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Transport Equations with Partially BV Velocities

NICOLAS LERNER

Abstract. We prove the uniqueness of weak solutions for the Cauchy problem for a
class of transport equations whose velocities are partially with bounded variation.
Our result deals with the initial value problem ∂t u + Xu = f, u|t=0 = g, where
X is the vector field

a1(x1) · ∂x1 + a2(x1, x2) · ∂x2 , a1 ∈ BV (R
N1
x1 ), a2 ∈ L1

x1

(
BV (R

N2
x2 )

)
,

with a boundedness condition on the divergence of each vector field a1, a2. This
model was studied in the paper [LL] with a W 1,1 regularity assumption replacing
our BV hypothesis. This settles partly a question raised in the paper [Am]. We
examine the details of the argument of [Am] and we combine some consequences
of the Alberti rank-one structure theorem for BV vector fields with a regularization
procedure. Our regularization kernel is not restricted to be a convolution and is
introduced as an unknown function. Our method amounts to commute a pseudo-
differential operator with a BV function.

Mathematics Subject Classification (2000): 35F05 (primary); 34A12, 26A45
(secondary).

1. – Introduction

In this article, we want to study some transport equations whose velocities
are partially with bounded variation. More precisely, we intend to prove the
uniqueness of weak solutions u of

∂t u + Xu = 0, u|t=0 = 0,

for vector fields X of the following type,

(1.1)

{
X =a1(x1) · ∂x1 +a2(x1, x2) · ∂x2, a1 ∈ BV (R

N1
x1 ), a2 ∈ L1

x1

(
BV (R

N2
x2 )

)
,

div1 a1 ∈ L∞(RN1), div2 a2 ∈ L∞(RN1+N2).

Pervenuto alla Redazione il 12 marzo 2004 e in forma definitiva il 22 settembre 2004.
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Note that the BV vector field a1 depends only on the x1-variables, but that
the vector field a2 is only L1 with respect to the x1-variables (and BV with
respect to x2). Note also that our condition on the divergence is stronger that
div X ∈ L∞ since we want to control both divergences of the vector fields
a1, a2. This type of question is tackled in a recent paper by C. Le Bris and
P. L. Lions [LL], in which they examine vector fields of type (1.1), where the
BV regularity is replaced by a W 1,1 assumption.

A short historical account of the problem

Let us recall briefly a part of the recent history of this problem. In 1989,
R. DiPerna and P. L. Lions proved in [DL] that the W 1,1 regularity of a vector
field, (along with a condition of boundedness on the divergence and a global
condition) is enough to ensure the uniqueness of weak solutions. In 1998,
P. L. Lions introduced in [Li] the so-called piecewise W 1,1 class and extended
the results of [DL] for this type of regularity. In 2001, F. Bouchut studied in
[Bo] some cases of BV regularity corresponding essentially to W 1,1 singularities
occurring on hyperplanes. The paper [CL2] introduced the invariantly defined
class conormal BV, for which the authors prove the uniqueness of weak solutions;
moreover, their definition is simplified by the remark that closed sets whose
(N − 1)-Hausdorff measure is zero are unimportant for locally bounded vector
fields. Finally in 2003, L. Ambrosio fully proved in [Am] the conjecture
formulated in [DL] that BV vector fields (with bounded divergence) do have a
flow. The main new ingredient brought forward by the article [Am] is a deep
structure result on BV -vector-valued functions due to G. Alberti [Al]. Although
the full strength of the Alberti theorem is not needed as noted in the Remark 3.7
of [Am] and also below in our Remark 3.4, it is nevertheless a very helpful tool
for our investigation. It should also be noted that the classical counterexample
of M. Aizenman [Ai], the recent counterexamples of N. Depauw [De] and of
F. Colombini, T. Luo, J. Rauch [CLR] indicate that the BV regularity is close
to optimality for the uniqueness property.

The renormalization property

Following the method introduced in [DL], the main tool for the proof of all
these uniqueness results for vector fields X is a commutation lemma devised to
ensure that a (bounded) solution u of the equation Xu = 0 should be also such
that X (u2) = 0 and more generally should satisfy the renormalization property

(1.2) X
(
β(u)

) = β ′(u)Xu

for any C1 function β (to get uniqueness, it is enough to prove the Leibniz
formula X (u2) = 2u X (u)). The property (1.2) could fail even if both sides of
the equality make sense, as shown by the counterexample constructed in [De].
In that paper, N. Depauw shows that there exists a bounded measurable vector
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field a ∈ L∞(Rt × R
2
x ; R

2) with null divergence and a bounded measurable
function u ∈ L∞(Rt × R

2
x), supported in {t ≥ 0} such that

∂t u + ∂x · (au) = 0, u2 = 1R+(t).

For that particular vector field X D = ∂t + a(t, x) · ∂x and that function u, we
have X D(u2) = δ(t) and 2u X D(u) = 0, violating (1.2), in spite of the fact that
X D(u2) and 2u X D(u) are both meaningful. A somewhat equivalent approach to
checking the property (1.2) is the fact that to get uniqueness for a vector field
X , one should be able to prove that it behaves like an ordinary vector field
with respect to the Leibniz formula, namely, assuming for instance that X is
in L1

loc with L1
loc divergence, and u, v are L∞

loc functions such that X (u), X (v)

are in L1
loc, we have to check

X (uv) = u X (v) + vX (u).

Checking (1.2) can be reduced to a commutation problem. In fact, assuming
that X is a L1

loc vector field with null divergence and u is a L∞
loc function such

that Xu = 0, checking X (u2) = 0 amounts to examine the bracket of duality
(ϕ is a test function in C1

c )

〈Xu2, ϕ〉 = −
∫

u2(x)(Xϕ)(x)dx

since the divergence of X is zero. Now assuming that Rεu is C1, bounded and
converging pointwise a.e. to u when ε goes to zero, we get

〈Xu2, ϕ〉 = − lim
ε→0

∫
u(x) (Rεu)(x) (Xϕ)(x)dx = 〈X (u Rεu), ϕ〉.

Now since Rεu is C1, one can use Leibniz formula X (u Rεu) = (Xu)(Rεu) +
u X (Rεu) and since Xu = 0, we get

〈Xu2, ϕ〉 = lim
ε→0

〈u X (Rεu), ϕ〉 = lim
ε→0

∫
ϕ(x) u(x) (X Rεu)(x) dx .

Using again that Xu = 0, we obtain

〈Xu2, ϕ〉 = lim
ε→0

∫
(ϕu)(x)

(
[X, Rε]u

)
(x) dx .

Since the function ϕu is bounded with compact support, to obtain Xu2 = 0 is
thus reduced to proving that the commutator [X, Rε]u goes to zero in L1

loc.
• If the vector field X is W 1,1

loc , one can take the regularization operator Rε

as any convolution by a C1
c function ρ(x/ε)ε−N (with integral 1).

