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Polynomial semiconjugacies, decompositions of iterations,
and invariant curves

FEDOR PAKOVICH

Abstract. We study the functional equation A � X = X � B, where A, B,
and X are polynomials with complex coefficients. Using results of [13] about
polynomials sharing preimages of compact sets in C, we show that for given B
its solutions may be described in terms of the filled-in Julia set of B. On this
base, we prove a number of results describing a general structure of solutions.
The results obtained imply in particular the result of Medvedev and Scanlon [10]
about invariant curves of maps F : C2 ! C2 of the form (x, y) ! ( f (x), f (y)),
where f is a polynomial, and a version of the result of Zieve andMüller [22] about
decompositions of iterations of a polynomial.

Mathematics Subject Classification (2010): 37F10 (primary); 14H99 (sec-
ondary).

1. Introduction

Let A and B be rational functions of degree at least two on the Riemann sphere.
The functions A and B are called commuting if

A � B = B � A, (1.1)

and conjugate if
A � X = X � B (1.2)

for some rational function X of degree one.
If (1.2) is satisfied for some rational function X of degree at least two, the func-

tion B is called semiconjugate to A, and the function X is called a semiconjugacy
from B to A. Unlike conjugation, semiconjugation is not an equivalency relation.
We will use the notation A  B if for given rational functions A and B there exists
a non-constant rational function X such that (1.2) holds, and the notation A 

X
B

if A,B, and X satisfy (1.2). The notation reflects the fact that the binary relation
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on the set of rational functions defined by equality (1.2) is a preorder. Indeed, if
A 

X
B and B 

Y
C then A 

X�Y
C .

Both equations (1.1) and (1.2) have “obvious” solutions. Namely, equation
(1.1) has solutions of the form

A = R�m, B = R�n, (1.3)

where R is an arbitrary rational function and m, n � 1. Notice that such A and B
have an iteration in common, that is

A�n
= B�m . (1.4)

In order to obtain solutions of equation (1.2) we can take arbitrary rational functions
A1, B1 and set

F = A1 � B1, G = B1 � A1.

Then the equality
(A1 � B1) � A1 = A1 � (B1 � A1) (1.5)

implies that F 

A1
G. Similarly, G 

B1
F . Moreover, if now A2, B2 are rational

functions such that the equality

G = A2 � B2 (1.6)

holds, then the function H = B2 � A2 satisfies G 

A2
H and H 

B2
G, implying that

F 

A1�A2
H and H 

B2�B1
F. This motivates the following definition of an equivalency

relation on the set of rational functions: F⇠G if there exist rational functions Ai ,
Bi , 1  i  n, such that

F = A1 � B1, G = Bn � An,

and
Bi � Ai = Ai+1 � Bi+1, 1  i  n � 1.

Clearly, F ⇠ G implies that F  G and G  F . Notice that, since for any rational
function X of degree one the equality

A = (A � X) � X�1

implies that A ⇠ X�1
� A � X , any equivalence class is a collection of conjugacy

classes.
Functional equation (1.1) was first studied by Fatou, Julia, and Ritt in the pa-

pers [5, 8], and [21]. In all these papers it was assumed that the considered com-
muting functions A and B have no iterate in common. Fatou and Julia described
solutions of (1.1) under the additional assumption that the Julia set of A or B does
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not coincide with the whole complex plane, and Ritt investigated the general case.
Briefly, the Ritt theorem states that if rational functions A and B commute and no
iterate of A is equal to an iterate of B, then, up to a conjugacy, A and B are ei-
ther powers, or Chebyshev polynomials, or Lattès functions. Another proof of the
Ritt theorem was given by Eremenko in [4]. Notice however that a description of
commuting A and B with a common iterate is known only in the polynomial case.
Thus, in a certain sense the classification of commuting rational functions is not yet
completed. On the other hand, it was shown by Ritt [19, 21] that in the polynomial
case equality (1.1) implies that, up to the change

A ! � � A � ��1, B ! � � B � ��1,

where � is a polynomial of degree one, either

A = zn, B = "zm,

where "n = ", or
A = ±Tn, B = ±Tm,

or
A = "1R�m, B = "2R�n,

where R = zS(z`) for some polynomial S and "1, "2 are l-th roots of unity. In fact,
this conclusion remains true if instead of (1.1) one were to assume only that A and
B share a completely invariant compact set in C (see [13]).

Equation (1.2) was investigated in the recent paper [17]. The main result
of [17] states that if a rational function B is semiconjugate to a rational function
A, then either A ⇠ B, or A and B are “minimal holomorphic self-maps” between
orbifolds of non-negative Euler characteristic on the Riemann sphere. The latter
class of functions is a natural extension of the class of Lattès functions and admits a
neat characterization. However, as with the description of commuting rational func-
tions, the description of solutions of (1.2) given in [17] is not completely satisfac-
tory, since it gives no information about equivalent rational functions. In particular,
the results of [17] do not provide any bounds on the number of conjugacy classes
in an equivalence class of a rational function B or more generally on the number of
conjugacy classes of A such that A  B. Another related problem is the following:
is it true that if conditions A  B and B  A hold simultaneously, then A ⇠ B?
Finally, it would be desirable to obtain some handy structural descriptions of the
totality of X satisfying (1.2) for given A and B, and of the totality of A satisfying
A  B for given B.

In this paper we study equation (1.2) with emphasis on the above questions in
the case where all the functions involved are polynomials. Notice that in distinc-
tion with the general case, for polynomials there exists quite a comprehensive the-
ory of functional decompositions developed by Ritt [20]. Nevertheless, questions
regarding polynomial decompositions may be highly non-trivial, and a number of
recent papers are devoted to such questions arising from different branches of math-
ematics. Let us mention for example the paper [22] with applications to algebraic
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dynamics [6], or the paper [16] with applications to differential equations [18].
Another example is the recent paper [10] about invariant varieties for dynamical
systems defined by coordinatwise actions of polynomials, a considerable part of
which concerns properties of polynomial solutions of (1.2).

The main distinction between this paper and the above mentioned papers is the
systematical use of ideas and results from the paper [13] which relates polynomials
sharing preimages of compact sets in C with the functional equation

A � C = D � B.

In particular, the main result of [13] leads to a characterization of polynomial so-
lutions of (1.2) in terms of filled-in Julia sets. Recall that for a polynomial B the
filled-in Julia set K (B) is defined as the set of points in C whose orbits under iter-
ations of B are bounded. Since equality (1.2) implies the equalities

A�n
� X = X � B�n, n � 1,

it it easy to see that if X is a semiconjugacy from B to A, then the preimage
X�1(K (A)) coincides with K (B). We show that this property is in fact charac-
teristic.

Theorem 1.1. Let A, B and X be polynomials of degree at least two such that
A 

X
B. Then

X�1(K (A)) = K (B). (1.7)
Conversely, if equality (1.7) holds and deg A = deg B, then there exists a polyno-
mial of degree one µ such that

(µ � A) � X = X � B

and µ(K (A)) = K (A). More generally, if for given B and X the condition

X�1(K ) = K (B) (1.8)

holds for some compact set K in C, then there exists a polynomial A such that
A 

X
B and K (A) = K .

For a fixed polynomial B of degree at least two denote by E(B) the set of
polynomials X of degree at least two such that A 

X
B for some polynomial A. An

immediate corollary of Theorem 1.1 is that a polynomial X is contained in E(B) if
and only if K (B) is a union of fibers of X . Another corollary is that if A 

X
B, then

for any decomposition X = X1 � X2 there exists a polynomial C such that

A 

X1
C, C 

X2
B.

