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1. Introduction, definitions and results

Suppose that f is a meromorphic function in the complex plane C. A meromorphic
function a = a(z), defined in C, is called a small function of f if T (r, a) = S(r, f),
where T (r, a) is Nevanlinna’s characteristic function of a and S(r, f) is any quan-
tity satisfying S(r, f) = of{T (r, f)} asr — oo possibly outside a set of finite linear
measure.

We denote by E(a; f) the collection of the zeros of f — a, where a zero is
counted according to its multiplicity. Also by E(a; f) and by E n(a; f) we denote
the collection of distinct zeros of f — a and simple zeros of f — a respectively.

Suppose that f and g are two meromorphic functions in C and a = a(z) is
a small function of f and g. We say that f and g share the small function a CM
(counting multiplicities) or IM (ignoring multiplicities) if E(a; f) = E(a; g) or
E(a; f) = E(a; g) respectively.

The investigation of uniqueness of an entire function sharing certain values
with its derivatives was initiated by L. A. Rubel and C. C. Yang in 1977, see [6].
They proved the following result.

Theorem A ([6]). Let f be a nonconstant entire function. If for two values a and
b, E(a; f) = E(a; fV) and E(b; f) = E(b; f1), then f = fD.

Let f(z) = exp(e®) [y exp(—e')(1 — e')dt. Then f) — 1 = €*(f — 1) and
so E(1; f) = E(1; fM). Clearly f # f( and we see that the hypothesis of
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two-value sharing in Theorem A is essential. So it appeared to be an interesting
problem to investigate the situation of a single value sharing by an entire function
with its derivative. To this end, the first result came from G. Jank, E. Mues and L.
Volkmann [3], which may be stated as follows.

Theorem B ([3]). Let f be a nonconstant entire function. If for a nonzero constant
a,E(a; f)=E(a; fV)and E(a; f) C E(a; f@®), then f = fV.

We easily note that the hypothesis of Theorem B is equivalent to the following:
E(a; f) = E(; fO) and E(a; ) C E(a; f@).

It is now a natural query whether the second order derivative can be replaced
by a higher order one. H. Zhong [9] answered this query in the negative by means
of the following example.

Example 1.1. Let k(> 3) be a positive integer and w(# 1) be a (k — D root of
unity. If g(z) = e®* +w — 1, then g, gV and g share the value w CM but neither
g=gWnorg=g®.

Accommodating the general order derivative, H. Zhong [9] proved the follow-
ing result.

Theorem C ([9]). Let f be a nonconstant entire function, a(# 0) be a finite value
and n(> 1) be an integer. If E(a; ) = E(a; fV) and E(a; f) € E(a; f™) N
E(a; ftD) then f = f®.

Suppose that f is a nonconstant entire function and ay, az, ..., a,(# 0) are
complex numbers.
Then
L=L(H)H=arfO+af®+ - +a,f™ (1.1)

is called a linear differential polynomial generated by f.
In 1999, P. Li [4] extended Theorem C to linear differential polynomials and
proved the following result.

Theorem D ([4]). Let f be a nonconstant entire function and L be defined by (1.1).
Suppose that a is a nonzero finite value. If E(a; ) = E(a; fV) and E(a; f) C
E(a; LYNE(a; LW), then f = fV = L.

In the present paper we extend Theorem C by considering shared small func-
tions instead of shared values.

For two subsets A and B of C, we denote by AAB the set (A — B) U (B — A),
which is called the symmetric difference of the sets A and B.

We refer the reader to the monograph [2] for standard definitions and notation
of the value distribution theory.

Suppose that f is a meromorphic function and @ = a(z) is a small function of
f. We denote by n2(r, a; f) the number of multiple zeros of f —a lyingin |z| <r.
The function

"ne(t a; f) —ne,a; f)
t

No(r,a; f) =/ dt +np(0,a; f)logr
0

is called the integrated counting function of multiple zeros of f — a.
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Let A C C. Thenby na(r, a; f) we denote the number of zeros of f — a lying
in AN{z: |z| <r}. The function

NA(V,a;f):fr nA(t,a;f);nA(O,a;f)dtJrnA(o’a;f)logr
0

is called the integrated counting function of those zeros of f — a that lie in A.
We now state the results of the present paper.

