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Symplectic G-capacities and integrable systems

ALESSIO FIGALLI, JOSEPH PALMER AND ÁLVARO PELAYO

Abstract. For any Lie group G, we construct a G-equivariant analogue of sym-
plectic capacities and give examples when G = Tk ⇥ Rd�k , in which case the
capacity is an invariant of integrable systems. Then we study the continuity of
these capacities, using the natural topologies on the symplectic G-categories on
which they are defined.

Mathematics Subject Classification (2010): 57R17 (primary); 37J35 (sec-
ondary).

1. Introduction

In the 1980s Gromov proved the symplectic non-squeezing theorem [9]. This influ-
ential result says that a ball of radius r > 0 can be symplectically embedded into a
cylinder of radius R > 0 only if r 6 R. This led to the first symplectic capacity,
the Gromov radius, which is the radius of the largest ball of the same dimension
which can be symplectically embedded into a symplectic manifold (M,!). Sym-
plectic capacities are a class of symplectic invariants introduced by Ekeland and
Hofer [6, 11].

In this paper we give a notion of symplectic capacity for symplectic G-mani-
folds, where G is any Lie group, which we call a symplectic G-capacity, and give
nontrivial examples. Such a capacity retains the properties of a symplectic capac-
ity (monotonicity, conformality, and an analogue of non-triviality) with respect to
symplectic G-embeddings. Symplectic capacities are examples of symplectic G-
capacities in the case that G is trivial. In analogy with symplectic capacities, sym-
plectic G-capacities distinguish the symplectic G-type of symplectic G-manifolds.
As a first example we construct an equivariant analogue of the Gromov radius where
G = Rk as follows. Let Symp2n,G denote the category of 2n-dimensional sym-
plectic G-manifolds. That is, an element of Symp2n,G is a triple (M,!,�) where
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(M,!) is a symplectic manifold and � : G ⇥ M ! M is a symplectic G-action.
Given integers 0 6 k 6 m 6 n we define the (m, k)-equivariant Gromov radius

cm,k
B : Symp2n,R

k
! [0,1]

(M,!,�) 7! sup
n
r > 0 | B2m(r) Rk

,�! M
o

,
(1.1)

where Rk
,�! denotes a symplectic Rk-embedding and B2m(r) ⇢ Cm is the standard

2m-dimensional ball of radius r > 0 with Rk-action given by rotation of the first k
coordinates. Thanks to the added structure of the Rk-action the proof that cm,k

B is a
Rk-capacity for k > 1 uses only elementary techniques.

As an application of symplectic G-capacities to integrable systems we define
the toric packing capacity

T : Symp2n,T
n

T ! [0,1]

(M,!,�) 7!

✓
sup{ vol(P) | P is a toric ball packing of M }

vol(B2n)

◆ 1
2n

,
(1.2)

where vol(E) denotes the symplectic volume of a subset E of a symplectic mani-
fold, B2n is the standard symplectic unit 2n-ball, Symp2n,T

n

T is the category of 2n-
-dimensional symplectic toric manifolds, and a toric ball packing P of M is given
by a disjoint collection of symplecticly and Tn-equivariantly embedded balls. In
analogy we define the semitoric packing capacity

ST : Symp4,S
1⇥R

ST ! [0,1]

on Symp4,S
1⇥R

ST , the category of semitoric manifolds [20], where P in (1.2) is re-
placed by a semitoric ball packing of M (Definition 5.2). The following theorem is
a combination of Propositions 2.7, 4.2, and 5.5.

Theorem 1.1 (Examples of capacities). The following hold:

(i) The (m, k)-equivariant Gromov radius cm,k
B : Symp2n,R

k
! [0,1] is a sym-

plectic Rk-capacity for k > 1;
(ii) The toric packing capacity T : Symp2n,T

n

T ! [0,1] is a symplectic Tn-
capacity;

(iii) The semitoric packing capacity ST : Symp4,S
1⇥R

ST ! [0,1] is a symplectic
(S1 ⇥ R)-capacity.

The continuity of symplectic capacities is discussed in [2, 3, 6, 27]. The semitoric
and toric packing capacities are each defined on categories of integrable systems
which have a natural topology [15, 18], but we can only discuss the continuity of
the (m, k)-equivariant Gromov radius on a subcategory of its domain which has a
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topology, so we restrict to the case of (m, k) = (n, n). The Tn-action on a symplec-
tic toric manifold may be lifted to an action ofRn . Let Symp2n,R

n

T be the symplectic
category of symplectic toric manifolds each of which is endowed with theRn-action
obtained by lifting the given Tn-action which is a subcategory of Symp2n,R

n
.

Theorem 1.2 (Continuity of capacities). The following hold:

(i) The toric packing capacity T : Symp2n,T
n

T ! [0,1] is everywhere discontin-
uous and the restriction of T to the space of symplectic toric 2n-dimensional
manifolds with exactly N points fixed by the Tn-action is continuous for any
choice of N > 0;

(ii) The semitoric packing capacity ST : Symp4,S
1⇥R

ST ! [0,1] is everywhere
discontinuous and the restriction of ST to the space of semitoric manifolds
with exactly N elliptic-elliptic fixed points of the associated (S1 ⇥ R)-action
is continuous for any choice of N > 0;

(iii) The (n, n)-equivariant Gromov radius restricted to the space of symplectic
toric manifolds

cn,nB |Symp2n,RnT
: Symp2n,R

n

T ! [0,1]

is everywhere discontinuous and the restriction of cn,nB |Symp2n,RnT
to the space

of symplectic toric 2n-dimensional manifolds with exactly N fixed points of
the Rn-action is continuous for any choice of N > 0.

Theorem 1.2 generalizes [7, Theorem A], which deals with 4-manifolds, and solves
[18, Problem 30]. Theorem 1.2 is implied by Theorems 6.3, 7.12, and 7.15.

In Section 2 we give a general notion of symplectic G-capacities and we prove
that the (m, k)-equivariant Gromov radius is a capacity. In Section 3 we review
facts about Hamiltonian actions and their relation to integrable systems that will be
needed in the remainder of the paper. Sections 4 and 5 are devoted to constructing
nontrivial symplectic G-capacities when G = Tk ⇥ Rd�k , which include the toric
and semitoric packing capacities. In Sections 6 and 7 we discuss the continuity of
these symplectic G-capacities.

2. Symplectic G–capacities

For n > 1 and r > 0 let B2n(r) ⇢ Cn be the 2n-dimensional open symplectic ball
of radius r and let

Z2n(r) =
�
(zi )ni=1 2 Cn | |z1| < r

 

be the 2n-dimensional open symplectic cylinder of radius r . Both inherit a sym-
plectic structure from their embedding as a subset of Cn with symplectic form
!0 = i

2
Pn

j=1 dz j ^ dz̄ j . We write B2n = B2n(1), Z2n = Z2n(1), and use ,!
to denote a symplectic embedding.
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2.1. Symplectic capacities

Let Symp2n be the category of symplectic 2n-dimensional manifolds with symplec-
tic embeddings as morphisms. A symplectic category is a subcategory C of Symp2n
such that (M,!) 2 C implies (M, �!) 2 C for all � 2 R \ {0}. Let C ⇢ Symp2n be
a symplectic category.

The following fundamental notion of symplectic invariant is due to Ekeland
and Hofer.
Definition 2.1 ([6, 11]). A generalized symplectic capacity on C is a map c : C !
[0,1] satisfying:

(1) Monotonicity. If (M,!), (M 0,!0) 2 C and there exists a symplectic embedding
M ,! M 0 then c(M,!) 6 c(M 0,!0);

(2) Conformality. If � 2 R \ {0} and (M,!) 2 C then c(M, �!) = |�| c(M,!).

If additionally B2n,Z2n 2 C and c satisfies:

(3) Non-triviality: 0 < c(Z2n,!0) < 1 and 0 < c(B2n,!0) < 1;

then c is a symplectic capacity.

2.2. Symplectic G–capacities

Let G be a Lie group and let Sympl(M) denote the group of symplectomorphisms
of the symplectic manifold (M,!). A smooth G-action � : G ⇥ M ! M is sym-
plectic if �(g, ·) 2 Sympl(M) for each g 2 G. The triple (M,!,�) is a symplectic
G-manifold. A symplectic G-embedding ⇢ : (M1,!1,�1) ,! (M2,!2,�2) is a
symplectic embedding for which there exists an automorphism 3 : G ! G of G
such that ⇢(�1(g, p)) = �2(3(g), ⇢(p)) for all p 2 M1, g 2 G, in which case we
say that ⇢ is a symplectic G-embedding with respect to 3. We write G

,�! to denote
a symplectic G-embedding. We denote the collection of all 2n-dimensional sym-
plectic G-manifolds by Symp2n,G . The set Symp2n,G is a category with morphisms
given by symplectic G-embeddings. We call a subcategory CG of Symp2n,G a sym-
plectic G-category if (M,!,�) 2 CG implies (M, �!,�) 2 CG for any � 2 R\{0}.
Let CG ⇢ Symp2n,G be a symplectic G-category.
Definition 2.2. A generalized symplectic G-capacity on CG is a map c : CG !
[0,1] satisfying:

(1) Monotonicity. If (M,!,�), (M 0,!0,�0) 2 CG and there exists a symplectic
G-embedding M G

,�! M 0 then c(M,!,�) 6 c(M 0,!0,�0);
(2) Conformality. If � 2 R \ {0} and (M,!,�) 2 CG then c(M, �!,�) =

|�| c(M,!,�).

When the symplectic form and G-action are understood we often write c(M) for
c(M,!,�). Let c be a generalized symplectic G-capacity on a symplectic G-
category CG .
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Definition 2.3. For (N ,!N ,�N ) 2 CG we say that c satisfies N -non-triviality or is
non-trivial on N if 0 < c(N ) < 1.

Definition 2.4. We say that c is tamed by (N ,!N ,�N ) 2 Symp2n,G if there exists
some a 2 (0,1) such that the following two properties hold:

(1) if M 2 CG and there exists a symplectic G-embedding M G
,�! N then c(M) 6

a;
(2) if P 2 CG and there exists a symplectic G-embedding N G

,�! P then a 6 c(P).

The non-triviality condition in Definition 2.1 requires that B2n,Z2n 2 CG and
0 < c(B2n) 6 c(Z2n) < 1, and tameness encodes this second condition with-
out necessarily including the first one. If c is a generalized symplectic G-capacity
on CG ⇢ Symp2n,G we define

Symp2n,G0 (c) =
n
N 2 Symp2n,G | inf{ c(P) | P 2 CG, N G

,�! P } = 0
o

,

Symp2n,G1 (c) =
n
N 2 Symp2n,G | sup{ c(M) | M 2 CG,M G

,�! N } = 1
o

,

Symp2n,Gtame (c) =
n
N 2 Symp2n,G | c is tamed by N

o
.

A generalized symplectic G-capacity gives rise to a decomposition of Symp2n,G .

Proposition 2.5. Let c be a generalized symplectic G-capacity on a symplectic G-
category CG . Then:

(a) Symp2n,G = Symp2n,G0 (c) [ Symp2n,G1 (c) [ Symp2n,Gtame (c);
(b) the union in part (a) is pairwise disjoint;
(c) c is non-trivial on N 2 Symp2n,G if and only if N 2 CG \ Symp2n,Gtame (c).

Proof. In order to prove (a) we show that if N 2 Symp2n,G is not in Symp2n,G0 (c)[
Symp2n,G1 (c) then it is in Symp2n,Gtame (c). If M G

,�! N G
,�! P for some M, P 2 CG

then M G
,�! P so c(M) 6 c(P). Let a1 = sup{ c(M) | M G

,�! N } and a2 =

inf{ c(P) | N G
,�! P }. Since N /2 Symp2n,G0 (c) [ Symp2n,G1 (c) we have that 0 <

a1 6 a2 < 1. Pick a 2 [a1, a2]. If M 2 CG and M G
,�! N then c(M) 6 a1 6 a

and if P 2 CG and N G
,�! P then c(P) > a2 > a so N 2 Symp2n,Gtame (c). Item (b)

follows from a similar argument and (c) is immediate.