Notice that in particular this casts the problem of the description of decompositions
of iterations of a polynomial, first considered in the paper [22], into the context of
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equation (1.2). Indeed, since B � B�d
= B�d

� B, the polynomial B�d is contained
in E(B) and hence for any decomposition B�d

= Y � X the equalities

B � Y = Y � A, A � X = X � B

hold for some polynomial A.
The following statement is another corollary of the main result of [13].

Theorem 1.2. For any X1, X2 2 E(B) there exists X 2 E(B) such that deg X =

LCM(deg X1, deg X2) and

X = U1 � X1 = U2 � X2

for some polynomials U1, U2. Furthermore, there exists W 2 E(B) such that
degW = GCD(deg X1, deg X2) and

X1 = V1 � W, X2 = V2 � W

for some polynomials V1, V2.

For fixed polynomials A, B denote by E(A, B) the subset of E(B) (possibly
empty) consisting of polynomials X such that A 

X
B. In particular, the set E(B, B)

consists of polynomials of degree at least two commuting with B. We will call a
polynomial P special if it is conjugate to zn or±Tn , or equivalently if there exists a
Möbius transformation µ which maps K (P) to D or [�1, 1]. The following result
describes a general structure of E(A, B) for non-special A, B.

Theorem 1.3. Let A and B be fixed non-special polynomials of degree at least
two such that the set E(A, B) is non-empty, and let X0 be an element of E(A, B) of
minimal degree. Then a polynomial X belongs to E(A, B) if and only if X =

eA�X0
for some polynomial eA commuting with A.

Notice that in a sense this result is a generalization of the result of Ritt about
commuting polynomials. Indeed, applying Theorem 1.3 for B = A and X = B,
we obtain that if A is non-special and B 2 E(A, A), then B =

eA � R, where R is a
polynomial of minimal degree in E(A, A). Now we can apply Theorem 1.3 again to
the polynomial eA and so on, eventually obtaining the representation B = µ1�R�m1 ,
where µ1 is a polynomial of degree one commuting with A. In particular, since
A 2 E(A, A), the equality A = µ2 � R�m2 holds for some polynomial µ2 of degree
one commuting with A.

Another corollary of Theorem 1.3 is the following result obtained by Medve-
dev and Scanlon in [10]: if C ⇢ C2 is an irreducible algebraic curve invariant
under the map F : (x, y) ! ( f (x), f (y)), where f is a non-special polynomial,
then there exists a polynomial p which commutes with f such that C has the form
z1 = p(z2) or z2 = p(z1). More generally, we prove the following statement
which supplements the results of [10] about algebraic curves invariant under the
map F : (x, y) ! ( f (x), g(y)), where f and g are non-special polynomials.
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Theorem 1.4. Let f and g be non-special polynomials of degree at least two and
C a curve in C2. Then C is an irreducible ( f, g)-invariant curve if and only if C has
the form u(x)�v(y) = 0, where u, v are polynomials of coprime degrees satisfying
the equations

t � u = u � f, t � v = v � g (1.9)

for some polynomial t.

Our next result describes the interrelations between the equivalence ⇠, the
preorder  , and decompositions of iterations.

Theorem 1.5. Let A and B be polynomials of degree at least two. Then conditions
A  B and B  A hold simultaneously if and only if A ⇠ B. Furthermore, A ⇠ B
if and only if there exist polynomials X , Y such that

B � Y = Y � A, A � X = X � B,

and Y � X = B�d for some d � 0.

For a fixed polynomial B of degree at least two denote by F(B) the set of poly-
nomials A such that A  B. The following theorem gives a structural description
of the set F(B).

Theorem 1.6. Let B be a fixed non-special polynomial of degree n � 2. Then there
exist A 2 F(B) and a semiconjugacy X from B to A which are universal in the
following sense: for any polynomial C 2 F(B) there exist polynomials XC , UC
such that X = UC � XC and the diagram

C B
����! C??yXC ??yXC

C C
����! C??yUC ??yUC

C A
����! C

(1.10)

is commutative. Furthermore, the degree of X is bounded from above by a constant
c = c(n) which depends on n only.

We did not make special efforts to obtain an optimal estimation for c(n), how-
ever our method of proof shows that

c(n)  (n � 1)!n2 log2 n+3.

Thus, Theorem 1.6 gives an effective bound on the number of conjugacy classes of
polynomials A such that A  B.
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The paper is organized as follows. In the second section we give a very brief
overview of the Ritt theory. In the third section we recall basic results of [13] and
prove Theorem 1.1 and Theorem 1.2. We also prove the corollaries of Theorem 1.1
mentioned above. In the fourth section we first show that if A  B and one of poly-
nomials A or B is special, then the other one also is special (Theorem 4.4). Then
we prove Theorem 1.3 and deduce from it the result of Ritt about commuting poly-
nomials. We also apply Theorem 1.3 to the problem of description of curves in C2
invariant under maps F : (x, y) ! ( f (x), g(y)), where f and g are polynomials,
and prove Theorem 1.4. Finally, we prove Theorem 1.5.

In the fifth section we first show (Theorem 5.2) that if B is a non-special poly-
nomial of degree n, and X 2 E(B), then the degree l of any special compositional
factor of X satisfies the inequality l  2n. On this base we prove that if X 2 E(B)
is not a polynomial in B, then deg X is bounded from above by a constant which
depends on n only. In turn, from this result we deduce Theorem 1.6. As another
corollary of the boundedness of deg X we obtain the following result of Zieve and
Müller [22]: if B is a non-special polynomial of degree n � 2, and X and Y are
polynomials such that Y � X = B�s for some s � 1, then there exist polynomialseX , eY and i, j � 0 such that

Y = B�i
�

eY , X =
eX � B� j , and eY �

eX = B�es,
wherees is bounded from above by a constant which depends on n only.

ACKNOWLEDGEMENTS. The author is grateful to the Max-Planck-Institut für
Mathematik for the hospitality and the support.

2. Overview of the Ritt theory

Let F be a polynomial with complex coefficients. The polynomial F is called
indecomposable if the equality F = F2 � F1 implies that at least one of the poly-
nomials F1, F2 is of degree one. Any representation of a polynomial F in the
form F = Fr � Fr�1 � · · · � F1, where F1, F2, . . . , Fr are polynomials, is called
a decomposition of F. A decomposition is called maximal if all F1, F2, . . . , Fr are
indecomposable and of degree greater than one. Two decompositions having an
equal number of terms

F = Fr � Fr�1 � · · · � F1 and F = Gr � Gr�1 � · · · � G1

are called equivalent if either r = 1 and F1 = G1, or r � 2 and there exist
polynomials µi , 1  i  r � 1, of degree 1 such that

Fr = Gr � µr�1, Fi = µ�1
i � Gi � µi�1, 1 < i < r, and F1 = µ�1

1 � G1.
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The theory of polynomial decompositions established by Ritt can be summarized
in the form of two theorems usually called the first and the second Ritt theorems
(see [20]).

The first Ritt theorem states, roughly speaking, that any maximal decomposi-
tions of a polynomial may be obtained from any other by some iterative process
involving the functional equation

A � C = D � B. (2.1)

Theorem 2.1 ([20]). Any two maximal decompositions D,E of a polynomial P
have an equal number of terms. Furthermore, there exists a chain of maximal de-
compositions Fi , 1  i  s, of P such that F1 = D, Fs ⇠ E, and Fi+1 is obtained
from Fi by a replacement of two successive polynomials A � C in Fi by two other
polynomials D � B such that (2.1) holds.

