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Abstract. We give a lower bound for the bottom of the L2 differential form
spectrum on hyperbolic manifolds, generalizing thus a well-known result due to
Sullivan and Corlette in the function case. Our method is based on the study of the
resolvent associated with the Hodge-de Rham Laplacian and leads to applications
for the (co)homology and topology of certain classes of hyperbolic manifolds.
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1. – Introduction

Let G/K be a Riemannian symmetric space of noncompact type, and
let � be a discrete, torsion-free subgroup of G. Thus �\G/K is a locally
Riemannian symmetric space with nonpositive sectional curvature. Most of this
article concerns the rank one case, i.e. when G/K is one of the hyperbolic
spaces H

n
R, H

n
C, H

n
H or H

2
O. In that situation, the quotients �\H

n
K are usually

called hyperbolic manifolds, and we normalize the Riemannian metric so that
the corresponding pinched sectional curvature lies inside the interval [−4, −1].

We denote by 2ρ the exponential rate of the volume growth in H
n
K:

2ρ = lim
R→+∞

log vol B(x, R)

R
,

and let δ(�) be the critical exponent of the Poincaré series associated with �,
i.e.

δ(�) = inf

s ∈ R such that
∑
γ∈�

e−sd(x,γ y) < +∞
 ,

where (x, y) is any pair of points in H
n
K and d(x, γ y) is the geodesic distance

from x to γ y. It is well-known that 0 ≤ δ(�) ≤ 2ρ.
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For any (locally) symmetric space X considered above, let λ
p
0 (X) be the

bottom of the L2 spectrum of the Hodge-de Rham Laplacian �p acting on
compactly supported smooth differential p-forms of X . In other words,

λ
p
0 (X) = inf

u∈C∞
0 (∧pT ∗ X)

(�pu|u)L2

‖u‖2
L2

.

Let us recall the following beautiful result, due to D. Sullivan ([Sul2], The-
orem 2.17) in the real case and to K. Corlette ([Cor], Theorem 4.2) in the
remaining cases (see also [Els], [Pat] and [Col] in the case of H

2
R):

Theorem A.
(1) If δ(�) ≤ ρ, then λ0

0(�\H
n
K) = ρ2.

(2) If δ(�) ≥ ρ, then λ0
0(�\H

n
K) = δ(�) (2ρ − δ(�)).

The main goal of our paper is to extend this result to the case of differential
forms, although we are aware that getting such a simple statement is hopeless.
For instance, when � is cocompact the zero eigenspace of the Hodge-de Rham
Laplacian �p acting on �\H

n
K is isomorphic to the p-th cohomology group

of �\H
n
K, and contains therefore some information on the topology of this

manifold. Thus one does not expect to compute the bottom of the spectrum of
�p only in terms of the critical exponent, since we always have δ(�) = 2ρ in
the cocompact case.

Nevertheless, we are able to give lower bounds for λ
p
0 (�\H

n
K). In order to

state our first result, we set d = dimR(K) and denote by αp the bottom of the
continuous L2 spectrum of �p on the hyperbolic space H

n
K.

Theorem B.
(1) Assume that p 	= dn

2 .

(a) If δ(�) ≤ ρ, then λ
p
0 (�\H

n
K) ≥ αp.

(b) If ρ ≤ δ(�) ≤ ρ + √
αp, then λ

p
0 (�\H

n
K) ≥ αp − (δ(�) − ρ)2.

(2) Assume that p = dn
2 .

(a) If δ(�) ≤ ρ, then either λ
p
0 (�\H

n
K) = 0 or λ

p
0 (�\H

n
K) ≥ αp.

(b) If ρ ≤ δ(�) ≤ ρ + √
αp, then either λ

p
0 (�\H

n
K) = 0 or λ

p
0 (�\H

n
K) ≥

αp − (δ(�) − ρ)2.

Moreover, if δ(�) < ρ+√
αp the possible eigenvalue 0 is discrete and spectrally

isolated.

When δ(�) > ρ + √
αp, assertions (b) are still valid, but yield a triviality

since the spectrum must be non negative.
U. Bunke and M. Olbrich pointed out to us that, in the case of convex

cocompact subgroups �, Theorem B could be obtained as a consequence of
Theorem 4.7 in [BO1] or Theorem 1.8 in [BO2]. However, besides it works in
any case, our proof follows a completely different path, relying on an estimate
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for the resolvent associated with �p on H
n
K. In particular, we are also able to

discuss the nature of the continuous spectrum of �p on �\H
n
K when δ(�) < ρ

(see Proposition 4.2).
Considering the following large class of examples, we see that our estimates

in Theorem B are sharp when δ(�) ≤ ρ.

Theorem C. If δ(�) ≤ ρ and if the injectivity radius of �\H
n
K is not bounded

( for instance if the limit set �(�) of � is not the whole sphere at infinity S
dn−1),

then

spec
(
�p, �\H

n
K

) = spec
(
�p, H

n
K

) =
 [αp, +∞) if p 	= dn

2
,

{0} ∪ [αp, +∞) if p = dn

2
.

Since the exact value of αp is known except in the case of H
2
O (see

Theorem 2.4), Theorem B provides an explicit vanishing result for the space
of L2 harmonic forms, from which we shall obtain several corollaries, most of
them having a topological flavour. For instance, we give sufficient conditions for
a hyperbolic manifold to have only one end (actually we also deal with general
locally symmetric spaces whose isometry group satisfies Kazhdan’s property).
Denote as usual by Hp(�\H

n
K, Z) the p-th homology space of �\H

n
K with

coefficients in Z.

Theorem D. Let � be a discrete and torsion-free subgroup of the isometry
group of a quaternionic hyperbolic space H

n
H or of the octonionic hyperbolic plane

H
2
O. If all unbounded connected components of the complement of any compact

subset of �\H
n
K have infinite volume, then �\H

n
K has only one end, and

Hdn−1(�\H
n
K, Z) = {0} .

Theorem E. Let � be a discrete and torsion-free subgroup of SU (n, 1), with
n ≥ 2. Assume that the limit set �(�) is not the whole sphere at infinity S

2n−1,

that δ(�) < 2n, and that the injectivity radius of �\H
n
C has a positive lower bound.

Then �\H
n
C has only one end, and

H2n−1(�\H
n
C, Z) = {0} .

The first of these two theorems extends a previous result of K. Corlette
([Cor], Theorem 7.1) in the convex cocompact setting. The second enables us
to complement a rigidity result due to Y. Shalom ([Sha], Theorem 1.6; see
also [BCG2]):

Theorem F. Assume that � = A ∗C B is a cocompact subgroup of SU (n, 1)

(with n ≥ 2) which is a free product of subgroups A and B over an amalgamated
subgroup C. Then either 2n − 1 ≤ δ(C) < 2n and �(C) = S

2n−1, or δ(C) = 2n.
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Our article is organized as follows. Section 2 contains most of the notation
and background material that will be used in this article, and especially a fairly
detailed introduction to L2 harmonic analysis on the differential form bundle over
hyperbolic spaces, from the representation theory viewpoint, since this approach
is the touchstone of our work. We also briefly comment on the generalization
of Theorem A to general nonpositively curved locally symmetric spaces and
quotients of Damek-Ricci spaces.

Section 3 is devoted to the analysis of the resolvent

Rp(s) = (�p − αp + s2)−1, for Re s > 0 ,

associated with the Hodge-de Rham Laplacian on hyperbolic spaces. More
precisely, we obtain a meromorphic continuation on a suitable ramified cover
of C, prove estimates at infinity, and discuss the possible location of the poles
on the imaginary axis Re s = 0 of C.

In Section 4 we prove the spectral results announced above (Theorems B,
C), and apply them to derive several vanishing results for the cohomology. We
also verify that our results on the bottom of the spectrum are strictly better than
the ones given by the Bochner-Weitzenböck formula and the Kato inequality.

Lastly, Section 5 contains the proof of all results dealing with the num-
ber of ends and the homology of locally symmetric spaces, in particular of
Theorems D, E, F.

Numerous comments and references will be given throughout the text.

Acknowledgements. We are particularly grateful to M. Olbrich for his
careful reading of this article and for the numerous comments he made on
it. We would like also to thank G. Besson, G. Courtois and S. Gallot for
communicating to us quite soon a result of [BCG2], as well as J.-Ph. Anker,
U. Bunke, P.-Y. Gaillard, E. Ghys, L. Guillopé and F. Laudenbach for useful
remarks and fruitful discussions.

2. – Notations and background material

In this section, we shall collect some notations, definitions and prelimi-
nary facts which will be used throughout the article. Although some of our
results concern general locally symmetric spaces of noncompact type, our paper
essentially deals with (quotients of) hyperbolic spaces, and we prefer there-
fore to restrict the following comprehensive presentation to that case. Most
of unreferred material can be found for instance in the classical books [Hel]
and [Kna].
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2.1. – Hyperbolic spaces

For n ≥ 2 and K = R, C, H or for n = 2 and K = O, let H
n
K be the

Riemannian hyperbolic space of dimension n over K. Recall that H
n
K is realized

as the noncompact symmetric space of rank one G/K , where G is a connected
noncompact semisimple real Lie group with finite centre (namely, the identity
component of the group of isometries of H

n
K) and K is a maximal compact

subgroup of G which consists of elements fixed by a Cartan involution θ . More
precisely,

if K=R then G = SOe(n, 1) and K = SO(n) ;
if K=C then G = SU (n, 1) and K = S(U (n) × U (1)) ;
if K=H then G = Sp(n, 1) and K = Sp(n) × Sp(1) ;
if K=O then n = 2 and G = F4(−20) and K =Spin(9) .

(Other pairs (G, K ) may be taken to give the same quotient G/K .)
Let us begin with some algebraic structure of the Lie groups involved. Let

g and k be the Lie algebras of G and K , respectively, and write

(2.1) g = k ⊕ p

for the Cartan decomposition of g (i.e. the decomposition of g into eigenspaces
for the eigenvalues +1, −1, respectively, of the Cartan involution θ ). Recall
that the subspace p is thus identified with the tangent space TeK (G/K ) 
 R

dn

of H
n
K = G/K at the origin, where d = dimR(K).
Let a be a maximal abelian subspace of p (a 
 R since rank(G/K ) = 1),

with corresponding analytic Lie subgroup A = exp(a) of G. Let R(g, a) be
the restricted root system of the pair (g, a), with positive subsystem R+(g, a)

corresponding to the positive Weyl chamber a+ 
 (0, +∞) in a. It is standard
that there exists a linear functional α ∈ a∗ such that

R(g, a) =
{ {±α} if K = R ,

{±α, ±2α} if K = C, H, O,
(2.2)

and R+(g, a) =
{ {α} if K = R ,

{α, 2α} if K = C, H, O .
(2.3)

As usual, we write n for the direct sum of positive root subspaces, i.e.

(2.4) n =
{

gα if K = R ,

gα ⊕ g2α if K = C, H, O ,

so that g = k ⊕ a ⊕ n is an Iwasawa decomposition for g. We let also N =
exp(n) and ρ = 1

2 (mαα + m2α2α), where mα = dimR gα = d(n − 1) > 0 and
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m2α = dimR g2α = d − 1 ≥ 0. In the sequel, we shall use systematically the
identification

(2.5)
a

∗
C 
 C ,

λα �→ λ .

In particular, we shall view ρ as a real number, namely

(2.6) ρ = d(n − 1)

2
+ d − 1 =



n − 1

2
if K = R ,

n if K = C ,

2n + 1 if K = H ,

11 if K = O and n = 2 .

This number has also a well-known geometrical interpretation: if h denotes the
exponential rate of the volume growth in H

n
K, i.e. if

h = lim
R→∞

log vol B(x, R)

R
,

(this quantity does not depend on x ∈ H
n
K) then h = 2ρ.

