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Volume and self-intersection of differences of two nef classes

DAN POPOVICI

Abstract. Let {↵} and {�} be nef cohomology classes of bidegree (1, 1) on
a compact n-dimensional Kähler manifold X such that the difference of inter-
section numbers {↵}

n
� n {↵}

n�1. {�} is positive. We solve in a number of
special but rather inclusive cases the quantitative part of Demailly’s Transcen-
dental Morse Inequalities Conjecture for this context predicting the lower bound
{↵}

n
� n {↵}

n�1. {�} for the volume of the difference class {↵ � �}. We com-
pletely solved the qualitative part in an earlier work. We also give general lower
bounds for the volume of {↵ � �} and show that the self-intersection number
{↵ � �}

n is always bounded below by {↵}
n

� n {↵}
n�1. {�}. We also describe

and estimate the relative psef and nef thresholds of {↵} with respect to {�} and
relate them to the volume of {↵ � �}. Finally, broadening the scope beyond the
Kähler realm, we propose a conjecture relating the balanced and the Gauduchon
cones of @@̄-manifolds which, if proved to hold, would imply the existence of a
balanced metric on any @@̄-manifold.

Mathematics Subject Classification (2010): 32J27 (primary); 32U40, 32Q25,
32J25, 53C55 (secondary).

1. Introduction

Let X be a compact Kähler manifold with dimC X = n and let {↵}, {�} 2

H1, 1BC (X, R) be nef Bott-Chern cohomology classes such that

{↵}
n

� n {↵}
n�1. {�} > 0. (1.1)

A (possibly transcendental) class {↵} 2 H1, 1BC (X, R) being nef means (cf. [11,
Definition 1.3]) that for some (hence all) fixed Hermitian metric ! on X and for
every " > 0, there exists a C1 form ↵" 2 {↵} such that ↵" � �" !.

We have proved in [20, Theorem 1.1] that the class {↵��} is big (i.e. contains
a Kähler current T ). This solved the qualitative part of Demailly’s Transcendental
Morse Inequalities Conjecture for differences of two nef classes (cf. [6, Conjecture
10.1, (i i)]) on compact Kähler (and even more general) manifolds. This special
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form of the conjecture was originally motivated by attempts at extending to tran-
scendental classes and to compact Kähler (not necessarily projective) manifolds the
cone duality theorem of Boucksom, Demailly, Paun and Peternell [6, Theorem 2.2.]
that plays a major role in the theory of classification of projective manifolds. Recall
that T being a Kähler current means that T is a d-closed positive (1, 1)-current
with the property that for some (hence all) fixed Hermitian metric ! on X , there
exists " > 0 such that T � " ! on X . Nefness and bigness are quite different pos-
itivity properties for real (possibly transcendental) (1, 1)-classes and the by-now
standard definitions just recalled extend classical algebraic definitions for integral
classes on projective manifolds.

In this paper we give a partial answer to the quantitative part of Demailly’s
Transcendental Morse Inequalities Conjecture for differences of two nef classes:

Conjecture 1.1 ([6, Conjecture 10.1, (ii)]). Let {↵}, {�} 2 H1, 1BC (X, R) be nef
classes satisfying condition (1.1) on a compact Kähler manifold X with dimC X =

n. Then
Vol({↵ � �}) � {↵}

n
� n {↵}

n�1. {�}. (1.2)

This is stated for arbitrary (i.e. possibly non-Kähler) compact complex manifolds
in [6], but the volume is currently only known to be meaningful when X is of class
C, a case reducible to the Kähler case by modifications. Thus, we may assume
without loss of generality that X is Kähler.

Recall that the volume is a way of gauging the “amount” of positivity of a class
{� } 2 H1, 1BC (X, R) when X is Kähler (or merely of class C) and was introduced
in [5, Definition 1.3] as

Vol({� }) := sup
T2{� }, T�0

Z
X
T nac (1.3)

if {� } is pseudo-effective (psef), i.e. if {� } contains a positive (1, 1)-current T � 0,
where Tac denotes the absolutely continuous part of T in the Lebesgue decomposi-
tion of its coefficients (which are complex measures when T � 0). If the class {� }

is not psef, then its volume is set to be zero. It was proved in [5, Theorem 1.2] that
this volume (which is always a finite non-negative quantity thanks to the Kähler, or
more generally class C, assumption on X) coincides with the standard volume of a
holomorphic line bundle L if the class {� } is integral (i.e. the first Chern class of
some L). Moreover, the class {� } is big (i.e. contains a Kähler current) if and only
if its volume is positive, by [5, Theorem 4.7].

Thus, under the assumptions of Conjecture 1.1, the main result in [20] ensures
that Vol({↵��}) > 0. In other words, {↵��} is positive in the big sense. The spe-
cial case when {�} = 0 had been proved in [14, Theorem 2.12] and had served there
as the main ingredient in the proof of the numerical characterisation of the Kähler
cone. (In particular, the proof of the more general statement in [20] reproves in a
much simpler way the main technical result in [14].) The thrust of Conjecture 1.1
is to estimate from below the “amount” of positivity of the class {↵ � �}.
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A first group of results that we obtain in the present paper can be summed
up in the following positive answer to Conjecture 1.1 under an extra assumption.
Recall that for nef classes {� }, the volume equals the top self-intersection {� }

n

(cf. [5, Theorem 4.1]), but for arbitrary classes, any order may occur between these
two quantities.

Theorem 1.2. Let X be a compact Kähler manifold with dimC X = n and let {↵},
{�} 2 H1, 1BC (X, R) be nef classes such that {↵}

n
� n{↵}

n�1.{�} > 0. Suppose,
moreover, that

Vol ({↵ � �}) � {↵ � �}
n. (1.4)

Then Vol({↵ � �}) � {↵}
n

� n {↵}
n�1. {�}.

Although there are examples when the volume of {↵ � �} is strictly less than
the top self-intersection, the assumption (1.4), that we hope to be able to remove in
future work, is satisfied in quite a number of cases, e.g., when the class {↵ � �} is
nef (treated in Section 2).

Actually, we prove in full generality in Section 5 the analogue of Conjec-
ture 1.1 for the top self-intersection number {↵ � �}

n in place of the volume of
{↵ � �}.

Theorem 1.3. Let X be a compact Kähler manifold with dimC X = n and let
{↵}, {�} 2 H1, 1BC (X, R) be nef classes such that {↵}

n
� n {↵}

n�1. {�} > 0. Then

{↵ � �}
n

� {↵}
n

� n {↵}
n�1. {�}.

Theorem 1.2 follows immediately from Theorem 1.3. Since the nef cone is the clo-
sure of the Kähler cone, we may assume without loss of generality that the classes
{↵} and {�} are actually Kähler. As for the volume of {↵ � �} in the general case
(i.e. without assumption (1.4)), we prove a lower bound that is weaker than the
expected lower bound (1.2) in a way that depends explicitly on how far the class
{↵ � �} is from being nef. The nefness defect of {↵ � �} is defined explicitly and
investigated in relation to the volume in Subsections 4.2, 4.3 and 4.4. We call it the
nef threshold (a term that is already present in the literature) of {↵} with respect to
{�} and discuss it together with the analogous psef threshold of {↵} with respect to
{�} in Section 4. In Section 4.4, we prove the following general lower bound for
the volume of {↵ � �}.

Theorem 1.4. Let X be a compact Kähler manifold with dimC X = n and let {↵},
{�} 2 H1, 1BC (X, R) be Kähler classes such that {↵}

n
� n {↵}

n�1. {�} > 0. Let
s0 := N (�)(↵) > 0 be the nef threshold of {↵} with respect to {�}. Then:

(i) if s0 � 1, the class {↵��} is nef and the optimal volume estimate (1.2) holds;
(ii) if s0 < 1, the class {↵ � �} is not nef and the next volume estimate holds:

Vol({↵��})�
⇣
{↵}

n
� n {↵}

n�1. {�}

⌘ 
{↵}

n
� n {↵}

n�1. {�}

{↵}
n

� ns0 {↵}
n�1. {�}

!n�1
. (1.5)
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A very special case of this result was also observed independently in [23] using the
technique introduced in [20].

