E

���
C0



"

2
�2

���r4m+2
s E

���
L2

+

C
"

���r4m+1
s E

���
L2

.

On the other hand, by Lemma 3.3, Corollary 3.2 and Young’s inequality
���r4m+1

s E
���
L2

 CkEk

4m+1
4m+2
4m+2,2

 C
✓
1+

���r4m+2
s E

��� 4m+1
4m+2

L2

◆


"2

2C
�2

���r4m+2
s E

���
L2

+ C" .

Combining the two inequalities above and using once again Lemma 3.3 and Corol-
lary 3.2 we obtain

����
Z
I

D
E,r4m+2

s E
E
ds

����  "�2
���r4m+2

s E
���
L2

+ C(")

 "�2
���r4(m+1)+2

s E
��� 4m+2
4(m+1)+2

L2
+ C" .

The claim follows from the inequality above, (4.10) and (4.11).

5. Proof of the main result

We are ready to prove our main result. A proof of short time existence of smooth
solutions for the problem (1.2), (1.3), (1.4), (1.5), (1.6) is standard but outside the
scope of this work. A method of proof could be devised along the lines of [6,
Section 3], where the case of closed curves is treated.

Proof of Theorem 1.1.
Part 1: Global Existence. A short time existence result gives that a smooth solution
exists in a small time interval. We assume by contradiction that the solution to
(1.7) does not exist globally in time. Let 0 < T < 1 be the maximal time.
From (2.10) a bound from above for the L2-norm of the curvature is immediately
derived. The bound from below on the elastic energy follows from the assumption
L0 > | f+ � f�|, as shown in [2, Theorem 3.1]. We repeat the reasoning for
completeness. One has

L0 =

Z
I
h@s f, @s( f � f�)i ds = h⌧ (1), f+ � f�i �

Z
I

⌦
@2s f, f � f�

↵
ds ,
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and hence

L0 � | f+ � f�|  kEkL2L
3
2
0 ,

from which the uniform bound from below follows. Thus we can state

0 < �  kEkL2  ��1 , (5.1)

with � = �(L0, f�, f+, E( f0)) > 0. In particular � is well defined and the results
collected in Section 4 can be used. We are going to prove that appropriate norms of
the solution f are uniformly bounded in t 2 (0, T ) and hence f can be smoothly
extended to time bigger than T , yielding a contradiction.

In the following C denotes a positive constant that might change from line to
line but depends only on E( f0), f0, f�, f+, n, L0. In particular, the constant is not
allowed to depend on T .
First Step: Here we show that krt f kL2  C , kr2s EkL2  C and |�|  C for all
t 2 (0, T ).

Using (1.2), (2.14), (2.15) and (2.20) we can derive

rtrt f +r
4
s rt f =

2X
i=0

�i
X

[[a,b]][[4�2i,3]]
c4�2i, b odd

Pa,cb (E)+�0(t)E � �r
4
s E+�2r2s E , (5.2)

an equation which is slightly more precise than the expression derived in (2.18)
(with m = 2) and serves better our purposes. Taking E� = rt f in Lemma 2.3, using
the fact that the boundary terms disappear (due to Lemma 2.4), (5.2), and the fact
that

R
I hE,rt f i ds = 0 (recall (2.9)), we obtain

1
2
d
dt

Z
I
|rt f |2 ds +

Z
I

��
r
2
s rt f

��2 ds
=

2X
i=0

�i
X

[[a,b]][[4�2i,3]]
c4�2i, b odd

Z
I

⌦
Pa,cb (E),rt f

↵
ds � �

Z
I

D
r
4
s E,rt f

E
ds

+ �2
Z
I

D
r
2
s E,rt f

E
ds �

1
2

Z
I
|rt f |2

D
E,�r

2
s E � P0,03 (E) + �E

E
ds .