Next, let H0 ∈ a+ be such that α(H0) = 1. We define a symmetric bilinear
form on g by

(2.7) 〈X, Y 〉 = 1

B(H0, H0)
B(X, Y ) = 1

2(mα + 4m2α)
B(X, Y ) ,

where B is the Killing form on g. Then 〈· , ·〉 is positive definite on p, negative
definite on k and we have

(2.8) 〈p, k〉 = 0 .

Among others, one reason for this normalization is that the scalar product
on p 
 TeK (G/K ) defined by the restriction of 〈· , ·〉 induces precisely the
G-invariant Riemannian metric on H

n
K = G/K which has pinched sectional

curvature inside the interval [−4, −1] (and constant, equal to −1, in the real
case).

For t ∈ R, we set at = exp(t H0), so that

A = {at , t ∈ R} .

We have the classical Cartan decomposition G = KAK , which actually can be
slightly refined as

(2.9) G = K {at , t ≥ 0}K .

When writing g = k1at k2 with t ≥ 0 according to decomposition (2.9), we then
have

(2.10) t = hyperbolic distance d(gK , eK ) ,

where eK is the origin in H
n
K = G/K .
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2.2. – Differential forms

In order to explain the way we shall view a differential form on a hyperbolic
space, let us proceed with some tools coming from representation theory of the
groups G and K . First, denote as usual by M the centralizer of A in K ,
with corresponding Lie algebra m, and let P = M AN be the standard minimal
parabolic subgroup of G. For σ ∈ M̂ and λ ∈ a∗

C 
 C, the principal series
representation πσ,λ of G is the induced representation

πσ,λ = IndG
P (σ ⊗ eiλ ⊗ 1)

with corresponding space

H∞
σ,τ ={ f ∈C∞(G, Vσ ), f (xmat n)=e−(iλ+ρ)tσ(m)−1 f (x), ∀ x ∈G, ∀ mat n ∈ P}.

This G-action is given by left translations: πσ,λ(g) f (x) = f (g−1x). Moreover,
if Hσ,λ denotes the Hilbert completion of H∞

σ,λ with respect to the norm ‖ f ‖ =
‖ f |K ‖L2(K ), then πσ,λ extends to a continuous representation of G on Hσ,λ.
When λ ∈ R, the principal series representation πσ,λ is unitary, in which case
it is also irreducible, except maybe for λ = 0.

Next, let (τ, Vτ ) be a unitary finite dimensional representation of the
group K (not necessarily irreducible). It is standard ([Wal], Section 5.2) that
the space of sections of the G-homogeneous vector bundle Eτ = G ×K Vτ can
be identified with the space

�(G, τ ) = { f : G → Vτ , f (xk) = τ(k)−1 f (x), ∀x ∈ G, ∀ k ∈ K }
of functions of (right) type τ on G. We define also the subspaces

C∞(G, τ ) = �(G, τ ) ∩ C∞(G, Vτ ), and L2(G, τ ) = �(G, τ ) ∩ L2(G, Vτ )

of �(G, τ ) which correspond to C∞ and L2 sections of Eτ , respectively. Note
that L2(G, τ ) is the Hilbert space associated with the unitary induced represen-
tation IndG

K (τ ) of G, the action being given by left translations.
For 0 ≤ p ≤ dn, let τp denote the p-th exterior product of the complexified

coadjoint representation Ad∗
C of K on p∗

C. Then τp is a unitary representation
of K on Vτp = ∧pp∗

C and the corresponding homogeneous bundle Eτp is the
bundle of differential forms of degree p on G/K .

In general, the representation τp is not K -irreducible and decomposes as a
finite direct sum of K -types:

(2.11) τp =
⊕
τ∈K̂

m(τ, τp)τ ,

where m(τ, τp) ≥ 0 is the multiplicity of τ in τp (as usual, K̂ stands for the
unitary dual of the Lie group K ). Let us set

K̂ (τp) = {τ ∈ K̂ , m(τ, τp) > 0} ,

so that (2.11) induces the following decomposition:

(2.12) L2(G, τp) =
⊕

τ∈K̂ (τp)

(L2(G, τ ) ⊗ C
m(τ,τp)) ,

as well as its analogue when considering C∞ differential p-forms.
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2.3. – The continuous part of the Plancherel formula for L2(G, τp)

Let us consider an irreducible unitary representation τ ∈ K̂ . When restricted
to the subgroup M , τ is generally no more irreducible, and splits into a finite
direct sum

τ |M =
⊕
σ∈M̂

m(σ, τ )σ ,

where m(σ, τ ) ≥ 0 is the multiplicity of σ in τ |M and M̂ stands for the unitary
dual of M . Let us define then

M̂(τ ) = {σ ∈ M̂, m(σ, τ ) > 0} .

The Plancherel formula for the space L2(G, τ ) of L2 sections of the homoge-
neous bundle Eτ = G×K Vτ consists in the diagonalization of the corresponding
unitary representation IndG

K (τ ) of G. First, we remark that

L2(G, τ ) 
 {L2(G) ⊗ Vτ }K ,

where the upper index K means that we take the subspace of K -invariant vectors
for the right action of K on L2(G). According to Harish-Chandra’s famous
Plancherel theorem for L2(G), the space L2(G, τ ) splits then into the direct sum
of a continuous part L2

c(G, τ ) and of a discrete part L2
d(G, τ ). The latter can

be expressed in terms of discrete series representations of G, but giving such
a precision would be useless for our purpose. The former takes the following
form (see e.g. [Ped3], Section 3, for details):

(2.13) L2
c(G, τ ) 


⊕
σ∈M̂(τ )

∫ ⊕

a
∗+

dλ pσ (λ)Hσ,λ⊗̂ HomK (Hσ,λ, Vτ ) .

In this formula, dλ is the Lebesgue measure on a∗
+ 
 (0, +∞), pσ (λ) is the

Plancherel density associated with σ and HomK (Hσ,λ, Vτ ) is the vector space of
K -intertwining operators from Hσ,λ to Vτ , on which G acts trivially. This space
is non zero (since σ ∈ M̂(τ )) but finite dimensional (since every irreducible
unitary representation of G is admissible).

By combining formulas (2.12) and (2.13) we get the following result.

Proposition 2.1. The continuous part of the Plancherel formula for L2(G, τp)

is given by:

L2
c(G, τp) 


⊕
τ∈K̂ (τp)

 ⊕
σ∈M̂(τ )

∫ ⊕

a
∗+

dλ pσ (λ)Hσ,λ⊗̂ HomK (Hσ,λ, Vτ )

 ⊗ C
m(τ,τp) .



ON THE DIFFERENTIAL FORM SPECTRUM OF HYPERBOLIC MANIFOLDS 713

2.4. – The spectrum of the Hodge-de Rham Laplacian

The Hodge-de Rham Laplacian �p = dd∗ + d∗d acts on C∞ differential
p-forms on H

n
K = G/K , i.e. on members of the space C∞(G, τp). Actually, this

operator is realized by the action of the Casimir element 
g of the universal
enveloping algebra U (g) of g. More precisely, keeping notation (2.7), let {Zi } be
any basis for g and {Zi } the corresponding basis of g such that 〈Zi , Z j 〉 = δi j .
The Casimir operator can be written as

(2.14) 
g =
∑

i

Zi Z i .

We can view 
g as a G-invariant differential operator acting on C∞(G, τp),
and have then the well-known identification (Kuga’s formula, see [BW], Theo-
rem II.2.5)

(2.15) �p = −
g .

We shall denote also by �p the unique self-adjoint extension of the Hodge-
de Rham operator from compactly supported smooth differential forms to L2

differential forms on H
n
K = G/K . Let us recall that the nature of its spectrum

is well known:

Theorem 2.2.
(1) If p 	= dn

2 , the L2 spectrum of�p is absolutely continuous,of the form [αp, +∞)

with αp ≥ 0.
(2) If p = dn

2 (with dn even), one must add the sole discrete eigenvalue 0, which
occurs with infinite multiplicity.

(3) We have αp = 0 if and only if K = R and p = n±1
2 . In particular, the discrete

eigenvalue 0 occuring in middle dimension p = dn
2 is always spectrally isolated.

In this result, assertion (1) is essentially Proposition 2.1, assertion (2) is
true for any general G/K and can be found e.g. in [Bor], [Ped1] or [Olb1],
and assertion (3) follows from results in [BW] and [VZ], as noticed by J. Lott
in [Lot], Section VII.B (see also our Theorem 2.4).

Moreover, the exact value of αp can be calculated with the help of some
more representation theory. Let us elaborate. Thanks to (2.15), in order to
investigate the continuous L2 spectrum of �p and thus to compute αp, it is
enough to consider the action of the Casimir operator 
g on the right-hand side
of the Plancherel formula given in Proposition 2.1 and, specifically, on each
elementary component Hσ,λ⊗̂ HomK (Hσ,λ, Vτ ).

The action of 
g on HomK (Hσ,λ, Vτ ) being trivial, the problem reduces
to study its effect on Hσ,λ, and even on H∞

σ,λ, by density. But since 
g is
a central element in the enveloping algebra of g, it acts on the irreducible
admissible representation H∞

σ,λ by a scalar ωσ,λ. More precisely, let µσ be the

highest weight of σ ∈ M̂ and δm be the half sum of the positive roots of mC
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with respect to a given Cartan subalgebra. Then σ(
m) = −c(σ ) Id, where the
Casimir value of σ is given by

(2.16) c(σ ) = 〈µσ , µσ + 2δm〉 ≥ 0 .

Using for instance [Kna], Proposition 8.22 and Lemma 12.28, one easily checks
that

(2.17) 
g = ωσ,λ Id on H∞
σ,λ ,

where
ωσ,λ = −(λ2 + ρ2 − c(σ )) .

Thus (2.17), (2.15) and Proposition 2.1 show that the action of �p on (smooth
vectors of) L2(G, τp) is diagonal, a fact which allows us to calculate the con-
tinuous L2 spectrum of �p.

In order to state this, set

M̂(τp) =
⋃

τ∈K̂ (τp)

M̂(τ ) ,

and denote by σmax one of the (possibly many) elements of M̂(τp) such that
c(σmax) ≥ c(σ ) for any σ ∈ M̂(τp). Our discussion implies immediately the
following result.

Proposition 2.3. The continuous L2 spectrum of the Hodge-de Rham Laplacian
�p is [αp, +∞), where

(2.18) αp = ρ2 − c(σmax) .

With a case-by-case calculation, the previous formula gives the explicit
value of αp (at least in theory; in the case K = H, identifying the representations
σmax is quite awkward, see [Ped4]). For instance, α0 equals ρ2 for any H

n
K,

since σmax must be the trivial representation (this well-known fact can be proved
also by other arguments). For general p, we collect the known results in the
following theorem. Observe that we can restrict to p ≤ dn/2, since αdn−p = αp

by Hodge duality.

Theorem 2.4. Let p ≤ dn
2 .

(1) If K = R (see [Don], [Ped2]), then αp =
(

n−1
2 − p

)2
.

(2) If K = C (see [Ped3]), then

αp =
{

(n − p)2 if p 	= n ,

1 if p = n .
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(3) If K = H (see [Ped4]), then

αp =



(2n + 1)2 if p = 0 ,

(2n − p)2 + 8(n − p) if 1 ≤ p ≤
[

4n − 1

6

]
,

(2n + 1 − p)2 if
[

4n − 1

6

]
+ 1 ≤ p ≤ n ,

(2n − p)2 if n + 1 ≤ p ≤ 2n − 1 ,

1 if p = 2n .

To our knowledge, the value of αp in the exceptional case H
2
O is still

unknown.