Taking our cue from the estimates we obtain in Section 3 for the supremum
of t � 0 such that the class {↵} � t {�} is psef in the setting of Conjecture 1.1,
we define the psef and nef thresholds of {↵} with respect to {�} as the functions
P(�), N (�)

: H1, 1BC (X, R) ! R,

(i) P(�)(↵) := inf
R
X ↵ ^ � n�1;

(ii) N (�)(↵) := inf
R
Y ↵ ^ !n�p�1;

where in (i) the infimum is taken over all the Gauduchon metrics � on X normalised
by

[�]BC .
⇥
� n�1

⇤
A =

Z
X
� ^ � n�1 = 1,

while in (ii) the infimum is taken over all p = 0, 1, . . . , n�1, over all the irreducible
analytic subsets Y ⇢ X such that codim Y = p and over all Kähler classes {!}

normalised by
R
Y � ^ !n�p�1

= 1. The class {�} is supposed to be big in the
case of P(�) and Kähler in the case of N (�). (The subscripts BC and A will stand
throughout for the Bott-Chern, respectively Aeppli cohomologies.) In Subsection
4, we prove the following formulae that justify the terminology and make it match
existing notions in the literature:

P(�)(↵) = sup {t 2 R / the class {↵} � t {�} is psef},
N (�)(↵) = sup{s 2 R / the class {↵} � s{�} is nef }.

The psef/nef thresholds of {↵}with respect to {�} turn out to gauge quite effectively
the amount of positivity that the class {↵} has in the “direction” of the class {�}. We
study their various properties in Section 4, estimate them in terms of intersection
numbers as

{↵}
n

n {↵}
n�1.{�}

 P(�)(↵) 

{↵}
n

{↵}
n�1.{�}

,

and by similar, more involved inequalities for N (�)(↵), and relate them to the vol-
ume of {↵ � �} as

Vol({↵ � �}) �

✓
1�

1
P(�)(↵)

◆n
{↵}

n,

whenever the classes {↵} and {�} are Kähler.
Using these thresholds, we prove Conjecture 1.1 in yet another special case:

when the psef and the nef thresholds of {↵} with respect to {�} are sufficiently
close to each other (cf. Proposition 4.12). Of course, we always have: N (�)(↵) 

P(�)(↵).
As in our earlier work [20] and as in [25] that preceded it, we will repeatedly

make use of two ingredients. The first one is Lamari’s positivity criterion.
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Lemma 1.5 ([18, Lemme 3.3]). Let {↵} 2 H1, 1BC (X, R) be any real Bott-Chern co-
homology class on an n-dimensional compact complex manifold X . The following
two statements are equivalent.
(i) There exists a (1, 1)-current T in {↵} such that T � 0 on X (i.e. {↵} is psef);
(ii)

R
X ↵ ^ � n�1 � 0 for all Gauduchon metrics � on X.

In fact, Lamari’s result holds more generally for any (i.e. not necessarily d-closed)
C1 real (1, 1)-form ↵ on X , but we will not use this here. The second ingredient
that we will often use is Yau’s solution of the Calabi conjecture.
Theorem 1.6 ([26]). LetX be a compact complexn-dimensional manifold endowed
with a Kähler metric !. Let dV > 0 be any C1 positive volume form on X such
that

R
X !

n
=

R
X dV . Then, there exists a unique Kähler metric e! in the Kähler

class {!} such that e!n = dV .
There is a non-Kähler analogue of Yau’s theorem by Tosatti andWeinkove [24]

that will not be used in this work. Moreover, most of the techniques that follow are
still meaningful or can be extended to the non-Kähler context. This is part of the
reason why we believe that a future development of the matters dealt with in this
paper may be possible in the more general setting of @@̄-manifolds. The conjecture
we propose in Section 6 is an apt illustration of this idea.

We will make repeated use of the technique introduced in [20] based on the
Cauchy-Schwarz inequality for estimating from below certain integrals of traces of
Kähler metrics introduced in [20]. Moreover, there are mainly two new techniques
that we introduce in the current paper: (i) the observation, proof and use of certain
pointwise inequalities involving products of positive smooth forms (cf. Appendix)
reminiscent of the Hovanskii-Teissier inequalities and generalising [20, Lemma
3.1]; (ii) a technique for constructing what we call approximate fixed points for
Monge-Ampère equations when we allow the right-hand side to vary (cf. proof of
Proposition 5.1) whose rough idea originates in and was suggested by discussions
the author had several years ago in a completely different context with different
equations and for very different purposes with J.-P. Demailly to whom we are very
grateful.

2. Special case of Conjecture 1.1 when {↵ � �} is nef

We start by noticing the following elementary inequality.
Lemma 2.1. Let ↵ > 0 and � � 0 be C1 (1, 1)-forms on a complex manifold X
with dimC X = n such that ↵ � � � 0. Then:

(↵ � �)n � ↵n � n ↵n�1 ^ � at every point in X. (2.1)

If d↵ = d� = 0 and if X is compact, then taking integrals we get:

Vol({↵��})=

Z
X
(↵��)n �

Z
X
↵n�n

Z
X
↵n�1^�={↵}

n
�n {↵}

n�1. {�}. (2.2)
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Proof. Let x0 2 X be an arbitrary point and let z1, . . . , zn be local holomorphic
coordinates centred at x0 such that at x0 we have:

↵ =

nX
j=1

idz j ^ dz̄ j and � =

nX
j=1

� j idz j ^ dz̄ j .

Then ↵ � � =

Pn
j=1(1� � j ) idz j ^ dz̄ j at x0, while � j � 0 and 1� � j � 0 at x0

for all j . Thus inequality (2.1) at x0 translates to
(1��1) · · · (1��n) � 1�(�1+· · ·+�n) for all �1, . . . ,�n 2 [0, 1]. (2.3)
This elementary inequality is easily proved by induction on n � 1. Indeed, (2.3) is
an identity for n = 1, while if (2.3) has been proved for n, then we have:

(1��1) · · · (1��n)(1��n+1)
(i)
� (1� (�1 + · · · + �n)) (1� �n+1)

=1�(�1+ · · · + �n+�n+1)+�n+1(�1+ · · · + �n)

�1� (�1 + · · · + �n + �n+1),

since � j � 0 for all j . (We used 1 � �n+1 � 0 to get (i) from the induction
hypothesis.) Thus (2.3) is proved and (2.1) follows from it.

Now, if ↵ and � are d-closed, they define Bott-Chern cohomology classes.
Since ↵ � � is a semi-positive C1 (1, 1)-form, its Bott-Chern class is nef (and
even a bit more), hence its volume equals

R
X (↵ � �)n by [5, Theorem 4.1] if X

is compact. (Note that X is compact Kähler since ↵ is a Kähler metric under the
present assumptions.) The remaining part of (2.2) follows at once from (2.1) by
integration.

An immediate consequence of Lemma 2.1 is the desired volume lower bound
(1.2) in the special case when the class {↵ � �} is assumed to be nef. Note, how-
ever, that {↵ � �} need not be nef in general even a posteriori in the setting of
Conjecture 1.1.
Proposition 2.2. Let X be a compact Kähler manifold with dimC X = n and let
{↵}, {�} 2 H1, 1BC (X, R) be nef Bott-Chern cohomology classes such that the class
{↵ � �} is nef. Then

Vol({↵ � �}) � {↵}
n

� n {↵}
n�1. {�}. (2.4)

Proof. It suffices to prove inequality (2.4) in the case when the classes {↵}, {�} and
{↵ � �} are all Kähler. (Otherwise, we can add 2"{!} to {↵} and "{!} to {�} for a
fixed Kähler class {!} and let " # 0 in the end. The volume function is known to
be continuous by [5, Corollary 4.11].) If we define the form ↵ as the sum of any
Kähler metric in the class {↵ � �} with any Kähler metric � in the class {�}, the
forms ↵, � and ↵ � � obtained in this way satisfy the hypotheses of Lemma 2.1,
hence also the elementary inequality (2.1) and its consequence (2.2).

Recall that the class {↵ � �} is big under the assumptions of Conjecture 1.1
by the main result in [20]. However, big positivity is quite different in nature to nef
positivity. The general (i.e. possibly non-nef) case is discussed in the next sections.
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3. Applications of Monge-Ampère equations

In this section we rewrite in a more effective way and observe certain consequences
of the arguments in [20, Section 3].