• If the vector field has some singularities on affine submanifolds, for instance
on {x1 = 0}, this translation invariance property leaves open the choice of
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a convolution operator, but with a structure respecting the geometry such
as

ρ

(
x1

ε1
,

x2

ε2

)
ε

−N1
1 ε

−N2
2 , 0 < ε1 � ε2.

• If a simple jump for X occurs on a curved hypersurface, no convolution
operator will do the job, which is quite natural after all, since no translation
invariance is preserved. In fact one has to look for a regularizing kernel
of a more general form

(1.3) (Rεu)(x) =
∫

ρ
(
x, ε−1(x − y)

)
ε−N u(y)dy.

More pedantically, one could say that we intend to commute a pseudo-differential
operator of order 1 with a BV function. Our approach in the present paper
will be to take the kernel ρ in (1.3) as an unknown function, and we shall see
that the commutation property of [X, Rε] can essentially be expressed as some
first-order PDE on that kernel ρ.

Note also that going from the property (1.2) to the uniqueness is now rather
standard a fact, since, taking for instance β(u) = u2, we produce non-negative
solutions, whose uniqueness is easy to establish (see e.g. Lemma 3.1 in [CL2],
Lemma 2.2 in [LL].

A sketch of our paper

Our goal here is in fact twofold. First of all, we wish to revisit the
Ambrosio’s argument of [Am] by following our approach of commuting our
vector field with a regularizing operator of type (1.3), checking which constraints
occur on the unknown kernel ρ (this is done in our Section 3). However, our
method will follow closely the arguments of [Am] and we shall try to be as
explicit as possible in our construction. In particular, if X is our vector field,
the canonical decomposition of its derivative can be written as

DX = DXac + DXs, |DXac| � m, DXs ⊥ m

(m is the Lebesgue measure on R
N ).

Using the polar decomposition of the singular part, we get DXs = M |DXs |,
where M(x) is a N × N matrix. An “ideal” kernel ρ(x, z) to be used in (1.3)
should satisfy

(1.4)
∂ρ

∂z
(x, z)M(x)z = 0

which is a PDE in the variable z, which should be satisfied |DXs |-a.e in the
variable x . Also the support in the z-variable should be compact. These notions
have to be clarified, at least for questions of regularity, and it is done in details
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in Section 3. However it is interesting to note that if M is an antisymmetric
matrix, one can choose ρ as a convolution kernel (i.e. independent of the
variable x) depending only on |z|2, and the equation (1.4) becomes t zMz = 0
which is satisfied since M is antisymmetric: so we recover also the remark made
in [CP] that we could also generalize. Anyhow, to get compactly supported
solutions (in z) for the equation (1.4) requires some spectral condition on the
matrix M , and at least spectrum M ⊂ iR (naturally that condition is satisfied
by an antisymmetric matrix). At any rate, the spectral structure of the matrix
M(x) is playing a key role and we shall use some consequences of Alberti’s
rank-one theorem [Al]. More details are given in our Remark 3.4 below.

Our second aim is to use that constructive approach to tackle vector fields
of type (1.1) and to obtain a generalization to BV regularity of the results
of [LL]. This gives also a partial answer to the Remark 3.8(3) of [Am]. In
our Section 4, we concentrate our attention on the proof of the renormalization
property for vector fields of type (1.1). We shall use a regularizing kernel in
(1.3) of type ρ(x1, x2, z2), which means in particular that we regularize only
in the x2-variable but in a way depending on the point (x1, x2). We have to
deal with another commutation problem between the vector field a1(x1)∂x1 in
(1.1) and our regularization operator. Moreover, we follow the construction in
Section 3 with parameters x1 and we use the disintegration of the measure
∂a2/∂x2. Also in our Remark 5.5, we give some invariance properties of the
matrix M under C1,1 diffeomorphism.

2. – Statement of the results

We concentrate our attention on the so-called renormalization property for
the vector field

(2.1)

X = a1(x1)∂x1︸ ︷︷ ︸
X1

+ a2(x1, x2)∂x2︸ ︷︷ ︸
X2

,

a1 ∈ BVloc(R
N1), a2 ∈ L1

loc

(
R

N1; BVloc(R
N2)

)
satisfying also

(2.2) div X1 ∈ L1
loc(R

N1), div X2 ∈ L1
loc(R

N1+N2).

Theorem 2.1. Let N , N1, N2 be non-negative integers such that N = N1 + N2.
Let X be a vector field on R

N satisfying (2.1)-(2.2) and let w be a L∞
loc(R

N ) function
such that Xw ∈ L1

loc(R
N ). Then, with α ∈ C1(R; R),

(2.3) X
(
α(w)

) = α′(w)Xw.

The proof of this theorem is given in Section 4. Theorem 2.1 above along
with Lemma 3.1 in [CL1] imply readily the following local uniqueness result.
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Theorem 2.2. Let X be a vector field satisfying the assumptions of Theorem
2.1 such that X ∈ L∞

loc, div X ∈ L∞
loc. Let � be an open subset of R

N and S be a C1

hypersurface of � such that X is transverse to S. Let c and w be L∞
loc(�) functions

such that Xw = cw on �, and supp w ⊂ S+ (here S+ is the “half-space” above S).
Then w = 0 on a neighborhood of S.

Theorem 2.1 is also the key step to get the uniqueness of bounded solutions
for transport equations of type ∂t + X . Let T > 0 be given and X be a vector
field as above. Let c be a L1

loc(R
N+1) function and w be a L∞

loc(R
N+1) function.

Let us recall that the following equation

(2.4)
{

∂tw + Xw = cw on (0, T ) × R
N ,

w(0, x) = 0 on R
N ,

holds weakly means that

(2.4)′ ∀ϕ ∈ C∞
c

(
[0, T )×R

N )
,

∫ T

0

∫
RN

w
(
∂tϕ+Xϕ+ϕ div X +cϕ

)
dxdt = 0.

The following theorem is a consequence of Theorem 2.1 above and of Lemma
3.3 in [CL1].

Theorem 2.3. Let X be a vector field satisfying the assumptions of Theorem
2.1 such that

a1(x1)

1 + |x1| ∈ L1(RN1),
a2(x1, x2)

1 + |x2| ∈ L1(
R

N )
,(2.5)

div X1 ∈ L∞(RN1), div X2 ∈ L∞(RN ).(2.6)

Let T be a positive number. Let c(t, x) and w(t, x) be L∞(
(0, T ) × R

N
)

functions
such that (2.4) holds weakly (i.e. (2.4)′). Then w = 0 on (0, T ) × R

N .

We refer the reader to the paper [LL] for the statements of similar unique-
ness theorems that we are able to generalize by replacing in (H1) and (H4) of
[LL] the W 1,1 regularity by the BV regularity.

