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On Volumes of Arithmetic Quotients of SO(1, n)

MIKHAIL BELOLIPETSKY

Abstract. We apply G. Prasad’s volume formula for the arithmetic quotients of
semi-simple groups and Bruhat-Tits theory to study the covolumes of arithmetic
subgroups of SO(1, n). As a result we prove that for any even dimension n
there exists a unique compact arithmetic hyperbolic n-orbifold of the smallest
volume. We give a formula for the Euler-Poincaré characteristic of the orbifolds
and present an explicit description of their fundamental groups as the stabilizers of
certain lattices in quadratic spaces. We also study hyperbolic 4-manifolds defined
arithmetically and obtain a number theoretical characterization of the smallest
compact arithmetic 4-manifold.
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51M25 (secondary).

1. – Introduction

In this article we consider the problem of determining the smallest hyper-
bolic manifolds and orbifolds defined arithmetically. This problem has a long
history which goes back to Klein and Hurwitz. Its solution for the hyperbolic
dimension 2 was known to Hurwitz which allowed him to write down his fa-
mous bound for the order of the automorphisms group of a Riemann surface.
The first extremal example for the bound is the Klein quartic. Many interesting
facts about this classical subject and far reaching generalizations can be found
in the book [Le]. For the dimension 3 the problem is also completely solved
but the results are quite recent [CF], [CFJR]. For the higher dimensions very
little is known.

Probably the most interesting case among the dimensions higher than 3 is
in dimension 4. Recently it has attracted particular attention due to a possible
application in cosmology: closed orientable hyperbolic 4-manifolds arise as
the doubles of the real tunnelling geometries if the cosmological constant is
assumed to be negative. In this context there are physical arguments in favor of
using the smallest volume orientable hyperbolic 4-manifold as a model of the
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Lorentzian spacetime [Gi]. In view of the known facts and conjectures for the
small dimensions it is quite natural to look for the smallest manifold among
the arithmetic ones.

In this article we apply G. Prasad’s volume formula for the arithmetic quo-
tients of semi-simple groups and Bruhat-Tits theory to investigate the particular
case of the group SO(1, n) whose symmetric space is the hyperbolic n-space.
Since our primary interest lies in dimension 4, at some point we restrict our
attention to even dimensions and in the final section even more restrictively, we
consider only the SO(1, 4)-case. The main results are given in Theorems 4.1
and 5.5.

The first theorem says that the smallest compact arithmetic orbifold in any
even dimension greater or equal than 4 is unique and defined over the field
Q[

√
5], it also provides an explicit description for the orbifold and a formula

for its volume. Let us remark that the quadratic number field Q[
√

5] has the
interesting property that its fundamental unit ε = (1 + √

5)/2 is the “golden
section” unit which was already known to Greek mathematicians. Since for
the dimension 2 the situation is different (the field of definition of the smallest
hyperbolic 2-orbifold is Q[cos(2π/7)]) this result was a little unexpected for us.

The problem of determining the smallest arithmetic manifold is much more
delicate than that for the orbifolds. Here we are currently able to present only
partial results and only in dimension 4. Still our Theorem 5.5 gives an explicit
classification of all the possible candidates and essentially reduces the problem
of finding the smallest arithmetic 4-manifold to an extensive computation, which
we hope is practically possible.

Acknowledgments. I would like to thank Professor G. Harder for helpful
discussions and encouragement. I would also like to thank Wee Teck Gan
for the helpful email correspondence. Finally, I would like to thank Professor
S. Lang for reading an early version of this paper and for his suggestions about
the presentation. While working on this paper I was visiting Max-Planck-Institut
für Mathematik in Bonn, I appreciate the hospitality and financial support from
MPIM.

2. – Arithmetic subgroups

2.1. – Hyperbolic n-space can be obtained as a symmetric space associated
to the orthogonal group G of type (1, n):

Hn = G/KG = SO(1, n)o/SO(n)
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(KG denotes a maximal compact subgroup of G). This way the connected
component of identity of SO(1, n) acts as a group of isometries of Hn . A
discrete subgroup � of G defines a locally symmetric space X = �\G/KG

which in our case will be an orientable hyperbolic orbifold or manifold if �

is torsion-free. We will be interested in hyperbolic orbifolds which arise from
arithmetic subgroups of G.

Let G be a connected semi-simple Lie group, H/k is a semi-simple al-
gebraic group defined over a number field k and φ : H(k ⊗ R) → G is a
surjective homomorphism with a compact kernel. We consider H as a k-
subgroup of GL(n) for n big enough and define a subgroup � of H(k) to
be arithmetic if it is commensurable with the subgroup of k-integral points
H(k) ∩ GL(n,Ok), that is, the intersection � ∩ GL(n,Ok) is of finite index in
both � and H(k)∩ GL(n,Ok). The subgroups of G which are commensurable
with φ(�) are called arithmetic subgroups of G defined over the field k. It
can be shown that the notion of arithmeticity does not depend on a particular
choice of the k-embedding of H into GL(n).

We call an orbifold or manifold X = �\G/KG arithmetic if � is an
arithmetic subgroup of G, and we say that X is defined over k if k is the field
of definition of �.

Arithmetic subgroups of the orthogonal groups can be constructed as fol-
lows. Let now k be a totally real algebraic number field with the ring of
integers O and let f be a quadratic form of type (1, n) with the coefficients
in k such that for any non-identity embedding σ : k → R the conjugate form
f σ is positive definite (such an f is called admissible form). Then given an
O-integral lattice L in kn+1 the group � = GL = {γ ∈ G ∼= SO( f )o | Lγ = L}
is an arithmetic subgroup of G defined over k.