Lemma 3.1. Let X be any compact complex manifold with dimC X = n. With any
C1 (1, 1)-forms ↵,� > 0 and any Gauduchon metric � , we associate the C1

(1, 1)-forme↵ = ↵ + i@@̄u > 0 defined as the unique normalised solution (whose
existence is guaranteed by the Tosatti-Weinkove theorem in [24]) of the Monge-
Ampère equation:

(↵ + i@@̄u)n = c � ^ � n�1 such that sup
X
u = 0, (3.1)

where c > 0 is the unique constant for which the above equation admits a solution
u : X ! R. (Of course, a posteriori, c = (

R
X (↵ + i@@̄u)n)/(

R
X � ^ � n�1), while

if d↵ = 0 then c =

R
X ↵

n
= {↵}

n > 0.)
Then the following inequality holds:✓Z

X
e↵ ^ � n�1

◆
·

✓Z
X
e↵n�1 ^ �

◆
�

1
n

✓Z
X
e↵n

◆✓Z
X
� ^ � n�1

◆
. (3.2)

Proof. Let us define det� e↵ by requiringe↵n = (det� e↵) � n on X . Since �^� n�1 =

(1/n) (3��) � n , the Monge-Ampére equation (3.1) translates to

det
�

e↵ =

c
n
3��. (3.3)

Hence, we get the following identities and inequalities:✓Z
X
e↵ ^ � n�1

◆✓Z
X
e↵n�1^�

◆
=

✓Z
X

1
n

(3�e↵) � n
◆✓Z

X

1
n

(3e↵�) (det
�

e↵) � n
◆

(a)
�

1
n2

✓Z
X
[(3�e↵) (3e↵�)]

1
2 (det

�
e↵)

1
2 � n

◆2 (b)
�

1
n2

✓Z
X
(3��)

1
2 (det

�
e↵)

1
2 � n

◆2

(c)
=

1
n2

✓r
c
n

Z
X
(3��) � n

◆2
=

1
n2

✓r
c
n
n
Z
X
� ^ � n�1

◆2
=

c
n

✓Z
X
� ^ � n�1

◆2
,

which prove (3.2) since c = (
R
X e↵n)/(RX � ^ � n�1) > 0, where (a) is the Cauchy-

Schwarz inequality, (b) follows from the inequality (3�e↵) (3e↵�) � 3�� proved
in [20, Lemma 3.1], while (c) follows from (3.3).

Corollary 3.2. Let X be a compact Kähler manifold with dimC X = n. Then,
for every Kähler metrics ↵,� and every Gauduchon metric � on X , the following
inequality holds:✓Z

X
↵ ^ � n�1

◆
·

✓Z
X
↵n�1 ^ �

◆
�

1
n

✓Z
X
↵n

◆ ✓Z
X
� ^ � n�1

◆
. (3.4)
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Proof. It is clear that (3.4) follows immediately from (3.2) since the assumption
d↵ = d� = 0 ensures that

R
X e↵^� n�1 =

R
X ↵^� n�1,

R
X e↵n�1^� =

R
X ↵

n�1
^�

and
R
X e↵n =

R
X ↵

n .

Remark 3.3. Under the hypotheses of Corollary 3.2, for any � satisfying the
inequality (3�e↵) (3e↵�) � n3�� (an improved version of [20, Lemma 3.1]
which need not hold in general, but holds for some special choices of � – cf.
proof of Lemma 7.2), the lower bound on the right-hand side of (3.4) improves
to (

R
X ↵

n) (
R
X � ^ � n�1). If this improved lower bound held for all Gauduchon

metrics � , Conjecture 1.1 would follow immediately (see Theorem 3.5 below).
We first notice a consequence of Corollary 3.2 for nef classes.

Corollary 3.4. If {↵} and {�} 2 H1, 1BC (X, R) are nef classes on a compact Kähler
manifold X with dimC X = n such that {↵}

n
�n{↵}

n�1.{�} > 0, then {↵}
n > 0 and,

unless {�}=0, the following non-orthogonality property holds: {↵}
n�1.{�}> 0.

Proof. The nef hypothesis on {↵} and {�} ensures that {↵}
n�1. {�} � 0, hence

{↵}
n > 0 since {↵}

n > n {↵}
n�1. {�} by assumption. For the rest of the proof, we

reason by contradiction: suppose that {↵}
n�1. {�} = 0 and that {�} 6= 0. By the nef

hypothesis on {↵} and {�}, for every " > 0, there exist C1 forms ↵" 2 {↵},�" 2

{�} such that ↵" + " ! > 0 and �" + " ! > 0 for some arbitrary fixed Kähler metric
! on X . Applying (3.4) to the Kähler metrics ↵" + " ! and �" + " ! in place of ↵
and � and letting " # 0, we get

R
X � ^ � n�1 = 0 for every Gauduchon metric �

on X . (Note that
R
X ↵" ^ � n�1 =

R
X ↵ ^ � n�1,

R
X �" ^ � n�1 =

R
X � ^ � n�1 andR

X ↵
n�1
" ^ �" = {↵}

n�1.{�} = 0.) If we fix a d-closed positive current T � 0 in
the class {�} (such a current exists since the nef class {�} is, in particular, pseudo-
effective), this means that

R
X T ^ � n�1 = 0 for every Gauduchon metric � on X .

Consequently, T = 0, hence {�} = {T } = 0, a contradiction.

An immediate consequence of Corollary 3.2 is the following result in which
the volume lower bound (3.6) falls short of the expected inequality (1.2). However,
(3.6) solves the qualitative part of [6, Conjecture 10.1, (ii)] already solved in [20],
while (3.5) gives moreover an effective estimate of the largest t > 0 for which the
class {↵ � t�} remains pseudo-effective. This estimate will prompt the discussion
of the psef and nef thresholds in the next section.

Theorem 3.5. Let X be a compact Kähler manifold with dimC X = n and let
↵,� > 0 be Kähler metrics such that {↵}

n
� n {↵}

n�1. {�} > 0.
Then, for every t 2 [0, +1), there exists a real (1, 1)-current Tt 2 {↵ � t�}

such that

Tt �

 
1� nt

{↵}
n�1. {�}

{↵}
n

!
↵ on X. (3.5)

In particular, Tt is a Kähler current for all 0  t < {↵}
n

n {↵}
n�1. {�}

, so taking t = 1
(which is allowed by the assumption {↵}

n
�n {↵}

n�1. {�} > 0) we get that the class
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{↵ � �} contains a Kähler current. Moreover, its volume satisfies:

Vol({↵ � �}) �

�
{↵}

n
� n {↵}

n�1. {�}

�  {↵}
n

� n {↵}
n�1. {�}

{↵}
n

!n�1

� {↵}
n

� n2 {↵}
n�1. {�}.

(3.6)

Proof. Thanks to Lamari’s positivity criterion (Lemma 1.5), the existence of a cur-
rent Tt 2 {↵ � t�} satisfying (3.5) is equivalent to

Z
X

 
↵ � t � � ↵ + nt

{↵}
n�1. {�}

{↵}
n ↵

!
^ � n�1 � 0

for every Gauduchon metric � on X . This, in turn, is equivalent to

nt
{↵}

n�1.{�}

{↵}
n

Z
X
↵ ^ � n�1 � t

Z
X
� ^ � n�1 for every Gauduchon metric � .

The last inequality is nothing but (3.4) which was proved in Corollary 3.2. This
completes the proof of the existence of a current Tt 2 {↵ � t�} satisfying (3.5).

Now, (3.5) implies that the absolutely continuous part Tac of T := T1 2 {↵��}

has the same lower bound as T . Moreover, if {↵}
n

� n {↵}
n�1. {�} > 0, then

Vol({↵ � �})�

Z
X
T nac�

 
1� n

{↵}
n�1.{�}

{↵}
n

!nZ
X
↵n

(i)
�

 
1�n2

{↵}
n�1. {�}

{↵}
n

!
{↵}

n,

which proves the claim (3.6). To obtain (i), we have used the elementary inequality
(1� �)n � 1� n� which holds for every � 2 [0, 1].