(5.3)

First of all we rewrite in a more convenient way the terms in the expression above.
From (1.2) it follows directly that

2X
i=0

�i
X

[[a,b]][[4�2i,3]]
c4, b odd

Z
I

⌦
Pa,cb (E),rt f

↵
ds =

3X
i=0

�i
X

[[a,b]][[6�2i,4]]
c4, b even

Z
I
Pa,cb (E) ds .
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In the subsequent calculations the b-index appearing in the summation symbols
will always be an even number, hence, for the sake of readability we omit this
information. Since

|rt f |2 =

2X
i=0

�i
X

[[a,b]][[4�2i,2]]
c2

Pa,cb (E) ,

we observe that
Z
I
|rt f |2

D
E,�r

2
s E � P0,03 (E) + �E

E
ds=

3X
i=0

�i
X

[[a,b]][[6�2i,4]]
c2

Z
I
Pa,cb (E) ds.

Now, in order to be able to absorb (later on) some terms on the left-hand side, we
express |r

2
s rt f |2 in terms of the curvature. Since r

2
s rt f = �r

4
s E + P2,23 (E) +

�r
2
s E , we find

���r2s rt f
���2= ���r4s E

���2 + �2
���r2s E

���2� 2�
D
r
2
s E,r4s E

E
+

1X
i=0

�i
X

[[a,b]][[6�2i,4]]
c4

Pa,cb (E)

=

���r4s E
���2 + �2

���r2s E
���2 + 2�

D
rt f,r4s E

E

� 2�2
D
E,r4s E

E
+

1X
i=0

�i
X

[[a,b]][[6�2i,4]]
c4

Pa,cb (E) .

Thus, using the expressions above, adding on both sides 12krt f k2L2 we can write
(5.3) as

1
2
d
dt

Z
I
|rt f |2 ds +

Z
I

���r4s E
���2 ds +

1
2

Z
I
|rt f |2 + �2

Z
I

���r2s E
���2 ds

=

3X
i=0

�i
X

[[a,b]][[6�2i,4]]
c4

Z
I
Pa,cb (E) ds � 3�

Z
I

D
r
4
s E,rt f

E
ds

+ 2�2
Z
I

D
r
4
s E, E

E
ds + �2

Z
I

D
r
2
s E,rt f

E
ds .

(5.4)

Next we absorb the terms on the right-hand side of (5.4) using the bounds ob-
tained for � in Section 4 and the interpolation inequalities of Section 3. Since by
Lemma 4.3

|�|  Ckrt f kL2 + C + Ckr
4
s Ek

1
4
L2 ,



1056 ANNA DALL’ACQUA, CHUN-CHI LIN AND PAOLA POZZI

we get using several times Young’s inequality
�����3�

Z
I

D
r
4
s E,rt f

E
ds

���� "

2

���r4s E
���2
L2

+ C"�
2
krt f k2L2

"
���r4s E

���2
L2

+ C̃"krt f k4L2 + C̃" ,����2�2
Z
I

D
r
4
s E, E

E
ds

���� "

2

���r4s E
���2
L2

+ C"�
4

 "
���r4s E

���2
L2

+ C̃"krt f k4L2 + C̃" ,�����2
Z
I

D
r
2
s E,rt f

E
ds

����
���r2s E

���
L2

�2krt f kL2 
"

2

���r2s E
���4
L2

+C"

⇣
�2krt f kL2

⌘ 4
3

"
���r4s E

���2
L2

+ C̃"krt f k4L2 + C̃" ,

using Lemma 3.3 and Corollary 3.2 in the last inequality. The term with the sum on
the right hand side of (5.4) can be estimated using that |�|  CkEk

1
2
4,2+C by (4.1),

(3.4) (with ` = 2) and (5.1) as follows

3X
i=0

|�|
i

X
[[a,b]][[6�2i,4]]

c4, b even

Z
I

��Pa,cb (E)
�� ds  C

✓
1+ kEk

i
2
4,2

◆✓
1+ kEk

7�2i
4

4,2

◆

 CkEk

7
4
4,2 + C  "

Z
I

���r4s E
���2 ds + C" ,

where we have used Corollary 3.2 and again (5.1) in the last inequality.
By the above estimates, an appropriate choice of " and neglecting the positive

term �2
R
I |r

2
s E|

2 ds we obtain from (5.4)

1
2
d
dt

Z
I
|rt f |2 ds +

1
2

Z
I
|rt f |2 ds  C + Ckrt f k2L2

Z
I
|rt f |2 ds . (5.5)

Finally, setting ⇠(t) := etkrt f k2L2(t), we deduce

⇠ 0(t)  C
⇣
et + krt f k2L2 (t) ⇠(t)

⌘
.