In light of (c) we view Symp2n,Gtame (c) as an extension of the set of elements of
Symp2n,G on which c is non-trivial to include those elements outside of the domain
of c.
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2.3. Symplectic (Tk ⇥ Rd�k)–capacities

For 1 6 d 6 n the standard action of Td on Cn is given by

�Cn
�
(↵i )

d
i=1, (zi )

n
i=1
�

= (↵1z1, . . . ,↵d zd , zd+1, . . . , zn).

This action induces actions of Td = Tk ⇥ Td�k on B2n and Z2n , which in turn
induce the standard actions of Tk ⇥ Rd�k on B2n and Z2n for k 6 d. The action
of an element of Tk ⇥ Rd�k is the action of its image under the quotient map
Tk ⇥ Rd�k ! Td . In the following we endow B2n and Z2n with the standard
actions.
Definition 2.6. A generalized symplectic (Tk ⇥ Rd�k)-capacity is a symplectic
(Tk ⇥ Rd�k)-capacity if it is tamed by B2n and Z2n .

2.4. A first example

The Gromov radius cB : Symp2n ! (0,1] is given by

cB(M) := sup
n
r > 0 | B2n(r) ,! M

o
.

Fix 0 6 k 6 m 6 n and let cm,k
B be as in Equation (1.1). If k = 0 and m = n then

cB = cm,k
B .

Proposition 2.7. If k>1, the (m,k)-equivariant Gromov radius cm,k
B :Symp2n,R

k
!

[0,1] is a symplectic Rk-capacity.

Proof. Parts (1) and (2) of Definition 2.2 are immediate. By the standard inclusion
map cm,k

B (B2n) > 1 so we only must show that cm,k
B (Z2n) 6 1. Suppose that for

r > 1 the map ⇢ : B2m(r) Rk
,�! Z2n is a symplectic Rk-embedding with respect to

some 3 2 Aut(Rk). Let

(⌘1, . . . , ⌘k) = 3�1(1, 0, . . . , 0).

Since 3 is an automorphism ⌘ j0 6= 0 for some j0 2 {1, . . . , k}. Pick

w = (0, . . . , 0, w j0, 0, . . . , 0) 2 B2m(r)

with entries all zero except in the j th0 position and such that
�
�w j0

�
� > 1. Let u =

(u1, . . . , un) = ⇢(w) and note |u1| < 1. Let ◆ : R ,! Rk be given by ◆(x) =
(x, 0, . . . , 0). Let �B : Rk ⇥ B2m(r) ! B2m(r) and �Z : Rk ⇥ Z2n ! Z2n be the
standard actions of Rk . Then for x 2 R

⇢
�
�B(3

�1 � ◆(x), w)
�

= �Z(◆(x), ⇢(w)) = �Z(◆(x), u).
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Thus

⇢
⇣n

(0, . . . , e2ix⌘ j0w j0, 0, . . . , 0) | x 2R
o⌘

=
n
(e2ixu1, u2, . . . , un) | x 2R

o
(2.1)

and since ⇢ is injective and ⌘ j0 6= 0 this means that u1 6= 0. Let

SB =
n

(0, . . . , 0,↵, 0, . . . , 0) 2 B2m(r) | |↵| <
�
�w j0

�
�
o

where ↵ is in the j th0 position and

SZ =
n

(�, u2, . . . , un) 2 Z2n | |�| < |u1|
o

.

Equation (2.1) implies that ⇢(@SB) = @SZ and since ⇢ is an embedding this means
@(⇢(SB)) = @SZ. Since ⇢(SB) and SZ have the same boundary, !Z is closed, and
Z2n has trivial second homotopy group,

Z

⇢(SB)

!Z =
Z

SZ

!Z.

Finally, integrating over z we have

i
2

Z

|z|<|w j |

dz ^ dz̄ =
Z

SB

wB =
Z

SB

⇢⇤!Z =
Z

⇢(SB)

!Z =
Z

SZ

!Z =
i
2

Z

|z|<|u1|

dz ^ dz̄.

This implies that 1 <
�
�w j

�
� = |u1| < 1, which is a contradiction.

It follows from the proof that cm,k
B (B2n) = cm,k

B (Z2n) = 1.

Proposition 2.8. Let M = (S2)n with symplectic form !M = 1
2
Pn

i=1 dhi ^ d✓i
where hi 2 [�1, 1], ✓i 2 [0, 2⇡), i = 1, . . . , n, are the standard height and angle
coordinates. Let Rk , 1 6 k 6 n, act on M by rotating the first k components. Then

cm,k
B (M) =

p
2

for all m, k 2 Z with 1 6 k 6 m 6 n.

Proof. The map ⇢ : B2n(
p
2) Rn
,�! M given by

⇢
⇣
r1ei✓1, . . . , rnei✓n

⌘
=
⇣
✓1, r21 � 1, . . . , ✓n, r2n � 1

⌘

is a symplectic Rn-embedding, so cn,nB (M) >
p
2.
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Fix k,m, n 2 Z satisfying 0 < k 6 m 6 n and let ⇢ : B2m(r) Rk
,�! M be a

symplectic Rk-embedding for some r > 0. Let

Bj =
�
(hi , ✓i )ni=1 2 M | hi 2 {±1} if i 6 k and i 6= j

 

for j = 1, . . . , k. For R 2 (0, r) let

AR =
n

(z, 0, . . . , 0) 2 B2m(r) | |z| < R
o

.

Every point in AR , except at the identity, has the same (k�1)-dimensional stabilizer
in Rk so there exists j0 6 k such that ⇢(AR) ⇢ Bj0 for all R 2 (0, r). Write
⇢ = (Hi ,2i )

n
i=1 and consider coordinates (r, ✓) on AR given by (rei✓ , 0, . . . , 0) !

(r, ✓). For i 6= j0 this means that Hi is constant if i 6 k and the Rn-equivariance
of ⇢ implies that Hi and 2i are independent of ✓ if i > k. Thus if i 2 {1, . . . , n}
and i 6= j0 then Z

⇢(AR)

dhi ^ d✓i =
Z

AR

dHi ^ d2i = 0

for R 2 (0, r). Therefore,

⇡R2 =
Z

AR

!B =
Z

⇢(AR)

!M =
1
2

Z

⇢(AR)

dh j0 ^ d✓ j0 +
1
2
X

i 6= j0

0

B
@

Z

⇢(AR)

dhi ^ d✓i

1

C
A

6
1
2

Z

S2

dh ^ d✓ = 2⇡

for any R 2 (0, r). This implies that r 6
p
2 so

p
2 6 cn,nB (M) 6 cm,k

B (M) 6
p
2

for any k,m, n 2 Z satisfying 0 < k 6 m 6 n.

Example 2.9. For k, n 2 Z>0 with k < n let M = Z2n with the standard sym-
plectic form. There are two natural ways in which Rk can act symplectically on M ,
given by

�1((ti )ki=1, (zi )
n
i=1) = (e2it1z1, e2it2z2, . . . , e2itk zk, zk+1, . . . , zn)

and
�2((t)ki=1, (zi )

n
i=1) = (z1, e2it1z2, . . . , e2itk zk+1, zk+2, . . . , zn)

where �i : Rk ⇥ M ! M for i = 1, 2. Let ⇢ : M ! M be given by

⇢((zi )ni=1)=
✓

zk+1
1+|zk+1|

,
z1

1�|z1|
,z2,...,zk,zk+2,...,zn

◆
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r > 1
1

Figure 2.1. A symplectic R-embedding.

similar to the map shown in Figure 2.1. The map ⇢ is well-defined because |z1| < 1
and it is an Rk-equivariant diffeomorphism because

⇢
�
�1((ti )ki=1,(zi )

n
i=1)

�
=

✓
zk+1

1+|zk+1|
,e2it1

z1
1�|z1|

,e2it2z2,...,e2itk zk,zk+2,...,zn
◆

=�2
⇣
(t)ki=1,⇢((zi )ni=1)

⌘

for all t1, . . . , tk 2R. Thus the symplecticRk-manifolds (M,!,�1) and (M,!,�2)
are symplectomorphic via the identity map and Rk-equivariantly diffeomorphic via
⇢ but they are not Rk-equivariantly symplectomorphic because c1,1B (M,!,�1) = 1
and c1,1B (M,!,�2) = 1.

3. Hamiltonian (Tk ⇥ Rn�k) -actions

In this section we review the facts we need for the remainder of the paper about
Hamiltonian (Tk ⇥ Rn�k)-actions and their relation to toric and semitoric systems.
Let (M,!) be a symplectic manifold and G a Lie group with Lie algebra Lie(G)
and dual Lie algebra Lie(G)⇤. A symplectic G-action is Hamiltonian if there exists
a map µ : M ! Lie(G)⇤, known as the momentum map, such that

�dhµ,X i = !(XM , ·)

for all X 2 Lie(G) where XM denotes the vector field on M generated by X
via the action of G. A Hamiltonian G-manifold is a quadruple (M,!,�, µ) where
(M,!,�) is a symplecticG-manifold for which the action ofG is Hamiltonian with
momentum map µ. Let Ham2n,G denote the category of 2n-dimensional Hamilto-
nian G-manifolds with morphisms given by symplectic G-embeddings which inter-
twine the momentum maps. Given f : M ! R the associated Hamiltonian vector
field is the vector field X f on M satisfying !(X f , ·) = �d f .
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Definition 3.1. An integrable system is a triple (M,!, F) where (M,!) is a 2n-
-dimensional symplectic manifold and F = ( f1, . . . , fn) : M ! Rn is a smooth
map such that f1, . . . , fn pairwise Poisson commute, i.e. !(X fi ,X f j ) = 0 for all
i, j = 1, . . . , n, and the Hamiltonian vector fields (X f1)p, . . . , (X fn )p are linearly
independent for almost all p 2 M .

Let I2n denote the set of all 2n-dimensional integrable systems for which the
Hamiltonian vector fields of the components of the momentum map are complete
and define an equivalence relation ⇠I on this space by declaring (M,!, F) and
(M 0,!0, F 0) to be equivalent if there exists a symplectomorphism � : M ! M 0

such that F � �⇤F 0 : M ! Rn is constant. In this paper we always assume the
Hamiltonian vector fields of the components of the momentum map are complete,
which is automatic if M is compact or if F is proper.

3.1. Hamiltonian Rn-actions and integrable systems

Let (M,!, F = ( f1, . . . , fn)) be an integrable system such that each X fi is com-
plete and for i = 1, . . . , n let  t

i : M ! M denote the flow along X fi . The
Hamiltonian flow action �F : Rn ⇥ M ! M , given by

�F ((t1, . . . , tn), p) =  
t1
1 � . . . �  tn

n (p),

defines a HamiltonianRn-action on M . The action of G on M is almost everywhere
locally free if the stabilizer of p is discrete for almost all p 2 M . Let FSymp2n,Rn

be the space of Rn-manifolds on which the action of Rn is Hamiltonian and al-
most everywhere locally free and let ⇠Rn denote equivalence by Rn-equivariant
symplectomorphisms.

Lemma 3.2. Let X1, . . . ,Xn be vector fields with commuting flows on an
m-manifold M , with n 6 m. Let Rn act on M by �((t1, . . . , tn), p) =  

t1
1 � . . . �

 
tn
n (p)where t

i is the flow ofXi . Then, for p2 M , the vectors (X1)p, . . . , (Xn)p2
TpM are linearly independent if and only if the stabilizer of p under the action � is
discrete.