The second Ritt theorem in turn describes indecomposable polynomial solu-
tions of (2.1). More precisely, it describes solutions satisfying the condition

GCD(deg A, deg D) = 1, GCD(degC, deg B) = 1, (2.2)

which holds in particular if A,C, D, B are indecomposable (see Theorem 2.3 be-
low).

Theorem 2.2 ([20]). Let A,C, D, B be polynomials such that (2.1) and (2.2) hold.
Then there exist polynomials �1, �2, µ, ⌫ of degree one such that, up to a possible
replacement of A by D and of C by B, either

A = ⌫ � zs Rn(z) � ��1
1 , C = �1 � zn � µ (2.3)

D = ⌫ � zn � ��1
2 , B = �2 � zs R(zn) � µ, (2.4)

where R is a polynomial, n � 1, s � 0, and GCD(s, n) = 1, or

A = ⌫ � Tm � ��1
1 , C = �1 � Tn � µ, (2.5)

D = ⌫ � Tn � ��1
2 B = �2 � Tm � µ, (2.6)

where Tn, Tm are the Chebyshev polynomials, n,m � 1, and GCD(n,m) = 1.

Notice that the main difficulty in the practical use of Theorem 2.1 and Theorem
2.2 is the fact that classes of solutions appearing in Theorem 2.2 are not disjoint.
Namely, any solution of the form (2.5), (2.6) with n = 2 can also be represented in
the form (2.3), (2.4) (see, e.g., [10, 16, 22] for further details).

The description of polynomial solutions of equation (2.1) in the general case
in a certain sense reduces to the case where (2.2) holds by the following statement.
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Theorem 2.3 ([3]). Let A,C, D, B be polynomials such that (2.1) holds. Then
there exist polynomials U, V, eA, eC, eD, eB, where

degU = GCD(deg A, deg D), deg V = GCD(degC, deg B),

such that
A = U �

eA, D = U �
eD, C =

eC � V, B =
eB � V,

and eA �
eC =

eD �
eB.

In particular, if degC = deg B, then there exists a polynomial µ of degree one such
that

A = D � µ�1, C = µ � B.

Theorem 2.2 implies the following description of polynomial solutions of equation
(1.2) under the condition

GCD(deg X, deg B) = 1 (2.7)

(see [7]).

Theorem 2.4 ([7]). Let A, B, X be polynomials such that (1.2) and (2.7) hold.
Then there exist polynomials µ, ⌫ of degree one such that either

A = ⌫ � zs Rn(z) � ⌫�1, X = ⌫ � zn � µ, D = µ�1
� zs R(zn) � µ,

where R is a polynomial, n � 1, s � 0, and GCD(s, n) = 1, or

A = ⌫ � ±Tm � ⌫�1, X = ⌫ � Tn � µ, D = µ�1
� ±Tm � µ,

where Tn, Tm are the Chebyshev polynomials, n,m � 1, and GCD(n,m) = 1.

Notice, however, that Theorem 2.2, even combined with Theorem 2.3, provides
very little information about solutions of (1.2) if (2.7) is not satisfied. A possible
way to investigate the general case is to analyze somehow the totality of all decom-
positions of a polynomial P , basing on Theorem 2.1 and Theorem 2.2, and then to
apply this analysis to (1.2) using the fact that we can pass from the decomposition
P = A � X to the decomposition P = X � B. This idea was used in [10]. A similar
technique was used in [22], where it was applied to the study of decompositions of
iterations of a polynomial. In this paper we use another method completely bypass-
ing Theorem 2.1. Notice by the way that Theorem 2.1 does not hold for arbitrary
rational functions (see, e.g., [12]).
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3. Semiconjugacies and Julia sets

3.1. Polynomials sharing preimages of compact sets

Let f1(z), f2(z) be non-constant complex polynomials and K1, K2 ⇢ C com-
pact sets. In the paper [13] we investigated the following problem. Under what
conditions on the collection f1(z), f2(z), K1, K2 do the preimages f �1

1 (K1) and
f �1
2 (K2) coincide, that is,

f �1
1 (K1) = f �1

2 (K2) = K (3.1)

for some compact set K ⇢ C?
Using ideas from approximation theory, we relate equation (3.1) to the func-

tional equation
g1( f1(z)) = g2( f2(z)), (3.2)

where f1(z), f2(z), g1(z), g2(z) are polynomials. It is easy to see that for any poly-
nomial solution of (3.2) and any compact set K3 ⇢ C we obtain a solution of (3.1)
setting

K1 = g�1
1 (K3), K2 = g�1

2 (K3). (3.3)
Briefly, the main result of [13] states that, under a very mild condition on the car-
dinality of K , all solutions of (3.1) can be obtained in this way. Combined with
Theorem 2.3 and Theorem 2.2 this leads to a very explicit description of solutions
of (3.1).
Theorem 3.1 ([13]). Let f1(z), f2(z) be polynomials, deg f1 = d1, deg f2 = d2,
d1  d2, and let K1, K2, K ⇢ C be compact sets such that (3.1) holds. Suppose
that card{K} � LCM(d1, d2). Then, if d1 divides d2, there exists a polynomial
g1(z) such that f2(z) = g1( f1(z)) and K1 = g�1

1 (K2). On the other hand, if
d1 does not divide d2, then there exist polynomials g1(z), g2(z), deg g1 = d2/d,
deg g2 = d1/d, where d = GCD(d1, d2), and a compact set K3 ⇢ C such that
(3.2), (3.3) hold. Furthermore, in this case there exist polynomials ef1(z), ef2(z),
W (z), degW (z) = d, such that

f1(z) =
ef1(W (z)), f2(z) =

ef2(W (z)) (3.4)

and there exist linear functions �1(z), �2(z) such that either

g1(z) = zcRd1/d(z) � ��1
1 , ef1(z) = �1 � zd1/d ,

g2(z) = zd1/d � ��1
2 , ef2(z) = �2 � zcR

�
zd1/d

�
,

(3.5)

for some polynomial R(z) and c equal to the remainder after division of d2/d by
d1/d, or

g1(z) = Td2/d(z) � ��1
1 , ef1(z) = �1 � Td1/d(z),

g2(z) = Td1/d(z) � ��1
2 , ef2(z) = �2 � Td2/d(z),

(3.6)

for the Chebyshev polynomials Td1/d(z), Td2/d(z).
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Theorem 3.1 may be used to prove many other results (see [13] for details), the
most notable of which is the following description of solutions of (3.1) in the case
where K1 = K2, first obtained by T. Dinh [1, 2] by methods of complex dynamics.

Theorem 3.2 ([2, 13]). Let f1(z), f2(z) be polynomials such that

f �1
1 (T ) = f �1

2 (T ) = K (3.7)

holds for some infinite compact sets T, K ⇢ C. Then, if d1 divides d2, there exists
a polynomial g1(z) such that f2(z) = g1( f1(z)) and g�1

1 (T ) = T . On the other
hand, if d1 does not divide d2, then there exist polynomials ef1(z), ef2(z), W (z),
degW (z) = d, satisfying (3.4). Furthermore, in this case one of the following
conditions holds:

1) T is a union of concentric circles and

ef1(z) = � � zd1/d , ef2(z) = � � � zd2/d (3.8)

for some linear function � (z) and � 2 C;
2) T is a segment and

ef1(z) = � � ±Td1/d(z), ef2(z) = � � ±Td2/d(z), (3.9)

for some linear function � (z) and the Chebyshev polynomials Td1/d(z), Td2/d(z).