Theorem 1.2. Let f be a nonconstant entire function and a = a(z)(# 0, 00) be a
small function of f such that a®V # a. Suppose that A = E(a; f)AE(a; fV) and
B = E(a; f)\{F(a; L) N E(a; LM)}, where L defined by (1.1) is nonconstant.
Then f = L = ae®, where a(# 0) is a constant, provided the following hold:

(i) Naup(r,a; f) + Na(r,a; f0) = S@, f);
(ii) En(a: f) C E(a; f);
(iii) each common zero of f — a and V' — a has the same multiplicity.

Putting A = B = (J we obtain the following corollary.

Corollary 1.3. Let f be a nonconstant entire function and a = a(z)(# 0, 00) be
a small function of f such that aV # a. If E(a; f) = E(a; f\V) and E(a; f) C
E(a; LYNE(a; LWy, L being nonconstant, then f = L = ae®, where a(# 0) is a
constant and L is defined by (1.1).

The following example shows that the hypothesis a'!) # a is essential for
Theorem 1.2 and Corollary 1.3.

Example 14. Let f = ¢ + exp(e®) and a = e°. Then a(# 0, 00) is a small
function of f. Also E(a; f) = E(a; fV) = @ and so E(a; f) C E(a; L) N
E(a; LW). Clearly the conclusion of Theorem 1.2 and Corollary 1.3 does not hold.

We note that the function f of Example 1.4 is of infinite order. In the following
theorem we see that the hypothesis “a!l)  a” can be removed from Corollary 1.3
if we consider an entire function of finite order.

Theorem 1.5. Let [ be a nonconstant entire function of finite order and a =
a(z)(# 0, 00) be a small function of f. If E(a; f) = E(a: fV) and E(a; ) C
E(a; L) NE(a; LW), then f = L = ae?, where a(# 0) is a constant and L is
defined by (1.1).

Let f be a nonconstant meromorphic function in C and ay, ay, ..., a;(Z 0) be
small functions of f. A function of the form

l
Y= ai ()i (fO) Y (pR)

j=1

is called a differential polynomial generated by f, where n;;(i = 0,1,...k; j =
1,2,...10) and k are nonnegative integers.
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The numbers yy = maxj<;< Zi-‘zo nij and I'y = max<;< Zfzo(i + Dn;j
are respectively called the degree and weight of .

ACKNOWLEDGEMENTS. The authors are thankful to the referee for valuable sug-
gestions and observations towards the improvement of the paper.

2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1 ([1]; see also [7]). Let f be a meromorphic function and k be a pos-
itive integer. Suppose that f is a solution of the following differential equation:
aow(k) +aw* D 4 4w =0, where ao(#0),ay, az, ..., ar are constants.
Then T (r, f) = O(r). Furthermore, if f is transcendental, thenr = O(T (r, f)).

Lemma 2.2 ([1]). Let f be a meromorphic function and n be a positive integer. If
there exist meromorphic functions ag(# 0), ay, . .., a, such that

Clofn+a1fn_l+"'+a"—1f+anEO’

then

n
m(r, f) < nT(r,a0) + Y _m(r,a;) + (n — 1) log2.
j=1
Lemma 2.3 ([5]; see also [8, page 28 ]). Let f be a nonconstant meromorphic
function. If
aofp+a1fp_1 +...+ap
bofa+bifi=l+---+ b,

is an irreducible rational function in f with the coefficients being small functions
of f and agby # 0, then

R(f) =

T(r, R(f)) = max{p, g}T (r, f) + S(r, f).