2.5. – The action of the Hodge-de Rham Laplacian on τp-radial functions

For any finite dimensional representation τ of K , let us introduce the space
of smooth τ -radial functions on G:

(2.19)
C∞(G, τ, τ ) = {F ∈ C∞(G, End Vτ ),

F(k1gk2) = τp(k2)
−1 F(g)τp(k1)

−1, ∀ g ∈ G, ∀ k1, k2 ∈ K } .

Our aim is to calculate the action of the Laplacian �p on C∞(G, τp, τp) (the
reason will be given in next subsection). Because of the Cartan decomposi-
tion (2.9), it is clear that any τ -radial function on G is entirely determined by
its restriction to the semigroup {at , t ≥ 0}. Hence it is sufficient to calculate
the value of �p F(at ) for any F ∈ C∞(G, τp, τp) and any t ≥ 0.

Because of (2.14) we have


g = 
p − 
k =
∑

i

X2
i −

∑
i

Y 2
i

if we choose bases {Xi } of p and {Yi } of k which satisfy respectively 〈Xi , X j 〉 =
δi j and 〈Yi , Yj 〉 = −δi j . On the spaces C∞(G, τp) and C∞(G, τp, τp), we
thus get

(2.20) �p = −
g = −
p + τp(
k) ,

where τp(
k) is a zero order differential operator which is diagonal, since τ(
k)

is scalar for each τ ∈ K̂ , namely

τ(
k) = −c(τ ) Id = −(µτ |µτ + 2δk) Id ,

with notations that are analogous to the ones used in (2.16). Notice that (2.20)
is exactly the well-known Bochner-Weitzenböck formula (see (4.3)), since −
p

coincides with the Bochner Laplacian ∇∗∇ (see e.g. [BOS], Proposition 3.1).
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Now, reminding (2.4) and (2.8), let l1 and l2 be the orthogonal projections
of the root subspaces gα and g2α on k with respect to the Cartan decomposi-
tion (2.1), so that we have the orthogonal splitting

(2.21) k = m ⊕ l1 ⊕ l2 .

(Remark that l2 reduces to zero if K = R.) Let {Y1,r }d(n−1)
r=1 and {Y2,s}d−1

s=1 denote
the subsystems of the basis {Yi } of k which are bases for l1 and l2, respectively.

We have then the following result.

Proposition 2.5. If F ∈ C∞(G, τp, τp), then for any t ≥ 0 we have

�p F(at ) = −
pF(at ) + τp(
k)F(at ) ,

where

(2.22)


pF(at )= d2

dt2
F(at )+[d(n−1) coth t+2(d−1) coth 2t]

d

dt
F(at )

+ (coth t)2
d(n−1)∑

r=1

τp(Y
2
1,r )F(at )+(sinh t)−2 F(at )

d(n−1)∑
r=1

τp(Y
2
1,r )

− 2(sinh t)−1(coth t)
d(n−1)∑

r=1

τp(Y1,r )F(at)τp(Y1,r )

+ (coth 2t)2
d−1∑
s=1

τp(Y
2
2,s)F(at ) + (sinh 2t)−2 F(at )

d−1∑
s=1

τp(Y
2
2,s)

− 2(sinh 2t)−1(coth 2t)
d−1∑
s=1

τp(Y2,s)F(at )τp(Y2,s) .

Proof. It remains only to show formula (2.22), whose proof is standard
and can be found e.g. in [Wal], Section 8.12.6.

2.6. – The resolvent of the Hodge-de Rham Laplacian and the associated
Green kernel

It is well-known that all kernels K (x, y) of functions of the (positive)
Laplace-Beltrami operator �0 on a symmetric space G/K only depend on the
Riemannian distance: K (x, y) = k(d(x, y)). In other words, because of (2.10)
and the G-invariance of the distance, they can be considered as radial (i.e. bi-
K -invariant) functions on G. In the case of our bundle of differential forms,
kernels of operators related to the Hodge-de Rham Laplacian �p will naturally
be τp-radial functions on G (see e.g. [CM]). In particular, for s ∈ C with
Re s > 0, consider the Green kernel G p(s, ·) of the resolvent

Rp(s) = (�p − αp + s2)−1 .
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By definition, it solves the differential equation

(2.23) (�p − αp + s2)G p(s, ·) = δe .

Therefore, when Re s > 0 the Green kernel G p(s, ·) is a Schwartz τp-radial
function on G0 = G � {e}, i.e. a member of the space

S(G0, τp, τp) = {F ∈ C∞(G0, τp, τp) : ∀ D1, D2 ∈ U (g), ∀ N ∈ N ,

sup
t>0

‖F(D1 : at : D2)‖End Vτp (1 + t)N eρt < +∞} ,

where we use the classical Harish-Chandra notation F(D1 : at : D2) for the
two sided derivation of F at at with respect to the elements D1 and D2 of the
universal enveloping algebra U (g).

For convenience, we shall often use the alternative notation

(2.24) gp(s, t) = G p(s, at ) ,

defined for Re s > 0 and t ≥ 0 (with a singularity at t = 0).

2.7. – Hyperbolic manifolds

Throughout this paper, � will denote any torsion-free discrete subgroup
of G, so that the quotient �\G/K is a hyperbolic manifold, i.e. a complete
Riemannian locally symmetric space with strictly negative curvature. We de-
fine δ(�) to be the critical exponent of the Poincaré series associated with �,
i.e. the nonnegative number

δ(�) = inf

s ∈ R such that
∑
γ∈�

e−sd(x,γ y) < +∞
 ,

where (x, y) is any pair of points in H
n
K (for instance, x = y = eK ) and d is

the hyperbolic distance. It is easy to check that

0 ≤ δ(�) ≤ 2ρ = h ,

and it is also known that equality holds if � has finite covolume (actually the
converse is true when K = H or O, see [Cor], Theorem 4.4). This critical
exponent has been extensively studied. For instance, one of the most striking
results says that when � is geometrically finite, then δ(�) is the Hausdorff
dimension of the limit set �(�) ⊂ S∞, where the sphere at infinity S∞ =
∂H

n
K 
 K/M 
 S

dn−1 is endowed with its natural Carnot structure (see the
works of S. Patterson, D. Sullivan, C. Yue [Pat], [Sul1], [Yue]). Regarding the
limit set �(�), let us recall that it is defined as the set of accumulation points
of any �-orbit in the natural compactification H

n
K ∪ S∞.
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In some cases, we also consider more general locally symmetric spaces
�\G/K of the noncompact type (i.e. with nonpositive sectional curvature, of
any rank). All definitions and results described above extend to that situation
(except the relationship between δ(�) and �(�), which is still being investigated,
see [Alb], [Qui1], [Qui2]).

Finally, if X stands for any complete Riemannian manifold, we let λ
p
0 (X)

be the bottom of the L2 spectrum of �p on X . In other words,

λ
p
0 (X) = inf

u∈C∞
0 (∧pT ∗ X)

(�pu|u)L2

‖u‖2
L2

.

With notation of Theorem 2.2, we thus have λ
p
0 (Hn

K) = αp when p 	= dn
2 . Note

also that, when p = 0, this definition reduces to

λ0
0(X) = inf

u∈C∞
0 (X)

‖du‖2
L2

‖u‖2
L2

.

2.8. – Some remarks about the generalization of Theorem A to other
Riemannian manifolds

Hyperbolic spaces admit natural generalizations. Namely, they can be
viewed both as a particular class of symmetric spaces of noncompact type and
as a particular class of harmonic AN groups (also called Damek-Ricci spaces).
The latter are Einstein manifolds which are not symmetric (except for the hyper-
bolic spaces) but their analysis is quite similar to the one of hyperbolic spaces
(see [ADY]).

For these two families of manifolds, the proof of Theorem A can be adapted
to get information on the bottom of the spectrum of the Laplacian �0 defined
on some quotient by a discrete torsion-free subgroup �. Indeed, in both cases
one has at his disposal the key ingredient, that is, estimates for the Green kernel
(see Theorem 4.2.2 in [AJ] and Theorem 5.9 in [ADY], respectively).

In the case of Damek-Ricci spaces AN , the result reads exactly as in
Theorem A, provided we replace 2ρ by the homogeneous dimension of N
(in both cases, these numbers represent the exponential rate h of the volume
growth).

As concerns locally symmetric spaces �\G/K , the statement is not as sharp
as in Theorem A, since it provides in general only bounds for λ0

0(�\G/K ).
Let us elaborate.

Take the Lie groups G and K as in Section 2.1, except that G/K can be
now of any rank � ≥ 1, which means that a 
 R

�. Let us introduce some more
notation. First, we have an inner product on all g by modifying the symmetric
bilinear form (2.7) as follows:

(2.25) 〈X, Y 〉 = −B(X, θY ) ∀ X, Y ∈ g ,
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and we denote by ‖·‖ the corresponding norm. The restriction of (2.25) to p

induces a G-invariant Riemannian metric on G/K of (non strictly if � > 1)
negative curvature.

For any element x ∈ G, define H(x) to be the unique element in the
closure a+ of the positive Weyl chamber in a so that

x = k1 exp H(x)k2

reflects the Cartan decomposition of x (the analogue of (2.9)). The half-sum
ρ ∈ a∗ of positive roots of the pair (g, a) cannot be considered as a real number
anymore. Nevertheless, we can still view it as a member of a via (2.25), and
it should be noted that

λ0
0(G/K ) = ‖ρ‖2, h = 2‖ρ‖ ,

as well as
0 ≤ δ(�) ≤ 2‖ρ‖ .

Using Theorem 4.2.2 in [AJ], E. Leuzinger has obtained the following result
(see [Leu]).

Theorem 2.6. Let G/K be any noncompact Riemannian symmetric space,
let � be a discrete torsion-free subgroup of G, and set ρmin = infH∈a+〈ρ, H〉/‖H‖
(so that ρmin ≤ ‖ρ‖, with equality in the rank one case).

(1) If δ(�) ≤ ρmin, then λ0
0(�\G/K ) = ‖ρ‖2.

(2) If δ(�) ∈ [ρmin, ‖ρ‖], then

‖ρ‖2 − (δ(�) − ρmin)
2 ≤ λ0

0(�\G/K ) ≤ ‖ρ‖2 .

(3) If δ(�) ≥ ‖ρ‖, then

max{‖ρ‖2 − (δ(�) − ρmin)
2, 0} ≤ λ0

0(�\G/K ) ≤ δ(�)(2‖ρ‖ − δ(�)) .

Actually, we have a better expression in terms of a modified critical expo-
nent. The proof is underlying in [Leu].

Theorem 2.7. Let G/K be any noncompact Riemannian symmetric space,
and let � be a discrete torsion-free subgroup of G. Define δ̃(�) to be the critical
exponent of the Poincaré series∑

γ∈�

e−sd(x,γ y)−ρ(H(γ )) .

(This definition does not depend on the points x, y ∈ G/K .) Then

λ0
0(�\G/K ) = ‖ρ‖2 − δ̃(�)2 .
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In addition to this statement, one other reason to introduce our modified
critical exponent is motivated by the following observation. Suppose that �

is Zariski dense in G. In [Qui2], J.-F. Quint defines a function �� : a+ →
R ∪ {−∞} which measures the growth of � in the direction of H ∈ a+, and he
shows that this function is concave. According to Corollary 5.5 in [Qui2], we
have a link between the growth indicator �� and our modified critical exponent
δ̃(�), namely:

δ̃(�) = inf
H∈a+
‖H‖=1

(〈ρ, H〉 + ��(H)) .