The above proof shows that a current Tt 2 {↵ � t�} satisfying (3.5) exists
even if we do not assume {↵}

n
� n {↵}

n�1. {�} > 0, although this information will
be of use only under this assumption. Note that the non-orthogonality property
{↵}

n�1. {�} > 0 ensured by Corollary 3.4 constitutes the obstruction to the volume
lower estimate (3.6) being optimal (i.e. coinciding with the expected estimate (1.2)).
We now point out an alternative way of inferring the same suboptimal volume lower
bound (3.6) from the proof of Theorem 3.5.

Alternative wording of the proof of the volume lower estimate (3.6). By Lamari’s
positivity criterion (Lemma 1.5), the existence of a current T in the class {↵ � �}

such that T � �↵ for some constant � > 0 (which must be such that � < 1) is
equivalent to

Z
X

((1� �)↵ � �) ^ � n�1 � 0, i.e. to
Z
X

✓
(↵ �

1
1� �

�

◆
^ � n�1 � 0,
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for all Gauduchon metrics � on X . Applying again Lamari’s positivity criterion,
this is still equivalent to the class {↵} � (1/(1 � �)) {�} being pseudo-effective.
Inequality (3.5) shows that the largest � we can choose with this property is larger
than or equal to

�0 = 1� n
{↵}

n�1.{�}

{↵}
n , which gives 1� �0 = n

{↵}
n�1.{�}

{↵}
n . (3.7)

On the other hand, we can write:

Vol({↵ � �}) = Vol
✓

(1� t) {↵} + t
✓

{↵} �

1
t

{�}

◆◆

(a)
� Vol((1� t) {↵}) = (1� t)n {↵}

n,

(3.8)

where inequality (a) holds for every t 2 [0, 1] for which the class {↵}� (1/t) {�} is
pseudo-effective. By (3.7), t := 1� �0 = n {↵}

n�1.{�}/{↵}
n satisfies this property.

With this choice of t , inequality (3.8) translates to the first inequality in (3.6).

Corollary 3.6. Let {↵}, {�} 2 H1, 1BC (X, R) be nef classes on a compact Kähler
manifold X with dimC X = n such that {↵}

n
� n {↵}

n�1.{�} > 0. If {�} = 0, then
{↵} is big, while if {�} 6= 0, then {↵} � t {�} is big for all 0  t < {↵}

n

n {↵}
n�1. {�}

.
Moreover, the volume lower bound (3.6) holds.

The case when {�} = 0 is the key Theorem 2.12 in [14]. So, in particular,
our method produces a much quicker proof of this fundamental result of [14]. The
case when {�} 6= 0 is new, although the case t = 1 and the method of proof are
those of [20]. Notice that the quantity {↵}

n/n {↵}
n�1. {�} > 0 is well defined when

{�} 6= 0 by Corollary 3.4.

Proof. We fix an arbitrary Kähler metric ! on X and a constant t � 0 that will
be specified shortly. The nefness assumption on {↵}, {�} means that for every
" > 0, smooth forms ↵ 2 {↵} and � 2 {�} depending on " can be found such
that ↵" := ↵ + " ! and �" := � +

"
t ! are Kähler metrics. Notice that the

class {↵" � t�"} = {↵ � t�} is independent of ". On the other hand, the quan-
tities {↵"}

n
= {↵}

n
+

Pn
k=1 "

k �n
k
�
{↵}

n�k .{!}
k and {↵"}

n�1. {�"} = ({↵}
n�1

+Pn�1
l=1 "

l �n�1
l
�
{↵}

n�1�l .{!}
l).({�} +

"
t {!}) converge to {↵}

n and respectively
{↵}

n�1.{�} when " ! 0. Thus, {↵"}
n

� n {↵"}
n�1.{�"} > 0 if " > 0 is small

enough. Applying Theorem 3.5 to the Kähler metrics ↵" and �", we infer that the
class {↵" � t�"} = {↵� t�} is big whenever 0  t < {↵"}

n/n {↵"}
n�1. {�"}. In par-

ticular, if {�} = 0, this means that the class {↵} is big (since we can fix " > 0 and
choose t = 0). Meanwhile, if {�} 6= 0 and if we choose t < {↵}

n/n {↵}
n�1.{�},

then t < {↵"}
n/n {↵"}

n�1.{�"} for all " > 0 small enough and we conclude that
{↵ � t�} is big. The volume lower bound (3.6) holds for {↵"} and {�"} for t = 1
and all sufficiently small " > 0, so letting " ! 0 and using the continuity of the
volume, we get it for {↵} and {�}.
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4. Trace and volume of (1, 1)-cohomology classes

The implicit discussion of the relative positivity thresholds of a cohomology class
with respect to another in Theorem 3.5 and in Corollary 3.6 prompts a further in-
vestigation of their relationships with the volume that we undertake to study in this
section.

4.1. The psef threshold

Let X be a compact complex manifold in Fujiki’s class C, n := dimC X .
Definition 4.1. For every big Bott-Chern class {�} = [�]BC 2 H1, 1BC (X, R), we
define the �-directed trace (or the psef threshold in the �-direction) to be the func-
tion:

P(�)
: H1, 1BC (X, R) ! R, P(�)(↵) := inf

Z
X
↵ ^ � n�1, (4.1)

for all Bott-Chern classes {↵} = [↵]BC 2 H1, 1BC (X, R), where the infimum is taken
over all the Gauduchon metrics � on X normalised such that

[�]BC .[� n�1]A =

Z
X
� ^ � n�1 = 1. (4.2)

All the integrals involved in the above definition are clearly independent of the rep-
resentatives ↵, � of the Bott-Chern classes [↵]BC , [�]BC and of the representative
� n�1 of the Aeppli-Gauduchon class [� n�1]A 2 Hn�1, n�1

A (X, R). Thus the infi-
mum is taken over the subset S� of the Gauduchon cone GX consisting of classes
[� n�1]A normalised by [�]BC .[� n�1]A = 1. The bigness assumption on [�]BC has
been imposed to ensure that [�]BC .[� n�1]A > 0, so that [� n�1]A can be normalised
with respect to [�]BC as in (4.2), for every class [� n�1]A 2 GX .

This definition is motivated in part by the next observation which is an immedi-
ate consequence of Lamari’s positivity criterion: the �-directed trace P(�) coincides
with the slope function introduced for big classes {↵} in [8, Definition 3.7] and thus
gauges the positivity of real (1, 1)-classes {↵} with respect to a reference big class
{�}. The quantity on the right-hand side of (4.3) below (i.e. the slope) may well
be called the psef threshold of {↵} in the {�}-direction (a term already used in the
literature).

Proposition 4.2. Suppose that {�} 2 H1, 1BC (X, R) is a fixed big class. Then

P(�)(↵)=sup{t 2 R/the class {↵} � t{�} is psef }
=sup{t 2 R/9T 2{↵} current, 9

e� 2 {�}C1-form so thatT � te�}

=sup{t 2 R/8e�2{�}C1-form, 9 T 2{↵} current so that T � te�},

(4.3)

for every class {↵} 2 H1, 1BC (X, R). In particular, the set {t 2 R / the class {↵} �

t {�} is psef} equals the interval (�1, P(�)(↵)].
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Proof. Let A�↵ := {t 2 R / the class {↵} � t {�} is psef} and let t�↵ := sup A�↵ . By
Lamari’s positivity criterion, the class {↵} � t {�} is psef if and only ifZ

X
↵ ^ � n�1 � t

Z
X
� ^ � n�1 for all [� n�1]A 2 GX ()

Z
X
↵ ^ � n�1 � t

for all [� n�1]A 2 GX normalised such that
R
X � ^ � n�1 = 1. This proves the

inequality P(�)(↵) � t�↵ . To prove that equality holds, we reason by contradiction.
Suppose that P(�)(↵) > t�↵ . Pick any t1 such that P(�)(↵) > t1 > t�↵ . ThenR
X ↵ ^ � n�1 > t1 for all Gauduchon metrics � such that [�]BC .[� n�1]A = 1. This
is equivalent to

R
X ↵^ � n�1 > t1

R
X � ^ � n�1 for all Gauduchon metrics � , which

thanks to Lamari’s positivity criterion implies 9 T 2 {↵} � t1 {�} such that T � 0,
i.e. the class {↵} � t1 {�} is psef.

Thus t1 2 A�↵ , contradicting the choice t1 > t�↵ = sup A�↵ .