In our Remark 5.6, we point out that an invariant formulation can be found
to express an assumption such as (2.1).

3. – Following Ambrosio’s argument with some modifications

In this section, we follow closely Ambrosio’s argument in [Am], based on
the Alberti rank-one theorem (Theorem 2.3 in [Am]). We give a few modifi-
cations and we take the regularizing kernel as an unknown function.
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Theorem 3.1. Let � be an open subset of R
N , X be a real BVloc vector field

on � such that div X ∈ L1
loc and w ∈ L∞

loc such that Xw ∈ L1
loc. Then, with

α ∈ C1(R; R),

(3.1) X
(
α(w)

) = α′(w)Xw.

Remarks 3.2. Note that proving the uniqueness of weak solutions requires
only to get X (w2) = 0 whenever Xw = 0 for w ∈ L∞

loc (see e.g. Lemma 3.1
in [CL1]). Also to obtain (3.1) on the open set �, it is enough to prove it on
an open subset �0 such that

HN−1(�\�0) = 0,

provided that the vector field X is also locally bounded as well as its divergence
(here HN−1 stands for the N − 1 Hausdorff measure). For a L1

loc vector field
X = ∑

aj∂j with an L1
loc divergence and a L∞

loc function w, the distribution
Xw is defined as

(3.2) Xw =
∑

1≤ j≤n

∂j (ajw) − w div X.

Proof of Theorem 3.1.
Step 1: Preliminaries.

Proving (3.1) amounts to checking that for any test function ϕ ∈ C1
c (�),∫

α(w)
(

Xϕ + ϕ div X
)
dm +

∫
α′(w)(Xw)ϕdm = 0,

where dm is the Lebesgue measure on R
N . Let χ be a C1

c (�) function
identically equal to 1 on the support of ϕ. Then for x ∈ supp ϕ, α

(
w(x)

) =
α
(
χ(x)w(x)

)
, so that we need only to check

(3.3) −
∫

α(χw)
(

Xϕ + ϕ div X
)
dm =

∫
α′(χw)

(
X (χw)

)
ϕdm.

Note that, from the assumptions of Theorem 3.1,

v = χw ∈ L∞
comp, Xv = wXχ + χ Xw ∈ L1

comp,

and we can use a mollifier with the properties of Lemma 5.2 of our appendix
to write

−
∫

α(v)
(

Xϕ + ϕ div X
)
dm = − lim

ε→0

∫
α
(

Rεv
)(

Xϕ + ϕ div X
)
dm

= lim
ε→0

{∫
α′(Rεv

)(
X (Rεv) − Rε(Xv)

)
ϕdm +

∫
α′(Rεv

)
Rε(Xv)ϕdm

}
.
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Lemma 5.2 shows that Rε(Xv) converges to Xv in L1 and since Rεv is bounded
independently of ε, and converges almost everywhere toward v, proving (3.3)
amounts to proving

lim
ε→0

∫
ϕα′(Rεv

)
[X, Rε]vdm = 0.

Using Lemma 5.3 in the appendix, we get

∫
ϕα′(Rεv

)
[X, Rε]vdm =

∫
ϕα′(Rεv

)
Tε,ρvdm +

∫ bounded︷ ︸︸ ︷
α′(Rεv

) →0
in L1︷ ︸︸ ︷

ϕNεv dm

so that we need only to prove

(3.4) lim
ε→0

∫
ϕα′(Rεv

)
Tε,ρvdm = 0,

that is, using (5.3)

lim
ε→0

∫∫
∂2ρ(x, z)ε−1(X (x)−X (x−εz)

)(
v(x−εz)−v(x)

)
ϕ(x)α′((Rεv)(x)

)
dxdz =0.

Now if (vk)k∈N is a sequence of C1
c functions converging almost everywhere to

the L∞
comp function v so that ‖vk‖L∞ ≤ ‖v‖L∞ , we set

(3.5)

ω(ε, k) =
∫∫

∂2ρ(x, z)ε−1(X (x) − X (x−εz)
)(

vk(x−εz)−vk(x)
)

× ϕ(x)α′((Rεv)(x)
)
dxdz =

∫∫∫ 1

0
∂2ρ(x, z)DX (x − εθ z)z

× (
vk(x − εz) − vk(x)

)
ϕ(x)α′((Rεv)(x)

)
dxdzdθ,

which makes sense as a bracket of duality since the distribution derivative DX
is of order ≤ 1. We have to prove

(3.6) lim
ε→0

(
lim

k→∞
ω(ε, k)

) = 0.

Step 2: Getting rid of the absolutely continuous part.

So far our discussion required only that X and div X should belong to
L1

loc(�). In fact our assumption on X in Theorem 3.1 makes DX a Radon
measure. We consider now the canonical decomposition of that measure DX

DX = DXa + DXs, |DXa| � m, |DXs | ⊥ m,
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where m is the Lebesgue measure on R
N . We note that defining

ω0(ε, k) =
∫∫∫ 1

0
∂2ρ(x, z)DXa(x − εθ z)z

(
vk(x − εz) − vk(x)

)
× ϕ(x)α′((Rεv)(x)

)
dxdzdθ,

we get with

(3.7) C0 = sup
|s|≤‖v‖L∞

|α′(s)|,

using that DXa ∈ L1,

lim sup
k→∞

|ω0(ε, k)| ≤ C0

∫∫∫ 1

0
|DXa(x−εθ z)||(τεzv−v)(x)||ϕ(x)|dx|z|ρ0(z)dzdθ

and using Lemma 5.1, we get (3.6) for ω0.

Step 3: Handling the singular part.

We are left with the bracket of duality (that we write as an integral),

ω1(ε, k) =
∫∫∫ 1

0
∂2ρ(x + εθ z, z)DXs(x)z

(
τεz−εθ zvk − τ−εθ zvk

)
(x)

× τ−εθ zϕ(x)α′((τ−εθ z Rεv)(x)
)
dxdzdθ,

so that, using the polar decomposition of the measure DXs = M |DXs | with
the notation µ = |DXs |, we get

ω1(ε, k) =
∫∫∫ 1

0
∂2ρ(x + εθ z, z)M(x)z

(
τεz−εθ zvk − τ−εθ zvk

)
(x)

× (τ−εθ zϕ)(x)α′((τ−εθ z Rεv)(x)
)
dµ(x)dzdθ.

Using now that supk,x |vk(x)| ≤ ‖v‖L∞ and that the measure µ is positive, we
obtain

|ω1(ε, k)| ≤ C02 ‖v‖L∞
∫∫∫ 1

0
|∂2ρ(x+εθ z, z)M(x)z|

× |ϕ(x+εθ z)|dµ(x)1supp ρ0(z) dzdθ.