3. – The resolvent associated with the Hodge-de Rham Laplacian on hyperbolic
spaces

In our investigation of the bottom of the differential p-form spectrum on
a hyperbolic manifold �\H

n
K, the key step consists in the careful analysis of

the resolvent Rp(s) = (�p −αp + s2)−1 associated with the covering space H
n
K,

and this goes through an estimate of the corresponding Green kernel G p(s, ·).
As a matter of fact, these estimates will partly be obtained by comparing

G p(s, ·) to the scalar Green kernel G0(s, ·). We thus begin with the following
result, whose proof is standard but will be recalled here, since we need to
emphasize some of its ingredients. We retain notation from previous sections
and particularly from Section 2.6.

Proposition 3.1. For any (�x, �y) ∈ (�\H
n
K) × (�\H

n
K) and any s ∈ C with

Re s > 0, let
g∗

0(s, �x, �y) =
∑
γ∈�

g0(s, d(x, γ y))

be the pull-back of the Green kernel from �\H
n
K to H

n
K. Then, for any s > 0,

g∗
0(s, �x, �y) behaves as the Poincaré series∑

γ∈�

e−(s+ρ)d(x,γ y) .

Proof. We first observe that the Green kernel g0(s, ·) defined by (2.24)
(and corresponding to the resolvent R0(s) = (�0 −ρ2 + s2)−1) can be explicitly
expressed as a hypergeometric function (see for instance [Far], [MW], [ADY]).
Indeed, by (2.23) and Proposition 2.5, it must solve the Jacobi type differential
equation

g′′
0 (s, r) + [(dn − 1) coth r + (d − 1) tanh r ]g′

0(s, r) + (ρ2 − s2)g0(s, r) = 0 ,

where differentiation is meant with respect to the second variable r . Letting

u(s, −(sinh r)2) = g0(s, r) ,
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we see that the function u solves the hypergeometric equation

x(1 − x)u′′(s, x) +
(

dn

2
− d(n + 1)

2
x
)

u′(s, x) − ρ2 − s2

4
u(s, x) = 0 .

Since the resolvent R0(s) acts continuously on L2(Hn
K) and since we must have

the following standard behaviour:

(3.1) g0(s, r) 

r→0


r2−dn

vol(Sdn−1)
if dn > 2 ,

− 1

2π
log r if dn = 2 ,

by using Theorem 2.3.2 in [AAR] we find that

u(s, x) = fn,d(s) (2x)−(s+ρ)/2
2 F1

(
s + ρ

2
,

s + 1

2
− d(n − 1)

4
, s + 1, x−1

)
,

where 2 F1 is the classical Gauss hypergeometric function and

fn,d(s) = 2d−2π−(dn−1)/2
�

(
s + ρ

2

)
�

(
s + d(n − 1)

2

)
� (s + 1) �

(
s

2
+ d(n − 1)

4

) .

From these explicit formulas, we deduce important facts. Firstly, the resolvent

R0(s) : C∞
0 (Hn

K) −→ C∞(Hn
K) ,

which is a priori defined for Re s > 0, has a meromorphic extension to the com-
plex plane and has a holomorphic extension to the half-plane Re s > − d(n−1)

2 .
Secondly, we can estimate the function g0(s, r) for large values of r (see

also [LR]). On the one hand, for every s ∈ C such that Re s > − d(n−1)
2 , there

is a positive constant c1(s) such that

(3.2) ∀ r ≥ 1, |g0(s, r)| ≤ c1(s) e−(Re s+ρ)r .

On the other hand, when s is a positive real number, g0 is a positive real
function and it can be bounded from below: there exists a positive constant
c2(s) such that

(3.3) ∀ r ≥ 1, c2(s) e−(s+ρ)r ≤ g0(s, r) .

The result immediately follows.
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Assume that δ(�) < ρ. As was noticed by Y. Colin de Verdière in [Col],
the estimate (3.2) implies also that the resolvent of the Laplacian �0 on �\H

n
K

has a holomorphic continuation to the half-plane{
s ∈ C : Re s > min

(
−d(n − 1)

2
, δ(�) − ρ

)}
.

According to a well known principle of spectral theory ([RS], Theorem XIII.20),
we thus get:

Corollary 3.2. If δ(�) < ρ, the L2 spectrum of the Laplacian �0 on �\H
n
K

is absolutely continuous.

Now we turn to the general case of differential forms. Reminding notation
from Section 2.4, we define � to be the (minimal) branched cover of C such
that the functions s �→ √

s2 − c(σ ) + c(σmax) are holomorphic on � for all σ ∈
M̂(τp). This cover is realized as follows: let σ1, . . . , σr denote the distinguished
representatives of the σ ’s in M̂(τp) such that c(σ ) 	= c(σmax). Then

(3.4) �={ŝ = (s, y1, . . . , yr ) ∈ C
r+1 : y2

i =s2+c(σmax)−c(σi ), ∀ i =1, . . . r} .

� contains naturally a copy of the half-plane

C+ = {s ∈ C, Re s > 0} ,

namely

(3.5) C+ ≡ {ŝ = (s, y1, . . . , yr ) ∈ � : Re s > 0, Re yi > 0, ∀ i = 1, . . . r} ,

and we let C+ stands for its closure in �. Also, we shall still denote by
s : � → C the holomorphic extension of the function s from C+ to �.
Finally, if ŝ = (s, y1, . . . , yr ) ∈ � we set

h(ŝ) = min{Re s, Re y1, . . . , Re yr } ,

and we recall that we have put G0 = G � {e}.
Proposition 3.3. There exists a function Fp(ŝ, x) defined on � × G0 such that:

(1) the map x �→ Fp(ŝ, x) belongs to C∞(G0, τp, τp);
(2) ŝ �→ Fp(ŝ, x) is meromorphic on � and holomorphic on � � N , where N is

a discrete subset of � � C+;
(3) (�p − αp + s2)Fp(ŝ, ·) = 0;
(4) for any ŝ ∈ � � N , there is a constant A(ŝ) > 0 such that

(3.6) ∀ t > 1, ‖Fp(ŝ, at )‖End Vτp ≤ A(ŝ)e−(ρ+h(ŝ))t ;
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(5) for any s ∈ C+, there is a constant A(s) > 0 such that

(3.7) ∀ t > 1, ‖Fp(s, at)‖End Vτp ≤ A(s)e−(ρ+Re s)t .

Proof. For s ∈ C+ and t > 0, define

vp(s, t) = (sinh t)d(n−1)/2(sinh 2t)(d−1)/2G p(s, at ) .

Using (2.23), Proposition 2.5 and the standard behaviour of hyperbolic functions,
we see that vp must solve the differential equation

(3.8)

(
− d2

dt2
+ ρ2 − αp + s2 + D + W (e−t )

)
vp(s, t) = 0

on R
∗
+, where W : {z ∈ C, |z| < 1} → End Vτp is a holomorphic function

vanishing at 0:

W (z) =
∞∑

l=1

wl z
l, with wl ∈ End Vτp ,

and

D = −
d(n−1)∑

r=1

τp(Y
2
1,r ) −

d−1∑
s=1

τp(Y
2
2,s) + τp(
k)

= −τp(
l) + τp(
k)

= τp(
m) (since k = m ⊕ l)

=
⊕

σ∈M̂(τp)

m(σ,τp)⊕
l=1

σ(
m)

=
⊕

σ∈M̂(τp)

m(σ,τp)⊕
l=1

[−c(σ ) IdVσ ] .

For convenience, let L p + s2 be the differential operator defined by the paren-
theses in the left hand-side of (3.8). Recall from (2.3) that we have αp =
ρ2 − c(σmax). Hence, if we put

(3.9) E =
⊕

σ∈M̂(τp)

m(σ,τp)⊕
l=1

[c(σmax) − c(σ )] IdVσ ,

we can rewrite L p as

L p = − d2

dt2
+ E + W (e−t ) .
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By definition of �, the function ŝ �→ √
E + s2 is holomorphic on �. Thus, the

equation (L p + s2)v = 0 is of Fuchsian type, and we can look for a solution
of the form

vp(ŝ, t) = e−t
√

E+s2
∞∑

l=0

al(ŝ)e
−lt ,

with coefficients al(ŝ) recursively defined by the formulas

a0(ŝ) = IdVτp ,

l
[
2
√

E + s2 + l IdVτp

]
al(ŝ) =

l∑
k=1

wk ak−l(ŝ) .

Denote by N the set consisting of the ŝ ∈ � such that 2
√

E + s2 + l IdVτp is a

non invertible operator for some l ∈ N
∗. Then N is a discrete subset of � �C+

and we obtain a meromorphic map

ŝ �→ vp(ŝ, ·) ∈ C∞((0, +∞), End Vτp )

which satisfies the following properties:

• ŝ �→ vp(ŝ, ·) is holomorphic on � � N ;
• vp solves the differential equation (L p + s2)vp(ŝ, ·) = 0 on R

∗
+;

• vp(ŝ, t) = e−t
√

E+s2
[IdVτp + O(e−t )] as t → +∞.

Finally, letting Fp be defined on � × G0 by

Fp(ŝ, at ) = (sinh t)−d(n−1)/2(sinh 2t)−(d−1)/2vp(ŝ, at ) ,

and reminding formula (2.6), we get the statements of our proposition. In
particular, remark that (3.6) follows from the estimate

(3.10) Fp(ŝ, at ) =
t→+∞ e−t (

√
E+s2+ρ)[IdVτp + O(e−t)] ,

and that we deduce (3.7) by observing that, if ŝ = (s, y1, . . . , yr ) ∈ �, we have
Re yj > Re s for all j on C+. In other words,

(3.11) h(ŝ) = Re s on C+ .

Actually, the function Fp we introduced in the proposition is in some sense
a multiple (in the variable ŝ) of the Green kernel G p. Let us be more precise.

Proposition 3.4. There exists a meromorphic function φp : � → End Vτp ,

holomorphic in the region C+ if p 	= dn
2 and in the region C+ � {√αp} if p = dn

2 ,

such that the resolvent Rp(ŝ) is given by the operator

L2(Hn
K) −→ L2(Hn

K)

u �−→ Fp(s, ·) ∗ φp(s)u

in the indicated regions.
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Proof. Since the expression (2.22) is asymptotic to the Euclidean one for
small t , we know that a radial solution of the equation

(�p − αp + s2)v = 0

must behave as [vol(Sdn−1)tdn−2]−1 as t → 0 (if dn > 2; the argument is
similar in the other case). Thus there exists a meromorphic function

ψp : � → End Vτp ,

holomorphic on � � N and such that

(3.12) Fp(ŝ, at ) 

t→0

ψp(ŝ)

vol(Sdn−1)tdn−2
.

Consequently, for any u ∈ C∞
0 (G, τp) we have

(3.13) (�p − αp + s2)(Fp(ŝ, ·) ∗ u) = ψp(ŝ)u .

Moreover, for s ∈ C+, our previous estimates (3.7), (3.12) and (3.1), (3.3) imply
the following one: there exists a positive constant C(s) such that

(3.14) ∀ t > 0, ‖Fp(s, at )‖End Vτp ≤ C(s)G0(Re s, at ) .

Hence the operator

(3.15) u �→ Fp(s, ·) ∗ u is bounded from L2 to L2 .

Now we study the invertibility of our function ψp.

Lemma 3.5.
(1) If p 	= dn

2 , the function ψp is invertible (with holomorphic inverse) in the set
C+.

(2) If p = dn
2 , the function ψp is invertible (with holomorphic inverse) in the set

C+ � {√αp}.
Moreover, in both cases, ψ−1

p extends meromorphically to �.

Proof. Assume first p 	= nd/2. For s ∈ C+, let ξ ∈ ker ψp(s). Then
v(at ) = Fp(s, at )ξ provides a solution of the equation

(3.16) (�p − αp + s2)v = 0 ,

and by (3.10) this solution satisfies

(3.17) v(at ) =
t→+∞ e−t (

√
E+s2+ρ)ξ + o(e−t (

√
E+s2+ρ)ξ) .