An immediate consequence is the next statement showing that the �-directed
trace (i.e. the psef threshold) gauges the positivity of real Bott-Chern (1, 1)-classes
much as the volume does.

Corollary 4.3. Suppose that {�} 2 H1, 1BC (X, R) is a fixed big class. For any class
{↵} 2 H1, 1BC (X, R), the following equivalences hold:

(i) {↵} is psef () P(�)(↵) � 0;
(ii) {↵} is big () P(�)(↵) > 0.

Proof. (i) follows at once from (4.3) and so does (ii) after we (trivially) notice that
the class {↵} is big if and only if there exists " > 0 such that {↵} � "{�} is psef.
Indeed, this is a consequence of the fixed class {�} being supposed big.

Next, we observe some easy but useful properties of the �-directed trace.

Proposition 4.4. Suppose that {�} 2 H1, 1BC (X, R) is a fixed big class.

(i) For all classes {↵1}, {↵2} 2 H1, 1BC (X, R), we have

P(�)(↵1 + ↵2) � P(�)(↵1) + P(�)(↵2). (4.4)

In particular, P(�)(↵1) � P(�)(↵2) whenever {↵1} �pse f {↵2} (in the sense
that {↵1 � ↵2} is psef);

(ii) For any class {↵} 2 H1, 1BC (X, R) and any t 2 R, we have

P(�)(t ↵) = t P(�)(↵) and, if t > 0, P(t �)(↵) =

1
t
P(�)(↵); (4.5)

(iii) For every big class {↵} 2 H1, 1BC (X, R), we have

P(↵)(↵) = 1. (4.6)
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Proof. Let {↵1}, {↵2} 2 H1, 1BC (X, R). Since
R
X (↵1+↵2)^� n�1 =

R
X ↵1^�

n�1
+R

X ↵2 ^ � n�1 for every [� n�1]A 2 Hn�1, n�1
A (X, R), we get

inf
Z
X
(↵1 + ↵2) ^ � n�1 � inf

Z
X
↵1 ^ � n�1 + inf

Z
X
↵1 ^ � n�1,

where the infima are taken over all [� n�1] 2 S� . This proves (i).

(ii) Follows immediately from
R
X t↵ ^ � n�1 = t

R
X ↵ ^ � n�1 and from the fact

that [� n�1]A is (t�)-normalised if and only if t[� n�1]A is �-normalised.
(iii) Follows from

R
X ↵^� n�1=1 for all [� n�1]A such that [↵]BC .[� n�1]A=1.

The next observation deals with the variation of P(�) when {�} varies. As usual, an
inequality {↵} �pse f {�} between real (1, 1)-classes will mean that the difference
class {↵ � �} is psef.

Proposition 4.5. Let {�1}, {�2} 2 H1, 1BC (X, R) be big classes.

(i) If {�1} �pse f C {�2} for some constant C > 0, then

P(�1)


1
C
P(�2) on the psef cone EX ⇢ H1, 1BC (X, R); (4.7)

(ii) The following inequality holds:

P(�2)(�1) P(�1)
 P(�2) on the psef cone EX ⇢ H1, 1BC (X, R). (4.8)

Proof. If {�1�C �2} is psef, then
R
X (�1�C �2)^� n�1 � 0, i.e. [�1]BC .[� n�1]A �

C [�2]BC .[� n�1]A, for all classes [� n�1]A 2 GX . It follows that, for every psef
class {↵} 2 H1, 1BC (X, R), we have:

Z
X
↵ ^

� n�1R
X �1 ^ � n�1



1
C

Z
X
↵ ^

� n�1R
X �2 ^ � n�1

for all [� n�1]A 2 GX .

Taking infima over all [� n�1]A 2 GX , we get (4.7). On the other hand, it follows
from (4.3) that

{�1} �pse f P(�2)(�1) {�2},

which in turn implies (4.8) thanks to (4.7) applied with C = P(�2)(�1).
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4.2. The nef threshold

We now observe that the discussion of the psef threshold in Subsection 4.1 can
be run analogously in the nef context using the following important result of [14,
Corollary 0.4].

Theorem 4.6 (Demailly-Paun 2004). Let X be a compact Kähler manifold,
dimC X = n. Then the dual of the nef cone KX ⇢ H1, 1(X, R) under the Serre
duality is the closed convex cone NX ⇢ Hn�1, n�1(X, R) generated by classes of
currents of the shape [Y ] ^ !n�p�1, where Y runs over the irreducible analytic
subsets of X of any codimension p = 0, 1, . . . , n � 1 and {!} runs over the Kähler
classes of X .

Let {↵}, {�} 2 H1, 1(X, R) be arbitrary classes on a compact Kähler n-fold X .
By Theorem 4.6, for any s 2 R, the class {↵ � s�} is nef if and only if
Z
Y
↵^!n�p�1

� s
Z
Y
�^!n�p�1, p=0, 1, . . . , n�1, codimX Y = p, {!}2KX .

(As usual, KX denotes the Kähler cone of X .) This immediately implies the fol-
lowing statement.

Proposition 4.7. Let {�} 2 H1, 1BC (X, R) be any Kähler class on a compact Kähler
n-fold X . The nef threshold of any {↵} 2 H1, 1BC (X, R) in the {�}-direction, defined
by the first identity below, also satisfies the second identity:

N (�)(↵) := inf
Z
Y
↵^!n�p�1

= sup{s 2 R / the class {↵}� s{�} is nef }, (4.9)

where the infimum is taken over all p = 0, 1, . . . , n�1, over all the irreducible an-
alytic subsets Y ⇢ X such that codim Y = p and over all Kähler classes {!} nor-
malised such that

R
Y �^!n�p�1

= 1. In particular, the set {s 2 R / the class {↵}�

s{�} is nef } equals the interval (�1, N (�)(↵)].
Thus, we obtain a function N (�)

: H1, 1BC (X, R) ! R. It is clear that

N (�)(↵)  P(�)(↵) for all {↵} 2 H1, 1BC (X, R) (4.10)

thanks to the supremum characterisations of the two thresholds and to the well-
known implication “nef =) psef”.

It is precisely in order to ensure that
R
Y � ^ !n�p�1 > 0, hence that {!} can

be normalised as stated, for any Kähler class {!} and any Y ⇢ X that we assumed
{�} to be Kähler. The two-fold characterisations of the nef and the psef thresholds
yield at once the following consequence.
Observation 4.8. Suppose that no analytic subset Y ⇢ X exists except in codi-
mensions 0 and n. Then N (�)(↵) = P(�)(↵) for all Kähler classes {↵}, {�}.
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Proof. If Y = X is the only analytic subset of X of codimension p < n, then
N (�)(↵) = inf

R
X ↵ ^ !n�1 where the infimum is taken over all the Kähler classes

{!}, i.e. over all the Aeppli-Gauduchon classes [!n�1]A representable by the (n �

1)st power of a Kähler metric, normalised such that
R
X � ^ !n�1 = 1. Since these

classes form a subset of all the Aeppli-Gauduchon classes [� n�1]A normalised byR
X � ^ � n�1 = 1, we get N (�)(↵) � P(�)(↵). However, the reverse inequality
always holds, hence equality holds.

An immediate consequence of Proposition 4.7 is the following analogue of
Corollary 4.3 for the nef/Kähler context.

Corollary 4.9. Suppose that {�} 2 H1, 1BC (X, R) is a fixed Kähler class. For any
class {↵} 2 H1, 1BC (X, R), the following equivalences hold:

(i) {↵} is nef () N (�)(↵) � 0;
(ii) {↵} is Kähler () N (�)(↵) > 0.

In particular, if no analytic subset Y ⇢ X exists except in codimensions 0 and n,
then the following (actually known, see [11]) equivalences hold:

(a) {↵} is nef () {↵}is psef;
(b) {↵} is Kähler () {↵} is big.

Proof. (i) follows at once from (4.9) and so does (ii) after we (trivially) notice that
the class {↵} is Kähler if and only if there exists " > 0 such that {↵} � "{�} is nef.
Indeed, this is a consequence of the fixed class {�} being supposed Kähler and of
the Kähler cone being the interior of the nef cone.