3.2. Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. If A 

X
B, then for any n � 1 the equality

A�n
� X = X � B�n

holds. Therefore, if z1 = X (z0), then the sequence A�n(z1) is bounded if and only
if the sequence X � B�n(z0) is bounded. In turn, the last sequence is bounded if and
only if the sequence B�n(z0) is bounded. Thus, A 

X
B implies

X�1(K (A)) = K (B). (3.10)

Conversely, if (3.10) holds, then it follows from B�1(K (B)) = K (B) that

(X � B)�1(K (A)) = K (B).

Thus,
X�1(K (A)) = (X � B)�1(K (A)).

Since deg X | deg(X � B), applying to the latter equality Theorem 3.1 we conclude
that eA � X = X � B
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for some polynomial eA. Furthermore, since we proved that for such eA the equality
X�1(K (eA)) = K (B) holds, we see that X�1(K (eA)) = X�1(K (A)), implying that
K (eA) = K (A). Finally, it follows from Theorem 3.1 applied to

A�1(K ) =
eA�1(K ) = K ,

where K = K (eA) = K (A), that there exists a polynomial of degree one µ such
that eA = µ � A and µ(K (A)) = K (A).

More generally, if
X�1(K ) = K (B) (3.11)

for some compact set K ⇢ C, then

X�1(K ) = (X � B)�1(K ),

implying by Theorem 3.1 that (1.2) holds for some polynomial A. Furthermore,
since for such a polynomial A equality (3.10) holds, we conclude that X�1(K ) =

X�1(K (A)) and K = K (A).

Corollary 3.3. Let B be a polynomial of degree at least two. Then a polynomial X
is contained in E(B) if and only K (B) is a union of fibers of X. In particular, if B1
and B2 are polynomials such that K (B1) = K (B2), then E(B1) = E(B2).

Proof. Clearly, condition (3.11) implies that K (B) is a union of fibers of X. Con-
versely, if K (B) is a union of fibers of X, then

K (B) = X�1�X (K (B))
�
,

implying that (3.11) holds for the compact set K = X (K (B)).

Corollary 3.4. Let A, B, and X be polynomials such that A 

X
B. Then for any

decomposition X = X1 � X2 there exists a polynomial C such that

A 

X1
C, C 

X2
B.

Proof. By Theorem 1.1, K (B) = X�1(K (A)). Since X = X1 � X2, this implies
that K (B) = X�1

2 (eK ), where eK = X�1
1 (K (A)). Therefore, by Theorem 1.1, there

exists a polynomial C such that

C � X2 = X2 � B. (3.12)

Now we have:

A � X1 � X2 = X1 � X2 � B = X1 � C � X2,

implying that A � X1 = X1 � C .
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Remark 3.5. Corollary 3.4 may be proved without using Theorem 1.1. Indeed, if
X = X1 � X2, then it follows from

A � (X1 � X2) = X1 � (X2 � B),

by Theorem 2.3, that

X1 � X2 = U �
eW , X2 � B = V �

eW , (3.13)

where
deg eW = GCD(deg(X1 � X2), deg(X2 � B)).

Since deg X2 | deg eW , Theorem 2.3 applied to the first equality in (3.13) implies
that eW = S � X2 for some polynomial S. Therefore,

X2 � B = V �
eW = V � S � X2

and hence (3.12) holds for C = V � S.

Proof of Theorem 1.2. By Theorem 1.1, the condition X1, X2 2 E(B) implies that
there exist K1, K2 ⇢ C such that

X�1
1 (K1) = K (B), X�1

2 (K2) = K (B).

It now follows from Theorem 3.1 that there exist polynomials X , W , U1, U2, V1,
V2 such that

deg X = LCM(deg X1, deg X2), degW = GCD(deg X1, deg X2),

and that equalities
X = U1 � X1 = U2 � X2

and
X1 = V1 � W, X2 = V2 � W (3.14)

hold. Furthermore, there exists K3 ⇢ C such that

K1 = U�1
1 (K3), K2 = U�1

2 (K3).

Therefore, X�1(K3) = K (B), implying by Theorem 1.1 that X 2 E(B). Finally,
any of equalities (3.14) implies that W 2 E(B) by Corollary 3.4.
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4. Semiconjugacies between fixed A and B

4.1. Semiconjugacies between special polynomials

For a polynomial P and a finite set K ⇢ C denote by P�1
odd(K ) the subset of P�1(K )

consisting of points where the local multiplicity of P is odd. Notice that the chain
rule implies that if P = A � B, then

P�1
odd(K ) = B�1

odd

⇣
A�1
odd(K )

⌘
. (4.1)

Lemma 4.1. Let P be a polynomial of degree n � 2, and K ⇢ C a finite set
containing at least two points. Assume that P�1

odd(K ) = K . Then K contains exactly
two points, and P is conjugate to ±Tn .

Proof. Denote by ez the multiplicity of P at z 2 C, and set r = card(K ). Since for
any y 2 C the set P�1(y) contains

n �

X
z2C

P(z)=y

(ez � 1)

points and X
z2C

(ez � 1) = n � 1,

we have:
card

�
P�1(K )

�
� rn �

X
z2C

(ez � 1) = (r � 1)n + 1 (4.2)

(the minimum is attained if K contains all finite critical values of P). Therefore, if

card
⇣
P�1
odd(K )

⌘
= card(K ) = r,

then the set P�1(K ) contains at least (r � 1)n + 1 � r points where the local
multiplicity of P is greater than one, implying that

X
z2P�1(K )

ez � r + 2 ((r � 1)n + 1� r) . (4.3)

Since the sum in the left-hand side of (4.3) equals rn, this inequality implies that

(n � 1)(r � 2)  0. (4.4)

Thus, r = 2. Furthermore, since the equality in (4.4) is attained if and only if
equality is attained in (4.3), we conclude that if P�1

odd(K ) = K , then ez = 2 for each
z 2 P�1(K ) \ K , and the local multiplicity of P at each of the two points of K is
equal to one.
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Changing P to ��1
� P � � for a convenient polynomial of degree one � , we

can assume that K = {�1, 1}. Then the condition on multiplicities of P implies
that P2 � 1 is divisible by (P 0)2, and calculating the quotient we conclude that P
satisfies the differential equation

n2
�
1� y2

�
=

�
y0

�2�1� z2
�
.

Since the general solution of the equation

y0p
1� y2

= ±

n
p

1� z2

is
arccos y = ±n arccos z + c,

it follows now from P(1) = ±1 that

P = ± cos(n arccos x) = ±Tn(z).

Remark 4.2. Notice that the equality Tn(�z) = (�1)nTn(z) implies that for even
n the polynomials Tn and �Tn are conjugate since Tn = ↵ � (�Tn) � ↵�1, where
↵(z) = �z. For odd n however the polynomials Tn and �Tn are not conjugate.

Lemma 4.3. Let P be a polynomial and a, b 2 C. Then the set P�1
odd{a, b} contains

at least two points.

Proof. It follows from the equality

2n =

X
z2C

P(z)=a

ez +

X
z2C

P(z)=b

ez

that the number X
z2P�1

odd{a,b}

ez

is even, implying that the number card(P�1
odd{a, b}) also is even. On the other hand,

card
⇣
P�1
odd{a, b}

⌘
6= 0,

for otherwise P�1
odd{a, b} contains at most n/2 + n/2 = n points in contradiction

with inequality (4.2).