Since @t f = rt f we have by (2.10) for any time v 2 (0, T ) that
Z v

0
krt f k2L2 dt = �

Z v

0

d
dt
E( f ) dt  E( f0) ,
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we now use Gronwall’s Lemma to infer that

⇠(t)  eCE( f0)
✓

⇠(0) + C
Z t

0
er dr

◆
.

The bound for krt f kL2 follows, precisely

krt f kL2  C for all t 2 (0, T ) . (5.6)

Next we use (1.2), (5.1), Lemma 3.4, Lemma 4.3 (with m = 0), and Young-
inequality to infer

Z
I

���r2s E
���2 ds=

Z
I

����@t f + 12 |E|
2
E��E

����
2
dsCkrt f k2L2+C

Z
I

���P0,06 (E)
��� ds+C�2

Ckrt f k2L2 + "

Z
I

���r2s E
���2 ds + C" + C

⇣
1+ k@t f k2L2 +

���r2s E
���
L2

⌘

 Ckrt f k2L2 + 2"
Z
I

���r2s E
���2 ds + C".

An appropriate choice of " and (5.6) yield

���r2s E
���
L2

 C for all t 2 (0, T ) ,

and then from (4.1), Corollary 3.2 and Lemma 3.8 we also get

|�|, kEk2,2, kEkC0, krs EkC0  C for all t 2 (0, T ) . (5.7)

Second Step: We show that kr4s EkL2  C and |�0(t)|  "kr10s Ek

3
5
L2 + C" for any

" 2 (0, 1) for all t 2 (0, T ).
Taking E� = r

4
s E in Lemma 2.3 we obtain

d
dt
1
2

Z
I

���r4s E
���2 ds +

Z
I

���r6s E
���2 ds +

1
2

Z
I

���r4s E
���2 ds

= �

hD
r
4
s E,r7s E

Ei1
0
+

hD
r
5
s E,r6s E

Ei1
0

+

Z
I

D
Y,r4s E

E
ds �

1
2

Z
I

���r4s E
���2 DE, EV

E
ds +

1
2

Z
I

���r4s E
���2 ds ,

(5.8)

where Y = (rt + r
4
s )r

4
s E .



1058 ANNA DALL’ACQUA, CHUN-CHI LIN AND PAOLA POZZI

Critical terms for interpolation techniques are given by some of the boundary
terms. First of all we treat these ciritical terms. Using Lemma 2.6 we obtain

�

hD
r
4
s E,r7s E

Ei1
0
+

hD
r
5
s E,r6s E

Ei1
0

= �0

hD
r
4
s E,rs E

E
�

D
r
5
s E, E

Ei1
0

+

2
664

X
[[a,b]][[9,4]]
c5, b even

Pa,cb (E)+
2X
i=1

Qi (�0)
X

[[a,b]][[11�2i,2]]
c5, b even

Pa,cb (E)i

3
775
1

0

=: I+ I I ,

(5.9)

with I := �0
[hr

4
s E,rs Ei � hr

5
s E, Ei]

1
0. The term I I turns out not to be critical.