Lemma 24. Let f, a9, ay, ..., ap, by, by, ..., by be meromorphic functions. If

afP +arfP'+---+a, (aobo £ 0)

R = bof9+bifi N+ -+ b,

then

p q
T(r,R(f)) = O (T(r, HAD Tea)+) T bj)) :

i=0 j=0
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Proof. The lemma follows from the first fundamental theorem and the properties of
the characteristic function. O

Lemma 2.5 ([2, page 68 1). Let f be a transcendental meromorphic function and
f"P(z) = Q(z), where P(z), Q(z2) are differential polynomials generated by f
and the degree of Q is at most n. Then m(r, P) = S(r, f).

Lemma 2.6 ([2, page 69]). Let f be a nonconstant meromorphic function and

g(@) = f"(z) + Pu-1(2),

where P,_1(z) is a differential polynomial generated by f and of degree at most
n—1.

If N(r,oo; f) + N(r,0; 2) = S(r, f), then g(z) = h"(z), where h(z) =
fz) + “51—2) and h"~Y(2)a(z) is obtained by substituting h(z) for f(z), hV(z) for
f(l)(z) etc. in the terms of degree n — 1 in P,_1(2).

Let us note the special case, where P,_1(z) = ao(z) f*~'+ terms of degree
n —2 atmost. Then A"~ 1(2)a(z) = ap(z)h" ' (z) and so a(z) = ap(z). Hence

8@ = (f+22)"

Lemma 2.7 ([2, page 47]). Let f be a nonconstant meromorphic function and ay,
ay, a3 be distinct small functions of f. Then

T(r, f) N0 f—a)+ N, 0; f —a)) + Nr,0; f —a3) + S(r, f).

We note that in Lemma 2.7 a;, az, a3 are allowed to be constants, and one of them
may even be co.

3. Proofs of the theorems

Proof of Theorem 1.2. Let ) = L ;1:” and g = f — a. Then

gV =ig+a—aV =rg+u, 3.1)

where A1 = A and | = a —a' = b, say.
Differentiating (3.1) and using (3.1) repeatedly we get

g® =g + i, (32)

where Ay = A,E]) 4+ AMAg and pgyg = M,(Cl) + i fork =1,2,...
We now divide the proof into two parts.
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Part I

We prove that T'(r, A) = S(r, f). If A is constant, then obviously T'(r, 1) = S(, f).
So we suppose that X is nonconstant. By the hypothesis (i), (ii) and (iii) we get

N(r,0; 1)+ N(r,00; 1) < Na(r,0; f —a)+ Na(r, 0; fV —a) = S(r, ). (33)

Puttingk = 1in 1441 = )\,({1) + A1 wegethy = A2 +dih, where d; = %1) Again
putting k = 2in A1 = AL+ 214 we have 3 = AP 44100 = A3 +3d102 +da,
where dy = d? +d\". Similarly A4 = 3" 4+ A123 = A%+ 6d12% + (647 4 3d\" +
a’z)k2 + (dél) + didy)A . Therefore, in general, we get for k > 2

k—1
Akz,\uzajw, (3.4)
j=1

where T(r,a;) = O(N(r,0;1) + N(r,00; 1)) + S(r,x) = S(r, f) for j =
1,2,...,k—1.

Again putting k = 1 in pgy; = ,u,(cl) + wiAix we get up = ,u(ll) + pmir =
br + bW, Also putting k = 2 in pg4; = ,u,,((l) + @ik we obtain by (3.4), uz =
bA% + bV + bdy + ap)r + bP . Similarly g = bA3 + 2bd; + bV + bay) A2 +
@ +260d; +bd D + &\ + bd? + ayd; + bar) + b . Therefore, in general,
for k > 2

k—1 )
e =Y Bjrl + %D, (3.5)
j=1
where T'(r, Bj) = O(N(r, 0; 1)+ N (r, 00; 1))+ S(r, A) = S(r, f)for j =1,2,...,
k—1 andﬁk_l =b.

Let zo be a zero of f —a and £V — a with multiplicity g (> 2). Then zg is a
zero of 1 — g1 with multiplicity ¢ — 1. Hence zo is a zero of b = a — a(V) =
(fD —a®y — (fD — g) with multiplicity ¢ — 1. Since ¢ < 2(¢ — 1), we have
Na(r,a; f) <2N(r,0;b) + Na(r,a; f) = S, f).