We immediately get analogues of Propositios 4.4 and 4.5 for N (�)(↵) in place
of P(�)(↵) and for the order relation �ne f in place of �pse f , where {↵} �ne f {�}

means that the class {↵ � �} is nef.

4.3. Relations of the psef/nef threshold to the volume

We now relate the �-directed trace of a Kähler class {↵} to the volume of {↵ � �}.

Proposition 4.10.

(i) For any Kähler classes {↵}, {�} on a compact Kähler n-fold X , we have:

{↵}
n

n {↵}
n�1.{�}

(a)
 P(�)(↵)

(b)


{↵}
n

{↵}
n�1.{�}

. (4.11)

In fact, it suffices to suppose that {�} is big in the inequality (b). In particular,
if {↵}

n
�n {↵}

n�1.{�} > 0, then P(�)(↵) > 1 (hence we find again that {↵��}

is big in this case);
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(ii) For any Kähler classes {↵}, {�} such that {↵}
n
� n {↵}

n�1.{�} > 0, we have:

Vol({↵ � �}) �

✓
1�

1
P(�)(↵)

◆n
{↵}

n. (4.12)

Note that the combination of (4.12) and part (a) of (4.11) is the volume lower bound
(3.6).

Proof. (i) Inequality (b) is trivial: it suffices to choose [� n�1]A = t [↵n�1]A for the
constant t > 0 satisfying the �-normalisation condition [�]BC .t [↵n�1]A = 1, i.e.
t = 1/{↵}

n�1.{�}, and to use the definition of P(�)(↵) as an infimum.
Inequality (a) follows from Corollary 3.2 by taking the infimum over all the

Gauduchon metrics � normalised by
R
X � ^ � n�1 = 1 in (3.4).

(ii) We saw in the second proof of the lower estimate (3.6) that (3.8) holds for
every t 2 [0, 1] such that {↵}�(1/t) {�} is psef. Now, (4.3) shows that the infimum
of all these t is 1/P(�)(↵). Thus (3.8) holds for t = 1/P(�)(↵), yielding (4.12).

A similar link between the volume and the nef threshold is given in the next
result by considering Monge-Ampère equations on analytic subsets Y ⇢ X .

Proposition 4.11. For every Kähler classes {↵}, {�} on a compact Kähler n-fold
X , we have:

inf
p=0,1,...,n�1,

Y⇢X, codim Y=p

VolY (↵)

(n � p) {↵}
n�p�1.{�}.{[Y ]}

(a)
 N (�)(↵)

(b)
 inf

p=0,1,...,n�1,
Y⇢X, codim Y=p

VolY (↵)

{↵}
n�p�1.{�}.{[Y ]}

(4.13)

where the infima are taken over the analytic subsets Y ⇢ X . We have setVolY (↵) :=R
Y ↵

n�p
=

R
X ↵

n�p
^[Y ] and {↵}

n�p�1.{�}.{[Y ]} :=

R
Y ↵

n�p�1
^�=

R
X ↵

n�p�1
^

� ^ [Y ] (both quantities depending only on p and the classes {↵}, {�}, {[Y ]}).

Proof. Pick any Kähler metrics ↵ 2 {↵} and � 2 {�}. Let Y ⇢ X be any analytic
subset of arbitrary codimension p 2 {0, 1, . . . , n � 1} and let ! be any Kähler
metric on X normalised such that

R
Y � ^ !n�p�1

= 1. We can solve the following
Monge-Ampère equation:

e↵n�p
Y = VolY (↵)� ^ !n�p�1 on Y, (4.14)

in the sense that there exists a d-closed (weakly) positive (1, 1)-current e↵Y on Y
(cf. [10, Definition 1.2]) lying in the restricted class {↵}|Y such that e↵Y is C1 on
the regular part Yreg of Y . We defer to the end of the proof the explanation of
how this follows from results in the literature. We adopt the standard point of view
(see [10, Section 1]) according to which C1 forms on a singular variety Y are
defined locally as restrictions to Yreg of C1 forms on an open subset of some CN
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into which Y locally embeds. In what follows, the exterior powers and products
involvinge↵Y are to be understood on Yreg even when we write Y .

If we define det!e↵Y by requiring e↵n�p
Y = (det!e↵Y )!n�p on Y , then (4.14)

translates to the identity:

det
!

e↵Y =

VolY (↵)

n � p
3!�|Y on Y. (4.15)

Thus, the argument in the proof of Lemma 3.1 can be rerun on Y as follows:✓Z
Y
e↵Y ^ !n�p�1

◆ ✓Z
Y
e↵n�p�1
Y ^ �

◆

=

1
(n � p)2

✓Z
Y
(3!e↵Y )!n�p

◆ ✓Z
Y
(3e↵Y �|Y ) (det

!
e↵Y )!n�p

◆

(a)
�

1
(n � p)2

✓Z
Y
[(3!e↵Y ) (3e↵Y �|Y )]

1
2 (det

!
e↵Y )

1
2 !n�p

◆2

(b)
�

1
(n � p)2

 Z
Y
(3!�|Y )

1
2

✓
VolY (↵)

n � p

◆ 1
2

(3!�|Y )
1
2 !n�p

!2

=

VolY (↵)

n � p

✓
1

(n � p)

Z
Y
(3!�|Y )!n�p

◆2
=

VolY (↵)

n � p

✓Z
Y
� ^ !n�p�1

◆2

(c)
=

VolY (↵)

n � p
,

where (a) is an application of the Cauchy-Schwarz inequality, (b) follows from
the pointwise inequality (3!e↵Y ) (3e↵Y �) � 3!� (cf. [20, Lemma 3.1]) and from
(4.15), while (c) follows from the normalisation

R
X � ^ !n�p�1

= 1.
Thus, since

R
Y e↵Y^!n�p�1

=

R
Y ↵^!n�p�1 and

R
Y e↵n�p�1

Y ^�=

R
Y ↵

n�p�1
^

�, we get: Z
Y
↵ ^ !n�p�1

�

VolY (↵)

(n � p) {↵}
n�p�1.{�}.{[Y ]}

for every analytic subset Y ⇢ X and every Kähler metric ! normalised by
R
Y � ^

!n�p�1
= 1. This proves inequality (a) in (4.13).

The proof of inequality (b) in (4.13) follows immediately by choosing the
Kähler metric ! to be proportional to ↵, i.e. ! = t↵ for the constant t = tY > 0 de-
termined by the normalisation condition

R
Y � ^!n�p�1

= 1 once Y ⇢ X has been
chosen. Indeed, for every p = 0, 1, . . . , n � 1 and every analytic subset Y ⇢ X ,
we immediately get:

inf
!

Z
Y
↵ ^ !n�p�1



Z
Y
↵ ^ (t↵)n�p�1

=

R
Y ↵

n�pR
Y � ^ ↵n�p�1

which implies part (b) of (4.13) after taking the infimum over p and Y .
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It remains to explain how the solution of equation (4.14) is obtained. If Y is
smooth, Yau’s classical theorem in [26] ensures the existence and uniqueness of
a Kähler metric e↵Y in {↵}|Y which solves (4.14). If Y is singular, we choose a
desingularisation eY of Y that is a finite sequence of blow-ups with smooth centres
in X :

µ :
eY �! Y, which is the restriction of µ :

eX �! X.

Thus, µ :
eX \ µ�1(Z) �! X \ Z is a biholomorphism above the complement of

the analytic subset Z := Ysing and eX is a compact Kähler manifold, hence so is the
submanifold eY . Moreover, µ?(� ^!n�p�1) is a C1 semi-positive (n� p, n� p)-
form on eX that is strictly positive on eX \ µ�1(Z). Clearly, µ?{↵} = {µ?↵} is a
semi-positive (hence also nef) big class on eX and

VoleY
�
µ?{↵}

�
=

Z
eX
�
µ?↵

�n�p
^ [

eY ] =

Z
X
↵n�p

^ [Y ] = VolY (↵) > 0.

We consider the following Monge-Ampère equation on the (smooth) compact
Kähler manifold eY :

e↵n�peY = VoleY
�
µ?{↵}

�
µ?