Proof. If (X1)p, . . . , (Xn)p are linearly independent then, since they have com-
muting flows, there is a chart (U, g), with U ⇢ M and g : U ! Rm , such that
g�1 : g(U) ! U satisfies

g�1(t1, . . . , tn, 0, . . . , 0) = �((t1, . . . , tn), p)

for any (t1,. . . ,tn,0, . . . ,0)2g(U). Thus g(U) is an open neighborhood of the iden-
tity inRn and there exists no non-zero point in g(U) which fixes p, so the stabilizer
of p under the action of Rn is discrete. On the other hand, if (X1)p, . . . , (Xn)p are
linearly dependent, there exist t1, . . . , tn 2 R not all zero such that

Pn
i=1 ti (Xi )p =

0. Thus (↵t1, . . . ,↵tn) 2 Rn fixes p for all ↵ 2 R and so the stabilizer of p is not
discrete.
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Proposition 3.3. Let  be the map which takes an integrable system on M to M
equipped with its Hamiltonian flow action. Then

 : I2n/⇠I ! FSymp2n,Rn
/⇠Rn

is a bijection.

Proof. By Lemma 3.2 we know that the Hamiltonian flow action must be almost ev-
erywhere locally free because the Hamiltonian vector fields of an integrable system
are by definition independent almost everywhere. Next suppose thatRn acts Hamil-
tonianly on M in such a way that the action is almost everywhere locally free. Since
the action is Hamiltonian there exists a momentummapµ : M ! Lie(Rn)⇤. Define
F = ( f1, . . . , fn) : M ! Rn by F = A � µ where A : Lie(Rn)⇤ ! Rn is the stan-
dard identification which is induced by the standard basis {e1, . . . , en} ofRn . These
functions Poisson commute because action by the components of Rn commute and
are linearly independent at almost all points because the group action is almost ev-
erywhere locally free (Lemma 3.2). Thus, (M,!, F) is an integrable Hamiltonian
system as in Definition 3.1. Let {v1, . . . , vn} be the standard basis of Lie(Rn) ⇠= Rn

induced by the standard basis ofRn . Let vM denote the vector field on M generated
by v2Lie(Rn) via the action of G. Then hµ, vi i= fi :M!R so d fi =!((vi )M , ·)
which means that the Hamiltonian vector field associated to fi is (vi )M . Thus the
Hamiltonian flow action related to F is the original action of Rn .

Here we fix the identification between Lie(Tn)⇤ and Rn that we will use for
the remainder of the paper. We specify our convention by choosing an epimorphism
from R to T1, which we take to be x 7! e2

p
�1x .

3.2. Hamiltonian Tk-actions

Atiyah [1] and Guillemin-Sternberg [10] proved that if (M,!,�, µ) is a compact
connected Hamiltonian Tk-manifold, then µ(M) ⇢ Lie(Tk)⇤ is the convex hull of
the image of the fixed points of theTk-action. The case in which k = n and the torus
action is effective enjoys very special properties, and in such a case (M,!,�, µ)
is called a symplectic toric manifold, or a toric integrable system. An isomorphism
of such manifolds is a symplectomorphism which intertwines their respective mo-
mentum maps. We denote by Ham2n,T

n

T the category of 2n-dimensional symplec-
tic toric manifolds with morphisms as symplectic Tn-embeddings and we denote
equivalence by toric isomorphism by ⇡T. In general being an invariant is weaker
than being monotonic, but in the case of toric manifolds these are equivalent be-
cause symplectic Tn-embeddings between toric manifolds are automatically Tn-
-equivariant symplectomorphisms. Delzant proved [5] that in this case µ(M) is a
Delzant polytope, i.e. simple, rational, and smooth, and that

9 : Ham2n,T
n

T /⇡T ! PT
[(M,!,�, µ)] 7! µ(M)
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is a bijection, where PT denotes the set of n-dimensional Delzant polytopes. Let
Ham2n,Tn ! Symp2n,T

n
be given by (M,!,�, µ) 7! (M,!,�) and let Symp2n,T

n

T
denote the image of Ham2n,T

n

T under this map. Also let ⇠T denote equivalence on
Symp2n,T

n

T by Tn-equivariant symplectomorphisms.

3.3. Hamiltonian (S1 ⇥ R)-actions

We say that an integrable system (M,!, F = (J, H) : M ! R2) is a semitoric
integrable system or semitoric manifold if (M,!) is a 4-dimensional connected
symplectic manifold, J is a proper momentum map for an effective Hamiltonian
S1-action on M , and F has only non-degenerate singularities which have no real-
hyperbolic blocks (see [21, Section 4.2.1]). A semitoric integrable system is sim-
ple if there is at most one singular point of focus-focus type in J�1(x) for each
x 2 R. Let (Mi ,!i , Fi = (Ji , Hi )) be a semitoric manifold for i = 1, 2. A
semitoric isomorphism between them is a symplectomorphism ⇢ : M1 ! M2 such
that ⇢⇤(J2, H2) = (J1, f (J1, H1)) where f : R2 ! R is a smooth function for
which @ f

@H1 is everywhere nonzero. Let Ham
4,S1⇥R
ST denote the category of sim-

ple semitoric systems and let ⇡ST denote equivalence by semitoric isomorphism.
Let Symp4,S

1⇥R
ST denote the image of Ham4,S

1⇥R
ST under the map Ham4,S1⇥R !

Symp4,S
1⇥R given by (M,!,�, µ) 7! (M,!,�) and let ⇠ST denote the equiva-

lence on Symp4,S
1⇥R

ST inherited from ⇠ST on Ham4,S
1⇥R

ST .
The number of focus-focus singular points of an integrable system must be

finite [23], and we denote it by m f .

3.3.1. Invariant of focus-focus singularities It is proven in [22] that the structure
in the neighborhood of a fiber over a focus-focus point is determined by a Tay-
lor series. Let R[[X,Y ]] denote the space of real formal Taylor series in two
variables X and Y and let R[[X,Y ]]0 ⇢ R[[X,Y ]] denote the subspace of se-
ries

P
i, j>0 �i, j X iY j which have �0,0 = 0 and �0,1 2 [0, 2⇡). The Taylor series

invariant consists of m f elements of R[[X,Y ]]0, one for each focus-focus singular
point.

3.3.2. Affine and twisting-index invariants Denote the set of rational polygons in
R2 by Polyg(R2). For � 2 R let `� denote the set of (x, y) 2 R2 such that x = �.
Let Vert(R2) denote the collection of all `� as � varies in R. Let ⇡i : R2 ! R
denote the projection onto the i th coordinate for i = 1, 2. Notice that elements of
Polyg(R2) can be non-compact. A labeled weighted polygon of complexity m f 2
Z>0 is an element

1w =
�
1, (`� j , ✏ j , k j )

m f
j=1
�

2 Polyg(R2) ⇥
�
Vert(R2) ⇥ {�1,+1} ⇥ Z

�m f



SYMPLECTIC G-CAPACITIES AND INTEGRABLE SYSTEMS 77

with mins21 ⇡1(s) < �1 < . . . < �m f < maxs21 ⇡1(s). We denote the space of
labeled weighed polygons by LWPolyg(R2). Let

T =

✓
1 0
1 1

◆
2 SL2(Z) (3.1)

and for v1, . . . , vn 2 Zn let det(v1, . . . , vn) denote the determinant of the matrix
with columns given by v1, . . . , vn .
The top boundary of 1 2 Polyg(R2) is the set @ top1 of (x0, y0) 2 1 such that y0
is the maximal y 2 R such that (x0, y) 2 1. A point p 2 @1 is a vertex of 1 if
the edges meeting at p are not co-linear. Let p be a vertex of 1 and let u, v 2 Z2
be primitive vectors directing the edges adjacent to p ordered so that det(u, v) > 0.
Then we say that:

- p satisfies the Delzant condition if det(u, v) = 1;
- p satisfies the hidden condition if det(u, T v) = 1;
- p satisfies the fake condition if det(u, T v) = 0.

We say that1 has everywhere finite height if1\ `� is either compact or empty for
all � 2 R. A primitive semitoric polygon of complexity m f 2 Z>0 [12] is a labeled
weighted polygon

�
1, (`� j , ✏ j , k j )

m f
j=1
�

2 LWPolyg(R2) such that:

(1) 1 has everywhere finite height;
(2) ✏ j = +1 for all j = 1, . . . ,m f ;
(3) point in @ top1\`� j for j = 1, . . . ,m f satisfies either the hidden or fake condi-

tion (and is referred to as either a hidden corner or a fake corner, respectively);
(4) other corners satisfy the Delzant condition, and are known as Delzant corners.

The set of primitive semitoric polygons is denoted by PolygST(R2)0.
For m f 2 Z>0 let Gm f = {�1,+1}m f and G = { T k | k 2 Z } where T is as

in Equation (3.1). For � 2 R and k 2 Z let tk`� : R2 ! R2 denote the map which
acts as the identity on the left of the line `� and acts as T k relative to an origin
placed arbitrarily on the line `� to the right of `�. Now for Eu = (u1, . . . , um f ) 2

{�1, 0, 1}m f and E� = (�1, . . . , �m f ) 2 Rm f define t EuE� : R2 ! R2 by

t EuE� = tu1`�1 � . . . � t
um f
`�m f

.

We define the action of an element of Gm f ⇥ G on a labeled weighted polygon by
✓⇣
✏0j

⌘m f

j=1
, T k

◆
·
⇣
1,
�
`� j , ✏ j , k j

�m f
j=1

⌘
=

✓
t EuE� � T k(1),

⇣
`� j , ✏

0
j✏ j , k + k j

⌘m f

j=1

◆

where E� = (�1, . . . , �m f ) and Eu =
⇣
✏ j�✏ j ✏0j

2

⌘m f

j=1
. This action may not preserve

the convexity of 1 but it is shown in [20, Lemma 4.2] that the orbit of a primitive
semitoric polygon consists only of elements of LWPolyg(R2).
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Definition 3.4 ([20]). A semitoric polygon is the orbit underGm f ⇥G of a primitive
semitoric polygon.

The collection of semitoric polygons is denoted by PolygST(R2) = (Gm f ⇥

G) · PolygST(R2)0. The orbit of 1w =
�
1, (`� j , ✏ j , k j )

m f
j=1
�

2 PolygST(R2)0 is
given by

[1w] =
n ⇣

t EuE� � T k(1),
�
`� j , 1� 2u j , k + k j

�m f
j=1

⌘
| Eu 2 {0, 1}m f , k 2 Z

o
.

The corners of any element of [1] are identified as hidden, fake, or Delzant similar
to the case of the primitive semitoric polygon.

3.3.3. Volume invariant For each j = 1, . . . ,m f we let h j denote the height of
the image of the j th focus-focus point from the bottom of the semitoric polygon.
Formally, this amounts to h1, . . . , hm f 2 R satisfying 0 < h j < length(⇡2(1 \
`� j )) for each j = 1, . . . ,m f .

3.3.4. Classification Semitoric systems are classified by the invariants we have
just reviewed. That is, the complete invariant of a semitoric system is an integer
m f , m f Taylor series, a collection of m f real numbers, and a labeled weighed
semitoric polygon. A single element of this orbit is shown in Figure 3.1. The
complete invariant is an infinite family of such labeled weighted polygons, formed
by a countably infinite number of subfamilies of size 2m f each parameterized by
E✏ 2 {�1,+1}m f (Figure 3.2).

Figure 3.1. The complete invariant of a semitoric system is a collection of these objects.

Definition 3.5 ( [20]). A semitoric list of ingredients is given by:

(1) number of focus-focus singularities invariant: m f 2 Z>0;
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Figure 3.2. Complete invariant of a semitoric system.