Theorem 4.4. Let A and B be polynomials of degree at least two such that
A  B. Then A is conjugate to zn if and only if B is conjugate to zn . Similarly, A
is conjugate to ±Tn if and only if B is conjugate to ±Tn.
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Proof. Assume that B is conjugate to±Tn , and let X be a semiconjugacy from B to
A. Changing B and X to ��1

� B � � and X � � , for a convenient polynomial � of
degree one, without loss of generality we can assume that B = ±Tn. By Theorem
1.1, we have:

X�1(K (A)) = K (B) = [�1, 1]. (4.5)

Set m = deg X. Since
T�1
m ([�1, 1]) = [�1, 1], (4.6)

equality (4.5) implies that

X�1(K (A)) = T�1
m ([�1, 1]).

It now follows from Theorem 3.1 that there exists a polynomial � of degree one
such that X = � � Tm . Therefore, changing A and X to ��1 � A � � and ��1

� X ,
we can assume that X = Tm . Thus, we have:

A � Tm = Tm � ±Tn = (�1)mTn � Tm, (4.7)

implying that A = ±Tn .
Similarly, if B = zn , then the equalities

X�1(K (A)) = K (B) = D,

and (zm)�1(D) = D imply that X = � � zm for some polynomial � of degree one,
and arguing as above we conclude that A is conjugate to zn.

Assume now that A is conjugate to ±Tn . Without loss of generality we can
assume that A = ±Tn. Since T�1

n odd{�1, 1} = {�1, 1}, formula (4.1) implies that

(±Tn � X)�1odd{�1, 1} = X�1
odd{�1, 1}.

It follows now from
±Tn � X = X � B (4.8)

that
B�1
odd

⇣
X�1
odd{�1, 1}

⌘
= X�1

odd{�1, 1}. (4.9)

Since by Lemma 4.3 the set X�1
odd{�1, 1} contains at least two points, this implies

by Lemma 4.1 that the polynomial B is conjugate to ±Tn.
Finally, if A is conjugate to zn , we can assume that A = zn , and considering

zeroes of the left and the right parts of the equality

zn � X = X � B,

we see that B�1(X�1(0)) = X�1(0). It follows now from inequality (4.2) that
X�1(0) consists of a single point, implying easily that the polynomial B is conju-
gate to zn.
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Remark 4.5. Since for even n the polynomials Tn and �Tn are conjugate (see Re-
mark 4.2), Theorem 4.4 implies that if B is conjugate to±Tn for even n, then A and
B are conjugate. On the other hand, if B is conjugate to �Tn for odd n, then A is
not necessarily conjugate to �Tn , but only to ±Tn . Still, it follows from (4.7) that
if B is conjugate to Tn , then A is conjugate to Tn .

Notice that Theorem 4.4 combined with Remark 4.5 implies the following
corollary.

Corollary 4.6. Let A and B be polynomials such that the conditions A  B and
B  A hold simultaneously, and at least one of A and B is special. Then A and B
are conjugate.

4.2. Proof of Theorem 1.3

The following lemma is a well-known fact from the complex dynamics. For the
reader’s convenience we give a short proof based on Theorem 3.1.

Lemma 4.7. Let A be a polynomial of degree n such that K (A) is a union of circles
with a common center. Then K (A) is a disk, and A is conjugate to zn. Similarly, if
K (A) is a segment, then A is conjugate to ±Tn.

Proof. Since for a polynomial A the complement to K (A) in CP1 is connected
(see, e.g., [11, Lemma 9.4]), if K (A) is a union of circles with a common center,
then K (A) is a disk. Furthermore, changing if necessary A to a conjugate poly-
nomial, we can assume that K (A) = D. Thus, A�1(D) = D. On the other hand,
(zn)�1(D) = D, and applying to these equalities Theorem 3.1, we conclude that
A = ↵zn, where |↵| = 1, implying that A is conjugate to zn.

Similarly, if K (A) is a segment, we can assume that K (A) = [�1, 1], and to
conclude in a similar way that A is conjugate to ±Tn.

Proof of Theorem 1.3. Set d0 = deg X0, and let X 2 E(A, B) be a polynomial of
degree d. By Theorem 1.1, we have:

X�1
0 (K (A)) = K (B), X�1(K (A)) = K (B).

Applying to these equalities Theorem 3.2 and taking into account that, by Lemma
4.7, K (A) is neither a union of concentric circles nor a segment, we conclude that
X =

eA � X0 for some polynomial eA. Substituting now this expression in (1.2) and
using that X0 2 E(A, B) we have:

A �
eA � X0 =

eA � X0 � B =
eA � A � X0,

implying that A �
eA = A �

eA.
Conversely, if A commutes with eA, then

A � (eA � X0) =
eA � A � X0 = (eA � X0) � B.
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Theorem 1.3 implies in particular the following classification of commuting poly-
nomials obtained by Ritt.

Theorem 4.8 ([21]). Let A and B be commuting polynomials of degree at least
two. Then, up to the change

A ! � � A � ��1, B ! � � B � ��1, (4.10)

where � is a polynomial of degree one, either

A = zn, B = "zm, (4.11)

where "n = ", or
A = ±Tn, B = ±Tm, (4.12)

or
A = "1R�m, B = "2R�n, (4.13)

where R = zS(z`) for some polynomial S, and "1, "2 are l-th roots of unity.

Proof. Assume first that A is conjugate to zn . Without loss of generality we may
assume that A = zn. Applying Theorem 1.1 for B = A and X = B, we have:

B�1(K (A)) = K (A).

Since K (A) = D, arguing as in Lemma 4.7 we conclude that B = "zm , and it
follows from A � B = B � A that "n = ". If A is conjugate to ±Tn , the proof is
similar.

On the other hand, if A is non-special, then Theorem 1.3 implies that any B 2

E(A, A) has the form B =
eA�R, where R is a polynomial of the minimum possible

degree in E(A, A). Now we can apply Theorem 1.3 again to the polynomial eA
and so on, obtaining eventually the representation B = µ1 � R�m1 , where µ1 is a
polynomial of degree one commuting with A. In particular, since A 2 E(A, A), the
equality A = µ2 � R�m2 holds for some polynomial µ2 of degree one commuting
with A. Furthermore, since R commutes with A = µ2 � R�m2 , the polynomial µ2
commutes with R. This implies easily that, up to a conjugacy, R = zS(z`) for
some polynomial S, and µ2 = "2z for some lth root of unity "2. Finally, since µ1
commutes with the polynomial A, and A = µ2�R�m2 has the form zeS(z`) for some
polynomial eS, we conclude that µ1 = "1z for some lth root of unity "1.