Indeed, using Lemma 3.6 (with ` = 4) as well as the bound for � obtained in (5.7)
we obtain

|I I |  "

Z
I

���r6s E
���2 ds + C" . (5.10)

The term I in (5.9) (i.e., the term multiplying �0) has to be treated differently. Since
|�0

| ⇠ kr
6
s EkL2 by Lemma 4.5 (with ` = m = 1) if we use again Lemma 3.6 we

would get a kr
6
s Ek

2
L2 . We gain here an " using Lemma 3.8 instead. We proceed as

follows. By Lemma 4.5 (with ` = m = 1), (5.7) and Lemma 3.9 we find

|I |  C
⇣
1+ kr

6
s EkL2

⌘ ⇣���r5s E
���
C0

+

���r4s E
���
C0

⌘

 C
⇣
1+

���r6s E
���
L2

⌘✓
"
���r6s E

���
L2

+

C 0

"

⇣���r5s E
���
L2

+

���r4s E
���
L2

⌘◆

 C
✓

"
���r6s E

���2
L2

+ C"

◆
,

since by (3.3)

���r5s E
���
L2

,
���r4s E

���
L2

 ✏2
���r6s E

���
L2

+ C✏ . (5.11)

Thus, after renaming ", we can state

|I |  "
���r6s E

���2
L2

+ C". (5.12)
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For the other terms on the right hand side of (5.8) from (1.2), (2.14) (with ` = 4)
we obtain using the bound on � in (5.7) and Lemma 3.5 (with ` = 4)

����
Z
I

D
Y,r4s E

E
ds �

1
2

Z
I

���r4s E
���2 ⌦E, EV

↵
ds +

1
2

Z
I

���r4s E
���2 ds

����


Z
I

X
[[a,b]][[10,4]]

c6

��Pa,cb (E)
�� ds + |�|

Z
I

X
[[a,b]][[10,2]]

c6

��Pa,cb (E)
�� ds

 "
���r6s E

���2
L2

+ C" .

From (5.9), (5.10), (5.12) and the estimate above we find

d
dt
1
2

Z
I

���r4s E
���2 ds +

1
2

Z
I

���r4s E
���2 ds +

Z
I

���r6s E
���2 ds  3"

Z
I

���r6s E
���2 ds + C" ,

from which choosing " appropriately it follows that

d
dt
1
2

Z
I

���r4s E
���2 ds +

1
2

Z
I

���r4s E
���2 ds  C .

Then Gronwall’s Lemma gives

Z
I

���r4s E
���2 ds  C for all t 2 (0, T ) , (5.13)

and then from Corollary 3.2 and Lemma 3.8 we also get

kEk4,2,
���ri

s E
���
C0( Ī )

 C for i = 0, 1, 2, 3 and for all t 2 (0, T ). (5.14)

From these estimates we may now improve the estimate on �0. Indeed, Lemma 4.4
(with ` = 1), the uniform bound on � and the bound from below on the elastic
energy imply

�2|�0(t)| 

����
Z
I

D
E,r6s E

E
ds

���� + C
Z
I

X
[[a,b]][[6,2]]

c4

��Pa,cb (E)
�� ds .

By Lemma 3.5 (with ` = 2) and (5.14) the second integral is bounded by a constant.
Integrating by parts in the first integral and using (5.14), Lemma 3.9 and (5.11) we
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get for any " 2 (0, 1)

�2|�0(t)| 

����
hD

E,r5s E
Ei1
0

���� +

����
Z
I

D
rs E,r5s E

E
ds

���� + C

 C
���r5s E

���
C0

+ C  C
✓

"
���r6s E

���
L2

+

C 0

"

���r5s E
���
L2

◆
+ C

 C
⇣
"
���r6s E

���
L2

+ C"

⌘
+ C

 C"
���r10s E

��� 35
L2

+ C" for all t 2 (0, T ) ,

with Lemma 3.3 and Corollary 3.2 in the last estimate.
Third Step: We prove by induction that:
For any m 2 N there exist a constant C = C(m, E( f0), f0, L0, f�, f+, n) such
that ���r4ms E

���
L2

,
���ri

s E
���
C0( Ī )

 C, and
����( j)

���  C,

or i 2 {0, .., 4m � 1}, j 2 {0, ..,m � 1} and for all t 2 (0, T ). Moreover, for any
" 2 (0, 1) there exists a constant C" = C(",m, E( f0), f0, L0, f�, f+, n) such that