(2) Taylor series invariant: a collection of m f elements of R[[X,Y ]]0;
(3) affine and twisting index invariants: a semitoric polygon of complexity m f , the

(Gm f ⇥ G)-orbit of some 1w = (1, (`� j , ✏ j , k j )
m f
j=1) 2 PolygST(R2)0;

(4) volume invariant: a collection of real numbers h1, . . . , hm f 2 R such that
0 < h j < length(⇡2(1 \ `� j )) for each j = 1, . . . ,m f .

Let I denote the collection of all semitoric lists of ingredients. In [20] the authors
prove that semitoric manifolds modulo isomorphisms are classified by semitoric
lists of ingredients, that is,

8 : Ham4,S
1⇥R

ST /⇡ST ! I (3.2)

(M,!, (J, H)) 7!
�
m f , ((S j )1)

m f
j=1, [1w], (h j )1j=1

�

is a bijection, where8 is the assignment of the five invariants to the system (M,!,
(J, H)) described in detail in [20].

4. Symplectic Tn-capacities

In this section we construct a symplectic Tn-capacity on the space of symplectic
toric manifolds. Recall Ham2n,T

n

T /⇡T is the moduli space of 2n-dimensional sym-
plectic toric manifolds up to Tn-equivariant symplectomorphisms which preserve
the moment map. In [7, 16, 17, 19] the authors study the toric optimal density func-
tion � : Ham2n,T

n

T /⇡T ! (0, 1], which assigns to each symplectic toric manifold
the fraction of that manifold which can be filled by equivariantly embedded disjoint
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open balls. This function is not a capacity because it is not monotonic or conformal.
Next we study a modified version of this function which is a capacity.

For M 2 Symp2n,T
n
by a Tn-equivariantly embedded ball we mean the image

�(B2n(r)) of a symplectic Tn-embedding � : B2n(r) Tn
,�! M for some r > 0. A

toric ball packing of M [16] is a disjoint union P =
F
↵2A B↵ where B↵ ⇢ M is

a symplecticly and Tn-equivariantly embedded ball in M for each ↵ 2 A, where
A is some index set. That is, for each ↵ 2 A there exists some r↵ > 0 and some
symplectic Tn-embedding �↵ : B2n(r↵)

Tn
,�! M such that

�↵(B2n(r↵)) = B↵.

An example is shown in Figure 4.1. Recall the toric packing capacity T:Symp2n,T
n

T !
[0,1] defined in Equation (1.2). In the following for M 2 Symp2n,T

n
let cn,nB (M)

be defined by first lifting the action of Tn on M to an action of Rn and applying the
usual cn,nB to the resulting symplectic Rn-manifold.

B1

B2

2
2

2
2<

Figure 4.1. Toric ball packing of S2 by symplectic S1-disks.

Lemma 4.1. Let M 2 Symp2n,T
n

T , and N 2 Symp2n,T
n
be such that the Tn-action

on N has ` 2 Z>0 fixed points. If there is a symplectic Tn-embedding M Tn
,�! N

then T (M) 6 `1/2ncn,nB (N ).

Proof. Since the center of B2n(r), r > 0, is a fixed point of the Tn-action we
see that the maximal number of such balls that can be simultaneously equivariantly
embedded with disjoint images into M is the Euler characteristic �(M) of M , which
is the number of fixed points of the Tn-action on M . Each of these balls has radius
at most cn,nB (M). For r > 0 we have that vol(B2n(r)) = r2nvol(B2n). Therefore

(T (M))2nvol
⇣
B2n

⌘
6�(M)vol

⇣
B2n

�
cn,nB (M)

�⌘
=�(M)

�
cn,nB (M)

�2nvol
⇣
B2n

⌘
.

Since Tn-embeddings send fixed points to fixed points and M Tn
,�! N we know that

�(M) 6 `. Furthermore, since M Tn
,�! N and cn,nB is a symplectic Tn-capacity by

Theorem 1.1 we have that cn,nB (M) 6 cn,nB (N ). Hence T (M) 6 `1/2ncn,nB (N ).

Proposition 4.2. The toric packing capacity is a symplectic Tn-capacity on
Symp2n,T

n

T .
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Proof. Let M 2 Symp2n,T
n

T with �(M) 2 Z>0 fixed points and fix any ordering of
these points. Notice that T (M) is the supremum of

n
kErk2n | Er 2 R�(M) and PM(Er) ⇢ M is a toric packing

o
,

where Er = (r1, . . . , r�(M)) 2 R�(M),

kErk2n =

 
�(M)X

j=1
r2nj

!1/2n

is the standard `2n-norm, and PM(Er) ⇢ M is the toric ball packing of M in which
B2n(r j ) is embedded at the j th fixed point of M for j = 1, . . . ,�(M). Suppose that
⇢ : B2n(r) Tn

,�! M is a symplectic Tn-embedding into (M,!,�) for some r > 0.
Then for any � 2 R \ {0} the map ⇢� : B2n(|�| r) Tn

,�! M given by

⇢�(z) = ⇢

✓
z

|�|

◆

is a symplectic Tn-embedding into (M, �!,�). Thus if PM(Er) is a toric packing
of (M,!,�) then PM(|�| r1, . . . , |�| r�(M)) is a toric ball packing of (M, �!,�)

for any � 2 R \ {0}. This and the fact that k�rk2n = |�| krk2n for all r 2 R�(M)

and � 2 R imply that T is conformal. Now suppose that M,M 0 2 Symp2n,T
n

T
and ⇢ : M Tn

,�! M 0. If P ⇢ M is a toric ball packing of M then ⇢(P) ⇢ M 0

is a toric ball packing of M 0 of the same volume so T (M) 6 T (M 0) and we
see that T is monotonic. Finally, suppose that there is a symplectic Tn-embedding
M Tn
,�! Z2n . Then, since Z2n has only one point fixed by theTn-action and recalling

that cn,nB (Z2n) = 1, it follows from Lemma 4.1 that

T (M) 6 (1)1/2ncn,nB (Z2n) = 1.

Finally, suppose that ⇢ : B2n Tn
,�! M is a symplectic Tn-embedding. Then P =

⇢(B2n) ⇢ M is a toric ball packing of M and thus

T (M) >
✓
vol(P)

vol(B2n)

◆1/2n
= 1.

Hence T is tame.

Example 4.3. Let M 2 Symp2n,T
n

T . In [17] it is shown that there exists a Z-valued
function EmbM : R>0 ! [0, n!�(M)] such that the homotopy type of the space
of symplectic Tn-embeddings from B2n(r) into M is given by the disjoint union
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of EmbM(r) copies of Tn . Thus, for each r 2 R>0 we may define a symplectic
Tn-capacity Er on Symp2n,T

n

T given by

Er : Symp2n,T
n

T ! [0,1]

(M,!,�) 7! (vol(M))
1
n EmbM((vol(M))

1
n r).

Since EmbM is invariant up to Tn-equivariant symplectomorphisms [17] and sym-
plectic embeddings in Symp2n,T

n

T are automatically symplectomorphisms we see
that Er is monotonic and it is an exercise to check that it is conformal. It is tame
because the space of symplectic Tn-embeddings of B2n into Z2n is homotopic to n!
disjoint copies of Tn .

5. Symplectic (S1 ⇥ R)-capacities

In this section we construct a symplectic (S1⇥R)-capacity on the space of semitoric
manifolds. Let (M,!, F = (J, H)) be a simple semitoric manifold withm f focus-
focus singular points and let {� j }

m f
j=1 ⇢ R be the image under J of these points

ordered so that �1 < �2 < . . . < �m f . Let (� j , y j ) be the image under F of the j th
focus-focus singular point and for ✏ 2 {±1} let `✏� j be those (� j , y) 2 `� j such that

✏y > ✏y j . Let `E✏ = `✏�1 [ . . . [ `
✏m f
�m f

. A homeomorphism

f : F(M) ! f (F(M)) ⇢ R2

is a straightening map for M [23] if for some choice of E✏ 2 {±1}m f we have the
following: f |F(M)\`E✏ is a diffeomorphism onto its image; f |F(M)\`E✏ is affine with
respect to the affine structure F(M) inherits from action-angle coordinates on M
and the affine structure f (F(M)) inherits as a subset of R2; f preserves J , i.e.,
f (x, y) = (x, f (2)(x, y)); function f |F(M)\`E✏ extends to a smooth multi-valued
map from F(M) to R2 such that for any c = (x0, y0) 2 `E✏ we have

lim
(x,y)!c
x<x0

d f (x, y) = T lim
(x,y)!c
x>x0

d f (x, y);

and the image of f is a rational convex polygon. Recall that T is the matrix given
in Equation (3.1). We say f is associated to E✏.

Let T ⇢ AGL2(Z) be the subgroup including powers of T composed with
vertical translations. It was proved in [23] that a semitoric system (M,!, F) has a
straightening map f : M ! R2 associated to each E✏ 2 {±1}m f , unique up to left
composition with an element of T. Define

FM = { f � F | f is a straightening map for M }. (5.1)
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If Va : R2 ! R2 denotes vertical translation by a 2 R, then

� eF(M) | eF 2 FM
 

=
n
Va(1) ⇢ R2 | 1 is associated to M and a 2 R

o

where a polygon is associated to M if it is an element of the affine invariant of M .
Up to vertical translations the set FM is the orbit of a single non-unique function
under the action of Gm f ⇥ G. If eF 2 FM then there exists some E✏ 2 {�1,+1}m f

such that eF |M E✏ : M E✏ ! R2 is a momentum map for a T2-action �eF : T2 ⇥ M E✏ !
M E✏ where M E✏ = M \ F�1(`E✏).

Corollary 5.1. The manifold M E✏ has on it a momentum map for a Hamiltonian
T2-action unique up to G. Thus M E✏ 2 Symp4,T

2
and the given T2-action is unique

up to composing the associated momentum map with an element of G.

We call such actions of T2 on M E✏ induced actions of T2. Given any ⇢ : N !
M with ⇢(N ) ⇢ M E✏ define ⇢E✏ : N ! M E✏ by ⇢E✏(p) = ⇢(p) for p 2 N .

Definition 5.2. Let (M,!, F) be a semitoric manifold and let (N ,!N ,�) 2
Symp4,T

2
. A symplectic embedding ⇢ : N ,! M is a semitoric embedding if

there exists E✏ 2 {±1}m f and an induced action �E✏ : T2 ⇥ ME✏ ! ME✏ such that
⇢(N ) ⇢ M E✏ and ⇢E✏ : (N ,!N ,�)

T2
,�! (M E✏,!,�E✏) is a symplectic T2-embedding.

Let (M,!, F) be a semitoric manifold. A semitoric ball packing of M is a
disjoint union P =

F
↵2A B↵ where B↵ ⇢ M is a semitoricly embedded ball in M .

The semitoric packing capacity ST : Symp4,S
1⇥R

ST ! [0,1] is given by

ST (M) =

✓
sup{ vol(P) | P ⇢ M is a semitoric ball packing of M }

vol(B4)

◆ 1
4
.

In order to show that ST is a (S1 ⇥ R)-capacity we need the following lemmas.

Lemma 5.3. For i = 1, 2 let (Mi ,!i ) be a symplectic manifold, let fi : Mi ! R be
a function, and letX fi denote the Hamiltonian vector field of fi on Mi . If ⇢ : M1 !
M2 is a symplectomorphism such that ⇢⇤X f1 = X f2 then f1 � ⇢⇤ f2 : M1 ! R is
constant.