It can be shown that for even n this construction gives all arithmetic
subgroups of G = SO(1, n)o up to commensurability and conjugation in G.
For odd n there is also another construction related to quaternion algebras, and
for n = 7 there is a special type of arithmetic subgroups related to the Cayley
algebra.

2.2. – Looking for the hyperbolic orbifolds and manifolds of the smallest
volume we will be interested in the maximal arithmetic subgroups of G. The
maximal arithmetic subgroups can be effectively classified in terms of the arith-
metic data and the local structure of G. In order to discuss the classification
picture we will give some more definitions.

Let G/k be a connected semi-simple algebraic group defined over a number
field k, and let Vf (resp. V∞) denote the set of finite (resp. infinite) places of k.
By [BT] for a local place v ∈ Vf the group G(kv) is endowed with the structure
of Tits system of affine type (G(kv), Bv, Nv, �v). A subgroup Iv ⊂ G(kv) is
called Iwahori subgroup if it is conjugate to Bv . A subgroup Pv ⊂ G(kv) which
contains an Iwahori subgroup is called parahoric. A collection P = (Pv)v∈Vf

of parahoric subgroups Pv is said to be coherent if
∏

v∈V∞ G(kv) · ∏v∈Vf
Pv is

an open subgroup of the adèle group G(A). A coherent collection of parahoric
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subgroups P = (Pv)v∈Vf defines an arithmetic subgroup � = G(k)
⋂ ∏

v∈Vf
Pv

of G(k) which will be called the principal arithmetic subgroup determined by P .
We will also call the corresponding subgroups of the Lie group G principal
arithmetic subgroups.

If the group G/k is simply connected and adjoint then the maximal arith-
metic subgroups of G are exactly the principal arithmetic subgroups defined
by coherent collections of maximal parahoric subgroups. For the other forms
the situation becomes more complicated, but still it is true that any maximal
arithmetic subgroup is a normalizer in G of some principal arithmetic sub-
group [Pl]. The problem of classification of the principal arithmetic subgroups
which give rise to the maximal subgroups was studied in [CR] where, in par-
ticular, a criterion for the groups of type Br (this is the type of SO(1, 2r)) is
given. However, the criterion of Ryzhkov and Chernousov is a little subtle: it
provides explicit conditions on the collections of parahoric subgroups but it does
not always guarantee the existence of the global subgroup with the prescribed
local properties. Let us consider this more carefully.

2.3. – Let � be a principal arithmetic subgroup of G/k defined by∏
v∈Vf

Pv ⊂ G(A f ) = ∏′
v∈Vf

G(kv) (where 	′ denotes the restricted product
with respect to G(Ov)). For each place v the type of Pv depends on the
splitting type of G(kv). We claim that there is a natural restriction on the
possible splitting types of G(kv) which, in turn, implies a restriction on types
of Pv .

In [K] to any reductive group G/k Kottwitz assigned an invariant ε(G) ∈
{±1}, which can be computed explicitly for G over the completions of k and
for which the product formula holds. Thus, for G over a nonarchimedean local
field

ε(G(kv)) = (−1)r(Gqs )−r(G)

(Gqs denotes the quasi-split inner form of G and r(G) is the kv-rank of the
derived group of G), and for the archimedean places

ε(G(kv)) = (−1)q(Gqs )−q(G)

(q(G) is a half of the dimension of the symmetric space attached to G(kv)).
From the product formula for ε(G) we immediately obtain that the total number
of places for which ε = −1 is even. This is what we call the parity condition on
the number of nonsplit places. Let us see what does it mean for our semi-simple
groups of type Br .

There are two forms Br and 2 Br of type Br over a nonarchimedean local
field, the first form is split and the second is a non quasi-split form [T]. In the
first case the kv-rank r(G) = r and in the second case r(G) = r − 1, and also
always r(Gqs) = r . So for v ∈ Vf we have:

ε(G(kv)) =
{

1 if G is split over kv ,

−1 otherwise .
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Over the archimedean places of k by the admissibility condition G(kv) is com-
pact for all v ∈ V∞ except at one place, say v = I d, which implies:

q(G(kv)) = 0 for v 
= I d ,

q(G(kI d)) = r .

For the quasi-split form we have:

q(Gqs) = 1

2
(dim(Gqs) − dim(KGqs ))

= 1

2

(
dim(SO(r + 1, r)) − dim(S(O(r + 1) × O(r)))

) = (r2 + r)/2 .

So for the place over which G is non-compact (v = I d):

ε(G(kv)) =
{

1 if r ≡ 0, 1 (mod 4) ,

−1 if r ≡ 2, 3 (mod 4) ;
and for all the other infinite places:

ε(G(kv)) =
{

1 if r ≡ 0, 3 (mod 4) ,

−1 if r ≡ 1, 2 (mod 4) .

This implies, for example, that over a totally real quadratic field the number
of nonarchimedean places over which G does not split is odd for odd r and
even for r even. So we have a parity condition on the number of places over
which G has type 2 Br . As we already remarked, this gives a restriction on
the possible types of the collections of parahoric subgroups of G. This kind
of restriction can not be seen in [CR], but it appears to be important for the
applications.

It can be checked using the stabilizers of lattices at least for the orthogonal
groups that this condition is also sufficient for the existence of the prescribed
collections of parahoric subgroups.

2.4. – From the general theory of arithmetic subgroups of semi-simple Lie
groups it follows that any arithmetic subgroup � is a discrete subgroup of G
and the volume of �\G/KG is finite. It is also known that � ⊂ SO(1, 2r)o is
cocompact if and only if the corresponding quadratic form f does not represent
zero non-trivially over k, which for n = 2r ≥ 4 means that � is non-cocompact
if and only if it is defined over Q. We are going to investigate the volumes
of �\Hn .