Since ∂2ρ and ϕ are continuous functions, |M(x)| ≤ 1, µ-a.e., the dominated
convergence theorem for the measure dµdzdθ gives

(3.8) lim sup
ε→0

(
sup

k
|ω1(ε, k)|) ≤ C02 ‖v‖L∞

∫∫
|∂2ρ(x, z)M(x)z||ϕ(x)|dµ(x)dz.
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We reach now the main point of the proof which amounts to choosing properly
the mollifier ρ so that the z-integral of the dot product Mz · ∂2ρ in (3.8) is
small. Let us consider the function

(3.9) ρ(x, z) = F0
(
U (x)z

)| det U (x)|
where, using the notation MN (R) for the N × N real matrices, and C1

b for the
C1 functions bounded as well as their first derivatives,

(3.10) U ∈ C1
b(RN ; MN (R)), tU (x)U (x) ≥ Id,

and F0 ∈ C1
c (RN ; R+),

∫
F0(ζ )dζ = 1. Note that the function ρ given by (3.9)

satisfies the assumptions of Lemma 5.2; to check (5.1) we assume supp F0 ⊂
B(0, r0) and we get, since |z| ≤ |U (x)z|,

sup
x

ρ(x, z) ≤ sup |F0|1B(0,r0)(z) ‖det U‖L∞ .

Similar estimates are true for supx |dx,zρ(x, z)|. We get∫∫
|∂2ρ(x, z)M(x)z||ϕ(x)|dµ(x)dz

=
∫∫

|F ′
0(U (x)z)U (x)M(x)z|| det U (x)||ϕ(x)|dµ(x)dz

≤
∫

‖U (x)M(x)U (x)−1‖|ϕ(x)|dµ(x)

∫
|F ′

0(ζ )||ζ |dζ ,

so that we obtain from (3.8) that we need only to prove

(3.11) 0 = inf
U

satisfying (3.10)

∫
‖U (x)M(x)U (x)−1‖|ϕ(x)|dµ(x).

It is possible to simplify further that condition by getting rid of the continuity
properties of U, U ′ required in (3.10). First of all, (3.11) is a consequence of

(3.12) 0= inf
V ∈C1

c (RN ;MN (R))

∫
‖(

Id+tV (x)V (x)
)

M(x)
(
Id+tV (x)V (x)

)−1‖|ϕ(x)|dµ(x),

since the matrix U (x) = Id+t V (x)V (x) satisfies (3.10) for V ∈C1
c (RN ; MN (R)).

We claim now that it is enough to obtain

(3.13) 0 = inf
V ∈L∞(|ϕ|dµ)

∫
‖(

Id+tV (x)V (x)
)

M(x)
(
Id +tV (x)V (x)

)−1‖|ϕ(x)|dµ(x).

To prove that claim, we consider a matrix V ∈ L∞(|ϕ|dµ); since |ϕ|dµ is
a finite Radon measure on R

N , can find a sequence (Vl) ∈ C0
c (RN ; MN (R))

converging to V in L1(|ϕ|dµ) with

sup
x

‖Vl(x)‖ ≤ ‖V ‖L∞(|ϕ|dµ) .
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Regularizing by a standard mollifier the matrices Vl , we may suppose that they
are in C1

c (RN ; MN (R)) and, extracting a subsequence, we may also assume that
they converge pointwise |ϕ|dµ-a.e. to V . We note that |ϕ|dµ-a.e.,

‖(
Id +t Vl(x)Vl(x)

)
M(x)

(
Id +t Vl(x)Vl(x)

)−1‖ ≤ ‖ Id +t Vl(x)Vl(x)‖
≤ 1 + ‖V ‖2

L∞(|ϕ|dµ) ,

so that the Lebesgue dominated convergence theorem for the measure with finite
mass |ϕ|dµ gives

(3.14) lim
l→+∞

∫
‖(

Id +t Vl(x)Vl(x)
)

M(x)
(
Id +t Vl(x)Vl(x)

)−1‖|ϕ(x)|dµ(x)

=
∫

‖(
Id +t V (x)V (x)

)
M(x)

(
Id +t V (x)V (x)

)−1‖|ϕ(x)|dµ(x).

Thus the infimum in the rhs of (3.13), a priori smaller than the rhs of (3.12) is
actually the same, proving our claim. We are then reduced to proving (3.13).
The key argument relies on

Theorem 3.3 (Alberti’s rank one theorem [Al]). Let � be an open subset
of R

N , a ∈ BV (�, R
N ′

) and let Da = M |Da| be the polar decomposition of its
distribution derivative. Then M(x) has rank one, i.e.

M(x) = ξ(x) ⊗ η(x), |Dsa| almost everywhere.

The product ξ ⊗ η is the linear map defined by 〈ξ, T 〉η and if a is a
vector field on � (� ⊂ R

N , N ′ = N ), the divergence of a is 〈ξ, η〉|Da| so that
the absolute continuity of the divergence with respect to the Lebesgue measure
amounts to the orthogonality of the unit vectors ξ, η, |Dsa| almost everywhere.
We apply this theorem to the matrix-valued measure DXs = M |DXs |, µ =
|DXs |, and we use the notation M = ξ ⊗ η, µ-almost everywhere. We choose
now the L∞(µ) matrix V (x) = γ 1/2 M(x), where γ ≥ 0, and we note that,
from Lemma 5.4,

(3.15) ‖(
Id +t V (x)V (x)

)
M(x)

(
Id +t V (x)V (x)

)−1‖ ≤ (1 + γ )−1.

Since γ is an arbitrary positive number and |ϕ|dµ is finite, we obtain (3.13),
completing the proof of Theorem 3.1.

Remark 3.4. Looking at our proof, it seems quite obvious that the full
strength of Alberti’s theorem is not needed. For instance, in the paper [CL2],
the key argument could be modified to rely on the fact that the matrix M is
triangular with zeros on the diagonal. It is also pointed out in Remark 3.7 of
[Am] that a recent still unpublished proof of Alberti is using only the absolute
continuity of the divergence with respect to the Lebesgue measure, that is
Tr M = 0. As far as our proof is concerned, from the analysis in (3.8), for
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fixed x , we need to have a compactly supported (in z) solution ρ(x, z) of the
equation

(3.16)
∂ρ

∂z
(x, z)M(x)z = 0.

The previous equation is simply given by a vector field in the z-variables, with
coefficients depending linearly on z (and with parameters x),

∑
1≤ j≤N

 ∑
1≤k≤N

Mkj (x)zj

 ∂ρ

∂zj
(x, z) = 0.

For this vector field, to have a compactly supported solution require the spectral
condition,

(3.17) spectrum (M(x)) ⊂ iR.

However, the equation (3.16) need not to be satisfied exactly, and (3.17) may
certainly be relaxed.