Proof. Notice that

d(⇢⇤ f2) = ⇢⇤(d f2) = ⇢⇤(◆X f2
!2) = ⇢⇤(◆⇢⇤X f1

!2)

= !2(⇢⇤X f1, ⇢⇤(·)) = (⇢⇤!2)(X f1, ·) = ◆X f1
!1 = d f1,

thus f1 and ⇢⇤ f2 differ by a constant.
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Lemma 5.4. Let (Mi ,!i , Fi = (Ji , Hi )) be semitoric manifolds for i = 1, 2. If
⇢ : M1

S1⇥R
,���! M2 is a symplectic (S1 ⇥ R)-embedding with respect to the Hamil-

tonian flow action on each system, then

⇢⇤ J2 = eJ1 + cJ and ⇢⇤H2 = aJ1 + bH1 + cH

for some e 2 {±1} and a, b, cJ , cH 2 R such that b 6= 0.

Proof. Since ⇢ is S1 ⇥ R-equivariant there exists 3 2 Aut(S1 ⇥ R) such that
⇢(�(g,m1)) = �(3(g), ⇢(m1)) for all g 2 S1 ⇥ R and m1 2 M1. Associate
S1⇥ R with R/Z ⇥ R and give it coordinates (x, y) 2 R2. Then3 2 Aut(S1⇥ R)
and 3 continuous means that 3 descends from a linear invertible map from R2 to
itself, which we will also denote 3 2 GL2(R). Write 3 = (3i j ) for 3i j 2 R and

i, j 2 {1, 2}. The automorphism 3 sends the identity to itself so 3
✓
n
0

◆
2 Z ⇥ {0}

for all choices of n 2 Z. This implies that 311 2 Z and 321 = 0. Since 3 is
invertible and 3�1 2 Aut(S1 ⇥ R) we see that (311)�1 2 Z and so 311 = ±1.
Since 3 is invertible and upper triangular we know that 322 6= 0.

For a function f : Mi ! R let X f denote the associated Hamiltonian vector
field on Mi , i = 1, 2. Also, for v 2 g = Lie(S1 ⇥ R), thought of as the tangent
space to the identity, let vMi denote the vector field on Mi generated by v by the
group action. Endow g with the coordinates (↵,�) so that the exponential map
will send (↵,�) 2 g to (↵,�) 2 R/Z ⇥ R. Now notice that XJ1 = (1, 0)M1 and
XH1 = (0, 1)M1 .

For mi 2 Mi , i = 1, 2, such that ⇢(m1) = m2 we have

⇢⇤XJ1(m2) =
d
dt

�
�
�
�
t=0

⇣
⇢
�
�((t, 0),m1)

�⌘
=
d
dt

�
�
�
�
t=0

⇣
�(3[(t, 0)],m2)

⌘

=
�
T3(1, 0)

�
M2

(m2)

Notice that T(1,0) = (311, 0) 2 g. Then ⇢⇤XJ1 =
�
T3(1, 0)

�
M2

= 311(1, 0)M2 =
311XJ2 . Similarly we see that ⇢⇤XH1 = 312XJ2 + 322XH2 . By Lemma 5.3 this
implies that

⇢⇤ J2 =
1
311

J1 + cJ and ⇢⇤H2 =
�312
311322

J1 +
1
322

H1 + cH

for some cJ , cH 2 R. Recalling that 311 2 {±1} and 311,322 6= 0 take e =
(311)

�1 and a = �312
311322

, and b = (322)
�1 to complete the proof.

Proposition 5.5. The semitoric packing capacity, ST , is a symplectic (S1 ⇥ R)-
capacity on Symp4,S

1⇥R
ST .
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Proof. The proof that ST is conformal and non-trivial is analogous to the proof of
Proposition 4.2, so we must only show that ST is monotonic. Let (Mi ,!i , Fi ) be
semitoric for i = 1, 2 and suppose � : M1

S1⇥R
,���! M2 is a symplectic (S1 ⇥ R)-

embedding. Recall that action-angle coordinates are local Darboux charts in which
the flow of the Hamiltonian vector fields are linear. Since � is symplectic, (S1⇥R)-
equivariant, and �⇤(F2) = A � F1 where A : R2 ! R2 is affine (Lemma 5.4), this
means that � sends action-angle coordinates to action-angle coordinates. Since
semitoric embeddings are those which respect the action-angle coordinates, given
any semitoric embedding ⇢ : B2n(r) ,! M1 the map � � ⇢ : B2n(r) ,! M2 is a
semitoric embedding. It follows that ST (M1) 6 ST (M2).

6. Continuity of symplectic Tn-capacities

In this section we study the continuity of the symplectic Tn-capacity constructed
in Section 4. We will outline the procedure used in [18] to construct a natural
metric on the moduli space of toric manifolds. Since 9 : Ham2n,T

n

T /⇡T ! PT is
a bijection we can define a metric space structure on Ham2n,T

n

T /⇡T by defining a
metric on PT and pulling it back via 9. A natural metric on PT is given by the
volume of the symmetric difference. For A, B ⇢ Rn let A ⇤ B = (A \ B)[ (B \ A)
denote the symmetric difference and let � denote the Lebesgue measure on Rn . For
11,12 2 PT define dP(11,12) = �(11 ⇤ 12). Now let dT = 9⇤dP . In [18]
the authors show that (Ham2n,T

n

T /⇡T, dT) is a non-locally compact non-complete
metric space.

The map
Ham2n,T

n

T /⇡T ! Symp2n,T
n

T /⇠T

given by [(M,!,�, µ)] 7! [(M,!,�)] is a quotient map and thus we can en-
dow Symp2n,T

n

T /⇠T with the quotient topology. Since Symp2n,T
n

T /⇠T is a quotient
of Symp2n,T

n

T we can pull the topology up from Symp2n,T
n

T /⇠T to Symp2n,T
n

T by
declaring that a set in Symp2n,T

n

T is open if and only if it is the preimage of an open
set from Symp2n,T

n

T /⇠T under the natural projection. Two points in Symp2n,T
n

T are
not separable if and only if they are Tn-equivariantly symplectomorphic. Thus a
map c : Symp2n,T

n

T ! [0,1] which descends to a well-defined map � on
Symp2n,T

n

T /⇠T is continuous if and only if the map ĉ : Ham2n,T
n

T /⇡T ! [0,1]
is continuous, where ĉ is defined by the following commutative diagram:
Next we define an operation on Delzant polytopes. Let n 2 Z>0. For x0 2 Rn ,
w1, . . . , wn 2 Zn , and " > 0 define

H"
x0(w1, . . . , wn) = { x0 +

P
j t jw j | t1, . . . , tn 2 R>0,

P
j t j > " }. (6.1)

Suppose that 1 2 PT and x0 2 Rn is a vertex of 1. Let ui 2 Zn , i = 1, . . . , n,
denote the primitive vectors along which the edges adjacent to x0 are aligned.
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The "-corner chop of 1 at x0 is the polygon 1"x0 2 PT given by 1"x0 = 1 \
H"
x0(u1, . . . , un) where " is sufficiently small so that 1

"
x0 has exactly one more

face than 1 does as is shown in Figure 6.1. One can check that if 1 2 PT then

D Dex0

x0

He
x0

Figure 6.1. An "-corner chop at a vertex x0 of 1 for some " > 0.

1"x0 2 PT. Notice that lim"!0 dP(1,1"x0) = 0. This means that given any ele-
ment ofPT with N vertices, corner chopping can be used to produce other polygons
which are close in dP and all polygons produced in this way will have more than N
vertices. Let PN

T denote the set of Delzant polygons in Rn with exactly N vertices.
We will later need the following.

Proposition 6.1 ([7]). Let N 2 Z>0 and 1 2 PN
T . Any sufficiently small neigh-

borhood of 1 is a subset of [(N 0>N )PN 0

T .

We study ball packing problems about symplectic toric manifolds by instead study-
ing packings of the associated Delzant polygon. Let 1 2 PT be a Delzant poly-
tope. Let AGLn(Z) = GLn(Z) n Rn denote the group of affine transformations
in Rn with linear part in GLn(Z). For r > 0 let 1(r) = Conv{ re1, . . . , ren, 0 } \
Conv{ re1, . . . , ren } where Conv(E) denotes the convex hull of the set E ⇢ Rn

and { e1, . . . , en } denote the standard basis vectors in Rn . Following [16], a subset
6 of 1 is an admissible simplex of radius r > 0 with center at a vertex x0 of 1 if
there exists some A 2 AGLn(Z) such that:

(1) A(1(r 1/2)) = 6;
(2) A(0) = x0;
(3) A takes the edges of 1(r 1/2) meeting at the origin to the edges of 1 meeting at

x0.

An admissible packing of 1 is a disjoint union R =
F
↵2A6↵ ⇢ 1 where each

6↵ is an admissible simplex for 1. This is illustrated in Figure 6.2. The half-plane
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H"
x0 given in Equation (6.1) is designed so that that an "-corner chop on a Delzant

polytope corresponds to the removal of an admissible simplex of radius ".
The function � : Symp2n,T

n

T /⇠T ! (0, 1] given by

�(M) =
sup{ vol(P) | P is a toric ball packing of M }

vol(M)
,

known as the optimal toric density function, has been studied in [7, 16, 19]. In
particular, in [7] the first and third authors of the present article studied the regions
of continuity of� and proved the n = 2 case of Theorem 1.2 part i. They stated the
theorem in terms of �, while we state it in terms of T .

Let vol : Symp2n,T
n

T ! R denote the total symplectic volume of a symplec-
tic toric manifold and let volP : PT ! R denote Euclidean volume function of a
polytope in Rn . Let (B2n(r),!B,�B, µB) 2 Ham2n,T

n

T denote the standard ball of
radius r > 0 in Cn with the standard action of Tn and suppose that (M,!,�, µ) 2
Ham2n,T

n

T . Let 1B = µB(B2n(r)) and 1 = µ(M). Then, as shown in [16],
vol(M) = n!⇡nvolP(1) and if f : B2n(r) Tn

,�! M is a symplectic Tn-embedding
then

vol
⇣
B2n(r)

⌘
=vol

⇣
f
⇣
B2n(r)

⌘⌘
=n!⇡nvolP

⇣
µ� f

⇣
B2n(r)

⌘⌘
=n!⇡nvolP(1B).

Theorem 6.2 ([16]). Let (M,!,�, µ) 2 Ham2n,T
n

T and let 1 = µ(M). Suppose
� :B2n(r) ,!M is a symplecticTn-embedding for some r>0. Thenµ(�(B2n(r)))⇢
1 is an admissible simplex of radius r2. Conversely, if 6 ⇢ 1 is an admissible
simplex of radius r2 then there exists a symplectic Tn-embedding � : B2n(r) ,! M
such that µ(�(B2n(r))) = 6.

Moreover, if P is a toric ball packing of M , then µ(P) ⇢ 1 is an admissible
packing of 1. Conversely, if R is an admissible packing of 1 then there exists a
toric ball packing P of M such that µ(P) = R.

Since there is a toric ball packing P of M related to an admissible packing R
of1 by µ(P) = R, it follows that vol(P) = n!⇡nvolP(R). To study packing of the
manifold we will study packing of the polygon. Thus, we define ⇡T : PT ! (0,1)
by

⇡T(1) = sup { volP(R) | R is an admissible packing of 1 } .

(a) (b)

Figure 6.2. (a) An image of 1(1) ⇢ R2. (b) An image of an admissible, but not
maximal, packing.
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Suppose that 1 2 PN
T with vertices v1, . . . , vN 2 Rn and let ⇡ iT(1) be the supre-

mum of volP(R) over all admissible packingsR of 1 in which vi /2 R.
The following result generalizes [7, Theorem 7.1] to the case n > 3.

Theorem 6.3. Fix n 2 Z>0. For N 2 Z>1 and let PN
T denote the set of Delzant

polygons in Rn with exactly N vertices. Then:

(1) The function ⇡T is discontinuous at each point in PT;
(2) The restriction ⇡T|PN

T
is continuous for each N > 1;

(3) If 1 2 PN
T then PN

T is the largest neighborhood of 1 in PT in which ⇡T is
continuous if and only if ⇡ iT(1) < ⇡T(1) for all 1 6 i 6 N .