For the future reference we fix some notations. Throughout this paper k
will denote a totally real algebraic number field with the discriminant Dk , ring
of integers O and adèle ring A. The set of places V of k is a union of the set
V∞ of archimedean and Vf of finite places. For v ∈ Vf , as usually, kv denotes
the completion of k at v, Ov is the ring of integers of kv with the uniformizer
πv and the residue degree #Ov/πv = qv .
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3. – The volume formula

3.1. – In a fundamental paper [P] G. Prasad obtained a formula for
the volume of a principal arithmetic subgroup of an arbitrary quasi-simple,
simply connected group. This is an extensive generalization of the results of
Siegel, Tamagawa, Harder, Borel and other people who worked in this direction.
Gross has extended Prasad’s formula to the arithmetic subgroups of reductive
groups [Gr]. From these results we can write down a closed formula for the
volume of a principal arithmetic subgroup � of G = SO(1, 2r)o.

We use the Euler-Poincaré normalization of the Haar measure on G(A) in
the sense of Serre [S]. Namely, for a discrete subgroup � with finite covolume,
we then have:

|χ(�\G)| = µE P(�\G) .

For a principal arithmetic subgroup � associated to a coherent collection of
parahoric subgroups P = (Pv)v∈Vf :

(1) µE P(�\G) = µ(�\G) = c∞ D
1
2 dim G
k

(
r∏

i=1

mi !

(2π)mi +1

)[k:Q]

τ(G)E
∏
v∈T

λv ,

where

– c∞ = 2 is the Euler-Poincaré characteristic of the compact dual of the
symmetric space G/SO(n) (see [S], Section 3 and also [BP], Section 4
for the discussion);

– dimension dim G and exponents {mi } of our group G of type Br are well
known to be dim G = 2r2 + r and mi = 2i − 1 (i = 1, . . . , r) [B];

– the Tamagawa number τ(G) = 2 (see [W]);
– E is an Euler product which in our case is given by E = ζk(2) · . . . · ζk(2r)

(ζk(.) is the Dedekind zeta function of k);
– finally, the rational factors λv ∈ Q correspond to the (finite) set T of the

finite places of k over which Pv 
∼= Go
qs(Ov), where Go

qs is the identity
component of the quasi-split inner form of G.

This formula gives us the (generalized) Euler characteristic of �. The
hyperbolic volume of �\Hn can be obtained from |χ(�\G)| by multiplying by
the half of the volume of the unit sphere Sn in Rn+1:

vol(�\H2r ) = (2π)r

1 · 3 · . . . · (2r − 1)
· |χ(�\G)| .

Note, that in odd dimensions the Euler characteristic vanishes but we can still
obtain a similar formula for the covolume of an arithmetic subgroup without
passing through the Euler-Poincaré measure.
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3.2. – The λ-factors in (1) are the most subtle matter. Fortunately, we can
explicitly compute the factors using the Bruhat-Tits theory. In [GHY] this was
done for the parahoric subgroups which arise as the stabilizers of the maximal
lattices. We will extend the table from [GHY] for the odd special orthogonal
groups to the other maximal parahorics.

Consider orthogonal group G = SO2r+1 over a nonarchimedean local field
kv whose residue field O/π has order q. By [T] the group G belongs to one
of the two possible types: Br or 2 Br . For r > 2 the local Dynkin diagrams
and relative local index for the nonsplit type are given on Figure 1. For r = 2
there is an isogeny between the groups of types B and C , in [T] this case is
represented by the diagrams of C2 and 2C2. We leave to the reader to check
that (with the suitable notations) all our computations remain to be valid for
this case as well.

Fig. 1.

Similarly to [CR], having the local diagrams we can enumerate all the types
of the maximal parahoric subgroups P of G, and the type defines a parahoric
subgroup up to conjugation in G. However, some parahoric subgroups which
are not conjugate in the simply connected group can become conjugate in the
adjoint group. This happens exactly when the diagrams defining the types of
the parahoric subgroups are symmetric with respect to an automorphism of the
entire diagram. So, in our case types �1\{α0} and �1\{α1} define conjugate
subgroups.

For each type, using results of Bruhat and Tits ([BT], the account of what
we need can be found in [T], Section 3), we can determine the type of the
maximal reductive quotient G of the special fiber G of the Bruhat-Tits group
scheme associated with P and also the type of the reductive quotient G

o
qs of

the smooth affine group scheme Go
qs which was defined in [Gr], Section 4

for the quasi-split inner form of G (see also [P]). Now, using the tables of
orders of finite groups of Lie type (e.g. [Ono], Table 1) for each of the cases
the corresponding λ-factor is readily computed by the formula from [GHY],
Section 2:

λ = λ(P) = q−N (G
o
qs ) · #G

o
qs(O/π)

q−N (G) · #G(O/π)

(N (G) denotes the number of positive roots of G over the algebraic closure of
the residue field O/π ). We list the results in the following table.
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Table 1

maximal type θv G G
o
qs λ

�1\{α0} SO2r+1 SO2r+1 1

�1\{α0, α1} GL1 × SO2r−1 SO2r+1
q2r − 1

q − 1

�1\{αi }, i = 2, . . . , r − 1 O2i × SO2(r−i)+1 SO2r+1
(qi + 1)

∏r
ν=i+1(q

2ν − 1)

2 · ∏r−i
ν=1(q

2ν − 1)

�1\{αr } O2r SO2r+1
qr + 1

2

�2\{α0} 2 O2 × SO2r−1 SO2r+1
q2r − 1

2(q + 1)

�2\{αi }, i = 1, . . . , r − 2 2 O2(i+1) × SO2(r−i)−1 SO2r+1
(qi+1 − 1)

∏r
ν=i+2(q

2ν − 1)

2 · ∏r−i−1
ν=1 (q2ν − 1)

�2\{αr−1} 2 O2r SO2r+1
qr − 1

2

3.3. – Proposition. For any rank r ≥ 2 and Pv 
∼= Go
qs(Ov) we have:

1) λv > 1;
2) λv > 2 except for the case r = 2, qv = 2, θv = �2\{α1}.