���(m)
��
 "

���r4m+6
s E

��� 4m+2
4m+6

L2
+ C",

for all t 2 (0, T ).
The initial step of the induction is proven in the first and second step. Let us

assume that the claim is true up to m � 1 (for m � 2). Taking � = r
4m
s E in

Lemma 2.3 we obtain
d
dt
1
2

Z
I

���r4ms E
���2 ds +

Z
I

���r4m+2
s E

���2 ds +

1
2

Z
I

���r4ms E
���2 ds

= �

hD
r
4m
s E,r4m+3

s E
Ei1
0
+

hD
r
4m+1
s E,r4m+2

s E
Ei1
0

+

Z
I

D
Y,r4ms E

E
ds �

1
2

Z
I

���r4ms E
���2 DE, EV

E
ds +

1
2

Z
I

���r4ms E
���2 ds ,

(5.15)

where Y = (rt + r
4
s )r

4m
s E . Using the formula for Y = (rt + r

4
s )r

4m
s E given in

(2.14) and by a direct computation one sees that the last three terms in (5.15) can
be written asZ

I

D
Y,r4ms E

E
ds �

1
2

Z
I

���r4ms E
���2 DE, EV

E
ds +

1
2

Z
I

���r4ms E
���2 ds

=

Z
I

X
[[a,b]][[8m+2,4]]
c4m+2, b even

Pa,cb (E) + �
X

[[a,b]][[8m+2,2]]
c4m+2, b even

Pa,cb (E) ds.
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Since � is uniformly bounded (as proven in the first step), by the interpolation
inequality (3.5) (with ` = 4m) and the bounds on kEkL2 we then find for any
" 2 (0, 1)

����
Z
I

D
Y,r4ms E

E
ds �

1
2

Z
I

���r4ms E
���2 DE, EV

E
ds +

1
2

Z
I

���r4ms E
���2 ds

����
 "

���r4m+2
s E

���2
L2

+ C" .

(5.16)

Using Lemma 2.6 the boundary terms in (5.15) can be written as

�

hD
r
4m
s E,r4m+3

s E
Ei1
0
+

hD
r
4m+1
s E,r4m+2

s E
Ei1
0

= (�1)m+1�(m)

✓hD
r
4m
s E,rs E

E
�

D
r
4m+1
s E, E

Ei1
0

◆
(5.17)

+

2
664

X
[[a,b]][[8m+1,4]]
c4m+1, b even

Pa,cb (E)+
2mX
i=1

Qi (�m�1)
X

[[a,b]][[8m�2i+3,2]]
c4m+1, b even

Pa,cb (E)

3
775
1

0

=: I+ II ,

where I := (�1)m+1�(m)
⇥
hr

4m
s E,rs Ei � hr

4m+1
s E, Ei

⇤1
0. By choosing ` = m in

Lemma 4.5, we derive |�(m)
|  C(kr4m+2

s EkL2 + 1). Thus, together with (5.7),
Lemma 3.9 and (3.5) (with ` = 4m), we obtain for " 2 (0, 1)

|I |  C
⇣
1+

���r4m+2
s E

���
L2

⌘ ⇣���r4m+1
s E

���
C0

+

���r4ms E
���
C0

⌘

 C
⇣
1+

���r4m+2
s E

���
L2

⌘✓
"
���r4m+2

s E
���
L2

+

C 0

"

⇣���r4m+1
s E

���
L2

+ C
���r4ms E

���
L2

⌘◆

 C
✓

"
���r4m+2

s E
���2
L2

+ C"

◆
,

(5.18)

where we have used
���r4m+1

s E]

���
L2

,
���r4ms E

���
L2

 "2
���r4m+2

s E
���
L2

+ C" (5.19)