Proof. First we show (1). Let 1 2 PN
T and for any small enough " > 0 perform

an "-corner chop (as in Section 6) at each corner to produce 1" 2 P2NT . Any
admissible packing of 1" can have at most 2N simplices and each simplex must
have one side with length at most " while the other sides are universally bounded
by the maximal side length of 1. The size of such simplices decreases to zero as "
does, so lim"!0 ⇡T(1") = 0. Hence

lim
"!0

dP(1,1") = 0

but
lim
"!0

|⇡T(1) � ⇡T(1")| = ⇡T(1) > 0,

so ⇡T is discontinuous at 1.
Now we prepare to show part (2). For any v1, . . . , vn 2 Zn let [v1, . . . , vn]

denote the n ⇥ n integer matrix with i th column given by vi for i = 1, . . . , n. Let
⌘ : SLn(Z) ! GLn(R) given by

⌘([v1, . . . , vn]) =


v1
|v1|

, . . . ,
vn

|vn|

�

take a nonsingular integer matrix to its column normalization. Notice for any A =
[v1, . . . , vn] 2 SLn(Z) that

det(A) = |v1| · · · |vn| · det(⌘(A)).

Suppose1 2 PT is n-dimensional. In a neighborhood around each vertex the poly-
tope is described by a collection of vectors v1, . . . , vn 2 Zn with det(v1, . . . , vn) =
1 along which the edges adjacent to this vertex are directed. So, associated to
any vertex of a Delzant polytope, there is a matrix A 2 SLn(Z) given by A =
[v1, . . . , vn] which is unique up to even permutations of its columns and thus,
though A is not unique, the values determined by det(A) and det(⌘(A)) associated
to a vertex are well-defined. Fix 1 2 PN

T and {1 j }1j=1 ⇢ PN
T such that

lim
j!1

dP(1,1 j ) = 0. (6.2)
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For j large enough for each vertex V of1 there must be a corresponding vertex Vj
of 1 j so that Vj ! V as j ! 1. Let A 2 SLn(Z) be a matrix corresponding to
V and let A j 2 SLn(Z) be a matrix corresponding to Vj for j 2 Z large enough. In
particular, convergence in dP , which is convergence in L1(Rn), implies that locally
these vertices must converge, so Equation (6.2) implies that

lim
j!1

�
�det(⌘(A)) � det(⌘(A j ))

�
� = 0.

Now we are ready to prove (2) by showing that the collection of possible vertices
of Delzant polytopes is discrete. Fix 1 2 PN

T with a vertex V at the origin and let
" > 0. Choose � > 0 small enough so that if 10 2 PN

T with a vertex V 0 at the
origin then dP(1,10) < � implies that

�
�det(⌘(A)) � det(⌘(A0))

�
� < ", (6.3)

where A 2 SLn(Z) is a matrix associated to V and A0 2 SLn(Z) is a matrix
associated to V 0. Suppose that " < det(⌘(A)). Now let A0 = [w1, . . . , wn] for
wi 2 Zn , i = 1, . . . , n. These are all nonzero integer vectors so |wi | > 1 for
i = 1, . . . , n. For each i we have

1 = det(A0) = |w1| |w2| . . . |wn| det(⌘(A0)) > |wi | det(⌘(A0))

and so by Equation (6.3)

|wi | 6
1

det(⌘(A0))
6

1
det(⌘(A)) � "

.

Thus each wi 2 Zn has length at most (det(⌘(A)) � ")�1, a value which does not
depend on 10, and so to be within � of 1 the vectors directing the edges coming
out from the vertex V 0 of 10 must be chosen from only finitely many options. This
means the set of possible local neighborhoods of vertices is discrete. Thus, for small
enough � > 0 we conclude that dP(1,10) < � implies that there exist open sets
U,U 0 ⇢ Rn around the vertices V and V 0 such that

1 \U = Fc(10 \U 0),

where Fc : R ! R is a translation by some fixed c 2 Rn . Now, let 1 2 PN
T be any

Delzant polytope in Rn with N vertices. In a sufficiently small dP -neighborhood
of 1 all polytopes must have the same angles at the finitely many vertices by the
argument above. Thus they are all related to 1 by translating its faces in a parallel
way (which includes as a special case rescaling the polytope), which continuously
changes ⇡T. This proves (2) because ⇡T is continuous on such families.

Finally we show (3). Let 1 2 PN
T and assume that ⇡T(1) = ⇡ iT(1) for some

i 2 {1, . . . , N }. Then there is an optimal packing of 1 which avoids the i th vertex.
For " > 0 let 1" 2 PN+1

T be the "-corner chop of 1 at the i th vertex. Since the
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optimal packing of1 avoids the i th vertex, we see that lim"!0 dP(1,1") = 0 and
lim"!0 ⇡T(1) = ⇡T(1") so there is a set larger thanPN

T on which ⇡T is continuous
around 1.

Conversely assume that12PN
T satisfies ⇡

i
T(1) < ⇡T(1) for all i = 1, . . . , n.

By Proposition 6.1 we know that any small enough neighborhood of 1 only in-
cludes polytopes with N vertices and polytopes with more than N vertices, which
are produced from corner chops of 1. We must now only show that ⇡T can-
not be continuous on any neighborhood of 1 which includes any such polygons.
For " > 0 let 1" 2 PN+1

T be the "-corner chop of 1 at the i th vertex. Then
lim"!0 ⇡T(1") = ⇡ iT(1) < ⇡T so for small enough corner chops ⇡T(1") is
bounded away from ⇡T(1). Thus any set on which ⇡T is continuous around 1
cannot include any corner chops of 1. From this we conclude that any such set
cannot include polytopes with greater than N vertices. The result follows since is
continuous on all of PN

T .

Theorem 1.2 part i follows from Theorem 6.2 and Theorem 6.3. In addition,
these Theorems also imply the following result. Let N > 1 and let Symp2n,T

n

T,N
denote the set of symplectic toric manifolds with exactly N points fixed by the
Tn-action. For (M,!,�) 2 Symp2n,T

n

T,N with fixed points p1, . . . , pN 2 M let

T i (M) =

✓
sup{ vol(P) | P is a toric ball packing of M such that pi /2 P }

vol(B2n)

◆ 1
2n

.

Proposition 6.4. The space Symp2n,T
n

T,N is the largest neighborhood of M in
Symp2n,T

n

T in which T is continuous if and only if T i (M) < T (M) for every
1 6 i 6 N .

Theorem 1.2 part i and Proposition 6.4 are illustrated in Figure 6.3. If n = 2
Proposition 6.4 was proved in [7].

(a) (b)

Figure 6.3. Continuous families of Delzant polygons on which (a) T is continuous and
(b) T is not continuous.
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7. Continuity of symplectic (S1 ⇥ R)-capacities

In this section we study the continuity of the symplectic (S1 ⇥ R)-capacity con-
structed in Section 5. In [15] the second author defines a metric space structure on
the moduli space of simple semitoric systems and in this section we will review this
structure. We are only interested in the topology of Symp4,S

1⇥R
ST /⇠ST so, as is sug-

gested in [15, Remark 1.31(3)], we will use a simplified version of the metric. It is
shown that while the simplified version produces a different metric space structure
on Symp4,S

1⇥R
ST /⇠ST it induces the same topology on Symp4,S

1⇥R
ST /⇠ST as the full

metric [15, Section 2.6].
Let us recall how the metric is constructed, since it is essential for the proofs

of the upcoming results. One has a metric for every invariant (Definition 3.5) and
then [15] constructs a “joint” metric from these. The first metric is the one on
the Taylor series invariants, which is given as follows. A sequence {bn}1n=0 with
bn 2 (0,1) is said to be linear summable if

P1
n=0 nbn < 1. Let {bn} be any such

sequence and define d{bn}1n=0
R[[X,Y ]]0

�
(S1)1, (S2)1

�
to be

X

i, j>0,(i, j)6=(0,1)
min

⇣��
�� 1i, j � � 2i, j

�
�
� , bi+ j

⌘
+min

⇣��
�� 10,1 � � 20,1

�
�
� , 2⇡ �

�
�
�� 10,1 � � 20,1

�
�
� , b1

⌘
,

where (S`)1 =
P

i, j>0 �
`
i, j X

iY j 2 R[[X,Y ]]0 for ` = 1, 2.
We denote the Lebesgue measure by � and use ⇤ to denote the symmetric

difference. A measure ⌫ on R2 is admissible if it is in the same measure class as
� (i.e. ⌫ ⌧ � and � ⌧ ⌫) and there exists some g : R ! R such that the Radon-
Nikodym derivative of ⌫ with respect to � satisfies d⌫d� (x, y) = g(x) for all x, y 2 R,
where g is bounded and bounded away from zero.

Fix an admissible measure ⌫. For m f 2 Z>0 and Ek 2 Zm f let Polygm f ,Ek
ST (R2)0

denote the set of primitive semitoric polygons with complexity m f and twisting

index Ek and let Polygm f ,Ek
ST (R2) denote the set of semitoric polygons which are

the orbit of a primitive semitoric polygon in Polygm f ,Ek
ST (R2)0. We may define

d⌫P : Polygm f ,Ek
ST (R2) ⇥ Polygm f ,Ek

ST (R2) ! [0,1) by showing how it acts on orbits

[1i
w] elements 1i

w =
�
1i , (`�ij

,+1, k j )
m f
j=1
�

2 Polygm f ,Ek
ST (R2)0. If m f > 0,

d⌫P
�
[11w], [12w]

�
=

X

Eu2{0,1}m f

⌫
�
t EuE�1(1

1) ⇤ t EuE�2(1
2)
�

and, if m f = 0,
d⌫P
�
[11w], [12w]

�
= ⌫

�
11 ⇤12

�
.

For I i=
�
m f , ((Sij )

1)
m f
j=1, [1

i
w], (hij )

m f
j=1
�
2I, with i=1,2 define d⌫,{bn}

1
n=0

m f ,Ek
(I 1, I 2)



92 ALESSIO FIGALLI, JOSEPH PALMER AND ÁLVARO PELAYO

to be

d⌫P([11w], [12w]) +
m fX

j=1

✓
d{bn}1n=0

R[[X,Y ]]0

�
(S1j )

1, (S2j )
1�+

�
�
�h1j � h2j

�
�
�
◆

if I 1,I 22Im f ,Ek for somem f 2Z>0, Ek2Zm f and otherwise define d⌫,{bn}
1
n=0

m f ,Ek
(I1,I 2)=

1 (so systems in different Im f ,Ek will be in different components of the result-

ing topological space). The metric DST on Symp4,S
1⇥R

ST /⇠ST is the pullback of
this one by 8. It was shown in [15, Theorem A] that the topology induced on
(Symp4,S

1⇥R
ST /⇠ST,DST) by the metric does not depend on the choice of ⌫ or

{bn}
m f
n=0.

Since Ham4,S
1⇥R

ST /⇡ST is a quotient of Ham4,S
1⇥R

ST we can pull the topology
up from Ham4,S

1⇥R
ST /⇡ST to Ham4,S

1⇥R
ST by declaring that a set in Ham4,S

1⇥R
ST is

open if and only if it is the preimage of an open set from Ham4,S
1⇥R

ST /⇡ST under
the natural projection. We endow Symp4,S

1⇥R
ST with the quotient topology rela-

tive to the map Ham4,S
1⇥R

ST ! Symp4,S
1⇥R

ST which forgets the momentum map.
Thus a map c : Symp4,S

1⇥R
ST ! [0,1] which descends to a well-defined map �

on Symp4,S
1⇥R

ST /⇠ST is continuous if and only if the map ĉ : Ham4,S
1⇥R

ST /⇡ST !
[0,1] is continuous where ĉ is defined by the commutative diagram:

Let 1w = (1, (`� j ,+1, k j )
m f
j=1) be a primitive semitoric polygon, and let v 2 1

be a vertex.