Proof. If Pv is a maximal parahoric subgroup then the statement reduces to
an easy check of the values of λ in Table 1. For an arbitrary parahoric subgroup
Pv ⊂ G(kv) there exists a maximal parahoric P which contains Pv . By the
formula for λ we get λ(Pv) = [P : Pv]λ(P), so the λ-factors of non-maximal
parahoric subgroups also satisfy the conditions (1) and (2).

We remark that as in the simply connected case ([BP], Section 3.1 and
Appendix A) the minimal values of λv correspond to the special parahoric
subgroups, i.e. those for which the diagram representing θv is the Coxeter
diagram of the underlying finite reflection group.

3.4. – Example. Let us consider the case when f is the unimodular
integral quadratic form −x2

0 + x2
1 + . . . + x2

n (n is even) and � is the stabilizer
of a maximal lattice L on which f takes integral values. Then by [GHY] the
group � is a principal arithmetic subgroup of SO( f )o = SO(1, n)o and the
types of the corresponding parahoric subgroups can be determined from the local
invariants of the quadratic form f . We have k = Q, O = Z, v runs through
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the primes of Q, the determinant δv( f ) = ±1 ∈ Q×, the Hasse-Witt invariant
wv( f ) = ε(SO( f ; kv)

o) is 1 for v 
= 2 and w2( f ) = 1 if n ≡ 0, 2 (mod 8),
w2( f ) = −1 if n ≡ 4, 6 (mod 8). So we take the values for λv from the
Table 4 in [GHY] and immediately obtain:

|χ(�)| = 2
r∏

i=1

(2i − 1)!

(2π)2i
2

r∏
i=1

ζ(2i)λ2

= 4
r∏

i=1

|B2i |
4i

·
{

1 if r ≡ 0, 1(mod 4) ,

6−1(22r − 1) if r ≡ 2, 3(mod 4)

(B2i are Bernoulli numbers: B2 = 1/6, B4 = −1/30, B6 = 1/42 . . . ). This
can be compared with [RT] where the authors evaluated the Siegel’s limit, but
the results will not coincide. The reason is that Ratcliffe and Tschantz consider
the arithmetic subgroups SO(1, n; Z) of G which are the stabilizers of not
maximal but unimodular lattices in the corresponding quadratic spaces. The
relation between these two cases is not straightforward, but it appears that it is
still possible to use a similar approach to obtain the covolumes of the stabilizers
of the unimodular lattices and, in particular, to deduce the results of [RT]. We
will explain this in detail in [BG].

3.5. – We now return to the maximal arithmetic subgroups. As it was
already mentioned in Section 2.2 any maximal arithmetic subgroup � of G can
be obtained as a normalizer in G of a principal arithmetic subgroup. So, in
order to have a control over the volumes of � = NG(�) we need an estimate
for the index [� : �]. Following [BP] such an estimate can be obtained from
an exact sequence for the Galois cohomology of k due to Rohlfs [R]. We have
([BP], Section 2.10):

[� : �] ≤ #
∏
v∈S

C(kv) · #H 1(k, C̃)ξ ·
∏

v∈V \S

#�θv ,

where C is the center of G, C̃ is the center of its simply connected inner
form, �θv is the subgroup of the group of automorphisms of the local Dynkin
diagram of G(kv) stabilizing the type θv and all the other notations can be
found in [BP]. In our case the center of G is trivial, S = V∞, so we get

(2) [� : �] ≤ #H 1(k, C̃)ξ ·
∏

v∈Vf

#�θv .

Let Tns denote the (finite) set of places of k for which G does not split over kv .
By [BP], Proposition 5.1 applied to our group

(3) #H 1(k, C̃)ξ ≤ hk · 2[k:Q]+#Tns .
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By [BP], the proof of Proposition 6.1, the class number hk can be estimated as

(4) hk ≤ 102
(

π

12

)[k:Q]

Dk

(this bound follows from the Brauer-Siegel theorem and Zimmert’s bound for
the regulator of k. We refer to [BP] for the details).

We obtain:

(5)

µ(�\G)

≥ 1

hk2[k:Q]+#Tns
∏

v∈Vf

#�θv

c∞ D
1
2 dim G
k

(
r∏

i=1

mi !

(2π)mi +1

)[k:Q]

τ(G)E
∏
v∈T

λv

≥ 4D
1
2 dim G−1
k

102

(
π

6

)[k:Q]

(
r∏

i=1

mi !

(2π)mi +1

)[k:Q]

E
∏
v∈T

λv

 ∏
v∈Vf

#�θv

−1

2−#Tns .

The group �θv is trivial if G(kv) is nonsplit or θv = �1\{α0} and has order at
most 2 in all the rest of the cases, so we always have

∏
v∈T

λv

 ∏
v∈Vf

#�θv

−1

2−#Tns ≥
∏
v∈T

λv

2
.

3.6. – Proposition.

E
∏
v∈T

λv

 ∏
v∈Vf

#�θv

−1

2−#Tns > 1 .