Remark 3.5. If we follow our Remark 5.5 below, we see that, although the

matrix M(x) = (
∂aj
∂xk

)1≤ j,k≤N does not carry any geometric meaning, its class

modulo L1
loc has actually some invariance properties, so that it is not hopeless

to expect that a spectral condition of type (3.17) could be meaningful, even for
a vector field

∑
j aj∂j more singular than BV .

4. – Sum of Leibnizian vector fields

In this section, we prove that the renormalization property holds for the
vector field

(4.1)

X = a1(x1)∂x1︸ ︷︷ ︸
X1

+a2(x1, x2)∂x2︸ ︷︷ ︸
X2

,

a1 ∈ BVloc(R
N1), a2 ∈ L1

loc

(
R

N1; BVloc(R
N2)

)
provided that

(4.2) div X1 ∈ L1
loc(R

N1), div X2 ∈ L1
loc(R

N1+N2).

In Remark 5.6 below, we point out that an invariant formulation of our statement
can be given, using a codimension N1-foliation of the reference open set.
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Theorem 4.1. Let N , N1, N2 be non-negative integers such that N = N1 + N2.
Let X be a vector field on R

N satisfying (4.1)-(4.2) and w ∈ L∞
loc(R

N ) such that
Xw ∈ L1

loc(R
N ). Then, with α ∈ C1(R; R),

(4.3) X
(
α(w)

) = α′(w)Xw.

Proof. To simplify our argument, we shall only prove that, if w ∈ L∞(RN )

satisfies Xw = 0, then X (w2) = 0. Also, we shall assume that both divergences
in (4.2) are vanishing identically. Let us consider ρ ∈ C1(R

N1
x1 ×R

N2
x2 ×R

N2
z2 ; R+)

such that ∫
R

N2
ρ(x1, x2, z2)dz2 = 1,(4.4)

sup
x1,x2

(|ρ(x1, x2, z2)| + |dx1,x2,z2ρ(x1, x2, z2)|
) = ρ0(z2) ∈ L∞

comp.(4.5)

We define also for ε > 0 the operator Rε by

(4.6) (Rεu)(x1, x2) =
∫

R
N2

ρ
(
x1, x2, ε

−1(x2 − y2)
)
ε−N2u(x1, y2)dy2.

We need now to commute Rε with the vector field X1.

Lemma 4.2. Let X1, Rε, w be as above. Then, X1 Rεw and Rε X1w belong to
L1

loc and limε→0+[X1, Rε]w = 0 in L1
loc.

Proof of the lemma. We have, since ρ is C1,

X1 Rεw = ∂

∂x1
·
∫

a1(x1)ρ
(
x1, x2, ε

−1(x2 − y2)
)
ε−N2w(x1, y2)dy2

=
∫

a1(x1) · ∂ρ

∂x1

(
x1, x2, ε

−1(x2 − y2)
)
ε−N2w(x1, y2)dy2

+
∫

ρ
(
x1, x2, ε

−1(x2 − y2)
)
ε−N2

∂

∂x1
· (

a1(x1)w(x1, y2)
)
dy2

=
∫

a1(x1) · ∂ρ

∂x1

(
x1, x2, z2

)(
w(x1, x2 − εz2) − w(x1, x2)

)
dz2

+ a1(x1) ·
∫

∂ρ

∂x1

(
x1, x2, z2

)
dz2︸ ︷︷ ︸

=0 from (4.4)

w(x1, x2) + Rε X1w,

which entails [X1, Rε]w ∈ L1
loc and from Lemma 5.1 that limε→0[X1, Rε]w = 0

in L1
loc. Moreover, we have, using that ρ is C1 and the equation Xw = 0,

Rε X1w = −Rε X2w = −
∫

ρ
(
x1, x2, ε

−1(x2 − y2)
)
ε−N2(∂2 · a2w)(x1, y2)dy2

= −
∫

∂ρ

∂z2

(
x1, x2, ε

−1(x2 − y2)
)
ε−N2−1 · (a2w)(x1, y2)dy2

which belongs to L1
loc, completing the proof of the lemma.



694 NICOLAS LERNER

We have, using Theorem 3.1 and Lemma 4.2 (that is the fact that X1 is
Leibnizian, Rεw ∈ L∞

loc, X1 Rεw ∈ L1
loc)

X
(
(Rεw)2) = X1

(
(Rεw)2) + X2

(
(Rεw)2) = 2(Rεw)(X1 Rεw) + X2

(
(Rεw)2).

We note also that the function Rε is C1 with respect to x2, so that the ordinary
Leibniz formula can be used to get X2

(
(Rεw)2

) = 2(Rεw)(X2 Rεw). We obtain,

X
(
(Rεw)2) = 2(Rεw)([X1, Rε]w)

+ 2(Rεw)(Rε X1w) + 2(Rεw)([X2, Rε]w) + 2(Rεw)Rε X2w

= 2(Rεw)([X1, Rε]w) + 2(Rεw)(Rε Xw) + 2(Rεw)([X2, Rε]w)

which gives, since Xw = 0,

(4.7) X
(
(Rεw)2) = 2(Rεw)([X1, Rε]w) + 2(Rεw)([X2, Rε]w).

Since the term [X1, Rε]w goes to zero in L1
loc from the Lemma 4.2 and the

function Rεw is locally bounded from Lemma 5.2 we are left with the bracket
[X2, Rε]w. We recall that, with ϕ ∈ C1

c (RN ),

〈(X1 + X2)(w
2), ϕ〉D′(1),C1

c
= − lim

ε→0

∫
RN

(Rεw)2(Xϕ)dm

= lim
ε→0

∫
RN

X
(
(Rεw)2)ϕdm

= 2 lim
ε→0

∫
RN

(Rεw)([X2, Rε]w)ϕdm.

We need only to prove that the last term above is 0. We define

ω̃(ε)=
∫

RN
(Rεw)([X2, Rε]w)ϕdm

=
∫∫∫

(Rεw)(x1,x2)ϕ(x1,x2)
∂ρ

∂z2
(x1,x2,z2)ε

−1(X2(x1,x2)−X2(x1,x2 − εz2)
)

(
w(x1, x2 − εz2) − w(x1, x2)

)
dx2dz2dx1.

Now, we consider a sequence of continuous functions wk bounded by ‖w‖L∞
converging a.e. to w and we define

ω̃(ε, k) =
∫∫∫

(Rεw)(x1, x2)ϕ(x1, x2)
∂ρ

∂z2
(x1, x2, z2)ε

−1(X2(x1, x2)

− X2(x1, x2 − εz2)
)(

wk(x1, x2 − εz2) − wk(x1, x2)
)
dx1dx2dz2.