Definition 7.1. An admissible semitoric simplex of radius r > 0 with center at v
is a subset 6 of 1 such that there exist some A 2 AGL2(Z) and Eu 2 {0, 1}m f

satisfying:

- A(1(r 1/2)) = t EuE� (6);
- A(0) = t EuE� (v);
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- A takes the edges of1(r 1/2)meeting at the origin to the edges of t EuE� (1)meeting
at t EuE� (v);

- 6 ⇢ 1Eu where

1Eu = 1 \

⇢
(x, y) 2 1

�
�
�
x = � j and (�2Eu + 1)y > min(� j ,y0) y0 + h j
for some j 2 { 1, . . . ,m f }

�
.

An admissible semitoric packing of1w is a disjoint union R =
F
↵2A6↵ where

each6↵ is an admissible simplex of some radius, where the radii of the simplices
are allowed to be different.

Such a simplex cannot exist at a fake corner.

S1

S2
S3

D t (D)

t (S1 )

t (S2 )

t (S3 )

Figure 7.1. An admissible semitoric packing. Here t denotes t EuE� .

Lemma 7.2 ( [17]). Let FB be a momentummap for the usualTn-action onB2n(r),
r > 0, and let (M,!,�, F) be a Hamiltonian Tn-manifold of dimension 2n. If
⇢ : B2n(r) ,! M is a symplectic Tn-embedding with respect to some 3 2 Aut(Tn)
then there exists some x 2 Rn such that the following diagram commutes:

B2n(r)
⇢

����! M

FB
?
?
y

?
?
yF

R2 (3t )�1+x
������! R2

where (3t )�1 + x is the affine map with linear part (3t )�1 which takes 0 to x .

In [13] a proper Hamiltonian Tn-manifold is a quadruple (Q,!Q, FQ,0)
where (Q,!Q) is a connected 2n-dimensional symplectic manifold with momen-
tum map FQ for an action of Tn and 0 ⇢ Lie(Tn)⇤ is an open convex subset with
FQ(Q) ⇢ 0 and such that FQ is proper as a map to 0. A proper Hamiltonian Tn-
manifold is centered about p 2 0 if p is an element of each component of FQ(QK )
for each subgroup K ⇢ Tn , where QK is the set of all points in Q which are fixed
by the action of all elements of K .



94 ALESSIO FIGALLI, JOSEPH PALMER AND ÁLVARO PELAYO

Lemma 7.3 ( [13]). Let (Q,!Q, FQ,0) be a proper Hamiltonian Tn-manifold of
dimension 2n. If (Q,!Q, FQ,0) is centered about p 2 0 and (FQ)�1({p}) = {q},
then Q is equivariantly symplectomorphic to { z 2 Cn | p +

Pn
j=1

�
�z j
�
�2 ⌘qj 2 0 },

where ⌘q1 , . . . , ⌘
q
m 2 Lie(Tn)⇤ are the weights of the isotropy representation of Tn

on TqQ.

We use Lemma 7.2 and Lemma 7.3 to prove the following.

Proposition 7.4. Let (M,!, F = (J, H)) be a semitoric manifold such that

8
�
(M,!, F)

�
=
�
m f , ((S j )1)

m f
j=1, [1w], (h j )1j=1

�

where 1w = (1, (`� j ,+1, k j )
m f
j=1) is primitive with associated momentum map

eF 2 FM such that eF(M) = 1. Then:

(1) Suppose ⇢ : B4(r) ,! M is a semitoric embedding for some r > 0. Then
eF(⇢(B4(r))) ⇢ 1 is an admissible semitoric simplex with radius r2. Con-
versely, if 6 ⇢ 1 is an admissible semitoric simplex with radius r2 then there
exists a semitoric embedding ⇢ : B4(r) ,! M such that eF(⇢(B4(r))) = 6;

(2) Let P be a semitoric ball packing of M . Then eF(P) ⇢ 1 is an admissible
packing of 1w. Conversely, if R is an admissible packing of 1w then there
exists a semitoric ball packing P of M such that eF(P) = R.

Proof. Part (2) follows from Part (1) since the semitoric simplices associated to
disjoint semitoricly embedded balls are disjoint. This follows from the fact that
eF�1(p) is a 2-dimensional submanifold of M for any regular point p 2 1 and the
embedded balls are 2-dimensional.

Suppose that B ⇢ M is a semitoricly embedded ball of radius r > 0. Then
for some E✏ 2 {�1,+1}m f the map ⇢E✏ : B4(r) ,! M E✏ is a T2-embedding with
respect to some3 2 Aut(T2). Recall M E✏ is a Hamiltonian T2-manifold and denote
a momentum map for this action by F E✏ . Let p = F E✏(⇢(0)) and let 1E✏ = F E✏(M E✏).
Hence by Lemma 7.2 the diagram

B4(r)
⇢

����! M ✏̄

FB
?
?
y

?
?
yF ✏̄

1B
(3t )�1+x
������! 1✏̄

commutes for some x 2 Lie(T2)⇤. Since3 is an automorphism so is (3t )�1, hence
it sends the weights of the isotropy representation of T2 on T0(B4(r)) to the weights
of the isotropy representation on TpM . Since (3t )�1 is linear and1B is the convex
hull of the isotropy weights of the representation on T0(B4(r)) and the origin, we
find that

6E✏ := [(3t )�1 + x](1B)
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is the convex hull of p, p+ r2↵1, and p+ r2↵2, minus the convex hull of p+ r2↵1
and p+ r2↵2, where ↵1 and ↵2 are the weights of the isotropy representation of T2
on TpM . For Eu = 1

2 (1� E✏) recall that t EuE� (1) = 1E✏ and let6 =
�
t EuE�
��1

(6E✏). Notice
that 6 = eF(⇢(B4(r))) ⇢ 1 and it is an admissible semitoric simplex.

To prove the converse let 6 ⇢ 1 be an admissible semitoric simplex. This
means that there exists some E✏ 2 {�1,+1}m f such that

60 := t EuE� (6)

satisfies the requirements of Definition 7.1, where Eu = 1
2 (1� E✏). Let 10 = t EuE� (1).

Let p be the unique vertex of 60. Thus, 60 is the convex hull of p, p + r2↵1, and
p + r2↵2, minus the convex hull of p + r2↵1 and p + r2↵2, for some ↵i 2 R2,
with i = 1, 2. Let 0 ⇢ R2 be the unique open half plane satisfying 0 [10 = 60.
Let N = eF�1(6) and let !N = !|N . We can see that N ⇢ M is open and by
the proof of the Atiyah-Guillemin-Sternberg convexity theorem [1, 10] we know
that N is connected. The map eF is proper because its first component, J , is proper
and thus eFN := t EuE�

�eF |N
�

: N ! 60 is proper. Therefore eFN : N ! 0 is proper
because (eFN )�1(0 \60) = ;, and hence (N ,!N , eFN ,0) is a proper Hamiltonian
T2-manifold. Since (N ,!N , eFN ,0) is centered about p 2 R2 by Lemma 7.3 we
conclude that N is equivariantly symplectomorphic to

{ z 2 C2 | p + |z1|2 ↵1 + |z2|2 ↵2 2 0 } = B4(r).

It follows that there exists a symplecticT2-embedding ⇢ : B4(r) ,! M E✏ with image
N so eF(⇢(B4(r))) = eF(N ) = 6.

Define the optimal semitoric polygon packing function ⇡ST : PolygST(R2) !
[0,1] by

⇡ST([1w]) = sup{ volP(P) | P is an admissible semitoric packing of 1w }.

It is well-defined because any two primitive semitoric polygons in the same orbit
are related to one another by a transformation in Gm f ⇥ G which sends semitoric
packings to semitoric packings and preserves volume.
Definition 7.5. We call ↵ 2 (0,⇡) a smooth angle if it can be obtained as an angle
in a Delzant polygon.

Equivalently, ↵ 2 (0,⇡) is smooth if and only if it is the angle at the origin of
A↵(1(1)) for some A↵ 2 SL2(Z).

Lemma 7.6. The set of smooth angles is discrete in (0,⇡) ⇢ R.

Proof. Fix a smooth angle ↵ 2 (0,⇡) and fix some " > 0 small enough so that
(↵ � ",↵ + ") ⇢ (0,⇡). Let

B"(↵) = {� 2 (0,⇡) | � is a smooth angle and |↵ � �| < " }
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and let �" > 0 be such that if � 2 B"(↵) then |sin(↵) � sin(�)| < �". Now fix any
� 2 B"(↵). This means there exists some A� 2 SL2(Z) such that � is the angle at
the origin of 1 = A�(1(1)). Let `1, `2 2 R denote the lengths of two edges of the
simplex 1 which are adjacent to the vertex at the origin. These each represent the
magnitude of a vector in Zn so `i > 1 for i = 1, 2. By the choice of �" we have
that sin(�) > sin(↵) � �". Since 1 has area 12 we know that

`1`2 sin(�)
2 = 1

2 and so
for i = 1, 2 we conclude that 1 = `1`2 sin(�) > `i sin(�) which implies that

`i 6
1

sin(�)
<

1
sin(↵) � �"

.

Therefore associated to each � 2 B"(↵) there is a pair of vectors in Z2 each with
length less than (sin(↵) � �")

�1, a value which does not depend on �. There are
only finitely many such vectors.

The proof of Lemma 7.6 is taken from the proof of [7, Theorem 7.1] and is a
two-dimensional version of the strategy used in Theorem 6.3. Let ↵ 2 (0,⇡) be
called a hidden smooth angle if it can be obtained as a hidden corner in a primitive
semitoric polygon.

Corollary 7.7. The set of hidden smooth angles is discrete in (0,⇡) ⇢ R.

It is important to notice that a sequence of smooth angles can approach ⇡ . This
must be the case, for example, if a semitoric polygon has infinitely many vertices.

Definition 7.8. We say that a vertex v of (1, (`� j ,+1, k j )
m f
j=1)) is non-fake if it is

either Delzant or hidden in one, and hence all, elements of the affine invariant. For
N > 1 let PolygNST(R2)0 denote the set of primitive polygons with exactly N non-
fake vertices and let PolygNST(R2) denote the set of (Gm f ⇥ G)-orbits of elements
of PolygNST(R2)0. Let IN be the set of all semitoric ingredients for which the affine
invariant is an element of PolygNST(R2) and let

Symp4,S
1⇥R

ST,N = 8�1(IN )

where 8 is as in Equation (3.2).
Recall H"

p(v) defined in Equation (6.1). The following are two operations
which can be performed on [1w] to produce a new element of PolygST(R2)0.
Definition 7.9. Let 1w = (1, (`� j ,+1, k j )

m f
j=1). Let p 2 1 be a vertex and let

v1, v2 2 Z2 be the primitive inwards pointing normal vectors to the two edges
which meet at p ordered so that det(v1, v2) > 0.

If p is a Delzant vertex of1w then the "-corner chop of1w at p is the primitive
semitoric polygon

1p,"
w =

⇣
1 \H"

p(v1 + v2), (`� j ,+1, k j )
m f
j=1

⌘
.
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Similarly, given [1w] we say that [1p,"
w ] is the "-corner chop of [1w] at p.

Suppose p is a hidden corner of 1w and thus there exists j 2 { 1, . . . ,m f }
such that p 2 `� j . The "-hidden corner chop of 1w at p is the primitive semitoric
polygon

1p,"
w =

⇣
1 \ t�1`� j

�
H"

p(v1 + v2)
�
, (`� j ,+1, k j )

m f
j=1

⌘
.

We say that [1p,"
w ] is the "-hidden corner chop of [1w] at p.