4.3. Semiconjugacies and invariant curves

It was shown in the recent paper [10] that the problem of describing semiconjugate
polynomials is closely related to the problem of describing algebraic curves C in
C2 invariant under maps of the form F : (x, y) ! ( f (x), g(y)), where f, g are
polynomials of degree at least two. Briefly, this relation may be summarized as
follows (see [10, Proposition 2.34] for more details).
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If C is an irreducible ( f, g)-invariant curve, then its projective closure C in
CP1 ⇥ CP1 is also ( f, g)-invariant. Denote by h̄ the restriction of F on C. Let eC
be the desingularization of C and � :

eC ! C a map biholomorphic off a finite set.
Clearly, h̄ lifts to a holomorphic map h :

eC !
eC. Consider now the commutative

diagram
eC h

����!
eC??y� ??y�

C
h̄

����! C??y↵ ??y↵
CP1 f

����! CP1,

(4.14)

where ↵ : C ! CP1 is the projection map onto the first coordinate. Set ⇡ = ↵ ��.
If ⇡ is a constant, then C is a line z1 = ⇠, where ⇠ is a fixed point of f , so assume
that the degree of ⇡ is at least one. Observe that since f �1(1) = 1, the set
K = ⇡�1(1) and the map h satisfy the equality

h�1(K ) = K . (4.15)

Since h is a holomorphic map between Riemann surfaces of the same genus and
deg h=deg f �2, it follows from the Riemann-Hurwitz formula that either g(eC) =

0, or g(eC) = 1 and h is unbranched. Since deg h � 2, for unbranched h equality
(4.15) is impossible. Therefore, eC = CP1 and (4.15) implies easily that, up to the
change ↵ � h � ↵�1, where ↵ is a Möbius transformation, either K = 1 and h is a
polynomial, or K = {0,1} and h = z± deg f . Thus,

f � ⇡ = ⇡ � h, (4.16)

where either ⇡ and h are polynomials, or h = z± deg f and ⇡ is a Laurent polyno-
mial. The last case requires an additional investigation. The paper [10] refers (Fact
2.25) to a more general result of [9] (Theorem 10) implying that for a non-special
polynomial f this possibility is excluded. Alternatively, one can use the results
of [14] (e.g., Theorem 6.4).

Considering in a similar way the projection onto the second coordinate, we
obtain the equality

g � ⇢ = ⇢ � h. (4.17)

Thus, for non-special f and g any irreducible ( f,g)-invariant curve may be paramet-
rized by some polynomials ⇡, ⇢ satisfying a system given by equations (4.16),
(4.17) for some polynomial h.
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Notice that in a certain sense a description of ( f, g)-invariant curves reduces
to the case f = g since the commutative diagram

C2 (h,h)
����! C2??y(⇡,⇢)

??y(⇡,⇢)

C2 ( f,g)
����! C2

(4.18)

implies that any ( f, g)-invariant curve is an image of an (h, h)-invariant curve under
the map (x, y) ! (⇡(x), ⇢(y)).

Theorem 1.3 allows to obtain easily the following description of ( f, f )-invar-
iant curves obtained in [10] (see Theorem 6.24 and the theorem on page 85).

Theorem 4.9. Let f be a non-special polynomial of degree at least two, and C an
irreducible ( f, f )-invariant curve in C2. Then there exists a polynomial p which
commutes with f such that C has either the form z1 = p(z2) or z2 = p(z1).

Proof. If C is a line z1 = ⇠, then ⇠ is a fixed point of f , and the conclusion of
the theorem holds for p = ⇠ . Similarly, the theorem holds if C is a line z2 = ⇠.
Otherwise, as it was shown above, C may be parametrized by some non-constant
polynomials ⇡, ⇢ satisfying the system

f � ⇡ = ⇡ � h, (4.19)
f � ⇢ = ⇢ � h (4.20)

for some polynomial h. Furthermore, without loss of generality we may assume
that there exists no polynomial w of degree greater than one such that

⇡ = e⇡ � w, ⇢ = e⇢ � w, (4.21)

for some polynomials e⇡, e⇢. Indeed, if (4.21) holds, then applying Theorem 2.3 to
the equality

( f � e⇡) � w = e⇡ � (w � h),

we conclude that w � h =
eh � w for some polynomial eh, implying that we may

change ⇡ to e⇡, ⇢ to e⇢, and h toeh.
Set d = GCD(deg ⇢, deg⇡). Since f is not special, it follows from (4.19),

(4.20) by Theorem 1.3 that if both ⇢ and ⇡ are of degree at least two, then d > 1,
implying by Theorem 1.2 that (4.21) holds for some polynomials e⇡, e⇢ and w with
degw = d > 1. Therefore, at least one of the polynomials ⇢ and ⌧ is of degree one,
say deg ⇢ = 1. Then, C has the form z1 = p(z2),where p = ⇡ �⇢�1. Furthermore,
equality (4.20) implies that h = ⇢�1

� f � ⇢, and substituting this expression into
(4.19) we conclude that p commutes with f.
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Proof of Theorem 1.4. For any polynomials of coprime degrees u and v the curve
Cu,v : u(x) � v(y) = 0 is irreducible (see [15, Proposition 3.1]). Furthermore, if
(1.9) holds and (x0, y0) is a point on Cu,v , then (1.9) yields the equality

u( f (x0)) = t (u(x0)) = t (v(y0)) = v(g(y0)),

implying that ( f (x0), g(y0)) also is a point on Cu,v .
Conversely, assume that C is an irreducible ( f, g)-invariant curve which is not

a line, and let ⇡ and ⇢ be polynomials parametrizing C and satisfying (4.16), (4.17)
for some polynomial h. Then by Theorem 1.2, there exist polynomials u and v of
coprime degrees such that

u � ⇡ = v � ⇢ .

Thus, any irreducible ( f, g)-invariant curve C in C2 has the form u(x) � v(y) = 0
for some polynomials u, v of coprime degrees. Furthermore, since the polynomial

s = u � ⇡ = v � ⇢

belongs to E(h) we have:

t � u � ⇡ = u � ⇡ � h = u � f � ⇡,

t � v � ⇢ = v � ⇢ � h = v � g � ⇢,

implying (1.9).

A further analysis of system (1.9) using Proposition 5.4 and Proposition 5.5
proved below leads to a more precise description of ( f, g)-invariant curves appar-
ently equivalent to the one given by [10, Theorem 6.2]. Notice however that in [10]
a more general case of skew-invariant curves and skew-twists between polynomi-
als is considered, and the methods of our paper involving Julia sets seem not to be
extendable to this more general situation.

4.4. Semiconjugacies between equivalent A and B

For a natural number n > 1 with a prime decomposition n = pa11 pa22 . . . pass set
rad(n) = p1 p2 . . . ps . The following two theorems in totality provide a proof of
Theorem 1.5.

Theorem 4.10. Let A and B be polynomials of degree at least two. Then conditions
A  B and B  A hold simultaneously if and only if A ⇠ B.

Proof. The “if” part follows from the definition of ⇠ (see the introduction). Fur-
thermore, if at least one of A and B is special, then conditions A  B and B  A
imply by Corollary 4.6 that A and B are conjugate and hence equivalent. So, we
may assume that A and B are non-special.

Let Y and X be polynomials such that

B 

Y
A, A 

X
B. (4.22)
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Set n = deg A = deg B.We can assume that deg X > 1, degY > 1 since otherwise
A and B are conjugate and hence A ⇠ B. Since (4.22) implies that Y � X commutes
with B, Theorem 4.8 implies that

rad(deg X) | rad(n). (4.23)

In particular,
GCD(deg X, n) > 1. (4.24)

Applying Theorem 2.3 to the equality

A � X = X � B, (4.25)

we conclude that there exist polynomials eX , eB, and W such that

B =
eB � W, X =

eX � W, (4.26)

and degW = GCD(deg X, n). Clearly, B ⇠ W �
eB, and equalities (4.25) and (4.26)

imply that
A �

eX =
eX � (W �

eB). (4.27)

Furthermore, deg eX < deg X , since degW > 1 by (4.24). If deg eX = 1, then
A ⇠ W �

eB since A and W �
eB are conjugate; hence,
A ⇠ W �

eB ⇠ B,

and we are done. Otherwise, we can apply Theorem 2.3 in a similar way to equality
(4.27) and so on. Since condition (4.23) ensures that the degrees of corresponding
semiconjugacies decrease, we obtain in this way a finite chain of equivalences from
B to A.