We need only to prove that

(4.8) lim
ε→0

(
lim

k→∞
ω̃(ε, k)

) = 0.
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We have, using an integral notation for the bracket of duality,

ω̃(ε,k)=
∫ 1

0

∫∫∫
(Rεw)(x1, x2)ϕ(x1, x2)

∂ρ

∂z2
(x1, x2, z2)

∂a2

∂x2
(x1, x2 − εθ z2)z2(

wk(x1, x2 − εz2) − wk(x1, x2)
)
dθdx1dx2dz2

=
∫ 1

0

∫∫∫
(Rεw)(x1, x2 + εθ z2)ϕ(x1, x2 + εθ z2)

∂ρ

∂z2
(x1, x2 + εθ z2, z2)

× ∂a2

∂x2
(x1,x2)z2

(
wk(x1,x2+εθ z2 − εz2)− wk(x1,x2+εθ z2)

)
dθdx1dx2dz2.

From our assumption on the L1(RN ) function a2, that we shall make globally
for simplicity, we know that for m N1-almost all x1 in R

N1 , the function R
N2 �

x2 �→ a2(x1, x2) ∈ R
N2 is in BV (RN2) with an L1 divergence and

(4.9)
∫ [

‖a2(x1, ·)‖BV (RN2 )
+ ‖div a2(x1, ·)‖L1(RN2 )

]
dx1 < ∞.

As a consequence, from the canonical decomposition of D2a2(x1, ·), the polar
decomposition of D2a2(x1, ·)s , and the Theorem 3.3 along with Lemma 5.4, we
get that for m N1-almost all x1 in R

N1 ,

D2a2(x1, ·) = (D2a2(x1, ·))ac + (D2a2(x1, ·))s ,(4.10)

(D2a2(x1, ·))s = Mx1(x2)µx1(x2), µx1 = | (D2a2(x1, ·))s |(4.11)

and
(4.12)

‖(
Id +γ t Mx1(x2)Mx1(x2)

)
Mx1(x2)

(
Id +γ t Mx1(x2)Mx1(x2)

)−1‖ ≤ (1 + γ )−1,

with

(4.13)
∫

R
N1

[∥∥D2a2(x1, ·)ac
∥∥

L1(RN2) + ∥∥D2a2(x1, ·)s
∥∥
M(RN2 )

]
dx1 < ∞.

In particular, setting kx1(x2) = (D2a2(x1, ·))ac we get that
∫

R
N1

∥∥kx1

∥∥
L1(RN2 )

dx1

< ∞ and thus the function (x1, x2) �→ kx1(x2) belongs to L1(RN ). Let us recall
the standard (see e.g. Theorem 2.28 in [AFP])

Lemma 4.3 (disintegration of the measure ∂a2/∂x2). Let N , N1, N2 as above
and a2 ∈ L1

(
R

N1
x1 ; BV (R

N2
x2 )

)
. We denote by π1 the projection R

N1 × R
N2 → R

N1 ,
by ν the measure ∂a2/∂x2 and we set λ = π1∗(|ν|). Our assumption implies that
|ν|(RN ) < ∞. The disintegration theorem gives

ν = λ ⊗ νx1
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where for λ-almost all x1 ∈ R
N1 , the MN2-valued measure νx1 is such that

|νx1 |(RN2) = 1.

It means that for F(x1, x2) ∈ L1(RN , dν), we have, for λ-almost all x1 ∈ R
N1 ,

F(x1, ·) ∈ L1(RN2, d|νx1 |), x1 �→ ∫
R

N2 F(x1, x2)dνx1(x2) belongs to L1(RN1, dλ)

and ∫
R

N1×R
N2

F(x1, x2)dν(x1, x2) =
∫

R
N1

(∫
R

N2
F(x1, x2)dνx1(x2)

)
dλ(x1).

We note also that the measure λ is absolutely continuous with respect to the
Lebesgue measure: let A be a Borelian subset of R

N1 of Lebesgue measure 0.
We have from (4.9)

λ(A) = |ν|(A × R
N2) ≤

∫
A

∈L1(RN1 )︷ ︸︸ ︷
‖|D2a2|(x1, ·)‖M(RN2 )

dx1 = 0.

We thus obtain that, with h ∈ L1(RN1), ν = λ ⊗ νx1 = hm N1 ⊗ νx1, and thus
we have the disintegration formulas

(4.14)
∂a2

∂x2
= ν = m N1 ⊗ h(x1)νx1 = m N1 ⊗ Mx1µx1 + L1(RN ).

In fact for F ∈ C0
c (RN ), we have with the notations of (4.10-13)∫

R
N1

(∫
R

N2
F(x1, x2)Mx1(x2)dµx1(x2)

)
dx1+

∫
R

N1

(∫
R

N2
F(x1, x2)kx1(x2)dx2

)
dx1

=
∫

R
N1×R

N2
F(x1, x2)dν(x1, x2)

=
∫

R
N1

(∫
R

N2
F(x1, x2)dνx1(x2)

)
h(x1)dx1.

The term belonging to L1(RN ) in (4.14) can be given the same treatment as
DXa in Section 3 and the same method along with (4.14) gives

(4.15) lim sup
ε→0

ω̃(ε)

≤ 2 ‖w‖2
L∞

∫∫ (∫
|ϕ(x1, x2)|

∣∣∣∣ ∂ρ

∂z2
(x1, x2, z2)Mx1(x2)z2

∣∣∣∣ dµx1(x2)

)
dz2dx1.

We inspect then the arguments of Section 3, between (3.9) and (3.15). We
consider a function

(4.16) ρ(x1, x2, z2) = F0(U (x1, x2)z2)| det U (x1, x2)|
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where U ∈C1
b(RN ; MN2(R)) is such that tU (x)U (x)≥ Id, and F0 ∈ C1

c (RN2; R+)

satisfies
∫

R
N2 F0(ζ )dζ =1. We would like to choose

U (x) = Id +γ t Mx1(x2)Mx1(x2),

but, as in Section 3, it is not directly possible because of the lack of regularity
of that function. The matrices Mx1(x2) have norm ≤ 1. For all x1, we can
find a sequence (Vx1,l(x2))l∈N of functions in C1

b(RN2; unit ball of MN2(R))

converging pointwise to the bounded matrix Mx1(x2). We can also regularize
these matrices with respect to x1 by a standard mollifier, which will be enough
since the integral in the variables x1, z2 takes place on a fixed compact set. We
can conclude as in Section 3 by using (4.12). The proof of Theorem 4.1 is
complete.

5. – Appendix

Lemma 5.1. Let a ∈ L1(RN ) and v ∈ L1(RN ) ∩ L∞(RN ). Then, we have

lim
t→0

∫
|a(x)||v(x + t) − v(x)|dx = 0.