Proof. Except for the case r = 2 and there exist v ∈ V (k) with qv = 2 the
statement immediately follows from Proposition 3.3 (2). For the remaining case
we need to split the factors corresponding to the 2-adic places from the Euler
product ζk(2). The meaning of this is that in order to make the estimate we
need to consider (almost) the actual volumes of certain parahoric subgroups, not
just their quotients by the volume of the standard parahoric which are captured
in the λ-factors:

ζk(2)ζk(4)
∏
v∈T

qv=2

λv

2

∏
v∈T

qv 
=2

λv

2
> ζk(2)

∏
v∈T

qv=2

λv

2
≥ ζ ′

k(2)
∏
v∈T

qv=2

1

1 − 2−2

22 − 1

4
> 1.
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4. – Orbifolds

4.1. – Theorem. For any n = 2r ≥ 4 there exists a unique compact orientable
arithmetic hyperbolic n-orbifold On

min of the smallest volume. It is defined over the
field Q[

√
5] and has Euler characteristic

|χ(On
min)| = λ(r)

N (r)4r−1

r∏
i=1

|ζ
Q[

√
5](1 − 2i)| ,

where: λ(r) = 1 if r is even and λ(r) = 2−1(4r − 1) if r is odd;
N (r) is a positive integer, ≤ 4 if r is even, and ≤ 8 if r is odd.

Proof. 1. We are looking for a maximal arithmetic subgroup of G =
SO(1, n)o of the smallest volume which is defined over k 
= Q.

Let k = Q[
√

5]. Then k is a totally real quadratic field of the smallest
discriminant Dk = 5. By (1) the volume is proportional to Dk

dim G/2 and
depends exponentially on the degree of the field (for big enough r ), so the
smallest orbifold On

0 = �n
0\Hn defined over k is a good candidate for On

min.
Let P = (Pv)v∈Vf (k) be a coherent collection of parahoric subgroups of G(k)

such that:

– if r is even Pv = G(Ov) for all v ∈ Vf ;
– if r is odd Pv = G(Ov) for all v except one with the residue characteristic 2,

for the remaining place v2 we choose Pv2 so that λv2 = (qr − 1)/2.

These collections of parahoric subgroups satisfy the conditions of the max-
imality criterion [CR] and the parity condition (Section 2.3). Let

�n
0 = G(k) ∩

∏
v

Pv .

So �n
0 is a principal arithmetic subgroup of G. Let

�n
0 = NG(�n

0) .

Then �n
0 is a maximal arithmetic subgroup. We have:

µ(�n
0\G) = 4 · 5r2+r/2C(r)2

r∏
i=1

ζk(2i) λ(r) ,

µ(�n
0\G) = µ(�n

0\G)

[�n
0 : �n

0]
= µ(�n

0\G)

N (r)
.

Here C(r) denotes the product
∏r

i=1(2i − 1)!/(2π)2i , λ(r) = λv2 is as in
the statement of the theorem and N (r) is the order of the group of outer
automorphisms of �n

0. By (2) and (3), N (r) ≤ 4 for even r and N (r) ≤ 8 for
odd r . Later on we will state a conjecture about the actual value of N (r).
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Consider the other groups defined over quadratic extensions of Q. Note,
that for odd r the set T (of “bad places”) should contain at least one place due to
the parity condition. For �n

0 we have chosen T in such a way that the λ-factor
in the volume formula has the smallest possible value for the groups defined
over Q[

√
5]. So let �n be a maximal arithmetic subgroup of G defined over a

totally real quadratic field k, k 
= Q[
√

5]. By inequality (5) and Proposition 3.6:

µ(�n\G) >
1

hk
· Dr2+r/2

k C(r)2 .

Now, except for the case k = Q[
√

2], r = 3:

1

hk
Dr2+r/2

k C(r)2 ≥ 4 · 5r2+r/2C(r)22λ(r)

≥ 4 · 5r2+r/2C(r)2
r∏

i=1

ζ
Q[

√
5](2i)λ(r) ≥ µ(�n

0\G) .

In the first inequality for Dk > 28 we used the bound (4) for the class number hk ,
for the remaining fields of the small discriminants the class numbers are known
to be equal to 1. The second inequality is provided by the following property
of ζ

Q[
√

5](s):

(∗)
r∏

i=1

ζ
Q[

√
5](2i) < 2 for any r .

The proof of (∗) is easy. Let again k = Q[
√

5].

P :=
r∏

i=1

ζk(2i) ≤
∞∏

i=1

ζk(2i) = ζk(2)

∞∏
i=2

ζk(2i) ≤ ζk(2)

∞∏
i=2

ζ 2(2i) ,

ζ(n) = 1 + 1/2n + 1/3n + . . . is the Riemann zeta function. By induction on n,
for n ≥ 4 we have ζ(n) ≤ 1 + 2/2n . So

P ≤ ζk(2)

∞∏
i=2

(1 + 2/22i )2 .

The right-side product converge and all the factors are > 1 so we can take its
logarithm:

log

( ∞∏
i=2

(1 + 2/22i )2

)
=

∞∑
i=2

2 log(1 + 1/22i−1) <

∞∑
i=2

1/22i−2 = 1/3 ;

P < ζk(2)e1/3 < 2

and (∗) is proved.
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The remaining case k = Q[
√

2], r = 3 is checked directly. We use
Proposition 3.3 to estimate the λ-factors keeping the Euler product for the next
inequality:

µ(�n\G) ≥ 810,5C(r)2
3∏

i=1

ζk(2i)
∏
v∈T

λv

2

≥ 810,5C(r)2
3∏

i=1

ζk(2i) > 4 · 510.5C(r)2
3∏

i=1

ζ
Q[

√
5](2i)

43 − 1

2
.

So we are done with the quadratic fields and can proceed to the higher degrees.
Let [k : Q] = 3. We have:

µ(�n\G)

µ(�n
0\G)

≥
(

Dk

5

)r2+r/2
C(r)

r∏
i=1

ζk(2i)
∏
v∈T

λv

2

23hk

r∏
i=1

ζ
Q[

√
5](2i) λ(r)

.

First consider the totally real cubic field of the smallest discriminant Dk = 49.
This field has hk = 1, moreover, since its ring of integers does not have prime
ideals of norm 2, we can use Proposition 3.3 to estimate the λ-factors in all
the cases:

µ(�n\G)

µ(�n
0\G)

>

(
49

5

)r2+r/2
C(r)

r∏
i=1

ζk(2i)

8
r∏

i=1

ζ
Q[

√
5](2i) λ(r)

> 1 .