Hence v is L2, but we know that (3.16) has no nontrivial L2 solutions since
spec(�p) = [αp, +∞) is purely continuous by Theorem 2.2. Thus v = 0, and
therefore ξ = 0 by (3.17). It follows that ψp is invertible in the half-plane
C+, with holomorphic inverse in this region, and that it has a meromorphic
extension to �.

Suppose now p = dn
2 . Then we know that the discrete spectrum of �p

reduces to {0}, with infinite multiplicity. Proceeding as above, we get the second
part of our lemma.
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According to the lemma and to (3.13), (3.15), for s ∈ C+ (and with the
additional condition s 	= √

αp if p = dn
2 ), the operator

u ∈ L2 �→ Fp(s, ·) ∗ ψp(s)
−1u

must be the resolvent Rp(s) of the operator �p − αp + s2, and this proves our
proposition.

We can now sum up our discussion by stating:

Theorem 3.6. The Schwartz kernel G p(s, ·) of the resolvent

Rp(s) = (�p − αp + s2)−1

has a meromorphic extension to � and, outside the discrete subset of poles which
lie inside � � C+ (except if p = dn

2 , in which case
√

αp ∈ C+ is also a pole), it
satisfies the estimate

∀ t > 1, ‖G p(ŝ, at )‖End Vτp ≤ C(ŝ)e−(ρ+h(ŝ))t

for some constant C(ŝ) > 0. Moreover, we have h(ŝ) = Re s on C+.

Remark 3.7.
1) The meromorphic extension of the resolvent Rp to � was known to several

authors. Namely, U. Bunke and M. Olbrich ([BO3], Lemma 6.2) proved
the result for all hyperbolic spaces and their convex cocompact quotients
(except in the exceptional case K = O), a fact which was already observed
by R. Mazzeo and R. Melrose [MM] in the real case and by C. Epstein,
G. Mendoza and R. Melrose [EMM] in the complex case.

2) The estimate in Theorem 3.6 was announced by N. Lohoué in [Loh], but
only in the region C+.

3) The analysis we have carried out in this section for the resolvent Rp(s)
is similar to the one presented in [Far] and [MW] for the function case
(p = 0).

In order to prepare some results of next section, we discuss now the possible
location of the poles of the resolvent Rp on C. We first look at the imaginary
axis.

Proposition 3.8. The resolvent Rp has no pole inside the set

iR � {±i
√

c(σmax) − c(σ ), σ ∈ M̂(τp)} .

Proof. Assume that s = iλ is a purely imaginary pole of Rp. As in the
proof of Lemma 3.5, we see that there exists ξ ∈ Vτp such that the function
defined by v(at ) = Fp(iλ, at )ξ is a solution of the equation

(3.18) (�p − αp − λ2)v = 0



ON THE DIFFERENTIAL FORM SPECTRUM OF HYPERBOLIC MANIFOLDS 727

on H
n
K. Moreover, when t → +∞, this solution satisfies the estimate (see (3.10))

(3.19) v(at ) =
t→+∞ e−t (

√
E−λ2+ρ)ξ + O(e−t )ξ .

Let ξ = ∑
σ∈M̂(τp)

ξσ be the decomposition of ξ with respect to the orthogonal

splitting
Vτp =

⊕
σ∈M̂(τp)

V ′
σ , where V ′

σ = Vσ ⊗ C
m(σ,τp) .

Reminding (3.9), we see that there exists a certain ε > 0 such that the following
asymptotics holds:

(3.20) v(at ) =
t→+∞

∑
σ∈M̂(τp)

|λ|≥√
c(σmax)−c(σ )

e−t (i
√

λ2−c(σmax)+c(σ )+ρ)ξσ + O(e−(ρ+ε)t )ξ .

Now, let BR be a geodesic ball of radius R in H
n
K. With the Green formula

and (3.18) we get:

0 = 〈(�p − αp − λ2)v, v〉L2(BR ) − 〈v, (�p − αp − λ2)v〉L2(BR )

= 2i Im〈v′, v〉L2(∂ BR ) .

But
〈v′, v〉L2(∂ BR ) = vol(∂ BR)〈v′(aR), v(aR)〉Vτp

with
vol(∂ BR) 
 vol(Sdn−1)e2ρR ,

so that (3.20) implies:∑
σ∈M̂(τp)

|λ|≥√
c(σmax)−c(σ )

√
λ2 − c(σmax) + c(σ ) |ξσ |2 = 0 .

Therefore, if λ 	∈ {±√
c(σmax) − c(σ ), σ ∈ M̂(τp)}, then v ∈ L2 by (3.20), but

we know from Theorem 2.2 that �p has no L2 eigenvalue inside [αp, +∞).
Hence v = 0 and this proves our proposition.

Reminding the definition (3.4) of �, let us observe that the function ŝ �→ s
is a local coordinate in a neighbourhood of(

0,
√

c(σmax) − c(σ1), . . . ,
√

c(σmax) − c(σr )
)

∈ � .

This fact justifies the abuse of notation in the following statement.
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Proposition 3.9. If αp = 0 (i.e. if K = R and p = n±1
2 , see Theorem 2.2),

then the map s �→ s Rp(s) is holomorphic inside an open neighbourhood of s = 0
in �.

Proof. By the spectral theorem, we know that the strong limit

lim
s→0+ s2(�p + s2)−1

is the orthogonal projector onto the L2 kernel of �p. But this kernel is trivial
hence the limit above is zero. As we know that s �→ Rp(s) is meromorphic
inside an open neighbourhood of s = 0 in �, we get the result.

4. – The spectrum of the differential form Laplacian on hyperbolic manifolds

We have now all ingredients to prove the key result of our article, namely
the Theorem B stated in the introduction, from which we shall derive various
corollaries, and especially vanishing results for the cohomology.

4.1. – Spectral results

For convenience, let us recall here the statement of our Theorem B. We
remind that δ(�) ≤ 2ρ.

Theorem 4.1.
(1) Assume that p 	= dn

2 .

(a) If δ(�) ≤ ρ, then λ
p
0 (�\H

n
K) ≥ αp.

(b) If ρ ≤ δ(�) ≤ ρ + √
αp, then λ

p
0 (�\H

n
K) ≥ αp − (δ(�) − ρ)2.

(2) Assume that p = dn
2 .

(a) If δ(�) ≤ ρ, then either λ
p
0 (�\H

n
K) = 0 or λ

p
0 (�\H

n
K) ≥ αp.

(b) If ρ ≤ δ(�) ≤ ρ + √
αp, then either λ

p
0 (�\H

n
K) = 0 or λ

p
0 (�\H

n
K) ≥

αp − (δ(�) − ρ)2.

Moreover, if δ(�) < ρ+√
αp the possible eigenvalue 0 is discrete and spectrally

isolated.

When δ(�) > ρ + √
αp, assertions (b) are still valid, but yield a triviality

since we know that the spectrum must be non negative.

Proof. Suppose first that p 	= dn
2 , and let s > 0. By our estimate (3.14),

we have

(4.1) ‖gp(s, d(x, y))‖ ≤ C(s) g0(s, d(x, y))
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for all x 	= y in H
n
K. Thus, if s + ρ > δ(�), from our Proposition 3.1 we see

that, for x 	= y, the sum

(4.2)
∑
γ∈�

γ ∗
y gp(s, d(x, y))

is finite and defines therefore the Schwartz kernel of an operator

Tp(s) : C∞
0

(∧pT ∗(�\H
n
K)

) −→ L2
loc

(∧pT ∗(�\H
n
K)

)
.

Moreover, for any L2 p-form α on �\H
n
K, we have by (4.1)

‖Tp(s)α‖L2 ≤ C(s) ‖(�0 − ρ2 + s2)−1u‖L2 ,

where u = |α|. Since the operator
(
�0 − ρ2 + s2

)−1
is bounded on L2, our

operator Tp(s) is also bounded on L2. Moreover it is easy to check that Tp(s)
provides a right inverse (and thus also a left inverse, by self-adjointness) for
the operator �p − αp + s2 on �\H

n
K. In other words, Tp(s) is the resolvent of

�p − αp + s2 on �\H
n
K.

From this discussion we see that λ
p
0 (�\H

n
K) ≥ αp − s2 for any s > 0 such

that Tp(s) exists, i.e. such that s + ρ > δ(�). This proves assertion (1).
Suppose now that p = dn

2 . The proof above still works, except when
s = √

αp, in which case the pole of Rp(s) may yield also a pole for the
resolvent on the quotient. Reminding Theorem 2.2, we get the last part of
assertion (2).

Before proving that a part of our estimates are optimal for a wide class
of hyperbolic manifolds, let us give some information about the nature of the
spectrum of �p. Recall that C+ denotes the closure of C+ in � (see (3.4)
and (3.5)).

Proposition 4.2. Assume that δ(�) < ρ. The resolvent

s �→ (�p − αp + s2)−1

on �\H
n
K, initially defined on C+, has a holomorphic extension to an open neigh-

bourhood of

C+ � {ŝ ∈ � : s = ±i
√

c(σmax) − c(σ ), σ ∈ M̂(τp)} .

(When p = dn
2 , the value s = √

αp must be excluded also.) In particular, the
differential form spectrum of �\H

n
K is absolutely continuous on

[αp, +∞) � {αp + c(σmax) − c(σ ), σ ∈ M̂(τp)} .

Proof. When δ(�) < ρ, the proof of Theorem 4.1 shows that the sum (4.2)
converges for h(ŝ) > δ(�)−ρ as soon as the Green kernel G p(ŝ, ·) of the resol-
vent on H

n
K is holomorphic in the considered region. Reminding Theorem 3.6

and Proposition 3.8, and observing that the equality (3.11) extends to an open
neighbourhood of

C+ � {ŝ ∈ � : s = ±i
√

c(σmax) − c(σ ), σ ∈ M̂(τp)} ,

we get the first assertion. The second one is obtained as in Corollary 3.2.
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Next, let us observe that if the limit set �(�) of � is not the whole
sphere at infinity S∞ = ∂H

n
K = S

dn−1, then the injectivity radius of �\H
n
K is

not bounded. Indeed, if x ∈ S
dn−1

� �(�), then x has a neighbourhood in
H

n
K ∪ S

dn−1 which is isometrically diffeomorphic to an open subset in �\H
n
K

via the covering map.
Let us remind that the condition �(�) 	= S

dn−1 is automatically realized
in the setting of convex cocompact or geometrically finite with infinite volume
quotients of H

n
K.

These remarks served us as a motivation for the two following results.

Proposition 4.3. If the injectivity radius of �\H
n
K is not bounded (for instance

if �(�) 	= S
dn−1), then

[αp, +∞) ⊂ spec
(
�p, �\H

n
K

)
when p 	= dn

2
,

and

{0} ∪ [αp, +∞) ⊂ spec
(
�p, �\H

n
K

)
when p = dn

2
.

Proof. If the injectivity radius of the Riemannian manifold �\H
n
K is not

bounded, then �\H
n
K contains arbitrary large balls isometric to geodesic balls

in H
n
K. But an argument due to H. Donnelly and Ch. Fefferman (see the proof

of Theorem 5.1.(iii) in [DF]) implies then that the essential spectrum of �p on
�\H

n
K contains the essential spectrum of �p on H

n
K.

Together with Theorem 4.1, this result yields immediately a generalization
of a result of R. Mazzeo and R. Phillips (Theorem 1.11 in [MP]) when δ(�) ≤ ρ.

Corollary 4.4. If δ(�) ≤ ρ and if the injectivity radius of �\H
n
K is not

bounded, then

spec
(
�p, �\H

n
K

) = spec
(
�p, H

n
K

) =
 [αp, +∞) if p 	= dn

2
,

{0} ∪ [αp, +∞) if p = dn

2
.