Proof. We have for λ > 0,∫
|a(x)||v(x−t)− v(x)|dx ≤λ

∫
|a|≤λ

|v(x−t)− v(x)|dx+2 ‖v‖L∞
∫

|a|≥λ

|a(x)|dx

≤ λ ‖τtv − v‖L1 + 2 ‖v‖L∞
∫

1|a|≥λ|a(x)|dx,

so that, since v ∈ L1, lim supt→0

∫ |a(x)||v(x − t) − v(x)|dx ≤ 2 ‖v‖L∞
∫

1|a|≥λ

|a(x)|dx, which gives the result by taking the limit of the rhs when λ goes to
infinity.

Remark. Assuming v ∈ L∞ is enough, as proven in the Lemma 5.1 of
[CL2].

Lemma 5.2. Let ρ ∈ C1(RN × R
N ; R+) such that

∫
RN ρ(x, z)dz = 1 and

(5.1) ρ0(z) = sup
x

|ρ(x, z)| + sup
x

|dx,zρ(x, z)| ∈ L∞
comp.

For ε > 0, we consider the operator Rε with kernel ρ
(
x, ε−1(x − y)

)
ε−N , defined

for u ∈ L1
loc by

(5.2) (Rεu)(x) =
∫

ρ
(
x, ε−1(x − y)

)
ε−N u(y)dy.

Let 1 ≤ p < +∞ and u ∈ L p; then limε→0 Rεu = u in L p. If u ∈ L∞,
‖Rεu‖L∞ ≤ ‖u‖L∞ . If u belongs to L1

loc, the function Rεu belongs to C1(RN ) and
for almost all x ∈ R

N , limε→0(Rεu)(x) = u(x).
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Proof. This lemma is classical for a convolution. We check here that this
more general regularizing kernel does not introduce any new difficulty. Let us
first assume that u ∈ L p with 1 ≤ p < +∞. We have

(Rεu)(x) − u(x) =
∫

ρ(x, z)
(
u(x − εz) − u(x)

)
dz

so that, defining α = ‖ρ0‖L1 , we get from Jensen’s inequality

‖Rεu−u‖p
L p ≤

∫ (∫
ρ0(z)|(τεzu−u)(x)|dz

)p

dx ≤α p−1
∫

ρ0(z) ‖τεzu−u‖p
L p dz.

Since limε→0 ‖τεzu − u‖L p = 0 and ‖τεzu − u‖L p ≤ 2 ‖u‖L p , Lebesgue’s dom-
inated convergence theorem gives the result. Let us assume now that u ∈ L∞;
the estimate on ‖Rεu‖L∞ is trivial. Moreover, we have for u ∈ L1

loc

|(Rεu)(x) − u(x)| ≤
∫

z∈supp ρ0

|u(x − εz) − u(x)|dz ‖ρ0‖L∞

and since supp ρ0 is compact, the Lebesgue differentiation theorem gives that
this quantity is going to 0 with ε for almost all x . Assuming u ∈ L1

loc, the
function

y �→ ρ
(
x, ε−1(x − y)

)
ε−N u(y)

belongs to L1 for all x since∫
ε−N ρ0

(
ε−1(x − y)

)|u(y)|dy ≤ ε−N ‖ρ0‖L∞
∫

x−ε supp ρ0

|u(y)|dy < ∞.

Moreover the function x �→ ρ
(
x, ε−1(x − y)

)
ε−N u(y) is continuously differen-

tiable and for K compact∫
sup
x∈K

∣∣∣∂1ρ
(
x, ε−1(x − y)

)
ε−N + ε−1∂2ρ

(
x, ε−1(x − y)

)
ε−N

∣∣∣ |u(y)|dy

≤ 2 ‖ρ0‖L∞ ε−N−1
∫

K−ε supp ρ0

|u(y)|dy < ∞.

We obtain that the function Rεu belongs to C1(RN ), completing the proof of
the lemma.

Lemma 5.3. Let � be an open subset of R
N and let X be a L1

loc vector field on
� such that div X ∈ L1

loc(�). Let v be in L∞
comp(�) and Rε be given by Lemma 5.1.

Then we have

(X Rεv − Rε Xv)(x) = (Tε,ρv)(x) + (Nεv)(x)
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with limε→0 Nεv = 0 in L1
loc and

(5.3) (Tε,ρv)(x) =
∫

∂2ρ(x, z)ε−1(X (x) − X (x − εz)
)(

v(x − εz) − v(x)
)
dz.

Proof. To avoid confusion between the vector field X (for each x ∈ �,
X (x) is a vector tangent to � at x) and the operator X acting on functions, we
shall denote by X the operator: we use the notation (Xw)(x) = dw(x)X (x) (a
scalar quantity as the product of the 1 × N covector dw with the N × 1 vector
X ) and we write

XRεv =
∫

∂1ρ
(
x, ε−1(x − y)

)
ε−N v(y)dy X (x)

+
∫

∂2ρ
(
x, ε−1(x − y)

)
ε−1−N v(y)dy X (x).

We note that ∂2ρ
(
x, ε−1(x − y)

)
ε−1 = − ∂

∂y

(
ρ
(
x, ε−1(x − y)

))
which gives,

using the identity
∫

ρ(x, z)dz ≡ 1,

XRεv =

:=Nε,1v(x)︷ ︸︸ ︷∫
∂1ρ(x, z)X (x)

(
v(x − εz) − v(x)

)
dz +

=0︷ ︸︸ ︷∫
∂1ρ(x, z)dz X (x)v(x)

+
∫

∂

∂y

(
ρ
(
x, ε−1(x − y)

)
ε−N

)(
X (y) − X (x)

)
v(y)dy

−
∫

∂

∂y

(
ρ
(
x, ε−1(x − y)

)
ε−N

)
X (y)v(y)dy,

so that

XRεv = Nε,1v(x) +
∫

∂2ρ(x, z)ε−1(X (x) − X (x − εz)
)
v(x − εz)dz

+
∫

ρ
(
x, ε−1(x − y)

)
ε−N ∂

∂y
· (

X (y)v(y)
)
dy,

where the last term is in fact a bracket of duality. Since we have from (3.2)

∂

∂y
· (

X (y)v(y)
) = (Xv)(y) + (div X)(y)v(y),

we obtain

XRεv = Nε,1v +

=(Tε,ρv)(x)︷ ︸︸ ︷∫
∂2ρ(x, z)ε−1(X (x) − X (x − εz)

)(
v(x − εz) − v(x)

)
dz

+
∫

∂2ρ(x, z)ε−1(X (x) − X (x − εz)
)
dzv(x)

+
∫

ρ
(
x, ε−1(x − y)

)
ε−N (

(Xv)(y) + (div X)(y)v(y)
)
dy,
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which implies

XRεv = Nε,1v + Tε,ρv +
∫

∂2ρ(x, z)ε−1(X (x) − X (x − εz)
)
dzv(x)

+ RεXv + Rεv div X.