We first suppose that eithern > 2 orn = 1 and a; # 1. Let

(a—L@)(f" =a®) —(a —aV)(L - L(@)
Y= .
f—a
From (3.6) we get N(r, ) < Na(r,a; f)+Naup(r,a; f)+@m+1)N(r,00;a) =

S(r, f)and so T (r, ) = S(r, f) because m(r, ) = S(r, f).
Using (3.2), (3.4) and (3.5) we get

(3.6)

n
L(g) = aigV + > arg®
k=2

n k—1 n k—1
=ai0g+b)+ > a (x" + Za,ﬂ) g+ a (Zﬂjw +b(k‘1)) .
k=2 j=1 k=2 j=1



UNIQUENESS OF ENTIRE FUNCTIONS SHARING A SMALL FUNCTION 1453

Therefore from (3.6) we get

n k—1
0= {w+a1bk+2akb (Ak—i— a,,\f) — Ma —L(a))}g

k=2 j=1

(3.7)

n k—1
+ b {bal +Y (Z Bir + b““”) —(a— L(a))} .

k=2 j=l1

If ¥ +arbh+ Y {_y axb(W* + 5] aj1)) — A(a — L(a)) = 0, then by Lemma 2.2
we get m(r, L) = S(r, f). Therefore by (3.3) we have T'(r, 1) = S(, f).

Suppose that ¥ + aibi + Y4, axb(\F + Y1 ajAd) — A(a — L(a)) # 0.
Then from (3.7) we get

k=2 j=1

n k—
b {bm + > a (21 Bir + b(kl)) —(a— L(a))}

1 (3.8)

g =
n k—
¥ +arbh+ > agb <)»k + Y ajkf> — Aa — L(a))
k=2 j=1

From (3.8) we getby Lemma 24,7 (r,g) = O(T(r, \))+S(r, f)andso T (r, f) =
O(T (r, A)) + S(r, f). This implies that S(r, f) is replaceable by S(r, 1).

Also, from (3.8) we see that g is a rational function in A, which can be made
irreducible. We now put

P
T o

where Ps()) and Qg41()) are relatively prime polynomials in A of respective de-
grees s and s + 1. The coefficients of both the polynomials are small functions of A.
Without loss of generality we assume that Q1 (A) is a monic polynomial. We fur-
ther note that the counting function of the common zeros of Py(X) and Q41 (A), if
any, is S(r, A), because Ps(A) and Qg41(A) are relatively prime and the coefficients
are small functions of A.

Since N(r,o00;g) = S(r, f) = S(r,A), we see from (3.9) that N(r,0;
QOs+1(V)) = S(r, 1). Also by (3.3) we know that N(r, o0; A) = S(r, f) = S(r, A).
So by Lemma 2.6 we get

(3.9)

c s+1
Os+1(0) = (?» + m) ; (3.10)

where c is the coefficient of A* in Q41 ().
If ¢ # 0, then by Lemma 2.7 we obtain

T(r,A) < N(r,0; ) + N(r, 00; A) +W<r, —%; k) + 8@, \)
S

= N(r,0; Q541 (1)) + S(r, 1)
=S, M),



1454 INDRAJIT LAHIRI AND SHUBHASHISH DAS

a contradiction. Therefore ¢ = 0 and we get from (3.9) and (3.10)

PO
8= A+

(3.11)
Differentiating (3.11) we obtain

AP M) — (s + 1PV
1 )

M _
g =d As+l1

where d| = ¥ and T'(r, dy) = O(N(r,0; \)+N(r, 00; A))+m(r,dy) = S(r, f)+

S(r, ) = S(r, A). So by Lemma 2.3 we have
T (r, g(l)) — (54 1= )T 2) + S 2, (3.12)

for some integer p,0 < p <s.
Again since g = Ag + b, where b = a — a') # 0, we get from (3.11)

Ps (M)
(OO
8 T +b
and so by Lemma 2.3 we have
1 (r, g(1)> =(E—p)TF L)+ S, A), (3.13)

where p is same as in (3.12). Now from (3.12) and (3.13) we get T (r, 1) = S(r, A),
a contradiction.
Next we suppose that n = 1 and a; = 1. Let

¢_@—me»@—Lm»—m—Lw»@m—me»
- — ,

Since in this case L = f(]), we get

(@ —a®)(fO —a®) = (a — aD)(f@ - a?)
f—a
(a —a®)gM — pg®
P .