Remark 4.5. When � is convex cocompact, our corollary is a particular
case of a result due to U. Bunke and M. Olbrich (see Section 11 in [BO1],
and also Theorem 9.1 in [Olb2]. Actually, these authors give a much more
precise information: the full spectral resolution for all vector bundles over
convex cocompact quotients of H

n
K (except for K = O and δ(�) ≥ ρ).

4.2. – Comparison with the Bochner-Weitzenböck method

We think it is worthwhile to compare our estimates for the bottom of the
spectrum with the ones we can get with a less elaborated method, based on the
Bochner-Weitzenböck formula. Hopefully, it will turn out that the estimates in
Theorem 4.1 are strictly better than the latter.
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Let X = (Xm, g) be a complete Riemannian manifold of dimension m.
The Bochner-Weitzenböck formula is the identity

(4.3) �pα = ∇∗∇α + Rpα, ∀ α ∈ C∞
0 (∧pT ∗ X) ,

where ∇ is the connection on ∧pT ∗ X induced by the Levi-Civita connection
and Rp is a field of symmetric endomorphisms of ∧pT ∗ X built from the
curvature tensor (see e.g. [GM]). For instance, when X has constant curvature
−1 (typically X = �\H

m
R ), the curvature term Rp is quite simple:

Rp = −p(m − p)Id ,

but in general it can be hardly calculated. Let us define thus Rp
min to be

the infimum over x ∈ X of the lowest eigenvalues of the symmetric tensors
Rp(x) : ∧pT ∗

x X −→ ∧pT ∗
x X . With the Kato inequality, we see that∫

X
(�pα, α) ≥

∫
X

|∇α|2 + Rp
min

∫
X

|α|2 ≥ (λ0 + Rp
min)

∫
X

|α|2

for any α ∈ C∞
0 (∧pT ∗ X). In other words:

Proposition 4.6. We have λ
p
0 (X) ≥ λ0

0(X) + Rp
min.

Let us then compare the lower bounds for λ
p
0 (X) given by Theorem 4.1

and Proposition 4.6. For simplicity, we shall look only to the real and complex
cases.

4.2.1. – The real hyperbolic case

We take X = �\H
n
R. Recall that Rp = −p(n − p) Id and let us restrict to

the case p < n/2, thanks to Hodge duality. By Theorem 4.1 and Theorem 2.4,
we have

λ
p
0 (�\H

n
R)≥


(

n − 1

2
− p

)2

if δ(�) ≤ n − 1

2
,

(n − 1 − p − δ(�))(δ(�) − p) if
n − 1

2
≤ δ(�) ≤ n − 1 − p .

Using Proposition 4.6 instead, we get that

λ
p
0 (�\H

n
R)≥


(

n − 1

2
− p

)2

− p if δ(�) ≤ n − 1

2
,

δ(�)(n −1 −δ(�)) − p(n − p) if
n − 1

2
≤ δ(�) ≤ n − 1 − p .

We thus see that, in all cases,

(estimate from Theorem 4.1) = (estimate from Proposition 4.6) + p .
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4.2.2. – The complex hyperbolic case

We take now X = �\H
n
C. In that situation, our first task is to compute the

value of Rp
min:

Proposition 4.7. For the manifold X = �\H
n
C, we have

Rp
min =

{ −2p(n + 1) if p ≤ n ,

−2(2n − p)(n + 1) if p ≥ n .

Proof. In order to prove this result, we collect first some information from
the article [Ped3].

For 0 ≤ p ≤ 2n, the representation τp of K splits up into the direct sum

τp =
⊕

r+s=p

τr,s

corresponding to the decomposition into differential forms of type (r, s). Be-
sides, each τr,s can be decomposed in its turn into irreducible subrepresentations:

τr,s =
min(r,s)⊕

k=0

τ ′
r−k,s−k ,

a fact which actually reflects the Lefschetz decomposition into primitive forms.
To sum up, we have

(4.4) τp =
⊕

r+s=p

min(r,s)⊕
k=0

τ ′
r−k,s−k .

Let us mention three natural equivalences:

τr,s ∼ τs,r (complex conjugation) ,

τr,s ∼ τn−s,n−r (Hodge duality) ,(4.5)

τp ∼ τ2n−p (idem) ,(4.6)

whose first two hold also for the τ ′
r,s . Denoting by B = ∇∗∇ the Bochner

Laplacian, we can write the following Bochner-Weitzenböck formulas:

�′
r,s = B′

r,s + τ ′
r,s(
k) = B′

r,s − c(τ ′
r,s) Id ,(4.7)

where c(τ ′
r,s) = 〈µτ ′

r,s
, µτ ′

r,s
+ 2δk〉 ,(4.8)

�r,s = Br,s + τr,s(
k) ,

�p = Bp + τp(
k) .
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Our aim is thus to calculate

Rp
min = inf{−c(τ ′

r−k,s−k), r + s = p, k = 0, . . . , min(r, s)} .

From (3.8) in [Ped3] we easily see that

(4.9) c(τ ′
r,s) = 2r(n − s + 1) + 2s(n − r + 1) = 2(r + s)(n + 1) − 4rs

when r + s ≤ n, and that c(τ ′
r,s) is given by a combination of this formula

with (4.5) when r + s ≥ n.
From (4.9) we deduce that:

• if (r, s) is fixed with r + s ≤ n, then c(τ ′
r,s) ≥ c(τ ′

r−k,s−k) for any k ∈ N;
• if r + s = p ≤ n is fixed, then c(τ ′

r,s) = 2(r + s)(n + 1) − 4rs is maximal
for r = 0 or s = 0, in which cases it takes the same value 2p(n + 1).

With (4.4) and (4.6) we finally obtain the aimed result.

Now we go back to our comparisons. Assume p < n. By Theorem 4.1
and Theorem 2.4, we have

λ
p
0 (�\H

n
C) ≥

{
(n − p)2 if δ(�) ≤ n ,

(2n − p − δ(�))(δ(�) − p) if n ≤ δ(�) ≤ 2n − p ,

whereas Proposition 4.6 yields

λ
p
0 (�\H

n
C) ≥

{
n2 − 2p(n + 1) if δ(�) ≤ n ,

δ(�)(2n − δ(�)) − 2p(n + 1) if n ≤ δ(�) ≤ 2n − p .

In both cases, it turns out that

(estimate from Theorem 4.1) = (estimate from Proposition 4.6) + p(p + 2) .

4.3. – Applications to cohomology

We shall use in the sequel the following notation: if X is any complete
manifold,

H p(X) = p-th de Rham cohomology space of X ,

Hp(X) = Hilbert space of L2 harmonic p-forms on X .

Let us remark first that our Theorem 4.1 extends to the case of a differential
form Laplacian with values in a unitary flat vector bundle or even in a Hilbertian
flat vector bundle. Indeed, if (π, Hπ) is a unitary representation of �, the Hπ -
valued Hodge-de Rham operator �π

p is simply �p ⊗ IdHπ when lifted to the
universal cover. Thus we can use similar estimates for the corresponding Green
kernel.

Keeping this generalization in mind, we state now the following vanishing
result.
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Theorem 4.8. Assume p 	= dn
2 . If � and p are such that δ(�) < ρ + √

αp,

then
Hp(�\H

n
K; Hπ) = {0} .

Proof. When αp > 0, the corollary follows immediately from Theorem 4.1.
When αp = 0, we know from Proposition 3.9 that s �→ s Rp(s) = s(�p + s2)−1

extends holomorphically to a neighbourhood of s = 0 in �. Let us denote by
��

p the Laplacian acting on the quotient �\H
n
K. Then the proof of Theorem 4.1

shows that the map s �→ s(��
p + s2)−1 also extends holomorphically to a

neighbourhood of s = 0 in � as soon as the assumption δ(�) < ρ is fulfilled.
As in the proof of Proposition 3.9 the spectral theorem implies that the L2

kernel of ��
p must be trivial.

Remark 4.9.
1) In the convex cocompact case, this vanishing result has been also proved

by M. Olbrich (see Corollary 9.9 in [Olb2]).
2) In [CGH], D. Calderbank, P. Gauduchon and M. Herzlich have proved

refined Kato inequalities for special classes of sections of vector bundles
E over a Riemannian (or spin) manifold X = (Xm, g). Namely, they
consider bundles over X attached to an irreducible representation of the
holonomy group SO(m) and sections which lie in the kernel of a natural
injectively elliptic first-order differential operator. Their approach is based
on the representation theory of SO(m). In our situation X = �\H

n
K, an

application of their results (Theorem 3.1.ii and Theorem 6.3.ii) gives the
following statement: if α is a harmonic p-form on �\H

n
K, then we have

the refined Kato inequality

|∇α|2 ≥ dn − p + 1

dn − p
|d|α||2 .

As a consequence, with notation of Section 4.2, if dn−p+1
dn−p λ0

0(�\H
n
K) +

Rp
min > 0, then Hp(�\H

n
K) = {0}.

When K = R or C, an easy calculation shows that this vanishing result is
strictly weaker than our Theorem 4.8. When K 	= R, an obvious explanation
is that one expects another refined Kato inequality based on the representation
theory of K instead of the one of SO(dn). On the other hand, as shown
in [CGH], in order to obtain an optimal result with this technique one has to
consider �|α|θ , where α is a L2 harmonic p-form, and θ = (dn−p−1)/(dn−p).
An easy computation shows that

�|α|θ ≤ θ
(−Rp

min

) |α|θ .

Hence, if |α|θ is non zero and L2, we get λ0
0(�\H

n
K) ≤ θ

(−Rp
min

)
. In that

case, the vanishing result we obtain recovers our Theorem 4.8 in the real case,
and is still weaker in the complex case. Moreover it is in general very difficult
to check if |α|θ ∈ L2.
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In some cases, the Hilbert spaces Hp(X) have a topological interpretation
in terms of cohomology groups, in the spirit of the Hodge theorem (see for
instance, [Maz] and [Yeg] for convex cocompact real hyperbolic manifolds,
and [MP] for geometrically finite real hyperbolic manifolds). In this direction,
our vanishing result Theorem 4.8 also provides vanishing results for certain
cohomology groups, with a dependance on the critical exponent.

In fact, for convex cocompact real hyperbolic manifolds, the vanishing
results we can derive from Theorem 4.8 are well known (see [Ize], [IN], [Nay],
as well as [Wan2] for another approach based on the Bochner technique).

We therefore prefer to focus on two topological applications of our The-
orem 4.8 which seem completely new. The first one enables us to investigate
the number of ends of certain classes of hyperbolic manifolds, but we postpone
its statement until next section (see Theorem 5.4), which will be particularly
devoted to that question in a more general setting. The second one is specific
to the complex hyperbolic case:

Proposition 4.10. Suppose that �\H
n
C is convex cocompact. If p is such that

p > n and p > δ(�), then Hp(�\H
n
C) = {0} and H p(�\H

n
C) = {0}.

Proof. According to T. Ohsawa and K. Takegoshi (Corollary 4.2 in [OT]),
if (M, h) is a complete Hermitian manifold of complex dimension n which is
Kählerian outside some compact subset A, and such that the Kähler form can
be written as ω = i∂∂̄s with s ∈ C∞(M � A, R), limm→∞ s(m) = +∞ and ∂s
bounded, then there is an isomorphism Hp(M) 
 H p(M) for any p > n. These
assumptions may not be satisfied by M = �\H

n
C with � convex cocompact.

However, we claim that the complex hyperbolic metric of such a manifold M is
quasi-isometric to a Hermitian metric h which fulfils the above conditions; and
this is obviously enough to apply the result of T. Ohsawa and K. Takegoshi.