This inequality can be checked directly for r = 2; for the higher ranks it is
enough to estimate the product of ζk(2i) by 1 from below and the product of
ζ

Q[
√

5](2i) by (∗) from above, which gives an easy-to-check inequality.
For the other cubic fields by Proposition 3.6 and inequality (∗) we have

µ(�n\G)

µ(�n
0\G)

>

(
Dk

5

)r2+r/2 C(r)

8hk2λ(r)
.

Again, using the precise values of hk for the fields of the small discriminants
(Dk = 81, 148, 169) and bound (4) for the other fields, we see that this is
always greater then 1.

For d = [k : Q] ≥ 4 we will make use of the known lower bounds for the
discriminants of the totally real number fields (see [Od]):

if d = 4 Dk > 5d ;
if d = 5 Dk > 6.5d ;
if d ≥ 6 Dk > 7.9d (and Dk > 10d if d ≥ 8).
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The cases d = 4, 5 are considered similar to the previous case d = 3
and we allow ourselves to skip the details. Let �n is defined over a field k of
degree d ≥ 6. We have:

µ(�n\G)

µ(�n
0\G)

>
1

5

(
Dk

5

)r2+r/2−1 C(r)d−2

2d · 100 ·
(

π

12

)d

2 λ(r)

.

For r ≥ 3 we can estimate Dk by 7.9d and then show that µ(�n\G)/µ(�n
0\G) >

1 for any d. This does not work for r = 2 since for large d the factor C(r)d−2

becomes too small. In order to get rid of it we use the second bound Dk > 10d

for d ≥ 8. Note, that here we do not need any particular knowledge of the
class numbers.

We proved that On
min = On

0 = �n
0\Hn has the smallest possible volume for

each n. Using the functional equation for the Dedekind zeta function we can
write down the formula for µ(�n

0\G) = |χ(On
min)| in a compact form which is

given in the statement. It remains to show the uniqueness of On
min.

2. Let H1/k and H2/k be two algebraic groups defined over k = Q[
√

5]
such that each Hi (k ⊗ R) admits a surjective homomorphism onto G with
a compact kernel. Then H1 and H2 are k-isogenous and the isogeny takes
arithmetic subgroups to arithmetic subgroups. So we can fix an algebraic group
H/k and the surjective homomorphism with a compact kernel φ : H(k ⊗R) →
G, such that H is of type Br and can be supposed to be the adjoint group
since G is centerless. Let �1 and �2 be two arithmetic subgroups of H(k)

of the same maximal type P = (Pv). We want to prove that NG(φ(�1)) is
conjugate in G to NG(φ(�2)).

For each finite place v ∈ Vf there exists gv such that �1,v = gv�2,vg−1
v

(see Section 3.2). The set of places

S = {v ∈ Vf | �1,v 
= H(Ov) and �2,v 
= H(Ov)}

is finite. This is a known fact. To prove it one can first show the finiteness
of such a set of places for the simply connected inner form of H using the
strong approximation property (see e.g. [CR]), and then transfer it to H itself
by an inner twist. So the set

U =
g ∈ H(A f ) |

∏
v∈Vf

�1,v = g

 ∏
v∈Vf

�2,v

 g−1


is not empty. Moreover, for each g = (gv) ∈ U we have an open subset∏

v∈S

gv�2,v

∏
v∈Vf \S

�2,v ⊂ U .
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If S = ∅ then �1 = �2 and there is nothing to prove. Suppose S is non empty.
We consider H(k) diagonally embedded into H(A f ) and in

∏
v∈S H(kv). By

the weak approximation property for H (H is an adjoint group so it has weak
approximation [H]), H(k) ∩ ∏

v∈S gv�2,v is dense in
∏

v∈S gv�2,v with respect
to the product topology, so there exists a non empty open subset X ⊂ H(k)

such that for any x ∈ X and any v ∈ S:

�1,v = x�2,vx−1 .

Let p1, . . . , pn be the set of prime ideals in O which define the places from
S. Consider the ring R = O[ 1

p1
, . . . , 1

pn
]. Since S 
= ∅ it is a dense subset of

k, and so H(R) is dense in H(k). Consequently there exists r ∈ X ∩ H(R).
We have:

r�2r−1 = r

H(k) ∩
∏

v∈Vf

�2,v

 r−1 = H(k) ∩ r

 ∏
v∈Vf

�2,v

 r−1

= H(k) ∩
∏
v∈S

r�2,vr−1
∏

v∈Vf \S

r H(Ov)r
−1 = H(k) ∩

∏
v∈Vf

�1,v = �1 ;

φ(r)φ(�2)φ(r)−1 = φ(r�2r−1) = φ(�1) ;
φ(r)NG(φ(�2))φ(r)−1 = NG(φ(�1)) .

The reader can notice that part 1 of the proof can be simplified if we
suppose that r > 2 but the case r = 2 is important. We will come back to it in
the next section. Now let us give some remarks concerning the general case.

4.2. – The value of N (r) is the order of the outer automorphisms group of
the principal arithmetic subgroup �n

0. Since we are in a very extremal situation
we suppose that, in fact, �n

0 has no non-trivial symmetries. This can be checked
for small n for which the group �n

0 is reflective (see [V]). We do not know
how to prove this observation for the higher dimensions, but still we would like
to have it as a conjecture.

Conjecture. For all r ≥ 2, N (r) = 1 and so

|χ(On
min)| = λ(r)

4r−1

r∏
i=1

|ζ
Q[

√
5](1 − 2i)| .