Theorem 4.11. Let A and B be polynomials of degree at least two. Then A ⇠ B if
and only if there exist polynomials X and Y such that

B � Y = Y � A, A � X = X � B, (4.28)

and Y � X = B�d for some d � 0.

Proof. Taking into account Theorem 4.10, we only need to show that if equalities
(4.28) hold, then they hold for some eX , eY such that eY �

eX = B�d , d � 0. Since
(4.28) implies that Y � X commutes with B, it follows from Theorem 4.8 that either
B is special, or, up to a conjugacy,

Y � X = "1R�m1, B = "2R�m2,

where R = zS(zn) for some polynomial S, and "1, "2 are nth roots of unity. In the
first case, Corollary 4.6 implies that A and B are conjugate. Therefore, in this case
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(4.28) holds for some Möbius transformations eY and eX such that eY �
eX = B0. In

the second case set eX = X � "3R�(m2m1�m1),

where "3 = "
m1
2 /"1, and observe that the second of equalities (4.28) still holds foreX since

A �
eX = A � X � "3R�(m2m1�m1)

= X � B � "3R�(m2m1�m1)

= X � "2R�m2
� "3R�(m2m1�m1)

= X � "3R�(m2m1�m1)
� "2R�m2

=
eX � B.

On the other hand, we have:

Y �
eX = "1R�m1

� "3R�(m2m1�m1)
= "1"3R�m2m1

= "
m1
2 R�m2m1

= B�m1 .

5. Semiconjugacies for fixed B

5.1. Special factors of semiconjugacies

Lemma 5.1. Let A and B be polynomials of degree n � 2 such that

A � T` = T` � B, l � 2. (5.1)

Then l  2n, unless A = ±Tn and B = ±Tn. Similarly, if

A � z` = z` � B, l � 2, (5.2)

then l  n, unless A = ↵zn, ↵ 2 C, and B = �zn, � 2 C.

Proof. If

n 

l � 1
2

, (5.3)

then the set
(T` � B)�1odd{�1, 1} = B�1

odd{�1, 1}

contains at most l � 1 points. Therefore, if equality (5.1) holds, then the set

(A � T`)�1odd{�1, 1} (5.4)

also contains at most l � 1 points. On the other hand, since �1 and 1 are the only
finite critical values of Tn , if the set A�1

odd{�1, 1} contains at least one point distinct
from ±1, then set (5.4) contains at least l points. Since by Lemma 4.3 the set
A�1
odd{�1, 1} contains at least two points, we conclude that if (5.3) holds, then

A�1
odd{�1, 1} = {�1, 1}. (5.5)
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Therefore, by Lemma 4.1, A = ±Tn , It follows now from (5.1) that

±Tnl = T` � B,

implying that
T` � B = ±T` � Tn,

and applying to the last equality Theorem 2.3 we see that

T` = ±T` � µ, B = µ�1
� Tn, (5.6)

for some polynomial µ of degree one. Finally, it is easy to see, using for example
the explicit formula

Tn =

n
2

[n/2]X
k=0

(�1)k
(n � k � 1)!
k!(n � 2k)!

(2x)n�2k, (5.7)

that Tn has non-zero coefficients of its terms of degree n and n � 2, and the co-
efficient equal zero for its term of degree n � 1. Thus, the first of equalities (5.6)
implies the equality µ = ±x .

Assume now that equality (5.2) holds and n  l � 1. Then the polynomial in
the right part of (5.2) has at most l � 1 zeroes. On the other hand, since the unique
finite critical value of z` is zero, it is easy to see that, unless

A = ↵zn, ↵ 2 C, (5.8)

the polynomial in the left part of (5.2) has at least l zeroes. Finally, (5.8) and (5.2)
imply easily that B = �zn, � 2 C.

Theorem 5.2. Let B be a non-special polynomial of degree n � 2, and X an ele-
ment of E(B). Assume that X = W1 � z` � W2 for some polynomials W1, W2 and
l � 1. Then l  n. Similarly, if X = W1 � ±T` � W2, then l  2n.

Proof. If X = W1 � z` � W2, then applying Corollary 3.4 twice we conclude that
there exist polynomials C1and C2 such that the equalities

A � W1 = W1 � C1, C1 � z` = z` � C2, C2 � W2 = W2 � B (5.9)

hold. Applying now Lemma 5.1 to the second equality in (5.9) we conclude that
l  n, unless C1 and C2 are conjugate to zn. On the other hand, in the last case
the third equality in (5.9) implies by Theorem 4.4 that B is conjugate to zn. If
X = W1 � ±T` � W2, the proof is similar.

Corollary 5.3. Let B be a non-special polynomial of degree n � 2. Assume that
B�d

= W1 � z` � W2 for some polynomials W1, W2, and l � 1, d � 1. Then l  n.
Similarly, if B�d

= W1 � ±T` � W2, then l  2n.

Proof. Direct consequence of Theorem 5.2, since B�d is a semiconjugacy from B
to B.
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5.2. Proof of Theorem 1.6

For natural numbers n and m define l = l(n,m) as the maximum number coprime
with n which divides m. Thus,

m = lb, (5.10)

where rad(b)|rad(n) and GCD(n, l) = 1. Define now d = d(n,m) as the minimum
number such that b in (5.10) satisfies b | nd . The next proposition describes a
general structure of elements of E(B) for non-special B.

Proposition 5.4. Let B be a non-special polynomial of degree n � 2. Then any
X 2 E(B) has the form X = ⌫ � zl(n,m)

�W, where ⌫ is a polynomial of degree one,
and W is a compositional right factor of B�d(n,m). Furthermore, l(n,m) < n.

Proof. Set m = deg X , and let l, b, d be the numbers defined above. If A is a
polynomial such that

A � X = X � B, (5.11)

then the equality
A�d

� X = X � B�d , (5.12)

implies by Theorem 2.3 that

X = U � S, B�d
= V � S, (5.13)

for some polynomials U, V, S, where degU = l. Furthermore, equalities (5.11)
and X = U � S imply by Corollary 3.4 that

A �U = U � C (5.14)

for some polynomial C . Since l is coprime with n, by Theorem 2.4 there exist
polynomials µ, ⌫ of degree one such that either

A = ⌫ � zs R`(z) � ⌫�1, U = ⌫ � z` � µ, C = µ�1
� zs R(z`) � µ,

where R is a polynomial, n � 1, s � 0, and GCD(s, l) = 1, or

A = ⌫ � ±Tn � ⌫�1, U = ⌫ � T` � µ, C = µ�1
� ±Tn � µ,

where GCD(l, n) = 1. In the last case however Theorem 4.4 applied to (5.11)
implies that B is conjugate to Tn. Therefore, the first case must hold and hence
X = ⌫ � z` �W , whereW = µ� S is a compositional right factor of B�d .Moreover,
since n = rl+ s, where r = deg R, the inequality l < n holds whenever r 6= 0. On
the other hand, if r = 0, then A is conjugate to zn and hence B also is conjugate to
zn by Theorem 4.4.

For a natural number n > 1 with a prime decomposition n = pa11 pa22 . . . pass
set ordp(n) = ai , if p = pi for some i , 1  i  s, and ordp n = 0 otherwise.
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Proposition 5.5. If, under assumptions of Proposition 5.4, the polynomial X is not
a polynomial in B, then d(n,m)  2 log2 n + 3.