Let us elaborate. For convenience, we shall view the complex hyperbolic
space H

n
C as the open unit ball B

n
C of C

n . With our choice of normalization of
the Riemannian metric (2.7), this manifold is equipped with a Kähler metric of
constant holomorphic sectional curvature equal to −4, and the corresponding
Kähler form is given by the formula

ω̃ = −i∂∂̄ log(1 − |z|2) = i

∑
i

dzi ∧ dz̄i

1 − |z|2 + i

(∑
i

z̄i dzi

)
∧

(∑
i

zi d z̄i

)
(1 − |z|2)2

.

Letting s̃(z) = − log(1−|z|2), we thus have ω̃ = i∂∂̄ s̃ with limm→∞ s̃(m) = +∞
and ∂ s̃ bounded. Moreover, on B

n
C, the (Riemannian) hyperbolic metric ghyp

and the Euclidean one geucl are easily compared:

(4.10) ghyp ≥ es̃ geucl .

Next, we observe that our M = �\H
n
C (with � convex cocompact) is diffeomor-

phic to the interior of a compact manifold M with boundary ∂ M , and each point
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p ∈ ∂ M has a neighbourhood Vp in M which is isometric to a neighbourhood
of (1, 0, . . . , 0) in H

n
C = B

n
C. Thus, by the preceding observation, there exists a

function sp on Vp such that s−1
p (∞) = ∂ M ∩ Vp, ω = i∂∂̄sp and ∂sp is bounded

(here, ω denotes the Kähler metric on M). By compactness, we can exhibit a
finite subset {p1, . . . , pl} ⊂ ∂ M such that ∂ M ⊂ ⋃

i Vpi . Let {ϕi } be a partition
of unity associated with the covering

⋃
i Vpi and let s = ∑

i ϕi spi . It is clear
that limm→∂ M s(m) = +∞. On the other hand, each function ϕi is smooth on
Vpi and (4.10) implies the estimates |dϕi | = O(e−spi /2) and |∂∂̄ϕi | = O(e−spi )

on Vpi . Hence we have

|i∂∂̄s − ω| ≤ C
∑

i

e−spi /2χVpi
,

where χVpi
denotes the characteristic function of Vpi . Since

lim
m→∂ M

∑
i

e−spi (m)/2χVpi
(m) = 0

we find that the Kähler metric ω on M is, near the boundary ∂ M , quasi-
isometric to the Kähler metric i∂∂̄s. A similar argument shows also that ∂s is
bounded. Thus, if h denotes a Hermitian metric on M which coincides with
the Hermitian metric associated with i∂∂̄s near the boundary ∂ M , then h is
quasi-isometric to the Hermitian metric associated with ω, everywhere on M
(since any two Hermitian metrics are quasi-isometric on a compact set). This
discussion proves our claim.

Now, recall from Theorem 2.4 that αp = (n − p)2. Since p > n we have
δ(�) < p = n + √

αp, and we can apply Theorem 4.8 to obtain the vanishing
result.

As a consequence, we partially recover a result of G. Besson, G. Courtois
and S. Gallot [BCG1]:

Corollary 4.11. Assume that �\H
n
C is a compact complex hyperbolic mani-

fold. Let π : � → SU (m, 1) be a convex cocompact representation of �, where
m < 2n. Then δ (π (�)) ≥ 2n = δ (�).

Proof. From our last proposition, if δ (π (�)) < 2n, then

H 2n(π (�) \H
m
C ) = {0} .

But, by definition of π we have H 2n(π (�) \H
m
C ) = H 2n(�\H

n
C), and the latter

cohomology group is obviously non trivial since �\H
n
C is a compact oriented

manifold. This discussion forces δ (π (�)) ≥ 2n. (Note that δ(�) = 2ρ = 2n
because � is cocompact.)

Remark 4.12. The result of G. Besson, G. Courtois and S. Gallot is in
fact much better than ours: it holds without any assumptions on n and m and it
says also that there is a constant C(n, m) such that if δ (π (�)) ≤ 2n +C(n, m)

then π (�) is a totally geodesic representation. Note that the analogue of this
phenomenon in the real hyperbolic case is also known (see [Bow], [Ize], [IN],
[Nay], [Wan1], [Wan2], as well as [BCG1] for a different proof and a more
general result).
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5. – On the number of ends of certain noncompact locally symmetric spaces

Let X be an open manifold of dimension m. In what follows, we shall
use the classical notations:

H p
0 (X) = p-th compactly supported de Rham cohomology space of X ,

Hp(X) = p-th homology space of X .

We shall also consider the analogues of theses (co)homology spaces with co-
efficients in the constant presheaf Z, denoted by H p

0 (X, Z) and Hp(X, Z), re-
spectively. When X is orientable, the Poincaré duality asserts that

H p
0 (X)
 [H m−p(X)]∗ 
 Hm−p(X), H p

0 (X, Z)
 [H m−p(X, Z)]∗ 
 Hm−p(X, Z),

as soon as these spaces are finite dimensional.
Next, recall that the number of ends of X is the supremum over all compact

subsets A ⊂ X of the number of unbounded connected components of X � A.
In this section, we shall give sufficient conditions for a noncompact locally

symmetric space X (not necessarily of rank one) to have only one end, by
showing in fact a stronger result (as is well-known), namely that H 1

0 (X) = {0}.
Our motivation was at the beginning to look at the complex hyperbolic case,
after E. Ghys posed the problem to the first author. It turns out that we were
actually able to consider more general situations.

Before describing our results, we need some topological tools.

5.1. – Topological preliminaries

Let us begin with the following result (see [Car], Theorem 3.3, for a related
observation, and compare with [LiW] as well).

Proposition 5.1. If X = (Xm, g) is a complete Riemannian manifold such that
every unbounded connected component of the complement of any compact subset
of X has infinite volume (for instance if the injectivity radius is positive) and such
that λ0

0(X) > 0, then the natural map

H 1
0 (X) −→ H1(X)

is injective. In particular, if furthermore λ1
0(X) > 0 then X has only one end (and

also Hm−1(X) = {0} if X is orientable).

Proof. Recall first that the spaces of L2 harmonic forms admit a reduced
L2 cohomology interpretation:

Hp(X) 
 {α ∈ L2(∧pT ∗ X), dα = 0}/dC∞
0 (∧p−1T ∗ X) ,

where closure is taken with respect to the L2 topology. Hence, if [α] ∈ H 1
0 (X)

is mapped to zero in H1(X), there is a sequence ( fk) of smooth functions with
compact support on X such that α = limL2 d fk . Since we have the inequality

‖d fk − d fl‖2
L2 ≥ λ0

0(X)‖ fk − fl‖2
L2 ,
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and since λ0
0(X) > 0, we conclude that this sequence ( fk) converges to some

f ∈ L2, so that α = d f . But α has compact support, hence f is locally constant
outside the compact set supp(α). Since all unbounded connected components
of X � supp(α) have infinite volume and since f ∈ L2, we see that f has
compact support, hence [α] = [d f ] = 0.

In the proof of the last proposition, we have used the fact that X has only
one end as soon as H 1

0 (X) = {0}. Next result gives a sort of converse.

Proposition 5.2. If X = Xm is an open manifold having one end, and if every
twofold normal covering of X has also one end, then

H 1
0 (X, Z) = {0} .

In particular, H 1
0 (X) = {0} and if furthermore X is orientable, then

Hm−1(X, Z) = {0} .

Proof. Since X has only one end, we have an exact sequence

{0} → H 1
0 (X, Z) → H 1(X, Z) .

Pick an element in H 1
0 (X, Z), and consider its image σ in H 1(X, Z). With σ

is associated a continuous map f : X → S
1, and an induced homomorphism

f∗ : π1(X) → Z. Because σ has a representative with compact support, f is
constant outside a compact set C ; this constant is normalized to be 1.

Assume that σ is not zero, then f∗ is not zero either, and has image nZ,
with n 	= 0. Then � = ker{ f∗ mod 2nZ} is a normal subgroup of index 2
in π1(X). Let X̂ be the corresponding twofold normal covering of X , and let
π : X̂ → X be the covering map. Putting s(z) = z2, we have a commutative
diagram:

X̂
f̂−−−→ S

1

π

$ $s

X
f−−−→ S

1

But now X̂ �π−1(C) has at least two unbounded connected components. Indeed,
on the open set X̂ � π−1(C), f̂ is locally constant, taking both values 1 and
−1. Hence a contradiction, so σ must be trivial in H 1(X, Z), and eventually
H 1

0 (X, Z) = {0}.
Although we shall not need it in the sequel, let us mention that we obtain

a new proof of a result due to Z. Shen and C. Sormani [SS] as a corollary of
Proposition 5.2.
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Proposition 5.3. If X = (Xm, g) is a complete oriented Riemannian manifold
with non negative Ricci curvature, then either:

(1) Hm−1(X, Z) = {0};
(2) or X is the determinant line bundle of a non orientable compact manifold with

non negative Ricci curvature, and in that case Hm−1(X, Z) 
 Z;
(3) or X is isometric to � × R with � an oriented compact Riemannian manifold

with non negative Ricci curvature, and in that case Hm−1(X, Z) 
 Z.

Proof. According to a famous result of J. Cheeger and D. Gromoll [CG],
either X has one end or X is isometric to �×R, with � as in the statement (3).
Assume that the first possibility holds. Then we have the same alternative for
any twofold normal covering X̂ of X . If X̂ has only one end, we can apply
Proposition 5.2 and obtain (1).

Thus, let us assume instead that X̂ is isometric to �̂ × R, with �̂ as
before. This means that X = (�̂ × R)/{Id, γ } for some isometry γ of �̂ × R.
By the Cheeger-Gromoll result, a line in �̂ × R is of the form {θ} × R, where
θ ∈ �̂. Since γ must preserve the set of lines in �̂ × R, we see that there
exist a ∈ R and an isometry f of �̂ such that γ (θ, t) = ( f (θ), ±t + a). Since
also γ ◦ γ = Id, we must have γ (θ, t) = ( f (θ), −t + a). And as X is oriented,
we see that f has to reverse orientation on �̂.

5.2. – The case of general hyperbolic manifolds

We are now able to give the second topological application of Theorem 4.8.

Theorem 5.4. Assume that H
n
K 	= H

2
R. If δ(�) < ρ+√

α1 and if all unbounded
connected components of the complement of any compact subset of �\H

n
K have

infinite volume, then �\H
n
K has only one end, and

Hdn−1(�\H
n
K, Z) = {0} .

Remark 5.5. Except maybe for K = O, we know from Theorem 2.4 that
α1 = (ρ − 1)2, hence the assumption δ(�) < ρ + √

α1 in this statement is
equivalent to δ(�) < 2ρ − 1. Since in any case δ(�) ≤ 2ρ, we see that our
assumption is not too restrictive.

Proof. With the hypotheses of the theorem, we know from Theorem 4.8
that λ1

0(�\H
n
K) > 0. By Theorem A, we also have λ0

0(�\H
n
K) > 0, except if

δ(�) = 2ρ. Since we have assumed δ(�) < ρ + √
α1, this cannot occur, as

shown by (2.18).
So, the result follows from Proposition 5.1 and Proposition 5.2.

Actually, the assumption on δ(�) in the previous result is useless in the
quaternionic and octiononic cases:
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Corollary 5.6. Let K = H or O. If all unbounded connected components of
the complement of any compact subset of �\H

n
K have infinite volume, then �\H

n
K

has only one end, and
Hdn−1(�\H

n
K, Z) = {0} .

Proof. The hypothesis implies that �\H
n
K itself has infinite volume, so

that we can use a rigidity result due to K. Corlette [(Cor], Theorem 4.4; see
also [Olb2], Corollary 4.22 for a slight refinement).