The hidden corner chop of a hidden corner amounts to acting on the polygon
with t1`� j to transform the hidden corner into a Delzant corner, performing the usual
corner chop on this Delzant corner, and then transforming the polygon back with
t�1`� j . This is shown in Figure 7.2.

(a) (b) (c) (d)

Figure 7.2. In (a) a hidden corner is shown. In (b) we unfold it by reversing the sign
of the associated ✏i resulting in a Delzant corner. In (c) we perform corner chop on this
corner and in (d) the ✏i returns to its original sign.

Lemma 7.10. Fix N 2 Z>0. Each [1w] 2 PolygNST(R2) has an open neigh-
borhood in PolygNST(R2) which consists exclusively of transformations of [1w] in
which its sides are moved in a parallel way. Moreover, any sufficiently small neigh-
borhood of [1w] in PolygST(R2) is contained in [(N 0>N )PolygN

0

ST(R2).

Proof. The angles of non-fake corners are discrete by Lemma 7.6 and Corollary 7.7.
This means that there exists a neighborhood of [1w] in which all elements which
have N non-fake vertices must have all of the same angles as [1w]. This is the open
neighborhood described in the Lemma. Any semitoric polygon with fewer non-fake
vertices than [1w] is bounded away from [1w] because the only ways to change
the number of non-fake vertices are a corner chop or introducing a smooth angle
into an edge of infinite length, but by Lemma 7.6 smooth angles are discrete.

Lemma 7.11. The map ⇡ST : PolygST(R2) ! [0,1] is discontinuous at every
point.

Proof. Primitive semitoric polygons must have at least one non-fake vertex. Let

[1w] = [(1, (`� j ,+1, k j )
m f
j=1)]
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be a semitoric polygon. First assume that [1w] 2 PolygNST(R2) for some N > 1 and
that ⇡ST([1w]) < 1. Then for " > 0 small enough define [1"w] to be the semitoric
polygon produced by performing an "-corner chop at each non-fake vertex of [1w].
We have that

lim
"!0

dPST([1], [1"w]) = 0. (7.1)

A packing of [1"w] has at most 2N disjoint admissible simplices. Since their side
lengths are determined by the lengths of the adjacent edges, one of which is length
", we have that lim"!0 ⇡ST([1"w]) = 0. Since every semitoric polygon has positive
optimal packing we have

lim
"!0

�
�⇡ST([1w]) � ⇡ST(1

"
w)
�
� = ⇡ST([1w]) > 0

and thus, in light of Equation (7.1), ⇡ST is discontinuous at [1w].
Suppose [1w] 2 PolygNST(R2) for some N > 1 and ⇡ST([1w]) = 1. Since

[1w] has only finitely many non-fake vertices, any admissible packing has only
finitely many admissible simplices. Hence there is a vertex at which an arbitrar-
ily large simplex fits. The only possible case is that N = 1 and the polygon is of
complexity zero. Taking a corner chop of any size at the single non-fake vertex pro-
duces a polygon on which ⇡ST evaluates to a finite number, so ⇡ST is discontinuous
at [1w].

Now suppose that ⇡ST([1w])<1 and [1w]2PolygST(R2)\
S

N>1Polyg
N
ST(R2).

For i 2 Z>1 let Ii ⇢ R be given by Ii = [�n, n] \ (�(n � 1), n � 1) and let
Ni 2 Z>0 denote the number of non-fake vertices of [1w] with x-coordinate in Ii .
This number is finite by the definition of a convex polygon and it is invariant under
the action of Gm f ⇥ G. For " > 0 small enough let [1"w] be a semitoric polygon
which has a small corner chop at each non-fake vertex such that, at each vertex in
Ii for i 2 Z>1, the largest possible admissible simplex that can fit into that vertex
has volume at most "

(Ni Si+1)
. Then an admissible packing R of [1"w] satisfies

volP(R) 6
1X

i=1

"

Ni2i+1
2Ni = ".

Therefore
lim
"!0

dPST([1w], [1"w]) = 0

while
lim
"!0

�
�⇡ST([1w]) � ⇡ST([1

"
w])
�
� = ⇡ST([1w]) > 0

and thus ⇡ST is not continuous at [1w].

For [1w] = [(1, (`� j ,+1, k j )
m f
j=1)] 2 PolygNST(R2) with non-fake vertices

v1, . . . , vN , let ⇡P,i
ST (1) be the total volume of the optimal packing excluding all

packings which have a simplex centered at vi .
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Theorem 7.12. Let ⇡ST : PolygST(R2) ! [0,1] be the optimal semitoric polygon
packing function. Then:

(1) ⇡ST is discontinuous at each point in PolygST(R2);
(2) the restriction ⇡ST|PolygNST(R2) is continuous for each N 2 Z>1;
(3) if [1w] 2 PolygNST(R2) then PolygNST(R2) is the largest neighborhood of1w in

PolygNST(R2) in which ⇡ST is continuous if and only if ⇡ iST([1w]) < ⇡ST([1w])
for all 1 6 i 6 N .

Proof. Part (1) is the content of Lemma 7.11.
By Lemma 7.10, given any [1w] 2 PolygNST(R2), there exists a neighborhood

of [1w] in PolygNST(R2) containing exclusively orbits of polygons formed by trans-
lating the sides of 1w in a parallel way. Hence part (2) follows from this because
⇡ST is continuous on such transformations.

For Part (3) suppose first that ⇡ST([1w])=⇡ iST([1w]) for some i 2{1, . . . , N }.
This means that there exists some optimal packing avoiding the i th non-fake vertex.
For " > 0 let [1"w] be the result of an "-corner chop at the i th vertex and notice that
lim"!0 dPST([1w], [1"w]) = 0 and lim"!0 ⇡ST([1"w]) = ⇡ST([1w]). Thus there
exists some set larger than PolygNST(R2) on which ⇡ST is continuous, as shown in
Figure 7.3.

Figure 7.3. Corner chop of a corner not used in the optimal packing.

Finally, to show the converse assume that [1w] satisfies ⇡P,i
ST ([1w]) < ⇡PST([1w])

for all 1 6 i 6 N . By Lemma 7.10 there is an open set around [1w] in which the
only elements not in PolygNST(R2)0 are obtained from [1w] by iterations of corner
chops, parallel translations of the edges, and introducing a smooth angle into an
edge of infinite length. For " > 0 let [1"w] be any "-corner chop at the i th non-fake
vertex of [1w]. Then

lim
"!0

⇡ST([1
"
w]) = ⇡ iST([1w]) < ⇡ST([1w])

and the result follows.

Notice that the quotient map Symp4,S
1⇥R

ST ! PolygST(R2) is continuous and
the metric on Symp4,S

1⇥R
ST is the sum of the metric on PolygST(R2) and the met-

ric on the remaining components. Thus, Theorem 1.2 part ii follows from Theo-
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rem 7.12. For (M,!, F) 2 Symp4,S
1⇥R

ST,N with fixed points p1, . . . , pN 2 M let

ST i (M)=

✓
sup{vol(P) | P⇢M is a semitoric ball packing of M and pi /2 P }

vol(B4)

◆1
4
.

Proposition 7.13. Let N > 1. If (M,!, F) 2 Symp4,S
1⇥R

ST,N then Symp4,S
1⇥R

ST,N is the

largest neighborhood of M in Symp4,S
1⇥R

ST in which ST is continuous if and only
if ST i (M) < ST (M) for all 1 6 i 6 N .

Theorem 1.2 part ii and Proposition 7.13 are illustrated in Figure 7.4.

(a) (b)

Figure 7.4. Continuous families of primitive semitoric polygons on which (a) ST is
continuous and (b) ST is not continuous.

Definition 7.14. The semitoric radius capacity is the symplectic (S1⇥R)-capacity
ST rad : Symp4,S

1⇥R
ST ! [0,1] given by

ST rad(M) = sup{ r > 0 | there exists a semitoric embedding B4(r) ,! M }.

It can be shown that ST rad is a (S1 ⇥ R)-capacity in the same way that it was
shown that ST is a (S1 ⇥ R)-capacity. Recall that Symp2n,R

n

T is the symplectic
Rn-category which is the collection of toric manifolds with their Tn-action lifted to
an Rn-action. Let Symp2n,R

n

T,N denote those systems with exactly N points fixed by
the Rn-action. By repeating the proofs of the continuity results Theorem 1.2 part i,
Proposition 6.4, Theorem 1.2 part ii, and Proposition 7.13 we immediately have the
following result, that yields Theorem 1.2 part iii.

Theorem 7.15. The maps cn,nB |Symp2n,RnT
and ST rad are discontinuous everywhere

on their domains and the restrictions cn,nB |Symp2n,RnT,N
and ST rad|Symp4,S1⇥R

ST,N
are both

continuous. For (M,!, F) 2 Symp2n,R
n

T,N the set Symp2n,R
n

T,N is not the largest
neighborhood of M in Symp2n,R

n

T in which cn,nB |Symp2n,RnT
is continuous and for

(M,!, F) 2 Symp4,S
1⇥R

ST,N the set Symp4,S
1⇥R

ST,N is the largest neighborhood of M

in Symp4,S
1⇥R

ST in which ST rad is continuous if and only if N = 1.
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Remark 7.16. There are many examples of classical symplectic capacities (see for
instance [3]), and it would be of interest to adapt these capacities to the equivariant
category. It would also be useful to construct symplectic G-capacities for more
general integrable systems. In particular, integrable systems where a complete list
of invariants is not known (that is, the vast majority).

In [8] the authors give a lower bound on the number of fixed points of a circle
action on a compact almost complex manifold M with nonempty fixed point set,
under the condition that the Chern number c1cn�1[M] vanishes. These results ap-
ply to a class of manifolds which do not support any Hamiltonian circle action
with isolated fixed points, and which includes all symplectic Calabi-Yau mani-
folds [26] (see [8, Proposition 2.15]). The class of symplectic Calabi-Yau mani-
folds is thus of particular interest because they do not admit integrable systems of
toric or semitoric type. Also, there is work extending the classification in [20] and
related results to higher dimensions [24], so one could extend the semitoric packing
capacity to higher dimensional semitoric systems, for which there is currently no
classification.

Another interesting direction would be to generalize the work in [14] to our
setting. There, the author constructs infinite dimensional symplectic capacities
for a general class of Hamiltonian PDEs. In case the PDEs preserves some G-
-action, one may expect to construct also G-capacities in such infinite dimensional
setting, and this may give new interesting result on the long time behavior of
solutions.

Symplectic capacities are also of interest from a physical view point, for in-
stance in [4] the authors describe interrelations between symplectic capacities and
the uncertainty principle. It would be interesting to explore similar connections to
symplectic G-capacities.

Remark 7.17. In this paper G can be a compact Lie group (like in the case of sym-
plectic toric manifolds) or a non-compact Lie group (like in the case of semitoric
systems). In general there are obstructions to the existence of effective G-actions
on compact and non-compact manifolds, even in the case that the G-action is only
required to be smooth. For instance, in [25, Corollary in page 242] it is proved that
if N is an n-dimensional manifold on which a compact connected Lie group G acts
effectively and there are �1, . . . , �n 2 H1(M, Q) such that �1 [ . . . [ �n 6= 0 then
G is a torus and the G-action is locally free. In [25] Yau also proves several other
results giving restrictions on G, M , and the fixed point set MG . If the G-action
is moreover assumed to be symplectic or Kähler, there are even more non-trivial
constraints. Therefore the class of symplectic manifolds for which one can define
a notion of symplectic G-capacity with G non-trivial is in general much more re-
strictive than the class of all symplectic manifolds.
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[7] A. FIGALLI and Á. PELAYO,On the density function on moduli spaces of toric 4-manifolds,
Adv. Geom. 16 (2016), 291–300.
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