By the hypothesis we have T'(r, ) = S(r, f). Using (3.2), (34), (3.5) and (3.14)
we get

¢:

(3.14)

{bkz + (@1 —a+a®)r+ ¢lg + bV + pia+a® — a} =0. (.15

Following the similar argument of the preceding case and using (3.15) we can show
that m(r, A) = S(r, f). So by (3.3) we have T'(r, A) = S(r, f). This completes the
proof of Part I.
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Part 11

First we verify that
T(r, f) <3N, 0; f —a) + S(r, f). (3.16)
By the first fundamental theorem we get

T(rvf) = T(r,f—a)+S(r,f)
= T<r,f1_a>+S(r,f)

S R e
1 1
N(r, m) +m <r, m) +S(r, f)

1 1
= N<I", f—a) +T(7’, f(1)> —N(}", m) +S(1", f)

Now by Lemma 2.7 we get from above

IA

T f) NGO f—a) +N (r,0: f O —a) + N (r.0: f® =)

(3.17)
N (r, 0. fO — a“>) +S(, f).

Let us denote by N, (l,’( (r, 0; F) the counting function of zeros of F with multiplicities
not less than k and a zero of multiplicity g(> k) is counted ¢ — p times, where

p <k
Now

N0, f —a)+ N (r, 0; f— a(l)) - N (r, 0; f— a(1)>
=N(.0; f =)+ Ny 0; f = a) = N (. 0: £ = a)
=N(.0; f~a)+NG(,0; f—a) + N3¢ 0; f —a) = Ny (r,0: f© = V)
<2NG,0; f =)+ Ny (r,0: 1O —aD) = Nb (1,0, 10 —a V) + 56, f)
=2N(r,0; f —a) + S, f),

where N (2(r, 0; f —a) is the integrated counting function of distinct multiple zeros

of f —a.
Therefore from (3.17) we get

T(r, f) <2N@,0; f — a) +N<r, 0. fO — a) + S0, f). (3.18)
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Since
N@r,0; fV—a) <N, 0; f—a)+ Na(r,0; fV—a) = N, 0; f —a)+ S, f).
(3.16) is obtained from (3.18).

Since T'(r,A) = S(r, f), we see that T'(r, Ag) + T (r, ug) = S(@r, f) for k =
1,2,...,where Ay and uy are defined in (3.2). Now

n n
L=Y af® =Y ag"+ L
k=1 k=1

(3.19)
n n
= (Zak)»k) g+ Y awu + La) =£g+n, say.
k=1 k=1
Clearly T (r, &) + T (r, n) = S(r, f). Differentiating (3.19) we get
LW =gWg 4 £ 4 7M. (3.20)

Letzo ¢ AU B, beazeroof g = f — a. Then from (3.19) and (3.20) we get
a(z0) — n(z0) = 0 and &(z0)(a(z0) — a" (z0)) + n" (z0) — a(z0) = 0.

If a(z) — n(z) # 0, we get

N(r,0; f —a) < Naup(r,0; f —a) + N(r,0;a — n) + S(r, ) = S(r, f),
which contradicts (3.16). Therefore
a(z) = n(2). (3.21)

Again if £(z)(a(z) —aV(2)) + 1V (2) — a(z) # 0, we get

N.0; f —a) < Navg(r.0; f —a) + N (r,0:€ (a —a”) + 0" —a)

+ 8@, ) =8, ),

which contradicts (3.16). Therefore
£(2) (a(z) - a(”(z)) +7V(z) —a(z) =0. (3.22)

Since a(z) # a'V(z), from (3.21) and (3.22) we get £(z) = 1. Hence from (3.19)
and B2l)wegetL=g+a=f.