Suppose first that K = H. According to Corlette’s result, we have δ(�) ≤
4n. In particular we always have δ(�) ≤ 4n < 4n + 1 = 2ρ − 1, so that
Theorem 5.4 applies.

Suppose now that K = O. In that case Corlette’s result says that δ(�) ≤
16. M. Olbrich kindly communicated to us that he was able to calculate the
value of α1, namely he found α1 = 97, so that ρ + √

α1 > 20 > δ(�) and
we can use again Theorem 5.4. Another possible argument is the following:
Theorem A implies that λ0

0(�\H
2
O) ≥ 96 = 6×16, and since �\H

2
O is an Einstein

manifold with Ricci curvature equal to −36, the Bochner formula (4.6) yields
λ1

0(�\H
2
O) ≥ 60 > 0, so that H1(�\H

2
O) = {0}. Thus we can use Proposition 5.1

and Proposition 5.2.

Remark 5.7. Our Corollary 5.6 extends a result of K. Corlette about
convex cocompact quotients of quaternionic and octonionic hyperbolic spaces
(see [Cor], Theorem 7.1).

As another consequence of Theorem 5.4, we give a simple proof of a result
due to Y. Shalom ([Sha], Theorem 1.6), which we shall actually improve a bit
later on in the SU (n, 1) case (see Corollary 5.14).

Corollary 5.8. Assume that� = A∗C B is a cocompact subgroup of SOe(n, 1)

(with n ≥ 3) or SU (n, 1) (with n ≥ 2) which is a free product of subgroups A and B
over the amalgamated subgroup C. Then δ(C) ≥ 2ρ − 1.

Proof. Let K be either R or C. By a recent result of G. Besson, G. Courtois
and S. Gallot [BCG2] we have

Hdn−1(C\H
n
K) 	= {0} .

But C\H
n
K is a Riemannian covering of a compact hyperbolic manifold, so

its injectivity radius has a uniform positive lower bound and the unbounded
connected components of the complement of any compact subset of C\H

n
K

must have infinite volume. To avoid contradiction with Theorem 5.4 (and
Remark 5.5), we must have δ(C) ≥ 2ρ − 1.

Remark 5.9. In his paper, Y. Shalom proves actually a better result in
the complex case, namely, that the inequality is strict. Besides, [BCG2] gives
a substantial generalization of Shalom’s result: if A ∗C B is the fundamental
group of a compact Riemannian manifold (Xm, g) with sectional curvature less
than −1, then δ(C) ≥ m − 2. Also, the equality case is characterized when X
is real hyperbolic and m ≥ 4.
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Note that Corollary 5.8 is meaningless in the quaternionic or octonionic
case. Indeed, since Sp(n, 1) and F4(−20) satisfy the property (T ) of Kazhdan, it
is well known that none of their cocompact subgroups can be an almagamated
product (see Section 6.a in [HV]).

5.3. – The case of locally symmetric spaces which have the Kazhdan
property

Let us give now an analogue of Corollary 5.6 in the case of more general
noncompact locally symmetric spaces whose isometry group satisfies Kazhdan’s
property (T ).

Theorem 5.10. Let G/K be a symmetric space without any compact factor
and without any factor isometric to a real or complex hyperbolic space. Assume that
� ⊂ G is a torsion-free, discrete subgroup of G such that �\G/K is non compact
and that all unbounded connected components of the complement of any compact
subset of �\G/K have infinite volume. Then �\G/K has only one end, and

Hm−1(�\G/K , Z) = {0} ,

where m = dim(G/K ).

Proof. Under our assumptions G satisfies property (T ), and the quotients
�\G/K and �\G have infinite volume. Thus the right regular representation
of G on L2(�\G) has no nontrivial almost invariant vector, and this implies
that λ0

0(�\G/K ) > 0: if instead we had λ0
0(�\G/K ) = 0, we could construct a

sequence ( fl) of smooth functions with compact support on �\G/K such that
‖d fl‖L2 ≤ ‖ fl‖L2/ l. By pulling back this sequence to �\G, we would obtain
a sequence of nontrivial almost invariant vectors in L2(�\G), which is absurd.

Next, the fact that H1(�\G/K ) = {0}, and thus that �\G/K has only one
end by Proposition 5.1, is also a heritage of the property (T ). Let us elaborate.

According to N. Mok [Mok] and P. Pansu [Pan], the property (T ) for the
group G can be shown with a Bochner type formula which is in fact a special
case of a refinement of the Matsushima formula obtained by N. Mok, Y. Siu
and S. Yeung [MSY]. In particular there exists on G/K (and on �\G/K ) a
parallel curvature tensor B which is positive definite on symmetric 2-tensors
having vanishing trace, and such that for any L2 harmonic 1-form α on �\G/K
we have:

(5.1)
∫

�\G/K
B(∇α, ∇α)d vol = 0 .

Since α is closed and coclosed, ∇α is symmetric and has vanishing trace, thus
formula (5.1) implies that α = 0; hence H1(�\G/K ) = {0}. Note that (5.1)
is usually stated in the finite volume setting. But the extension to noncompact
�\G/K presents no difficulties: if α is a L2 harmonic 1-form on �\G/K , it
is easy to check that ∇α is also L2; thus, the integration by part procedure
required to derive (5.1) can be justified by standard cut-off arguments.

Since our discussion clearly applies to any finite covering of �\G/K , we
finish the proof by employing Proposition 5.2.
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Remark 5.11. Assume instead that �\G/K has finite volume. If we
have also rankQ � ≥ 2, the Borel-Serre compactification of �\G/K implies that
�\G/K has only one end.

5.4. – The specific case of complex hyperbolic manifolds

Besides the result of Theorem 5.6, we have for complex hyperbolic mani-
folds the following statement.

Theorem 5.12. Let � be a discrete and torsion-free subgroup of SU (n, 1),

with n ≥ 2. Assume that the limit set �(�) is not the whole sphere at infinity S
2n−1,

that δ(�) < 2n, and that the injectivity radius of �\H
n
C has a positive lower bound.

Then �\H
n
C has only one end, and

H2n−1(�\H
n
C, Z) = {0} .

Note that the hypotheses in this theorem are always satisfied in the convex
cocompact setting.

Proof. By Theorem A, the hypothesis δ(�)<2n implies that c=λ0
0(�\H

n
C)>0.

Thus the following Poincaré inequality holds:

(5.2) ∀ f ∈ C∞
0 (�\H

n
C), c‖ f ‖2

L2 ≤ ‖d f ‖2
L2 .

On the other hand, our assumption on the injectivity radius implies that the
volume of geodesic balls of radius 1 is uniformly bounded from below. Since
the Ricci curvature of �\H

n
C is constant, a result by N. Varopoulos (see [Var],

or Theorem 3.14 in [Heb]) asserts that, for some other constant c′ > 0, we
have the Sobolev inequality:

(5.3) ∀ f ∈ C∞
0 (�\H

n
C), c′‖ f ‖2

Ln/(n−1) ≤ ‖d f ‖2
L2 + ‖ f ‖2

L2 .

Gathering inequalities (5.2) and (5.3), we obtain the following Euclidian type
Sobolev inequality: for some constant c′′ > 0,

(5.4) ∀ f ∈ C∞
0 (�\H

n
C), c′′‖ f ‖2

Ln/(n−1) ≤ ‖d f ‖2
L2 .

Next, suppose that there exists a compact set C ⊂ �\H
n
C such that (�\H

n
C)� C

has at least two unbounded connected components, and let 
 be one of them.
According to Theorem 2 in [CSZ], thanks to (5.4) we can find a harmonic
function u on �\H

n
C, which is valued in [0, 1] and satisfies∫

�\Hn
C

|du|2d vol < +∞ ,

as well as

(5.5) lim
m→∞
m∈


u(m) = 0 and lim
m→∞
m 	∈


u(m) = 1 .
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By Lemma 3.1 in [Li], u must be pluriharmonic. In particular, u is harmonic
on any complex submanifold of �\H

n
C.

Now, let p ∈ S
2n−1

� �(�). Then there exists a neighbourhood U of p
in H

n
C ∪ S

2n−1, such that U is mapped isometrically in �\H
n
C by the covering

map π : H
n
C → �\H

n
C. But we can find a holomorphic map F : D → U such

that F(∂D) = F(D) ∩ S
2n−1. For instance, if p = (1, 0, . . . , 0) then for some

ε > 0 small enough,

z �→ F(z) = (
√

1 − ε2, εz, 0, . . . , 0)

is such a map. So u ◦ π ◦ F is a bounded harmonic function on D, and
takes a constant value on ∂D (0 or 1). Hence u is constant on π ◦ F(D)

and, by the Maximum Modulus theorem, u must be constant everywhere. This
contradicts (5.5), so that �\H

n
C must have only one end.

The vanishing result follows again from Proposition 5.2.

Remark 5.13. Actually the proof of Theorem 5.12 extends to the case
of any complete Kähler manifold containing a proper holomorphic disc and
verifying the Sobolev estimate (5.4). We recover thus a result of J. Kohn
and H. Rossi [KR] which asserts that a Kähler manifold which is pseudo-
convex at infinity has only one end. There is a lot of literature which deals
with the number of ends of complete Kähler manifolds, see for instance the
references [LiR] and [NR].

As an immediate consequence of our last theorem, we can complement the
result of Y. Shalom that we recovered in Corollary 5.8:

Corollary 5.14. Assume that� = A∗C B is a cocompact subgroup of SU (n, 1)

(with n ≥ 2) which is a free product of subgroups A and B over an amalgamated
subgroup C. Then either 2n − 1 ≤ δ(C) < 2n and �(C) = S

2n−1, or δ(C) = 2n.
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nichtkompakten Typ, Commun. Math. Helv. 57 (1982), 445-468.

[Lot] J. Lott, Heat kernels on covering spaces and topological invariants, J. Differential
Geom. 35 (1992), 471-510.

[Maz] R. Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential
Geom. 28 (1988), 309-339.

[MM] R. Mazzeo – R. Melrose, Meromorphic extension of the resolvent on complete spaces
with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), 260-310.

[MP] R. Mazzeo – R. S. Phillips, Hodge theory on hyperbolic manifolds, Duke Math. J.
60 (1990), 509-559.

[MW] R. Miatello – N. R. Wallach, The resolvent of the Laplacian on locally symmetric
spaces, J. Differential Geom. 36 (1992), 663-698.

[Mok] N. Mok, Harmonic forms with values in locally constant Hilbert bundles, Proceedings
of the Conference in Honor of Jean-Piere Kahane (Orsay, 1993), J. Fourier Anal. Appl.
special issue (1995), 433-453.

[MSY] N. Mok – Y. T. Siu – S. K. Yeung, Geometric superrigidity, Invent. Math. 113
(1993), 57-83.



746 GILLES CARRON – EMMANUEL PEDON

[Nay] S. Nayatani, Patterson-Sullivan measure and conformally flat metrics, Math. Z. 225
(1997), 115-131.

[NR] T. Napier – M. Ramachandran, Structure theorems for complete Kähler manifolds
and applications to Lefschetz type theorems, Geom. Funct. Anal. 5 (1995), 809-851.

[Olb1] M. Olbrich, L2-invariants of locally symmetric spaces, Doc. Math. 7 (2002), 219-237.

[Olb2] M. Olbrich, Cohomology of convex cocompact groups and invariant distributions on
limit sets, preprint, Universität Göttingen.

[OT] T. Ohsawa – K. Takegoshi, Hodge spectral sequence on pseudoconvex domains,
Math. Z. 197 (1988), 1-12.

[Pan] P. Pansu, Formules de Matsushima, de Garmland et propriété (T ) pour les groupes
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(UMR 6056)
Université de Reims
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