(which follows from (3.3) with ` = 4m). Thus we can state

|I |  "
���r4m+2

s E
���2
L2

+ C". (5.20)
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We now estimate II in (5.17). By (3.7) (with ` = 4m), (4.8) (with m � 1 instead of
m), the induction hypothesis, (3.6) and Corollary 3.2 we find

|II | 

1
4
"
���r4m+2

s E
���2
L2

+ C" + C
X

[[a,b]][[8m+1,2]]
c4m+1, b even

���Pa,cb (E)|10

���

+ C
����(m�1)

��� X
[[a,b]][[4m+5,2]]
c4m+1, b even

���Pa,cb (E)|10

���



1
2
"
���r4m+2

s E
���2
L2

+ C" + C
✓

"̃
���r4m+2

s E
��� 4m�2
4m+2

L2
+ C"̃

◆✓
1+ kEk

4m+6
4m+2
4m+2

◆

 "
���r4m+2

s E
���2
L2

+ C" ,

choosing an appropriate "̃.
From (5.15), (5.16), (5.17), (5.20) and the estimate above we obtain

d
dt
1
2

Z
I

���r4ms E
���2 ds +

1
2

Z
I

���r4ms E
���2 ds +

Z
I

���r4m+2
s E

���2 ds
 3"

Z
I

���r4m+2
s E

���2 ds + C" .

Thus, by choosing a sufficiently small " > 0 and applying again Gronwall’s lemma,
we obtain the uniform bound���r4ms E

���
L2

 C(m, E( f0), f0, L0, f�, f+, n) for all t 2 (0, T ) , (5.21)

and then from Corollary 3.2, Lemma 3.8 and Lemma 4.5 we also get

kEk4m,2,
���ri

s E
���
C0( Ī )

,
����( j)

���
 C(m, E( f0), f0, L0, f�, f+, n) for all t 2 (0, T ) ,

(5.22)

for i = 0, 1, . . . , 4m � 1 and j = 0, . . . ,m � 1.
It remains to prove the estimate on �(m). Lemma 4.4 and the bound from below

on the elastic energy imply

�2
���(m)

��


����
Z
I
hE,r4m+2

s Ei ds
����+

2mX
i=0

|Qi (�m�1)|

Z
I

X
[[a,b]][[4m+2�2i,2]]

c4m

��Pa,cb (E)
��ds.

The estimates in (5.22) or Lemma 3.5 (with ` = 4m � 2) give that the second term
is bounded by C . Integrating by parts in the first integral on the right hand side,
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using (5.22), Lemma 3.9, (5.19), Lemma 3.3 ( with k = 4m + 6) and Corollary 3.2
we get for " 2 (0, 1)

�2
����(m)

���
����
hD

E,r4m+1
s E

Ei1
0

���� +

����
Z
I

D
rs E,r4m+1

s E
E
ds

���� + C

C
���r4m+1

s E
���
C0

+ C  C
✓

"
���r4m+2

s E
���
L2

+

C 0

"

���r4m+1
s E

���
L2

◆
+ C

C"
���r4m+2

s E
���
L2

+ C"  C"
���r4m+6

s E
��� 4m+2
4m+6

L2
+ C" for all t 2 (0, T ) .

Fourth Step: Long-time existence. First of all we show��@mx E
��
C0( Ī )  C(m, E( f0), f0, L0, f+, f�, n, T ) for all t 2 (0, T ).

From the previous step, Lemma 2.7, and the fact that the length remains constant
along the flow we can state that

��@ms E
��
C0( Ī ) ,

��@ms E
��
L2 ,

����(m)
���  C(m, E( f0), f0, L0, f+, f�, n), (5.23)

for any m 2 N. From now on the proof follows most of the arguments depicted
in [3, Section 5 (Step seventh onwards)]. For the sake of completeness we sketch
here again the main ideas. In the following let � := |@x f |. Then, @x = � @s .
By induction it can be proven that for any function h : Ī ! R or vector field
h : Ī ! Rn , and for any m 2 N