4.3. – We can describe groups �n
0 of the smallest orbifolds as the stabilizers

of lattices in quadratic spaces. Let

f = −1 + √
5

2
x2

0 + x2
1 + . . . + x2

n ,
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and (V, f ) is the corresponding (n+1)-dimensional quadratic space. By [GHY]
for even r = n/2 the coherent collection of parahoric subgroups defining the
principal arithmetic subgroups �n

0 has the same type as the one that gives the
stabilizer of the maximal lattice in (V, f ). So by the uniqueness argument
from the proof of the theorem, �n

0 is the stabilizer of the maximal lattice in
(V, f ). Similarly, by [BG] for r odd �n

0 is the stabilizer of the odd unimodular
lattice in (V, f ) or, equivalently, it is the stabilizer of the maximal lattice in
(V, 2 f ). Consequently, the groups �n

0 are obtained as the normalizers in G of
the stabilizers of the lattices.

4.4. – For completeness, let us also consider the non-compact case which
is easy because the only possible field of definition is k = Q. Similarly to the
previous constructions (see also Example 3.4) we obtain:

For any n = 2r ≥ 4 there is an unique non-compact orientable arithmetic
hyperbolic n-orbifold O ′n

min of the smallest volume. It has Euler charac-
teristic

|χ(O ′n
min)| = λ′(r)

N ′(r)2r−2

r∏
i=1

|ζ(1 − 2i)| ,

where: λ′(r) = 1 if r ≡ 0, 1 (mod 4),
λ′(r) = 2−1(2r − 1) if r ≡ 2, 3 (mod 4);
N ′(r) is a positive integer, ≤ 2 if r ≡ 0, 1 (mod 4),
and ≤ 4 if r ≡ 2, 3 (mod 4).

For r ≡ 0, 1 (mod 4) the group of O ′n
min is the normalizer of the stabilizer

of the maximal lattice in quadratic space (V, f ) defined by

f = −x2
0 + x2

1 + . . . + x2
n ;

and for r ≡ 2, 3 (mod 4) it is the normalizer of the stabilizer of the odd
unimodular lattice in (V, f ).

Conjecture 4.2 also applies to O ′n
min and says that N ′(r) = 1 for all r .

4.5. – We will now compute the Euler characteristics of the smallest
orbifolds for small n. We will give the values for the principal arithmetic
subgroups and then either Conjecture 4.2 is true or one should divide by the
actual value of N (r) in order to obtain the Euler characteristic of the smallest
orbifolds. In any case, since N (r) is bounded and always smaller then 8, this
will not change the qualitative picture. We have:

Table 2

n = 2r ≥ 4 4 6 8 10 12

|χ(�n
min)|

1

7200

67

576000

24187

8709120000

309479461547

3483648000000

7939510008126649607

3766102179840000000
. . .

|χ(�′n
min)|

1

960

1

207360

1

348364800

1

91968307200

691

191294078976000
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14 16 18

. . . 8.1824 . . . · 1010 3.3481 . . . · 1016 1.7455 . . . · 1034

87757

289236647411712000

2499347

2360171042879569920000

109638854849

67802993719844284661760000

The smallest non-compact orbifold for all n (which is also the smallest
among all the arithmetic orbifolds) has dimension

n = 16 and χ = 2499347

2360171042879569920000
= 1.0589 . . . · 10−15 .

The smallest compact orbifold has dimension n = 8 and χ = 24187
8709120000 =

0.00000277 . . . . For n = 4 the volume of the smallest compact orbifold is less
then that of the non-compact one and for all bigger n the non-compact orbifolds
are smaller. After n = 10 in the compact case and n = 18 for non-compact
(and so for all the arithmetic hyperbolic orbifolds) the minimal volumes start
to increase and then grow exponentially with respect to the dimension.

It was first discovered in [Lu] that the minimal covolume can be attained
on a non-uniform (that is, not cocompact) lattice. The result was obtained
for the groups SL(2, K ) over local fields K of a positive characteristic. The
natural question which appeared the same time was whether this is a purely
local phenomenon or it is also possible for the groups over global fields. Our
computation gives the answer to this question for the odd orthogonal groups
over the totally real number fields, moreover, the method indicates that the
minimality of the covolume of the non-uniform lattices might be always the
case for the groups of a high enough rank.

4.6. – The previous remark can be considered in a wider context of [BP]
where the discreteness of the set of covolumes of arithmetic subgroups was
proved in a very general setting. In particular, it follows from [BP] that there
exist “absolutely smallest” among all the S-arithmetic subgroups of G over k
when G runs through the algebraic k-groups of absolute rank ≥ 2, the global
field k can be either a number or a function field, S is any finite subset of
places of k containing all the archimedean places and the Haar measures are
chosen in a consistent way. Our results imply that for the adjoint groups G
of type Br and real rank 1 over the totally real number fields the smallest
arithmetic subgroup is the unique smallest arithmetic non-cocompact subgroup
of the group G of rank r = 8. It is not hard to generalize this results (except
the uniqueness) to the S-arithmetic subgroups and to the other forms of type
Br over totally real fields. Our previous remark allows to conjecture that in
general the smallest group might be non-cocompact which significantly reduces
the number of possible candidates. Still the detailed study of this question lies
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beyond the scope of this paper. We have to point out that the geometric or
any other meaning of the absolutely smallest group is completely mysterious,
the only thing we know is that such a group or groups exist.

5. – 4-Manifolds

5.1. – Let us now consider the problem of determining the smallest
arithmetic manifolds. This is a much more difficult task. From the arithmetic
point of view the first difficulty is that we can not just estimate the Euler
products but rather we have to deal with their rational structure. So, obtaining
the precise values of the Euler characteristic for the groups of interest will be
the first step. After this one needs to study the low index subgroups lattice of
the distinguished groups and find the torsion-free subgroups. We will restrict
our attention to the hyperbolic dimension 4.