⇣
� ^ !n�p�1

⌘
on eY . (4.16)

If the class µ?{↵} were Kähler, Yau’s Theorem 3 in [26] on solutions of the Monge-
Ampère equation with a degenerate (i.e., semi-positive) smooth right-hand side
would yield a unique d-closed (1, 1)-currente↵eY 2 µ?{↵}

|
eY solving equation (4.16)

such that e↵eY � 0 on eY , e↵eY is C1 on eY \ µ�1(Z) and e↵eY has locally bounded
coefficients on eY . In our more general case where the class µ?{↵} is only semi-
positive and big, Theorems A, B, C in [7] yield a unique d-closed (1, 1)-currente↵eY 2 µ?{↵}

|
eY such thate↵eY � 0 on eY and

De↵n�peY
E
= VoleY

�
µ?{↵}

�
µ?

�
� ^ !n�p�1� on eY ,

where h i stands for the non-pluripolar product introduced in [7]. Moreover, e↵eY
is C1 on the ample locus of the class µ?{↵}

|
eY (cf. [7, Theorem C]), which in our

case coincides with eY \ µ�1(Z), ande↵eY has minimal singularities (cf. [7, Theorem
B]) among the positive currents in the class µ?{↵}

|
eY . Since this class contains

C1 semi-positive forms (e.g., (µ?↵)
|
eY ), its currents with minimal singularties have

locally bounded potentials. Thus, e↵eY has locally bounded (and even continuous)
potentials, so he↵n�peY i equals the exterior power e↵n�peY in the sense of Bedford and
Taylor [3]. In particular, [e↵keY ]BC = [µ?↵k]BC for all k, so

R
eY e↵n�p�1eY ^ µ?� =R

eY µ?↵n�p�1
^ µ?�. It remains to set

e↵Y := µ?e↵eY .

We thus get a d-closed positive (1, 1)-current e↵Y 2 {↵}|Y whose restriction to
Yreg = Y \ Z is C1 and which solves the Monge-Ampère equation (4.14).
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We can now relate both the psef and the nef thresholds P(�)(↵), N (�)(↵) to the
volume of {↵ � �}. The next result confirms Conjecture 1.1 in the case when these
thresholds are sufficiently close to each other.

Proposition 4.12. Let X be a compact Kähler manifold, dimC X = n, and let
{↵}, {�} 2 H1, 1BC (X, R) be Kähler classes such that

{↵}
n

� n {↵}
n�1. {�} > 0. (4.17)

If either of the following two conditions is satisfied:

(i) N (�)(↵) � 1 or (i i) N (�)(↵) �

{↵}
n

{↵}
n�1.{�}

� P(�)(↵)

n � 1
, (4.18)

then
Vol({↵ � �}) � {↵}

n
� n {↵}

n�1. {�}. (4.19)

Note that P(�)(↵) �

{↵}
n

{↵}
n�1.{�}

�P(�)(↵)

n�1 thanks to inequality (a) in (4.11). Since
P(�)(↵) � N (�)(↵) (cf. (4.10)), this shows that condition (ii) requires N (�)(↵) to
be “close” to P(�)(↵). In particular, (ii) holds if N (�)(↵) and P(�)(↵) coincide.

Proof of Proposition 4.12. If N (�)(↵) � 1, then the class {↵� �} is nef (cf. Propo-
sition 4.7), so (4.19) follows from Proposition 2.2 in this case.

Let us now suppose that N (�)(↵) < 1 and that condition (ii) is satisfied. We
set s0 := N (�)(↵) and t0 := P(�)(↵), so s0 < 1 < t0 (where the last inequality
follows from {↵ � �} being big – the main result in [20]). We have

{↵ � �} =

t0 � 1
t0 � s0

{↵ � s0�} +

1� s0
t0 � s0

{↵ � t0�}. (4.20)

Since the class (1�s0)/(t0�s0) · {↵� t0�} is psef, we get the first inequality below:

Vol({↵ � �}) �

✓
t0 � 1
t0 � s0

◆n
Vol({↵ � s0 �})

�

✓
1�

1� s0
t0 � s0

◆n ⇣
{↵}

n
� ns0{↵}

n�1.{�}

⌘
,

(4.21)

where the second inequality follows from Proposition 2.2 since the class {↵� s0 �}

is nef. Let

f : [0, 1] ! [0, +1), f (s) :=
✓
1�

1� s
t0 � s

◆n ⇣
{↵}

n
� ns{↵}

n�1.{�}

⌘
. (4.22)

Thus f (1) = {↵}
n

� n{↵}
n�1.{�} and (4.21) translates to Vol({↵ � �}) � f (s0).
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We will now show that f is non-increasing on the interval [ R�t0
n�1 , 1], where we

set:

R :=

{↵}
n

{↵}
n�1.{�}

or equivalently R=sup
�
r>0/{↵}

n
�r{↵}

n�1.{�}>0
 
. (4.23)

Assumption (4.17) means that R > n. Deriving f , we get:

f 0(s)=�n
(t0 � 1)n

(t0 � s)n
{↵}

n�1.{�} + n
(t0 � 1)n�1

(t0 � s)n�1
t0 � 1

(t0 � s)2
⇣
{↵}

n
� ns{↵}

n�1.{�}

⌘

=n
(t0 � 1)n

(t0 � s)n+1
⇣
{↵}

n
� ((n � 1)s + t0) {↵}

n�1.{�}

⌘
, s 2 [0, 1].

Since t0 � 1 > 0 and t0 � s > 0, the definition of R implies that f 0(s)  0 for all s
such that (n � 1)s + t0 � R, i.e. for all s �

R�t0
n�1 .

Recall that we are working under the assumption s0 2 [
R�t0
n�1 , 1), so from f be-

ing non-increasing on [
R�t0
n�1 , 1] we infer that f (s0) � f (1) = {↵}

n
�n{↵}

n�1.{�}.
Since Vol({↵ � �}) � f (s0) by (4.21), we get (4.19).

4.4. Nef/psef thresholds and volume revisited

We now prove Theorem 1.4. In so doing, we use a different method for obtaining a
lower bound for the volume of {↵��} that takes into account the “angles” between
{↵ � s0 �} and {↵ � t �} when t varies in a subinterval of [1, t0).

We start with a useful observation in linear algebra generalising inequality
(2.1).

Lemma 4.13. Let ↵ > 0 and � � 0 be C1 (1, 1)-forms on an arbitrary complex
manifold X with dimC X = n such that ↵�� � 0. Then, for every k 2 {0, 1, . . . , n},
the following inequality holds:

(↵ � �)n�k ^ ↵k � ↵n � (n � k)↵n�1 ^ �. (4.24)

Proof. Let x0 2 X be any point and z1, . . . , zn local holomorphic coordinates about
x0 such that

↵ =

nX
j=1

i dz j ^ dz̄ j and � =

nX
j=1

� j i dz j ^ dz̄ j , hence

↵ � � =

nX
j=1

(1� � j ) i dz j ^ dz̄ j at x0.

Thus � j 2 [0, 1] for all j = 1, . . . , n by our assumptions and inequality (4.24) at
x0 translates to

k! (n � k)!
n!

X
1 j1<···< jn�kn

�
1� � j1

�
. . .

�
1� � jn�k

�
� 1�

n � k
n

nX
l=1

�l ,
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which, in turn, translates to the following inequality after we set � j := 1 � � j 2

[0, 1]:

k! (n � k)!
n!

 X
1 j1<···< jkn

1
� j1 . . . � jk

!
�1 . . . �n �

n � k
n

nX
l=1

�l+k+1�n. (4.25)

Note that the left hand side of (4.25) is meaningful even if some � j vanishes because
it reappears in �1 . . . �n . We will prove inequality (4.25) by induction on n � 1
(where k 2 {1, . . . , n} is fixed arbitrarily).

If n = 1, (4.25) reads 1 � 1. Although it is not required by the induction
procedure, we now prove (4.25) for n = 3 and k = 1 since this case will be used
further down, i.e. we prove

1
3

(�1�2+�2�3+�3�1) �

2
3

(�1+�2+�3)�1 for all �1, �2, �3 2 [0, 1]. (4.26)

It is clear that (4.26) is equivalent to (�1 � 1) (�2 � 1) + (�2 � 1) (�3 � 1) + (�3 �

1) (�1 � 1) � 0 which clearly holds since � j � 1  0 for all j .
Now we perform the induction step. Suppose that we have proved (4.25) for all

1  m  n. Proving (4.25) for n + 1 amounts to proving the following inequality:

Ak, n+1 :=

k! (n + 1� k)!
(n + 1)!