@mx h = �m@ms h +

m�1X
j=1

Pm�1
⇣
� , . . . , @

m� j
x �

⌘
@
j
s h , (5.24)

with Pm�1 a polynomial of degree at most m � 1. A bound on k@`
x EkC0( Ī ) fol-

lows from (5.24) taking h = E and from bounds on k@`
s EkC0( Ī ) (see (5.23)) and

on k@`
x� kC0( Ī ). Thus it remains to estimate k@`

x� kC0( Ī ) for ` 2 N0. We start by
showing that � = |@x f | is uniformly bounded from above and below. The function
� satisfies the following parabolic equation

@t� =

D
⌧, @x EV

E
= �

D
E, EV

E
� , (5.25)

with EV = @t f as in (1.2). By regularity of the initial datum we have that 1/c0 

� (0)  c0 for some positive c0. From the estimates given in (5.23) it follows that
the coefficient khE, EV ikC0( Ī ) in (5.25) is uniformly bounded and hence we infer
that 1/C  �  C , with C having the same dependencies as the constant in (5.23)
as well as T . In order to prove bounds on @mx � we proceed by induction. Let us
assume that we have shown���@ jx �

���
C0( Ī )

 C(m, E( f0), L0, f+, f�, f0, n, T ) for 0  j  m (5.26)
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and m 2 N0. Choosing h = hE, EV i in (5.24), the induction assumption and (5.23)
yields that

���@ ix
D
E, EV

E���
C0( Ī )

 C(m, E( f0), L0, f+, f�, f0, n, T ) (5.27)

for all 0  i  m + 1. Differentiating (5.25) (m + 1)-times with respect to x , we
find

@t@
m+1
x � = �

D
E, EV

E
@m+1
x � �

X
i+ j=m+1

jm

c(i, j,m)@ ix

⇣D
E, EV

E⌘
@
j
x � ,

for some coefficients c(i, j,m). Together with (5.26), (5.27) we derive
��������

X
i+ j=m+1

jm

c(i, j,m)@ ix

⇣D
E, EV

E⌘
@
j
x �

��������
 C

�
m, E( f0), L0, f+, f�, f0, n, T

�
,

which implies
���@m+1

x �
���
C0( Ī )

 C
�
m, E( f0), L0, f+, f�, f0, n, T

�
.

Next note that (5.23) implies k@ms EVkC0( Ī ) C(m, E( f0), L0, f+, f�, f0, n), which
in turns gives uniform estimates for k@mx EVkC0( Ī ) in view of (5.24) and the bounds
for the length elements and its derivatives.

Finally, the uniform C0-bounds on the curvature E , the velocity EV , � , and all
their derivatives, allow for a smooth extension of f up to t = T and then by the
short-time existence result even beyond. In view of this contradiction, the flowmust
exist globally.
Part 2: Subconvergence. This part of the proof is standard. From reparametrizing
f by arc-length (in order to have a control on the parametrization), the fact that the
length is fixed along the flow, and the uniform bounds

��@ms E
��
C0
�
[0,L0])

 C(m, E( f0), f0, L0, f+, f�, n
�

which follow directly from (5.23), it follows that there exist sequences of times
ti ! 1 such that the curves f (ti , ·) converges smoothly to a smooth curve f1.

It remains to show that f1 is a critical point for the elastic energy, that is, a
solution to EV = 0. We prove this by considering the function u(t) := k EVk

2
L2(I )(t)

and showing that limt!1 u(t) = 0. First observe that

d
dt
u(t) = �

Z
I

��� EV
���2 DE, EV

E
ds +

Z
I

D
EV ,rt EV

E
ds.
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Since rt EV = r
2
t f we infer from (5.2) and the bounds (5.22)

��� ddt u(t)
���  C

�
m, E( f0), f0, L0, f+, f�, n

�
.

On the other hand from (2.10) it follows that u 2 L1((0,1)) and hence necessarily
u(t) ! 0 for t ! 1.

Remark 5.1. The condition L0 > | f+ � f�| is automatically satisfied if ⌧� 6= ⌧+.
Remark 5.2. As a by-product of Theorem 1.1 we get the existence of elastic curves
with clamped end points and given length. For related existence and qualitative
results for planar open elasticae see for instance in [4, 9, 12], and [14].
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