5.2. – The smallest known example of a compact orientable hyperbolic
4-manifold was constructed by Davis [D]. It can be shown that the Davis
manifold MD is arithmetic and defined over the field Q[

√
5] [EM]. The Euler

characteristic χ(MD) is equal to 26. We will be looking for smaller examples,
so we are interested in the manifolds with χ < 26. It is well-known that
the Euler characteristic of a compact orientable 4-manifold is an even positive
integer which gives us one more natural restriction on χ .

5.3. – We start with refining some estimates from the proof of Theorem 4.1
for the case r = 2 and a larger bound for χ .

Lemma. If an orientable compact arithmetic hyperbolic 4-manifold defined
over a field k has χ ≤ 24 then one of the following possibilities hold:

(1) d = 2, Dk ≤ 362;

(2) d = 3, Dk ≤ 3104;

(3) d = 4, Dk ≤ 26574;

(4) d = 5, Dk ≤ 227481;

(5) d = 6, Dk ≤ 1947276

where d = [k : Q] is the degree of k and Dk is its discriminant.
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Proof. The group of an arithmetic manifold is a (torsion-free) subgroup of
a maximal arithmetic subgroup �, so we have χ(�) ≤ 24. From the other side

χ(�) >
1

2dhk
· 4D5

k

(
6

26π6

)d

≥ 1

2d · 102 ·
(

π

12

)d

Dk

· 4D5
k

(
6

26π6

)d

≥ D4
k · 1

25
·
(

62

26π7

)d

.

And thus we get

Dk <

24 · 25 ·
(

62

26π7

)d
1/4

.

For d ≥ 8 this upper bound becomes smaller then the lower bound 10d for
the discriminant of a totally real field of degree d from [Od]. For d = 7 the
precise smallest value of Dk is known to be (11.051 . . . )7 [Od], and it again
appears to be bigger then our upper bound for Dk . So we are left with the
5 remaining values of d and for each of them we compute the corresponding
upper bound for Dk from the above inequality.

5.4. – Using the tables of number fields of low degree [BFPOD] we can
perform a more careful analysis of the groups over the fields which satisfy the
conditions of Lemma 5.3. There are many fields which fit the conditions and
we used a simple program for GP/PARI to perform the calculations. We obtain
that among 109 + 98 + 182 + 45 + 32 = 466 totally real fields which have
discriminant in one of the 5 ranges only 21 + 12 + 12 + 2 = 47 can actually
admit the groups with χ ≤ 24 if we use the precise values of the class numbers
in the volume estimate. For the remaining fields we compute the numerator ν

of the Euler characteristic χ of the smallest arithmetic group � defined over
the field (�’s correspond to the principal arithmetic subgroups for which all the
λ-factors in the volume formula are equal to 1). Since when passing to a finite
index subgroup �′ of � the number ν still divides the numerator of the Euler
characteristic χ(�′), we can discard all the groups with ν > 24 or ν is odd and
> 12. There are also several maximal groups with non-trivial λ-factors that fit
into our range and these need to be checked in an entirely similar way. Finally,
we are left with only two groups �1 and �2 which are defined over Q[

√
5],

Q[
√

2] and have χ = 1/7200, 11/5760, respectively. Group �1 is the group
of the smallest arithmetic 4-orbifold (see Section 4), �2 is the smallest group
defined over Q[

√
2] (the same argument as in the proof of Theorem 4.1 can

be used to show that �2 is defined uniquely up to conjugations in G).
Let us summarize the results.
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5.5. – Theorem. If there exists a compact orientable arithmetic hyperbolic
4-manifold M having χ(M) ≤ 24 then it satisfies one of the following conditions:

1) M is defined over Q[
√

5] and has the form �M\H4 with �M is a torsion-
free subgroup of index 7200χ(M) of the group �1 of the smallest arithmetic
4-orbifold;

2) M has Euler characteristic 22, is defined over Q[
√

2], and its group is a torsion-
free subgroup of index 11520 of �2 which is the smallest principal arithmetic
subgroup of SO(1, 4)o defined over Q[

√
2].

5.6. – This result reduces the problem of finding the smallest compact
arithmetic 4-manifold to a computational problem: we need to search for the
“low” index torsion-free subgroups of the groups �1 and �2 defined above.
The first step to implement this in practice is to find good presentations for the
maximal groups. For the group �1 this can be done by identifying it with the
orientation-preserving subgroup of a Coxeter group �′

1 which has the Coxeter
diagram given on Figure 2.

Fig. 2.

(It is easy to check that �′
1 is an arithmetic subgroup of O(1, 4) defined over

Q[
√

5] and χ(�′
1) = 1/14400, so its orientation-preserving subgroup is �1 by

the uniqueness of the smallest arithmetic orbifold.)
Now we can search for the torsion-free subgroups of�′

1 of index 14400χ(M).
This, in principle, can be done by using the computer programs like GAP. The
indexes of the subgroups we are interested in are quite large, but, as it can be
checked, the Coxeter group �′

1 has not many subgroups of low index, and so
the computation looks more or less realistic.

We do not know whether or not the group �2 is also reflective in a
sense of [V], and we suppose that it is not. Since we are dealing with a
stabilizer of not a modular but a maximal lattice the application of Vinberg’s
algorithm [V] for determining the maximal subgroup generated by reflections
is not straightforward here. It is possible to write down an explicit matrix
representation for the generators of �2 in SO(1, 4), but we will not do it now.
In any case this group can provide only an example with χ = 22 which is
already quite large.
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Sobolev Institute of Mathematics
Koptyuga 4
630090 Novosibirsk, Russia
and
Max Planck Institute of Mathematics
Vivatsgasse 7
53111 Bonn, Germany
mbel@math.nsc.ru