Since z �→ρ(x,z) is compactly supported and C1, the covector
∫
∂2ρ(x, z)dz = 0.

Moreover, we have

−
∫

∂2ρ(x, z)ε−1 X (x − εz)dzv(x) + (Rεv div X)(x)

= −v(x)

∫
ρ(x, z)(div X)(x − εz) +

∫
ρ(x, z)v(x − εz)(div X)(x − εz)dz

=
∫

ρ(x, z)
(
v(x − εz) − v(x)

)
(div X)(x − εz)dz := Nε,2v(x)

and consequently

XRεv = Nε,1v + Tε,ρv + Nε,2v + RεXv.

We have for K compact subset of R
N and ρ0 ∈ L1(dz) given in (5.1)

∫
K

|Nε,1(x)|dx ≤
∫

goes to 0 with ε from Lemma 5.1,
bounded above by 2‖1K X‖L1‖v‖L∞︷ ︸︸ ︷∫
|1K (x)X (x)||(τεzv − v)(x)|dx ρ0(z)dz,

so that Lebesgue’s dominated convergence theorem gives limε→0‖Nε,1v‖L1(K )=0.

We have for K compact subset of R
N∫

K
|Nε,2v(x)|dx ≤

∫∫
1K−ε supp ρ0(x)|(div X)(x)||v(x) − v(x + εz)|ρ0(z)dzdx

which goes to zero with ε from Lemma 5.1. The proof of Lemma 5.3 is
complete.

Lemma 5.4. Let E be a real Euclidean finite dimensional vector space. Let M
be an endomorphism of E such that M = ξ ⊗ η with ξ, η orthogonal unit vectors.
Then for all γ ≥ 0,

(5.4)
∥∥∥(Id +γ tM M)M(Id +γ tM M)−1

∥∥∥ ≤ (1 + γ )−1.

Proof. Since for T ∈ E , we have MT = 〈ξ, T 〉η we get M2T = 〈ξ, T 〉
〈ξ, η〉η = 0 and

〈MtM MT1, T2〉 = 〈ξ, tM MT1〉〈η, T2〉 = 〈η, η〉〈ξ, T1〉〈η, T2〉 = 〈MT1, T2〉,
which means M = MtM M and implies (1 + γ )M = M + γ MtM M = M(Id +
γ tM M) and

(5.5) (Id +γ tM M)M(Id +γ tM M)−1 = M(Id +γ tM M)−1 = (1 + γ )−1 M

implying (5.4).
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Remark 5.5. It worth noticing that for a BVloc vector field X = ∑
1≤ j≤N

aj (x)∂xj , the matrix

(5.6) M(x) =
(

∂aj

∂xk

)
1≤ j,k≤N

has some invariance properties, under C1 diffeomorphism, at least modulo L1
loc

matrices. In fact if x = κ(y), y = ν(x) is such a diffeomorphism, the vector
field X in the y-chart is

X =
∑

1≤ j,k≤N

aj (κ(y))
∂yk

∂xj
∂yk =

∑
1≤k≤N

bk(y)∂yk , bk =
∑

1≤ j≤N

aj
∂yk

∂xj
,

so that
∂bk

∂yl
=

∑
1≤ j≤N

∂aj

∂xm

∂xm

∂yl

∂yk

∂xj
+ L1

loc,

which means

(5.7) N (y) =
(

∂bk

∂yl

)
1≤k,l≤N

= ν ′(x)M(x)κ ′(y) + L1
loc

and since ν ′(κ(y))κ ′(y) = Id, we find that matrices M(x) and N (y) are equiv-
alent, modulo a L1

loc matrix.

Remark 5.6. Let us point out here that an invariant formulation of our
statement of Theorem 2.1 can be given, using a codimension N1-foliation of the
reference open set. Let � be an open subset of R

N equipped with a codimension
N1 foliation (in our coordinates the leaves are x1 = cte). A vector field T is
tangent to the foliation means, in our coordinates, that T = β(x1, x2)∂x2 since
T (x1) should be identically 0. Let us call T the vector fields tangent to the
foliation. We introduce a vector field X such that,

(5.8) ∀T ∈ T , [X, T ] ∈ T .

In our coordinates, it means if X = α1(x1, x2)∂x1 + α2(x1, x2)∂x2 and T =
β(x1, x2)∂x2 is any tangent vector field

[X, β(x1, x2)∂x2] = α1∂x1(β)∂x2 − β∂x2(α1)∂x1 + α2∂x2(β)∂x2 − β∂x2(α2)∂x2

is tangent to the foliation. So to ask for this commutator to be tangent is
the requirement β∂x2(α1) = 0 for all β, which means ∂x2(α1) = 0, so in our
coordinates

X = a1(x1)∂x1 + a2(x1, x2)∂x2 .

If the open set � is equipped with a Riemannian structure, X can be decomposed
in the sum of a tangential part to the foliation (a2(x1, x2)∂x2) and a normal part
(a1(x1)∂x1); to get the divergence property, we shall assume that the divergence
of both parts is zero. The geometric hypothesis (5.8) allows us to produce an
invariant result.
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Index of notations

– Let X = ∑
1≤ j≤N aj

∂
∂xj

be a vector field on an open set of R
N . DX

stands for the matrix (
∂aj
∂xk

)1≤ j,k≤N . When X is a BVloc vector field, DX is
a matrix of Radon measures and we can write the canonical decomposition

DX = DXa + DXs, |DXa| � m, µ = |DXs | ⊥ m

where m is the Lebesgue measure on R
N . The polar decomposition of the

matrix DXs is
DXs = Mµ.

– For y ∈ R
N and u ∈ D′(RN ),

〈τyu, ϕ〉D′,D = 〈u, τ−yϕ〉D′,D, (τ−yϕ)(x) = ϕ(x + y).

– C1
b stands for the C1 functions bounded as well as their first derivatives.

– For ξ, η ∈ R
N , the product ξ⊗η is the linear map R

N � T �→ 〈ξ, T 〉η ∈ R
N .
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divergence free transport, Séminaire XEDP, Ecole Polytechnique (2003-04).

[De] N. Depauw, Non unicité des solutions bornées pour un champ de vecteurs BV en dehors
d’un hyperplan., C.R. Math. Acad. Sci. Paris 337 (2003), 249-252.

[DL] R. J. DiPerna – P.-L.Lions, Ordinary differential equations, transport theory and
Sobolev spaces, Invent. Math. 98 (1989), 511-547.

[Fe] H. Federer, “Geometric measure theory”, Grund. der Math. Wiss. 153, Springer-Verlag,
1969.

[LL] C. Le Bris – P.-L. Lions, Renormalized solutions of some transport equations with
partially W 1,1 velocities and applications, Ann. Mat. Pura Appl. 183 (2004), 97-130.
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