Proof. Set
a = nd/b. (5.15)

Clearly, for any prime p,

ordp(b) + ordp(a) = ordp(n)d,

implying that

ordp b = ordp(n)(d � 1) + ordp(n) � ordp(a). (5.16)

Observe that the definition of d(n,m) implies that a is not divisible by n. Moreover,
the number b is not divisible by n either, since otherwise equality (5.11) implies by
Theorem 2.3 that X is a polynomial in B. Observe also that by Theorem 4.4 any
polynomial A such that (5.11) holds is not special.

It follows from Theorem 2.3 applied to equality (5.12) that there exist polyno-
mials N , F and Y , Z , where

deg Z = l, degY = a,

such that
A�d

= N � Y, X = N � Z ,

and
Y � X = Z � B�d . (5.17)

Applying now Theorem 2.3 and Theorem 2.2 to the equality

Y � X =

⇣
Z � Bd�i

⌘
� Bi

for each i, 1  i  d � 1, we obtain a collection of polynomials Yi , Xi , Wi Ui , Ki ,
Li , 1  i  d � 1, such that

Y = Ui � Yi , Z � B�d�i
= Ui � Ki , X = Xi � Wi , B�i

= Li � Wi , (5.18)

and
Yi � Xi = Ki � Li . (5.19)

Furthermore,
degYi = ai , deg Xi = lbi ,

where
ai =

a
GCD

�
a, nd�i

� , bi =

b
GCD

�
b, ni

� , (5.20)
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and there exist polynomials of degree one ⌫i , �i , µi 1  i  d� 1, such that either

Yi = ⌫i � zai � �i , Xi = ��1
i � zcR(zai ) � µi , (5.21)

where R 2 C[z] and GCD(c, ai ) = 1, or

Yi = ⌫i � zcRlbi (z) � �i , Xi = ��1
i � zlbi � µi , (5.22)

where R 2 C[z] and GCD(c, lbi ) = 1, or

Yi = ⌫i � Tai � �i , Xi = ��1
i � Tlbi � µi , (5.23)

where GCD(ai , lbi ) = 1.
Observe first that

ai � 2i , bi � 2d�i . (5.24)

Indeed, since n - a, there exists p 2 rad(n) such that ordp(n)� ordp(a) > 0. Thus,
ordp(b) > ordp(nd�1) by (5.15), and hence for any i, 1  i  d � 1, the equality

ordp
�
GCD(b, ni )

�
= ordp(n)i

holds. It follows now from (5.20) and (5.16) that

ordp(bi ) = ordp(b)�ordp
�
GCD(b, ni )

�
= ordp(n)(d�1�i)+ordp(n)�ordp(a),

implying that

bi � pordp(n)(d�1�i)+ordp(n)�ordp(a)
� pordp(n)(d�1�i)+1

� p(d�1�i)+1
= pd�i .

Similarly, since n - b, there exists q 2 rad(n) such that ordq(n) � ordq(b) > 0
implying by (5.20) and (5.16) that that for any i, 1  i  d � 1, the inequality
ai � qi holds. Since p � 2, q � 2, this proves (5.24).

In order to establish the required bound, observe that since

A�d
= N �Ui � Yi ,

it follows from Corollary 5.3 that if (5.21) or (5.23) holds, then ai  2n. On the
other hand, since X = Xi � Wi , if (5.22) or (5.23) holds, then bi  lbi  2n, by
Theorem 5.2. Thus, for any i, 1  i  d � 1, the inequality

min{ai , bi }  2n

holds. On the other hand, it follows from (5.24) that for i0 = bd/2c the inequality

min{ai , bi } � 2bd/2c

holds. Therefore, 2bd/2c
2n, implying that 2d/2

2
p

2n. Thus, d/2  log2 n+3/2
and d  2 log2 n + 3.
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Proof of Theorem 1.6. Observe first that if X 2 E(B) is a semiconjugacy from B
to A, then A is defined in a unique way since the equalities

A � X = X � B, eA � X = X � B

imply A � X =
eA � X , which in turn implies A =

eA. In particular, this implies that
for any X1, X2 2 E(B) such that X2 = µ � X1 for some polynomial µ of degree
one the corresponding polynomials A1, A2 2 F(B) are conjugate. Moreover, for
any A 2 F(B) there exists X such that

A � X = X � B (5.25)

and X is not a polynomial in B, since (5.25) and X =
eX � B�s imply that

A �
eX =

eX � B.

Finally, if X1, X2 2 E(B) and deg X1 = deg X2, then the corresponding polyno-
mials in A1, A2 2 F(B) are conjugate, since Theorem 1.1 and Theorem 3.1 imply
that there exists a polynomial µ of degree one such that X2 = µ � X1.

Let X be an element of E(B) and X = ⌫ � zl � W its representation from
Proposition 5.4. Then it follows from Proposition 5.5 that, unless X is a polynomial
in B, the inequality d  2 log2 n + 3 holds. Since, in addition, for the number l
the inequality l < n holds, this implies that up to the change X ! µ � X , where
µ is a polynomial of degree one, there exists at most a finite number of elements of
E(B) which are not polynomials in B. Applying to these polynomials recursively
Theorem 1.2 we obtain polynomials X 2 E(B) and A 2 F(B) which satisfy the
conclusion of the theorem.

Remark 5.6. Since the degree of the polynomial of X from Theorem 1.6 is equal to
the least common multiple of degrees of all polynomials from E(B) which are not
polynomials in B, it follows from Proposition 5.4 and Proposition 5.5 that deg X
is bounded by the number  (n)n2 log2 n+3, where  (n) denotes the least common
multiple of all numbers less than n and coprime with n. In particular,

c(n)  (n � 1)!n2 log2 n+3.

Corollary 5.7. Let B be a polynomial of degree at least two. Then there exists at
most a finite number of conjugacy classes of polynomials A such that A  B.

Proof. If B is non-special, then the corollary follows from Theorem 1.6. For special
B the corollary follows from Theorem 4.4.

Corollary 5.8. Each equivalence class of the relation ⇠ contains at most a finite
number of conjugacy classes.

Proof. It follows from Corollary 5.7, since A ⇠ B implies A  B.
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Corollary 5.9 ([22]). Let B be a non-special polynomial of degree n � 2, and
X and Y polynomials such that Y � X = B�s for some s � 1. Then there exist
polynomials eX , eY and i, j � 0 such that

Y = B�i
�

eY , X =
eX � B� j , and eY �

eX = B�es,
wherees is bounded from above by a constant which depends on n only.

Proof. Clearly, without loss of generality we may assume that X is not a polynomial
in B. Since B �B�d

= B�d
�B, the polynomial B�d is contained in E(B) and hence

X is contained in E(B) by Corollary 3.4. Furthermore, since rad(deg X) | rad(n),
it follows from Proposition 5.4 and Proposition 5.5 that there exists a polynomial eY
such that eY � X = B�(2 log2 n+3). Therefore, if s > 2 log2 n + 3, then

B�s
= B�(s�2 log2 n�3)

� B�(2 log2 n+3)
= B�(s�2 log2 n�3)

�
eY � X = Y � X,

implying that Y = B�(s�2 log2 n�3) �
eY . This proves the corollary, and shows thates  2 log2 n + 3.

Remark 5.10. The bound es  2 log2 n + 3 in Corollary 5.9 is not optimal. It
was shown in [22] that in factes  log2(n + 2) and that this last bound cannot be
improved. For more details we refer the reader to [22]. Notice however that for
applications, similar to the ones given in [6], the actual form of the bound fores is
not important.
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