By actual calculation we see that 1, = 224+ 2Wand a3 = 23 + 300D 4 1@,
We now verify, in general, that

o= A+ P, (3.23)
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where Px_1[A] is a differential polynomial in A with constant coefficients such that
the degree yp,_, < k — 1 and the weight I'p_, < k. Also each term of Py_;[A]
contains some derivative of A.

Let (3.23) be true. Then

1
A1 = )»,(( R

= ()\" + PH[A])(D A (x" + PH[)»]>
= Ay Pl

where we note that differentiation does not increase the degree of a differential
polynomial but increases its weight by 1. So (3.23) is verified by mathematical
induction.

Since £(z) = 1, by (3.19) and (3.23) we get

n n
Zak)\k + Zakpk_lm =1. (3.24)
k=1 k=1

By the hypotheses (ii) and (iii) we see that A has no simple pole. Let zo be a pole
of A with multiplicity p(> 2). Then z is a pole of > j_, a2 ¥ with multiplicity
np and it is a pole of Y y_; ax Pr—1[A] with multiplicity at most (n — 1)p + 1.
Since np > (n — 1)p + 1, it follows that zg is a pole of the left hand side of
(3.24) with multiplicity np, which is impossible. So A is an entire function. If A
is transcendental, then by Lemma 2.5 we get from (3.24) that T (r, A) = S(r, A),
a contradiction. If A is a polynomial of degree d(> 1), then the left hand side of
(3.24) is a polynomial of degree nd, which is also a contradiction. Therefore A is
a constant and so from (3.23) we get Ay = Afork =1,2,.... We suppose that
AFE 1.

Since L = f, we see by Lemma 2.1 that T(r, f) = O() and so T (r,a) =
o(r), because a is a small function of f.

Since A is a constant, by a simple calculation we get py = Zl;;(l) pk=1=D)J
fork =1, 2, .... Therefore from (3.19) we have

n n k—1

n=L@)+ Y am=L@a)+) a (Zb“‘—l—f)xf). (3.25)
k=1 k=1 j=0

From (3.21) and (3.25) we see that a = a(z) is an entire function. Since T (r, a) =

o(r), by Lemma 2.1, (3.21) and (3.25) we observe that a = a(z) is a polynomial.
Now from (3.1) we get

fO=if+A=Na=rf+P, (3.26)

where P; is a polynomial of degree /.
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Differentiating (3.26) [ + 1 times we get f{*? = Af(+D and so fU+D =
Be*?, where B(s 0) is a constant. Now integrating fU*D = B2, [ 4 1 times we
get

B

f= Wekz + O,
where Q; is a polynomial of degree 7 (< /).
Since £(z) = 1 and Ay = Ak, we have ZZ:] axA¥ = 1. Hence

n n
_ k) _ k ks (k) _ s (k)
b= St = ($at) e+ Saol = fae + aol

Since f = L, we have Q; = Y j_ 1ak Q(k) and this implies Q; = 0. Therefore
f= A/?H ¢** and from (3.26) we get & Btz = f,e“ + (1 — A)a, which is impossible
as A # 1 and a # 0. Hence A = 1 and so from (3.26) we obtain f = L = «e®,
where o (# 0) is a constant. This proves the theorem. U

Proof of Theorem 1.5. Let a = a'V. Then a = Be?, where B(+ 0) is a constant.
Since E(a; f) = E (a' fMy and f is of finite order, there exists a polynomial A
FD_g®

— = = ¢ Integrating we get f = a+ye", where

M _g
such that £——=2 =0 = = ¢” and so

y (£ 0) is a constant and vV (z) = ¢"@ . Since f and so a are of finite order, we see
that v is a polynomial. Again E(a; f) = E(a; fV) =@ and fU =a + yvWDe?
imply that v() is a constant. So v = ¢z + d, where ¢(# 0) and d are constants.
Therefore f = a + ye“*¢ and this contradicts the fact that @ = Be? is a small
function of f. Hence a % a‘ and the theorem follows from Corollary 1.3. This
proves the theorem. U
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