X
1 j1<···< jkn+1

�1 . . . �n+1
� j1 . . . � jk

�

n + 1� k
n + 1

n+1X
l=1

�l + k � n.
(4.27)

The left-hand term Ak, n+1 of (4.27) can be re-written as

k! (n + 1� k)!
(n + 1)!

1
n + 1� k

·

0
BB@�1

X
6=1

1r1<···<rn�kn+1

�r1 . . . �rn�k + · · · + �n+1
X
6=n+1

1r1<···<rn�kn+1

�r1 . . . �rn�k

1
CCA ,

where the meaning of the notation is that the sum whose coefficient is �s runs over
all the ordered indices r1 < · · · < rn�k selected from the set {1, . . . , n + 1} \

{s}. Now, using inequality (4.25) for n (the induction hypothesis), for every s 2

{1, . . . , n + 1} we get:

X
6=s

1r1<···<rn�kn+1

�r1 . . . �rn�k �
n!

k!(n � k)!

 
n � k
n

X
l2{1,...,n+1}\{s}

�l + k + 1� n

!
.
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Plugging these inequalities into the last (re-written) expression for Ak, n+1, we get:

Ak, n+1 �

n � k
n(n + 1)

 X
l2{1,...,n+1}\{1}

�1 �l + · · · +

X
l2{1,...,n+1}\{n+1}

�n+1 �l

!

+

k + 1� n
n + 1

(�1 + · · · + �n+1),

hence

Ak, n+1�
2(n � k)
n(n + 1)

X
1 j<kn+1

� j �k +

k + 1� n
n + 1

n+1X
l=1

�l

=

2(n � k)
n(n + 1)

P
1 j<k<ln+1

(� j �k + �k �l + �l � j )

n � 1
+

k + 1� n
n + 1

n+1X
l=1

�l

(a)
�

2(n � k)
(n � 1)n(n + 1)

 
2

X
1 j<k<ln+1

(� j + �k + �l) � 3
✓
n + 1
3

◆!

+

k + 1� n
n + 1

n+1X
l=1

�l

=

2(n � k)
(n � 1)n(n + 1)

 
2
✓
n
2

◆ n+1X
l=1

�l � 3
✓
n + 1
3

◆!
+

k + 1� n
n + 1

n+1X
l=1

�l

=

1
n + 1

✓
4(n � k)
n(n � 1)

n(n � 1)
2

+ k + 1� n
◆ n+1X

l=1
�l

�

2(n � k)
(n � 1)n(n + 1)

3
(n � 1)n(n + 1)

2 · 3
=

n � k + 1
n + 1

n+1X
l=1

�l � (n � k),

where inequality (a) above follows from (4.26) applied to each sum � j�k + �k�l +

�l� j . Thus we have got precisely the inequality (4.27) that we set out to prove. The
proof of Lemma 4.13 is complete.

Now suppose we are in the setting of Conjecture 1.1. We keep the notation
of Subsection 4.3. Recall that s0 := N (�)(↵) and t0 := P(�)(↵). We assume that
s0 < 1 (since Conjecture 1.1 has been proved in the case when s0 � 1).

We express the class {↵��} as a convex combination of the nef class {↵�s0 �}

and the big class {↵ � t �} for every t 2 [1, t0) (cf. Theorem 3.5) in the following
more flexible version of (4.20):

{↵ � �} =

t � 1
t � s0

{↵ � s0�} +

1� s0
t � s0

{↵ � t�}, t 2 [1, t0). (4.28)
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We know from Theorem 3.5 that for every t < R
n (cf. notation (4.23)) there exists a

Kähler current Tt in the class {↵ � t�} such that Tt � (1�
n
R t)↵. Thus we get the

following Kähler current in the class {↵ � �}:

St :=

t � 1
t � s0

(↵ � s0�) +

1� s0
t � s0

Tt

�

t � 1
t � s0

(↵ � s0�) +

1� s0
t � s0

⇣
1�

n
R
t
⌘
↵, t 2


1,

R
n

�
,

(4.29)

since the class {↵ � s0 �} being nef allows us to assume without loss of generality
that ↵ � s0� � 0 (after possibly adding "! and letting " # 0 in the end). Since the
right-hand side of (4.29) is smooth, it also provides a lower bound for the absolutely
continuous part of St , so we get the following lower bound for the volume for all
t 2 [1, R

n ]:

Vol({↵ � �}) �

Z
X
Snt, ac

�

1
(t � s0)n

nX
k=0

✓
n
k

◆
(t�1)n�k(1�s0)k

✓
1�

nt
R

◆kZ
X
(↵ � s0�)n�k ^ ↵k .

(4.30)

Since the class {↵ � s0�} is nef, using Lemma 4.13, we get the following:
Lemma 4.14. Let X be a compact Kähler manifold, dimC X = n, and let {↵}, {�}2

H1,1BC (X, R) be Kähler classes such that {↵}
n

� n{↵}
n�1.{�} > 0. Suppose that

s0 := N (�)(↵) < 1. Then the following estimate holds:

Vol({↵ � �}) �

✓
A t � s0
t � s0

◆n ✓
{↵}

n
�

s0(t � 1)
A t � s0

n {↵}
n�1. {�}

◆
,

for all t 2


1,

R
n

�
,

(4.31)

where we denote R := {↵}
n/{↵}

n�1. {�} > n and A := 1�
n
R (1� s0) 2 (s0, 1).

Proof. From A� s0 = (1� s0) (1�
n
R ) 2 (0, 1) (because s0 2 (0, 1) and 1�

n
R 2

(0, 1)), we infer that A > s0. That A < 1, is obvious.
Without loss of generality, we may assume that ↵� s0� � 0, so (4.24) applies

to ↵ and s0� and from (4.30) we get:
Vol({↵ � �})

�

1
(t � s0)n

nX
k=0

✓
n
k

◆
(t�1)n�k(1�s0)k

✓
1�

nt
R

◆k ⇣
{↵}

n
� (n � k)s0{↵}

n�1.{�}

⌘

=

1
(t � s0)n


t � 1+ (1� s0)

✓
1�

nt
R

◆�n
{↵}

n

�

t � 1
(t � s0)n


t � 1+ (1� s0)

✓
1�

nt
R

◆�n�1
ns0 {↵}

n�1. {�},

which proves (4.31) since t � 1+ (1� s0) (1�
nt
R ) = At � s0.
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Thus, it becomes necessary to study the variation of the following function:

g :


1,
R
n

�
!R, g(t) :=

✓
At � s0
t � s0

◆n✓
{↵}

n
�

s0(t � 1)
At � s0

n{↵}
n�1. {�}

◆
, (4.32)

since Vol({↵ � �}) � g(t) for all t 2 [1, R
n ]. From A � s0 = (1 � s0) (1 �

n
R ) 2

(0, 1), we get:

g(1) =

⇣
1�

n
R

⌘n
{↵}

n,

while g
✓
R
n

◆
=

✓
R � n
R � ns0

◆n ⇣
{↵}

n
� ns0 {↵}

n�1. {�}

⌘
.

(4.33)

We see that g(1) is precisely the lower bound obtained for the volume of {↵��} in
(3.6), so this lower bound will be improved if g(t) > g(1) for some t 2 (1, R/n].

Variation of g. Since [(t � 1)/(At � s0)]0 = (A � s0)/(At � s0)2 and [(At �

s0)/(t � s0)]0 = (1� A) s0/(t � s0)2, for the derivative of g(t) we get:

g0(t) = n(1� A) s0
(At � s0)n�1

(t � s0)n+1

⇥

✓
{↵}

n
�

(ns0�ns0A+A�s0)t�ns0(1� A)�s0 (A � s0)
(1� A) (At � s0)

{↵}
n�1. {�}

◆
.

Now, At�s0 > 0 for all t 2 [1, R/n] since At�s0 � A�s0 = (1�s0)(1� n
R ) > 0.

Since t � 1 > s0, from the definition (4.23) of R, we get the equivalences:

g0(t)�0 () [ns0 (1� A) + A � s0] t � ns0 (1� A) � s0 (A � s0)
(1�A)(At�s0)R () �

⇥
RA2 � (ns0 � 1+ R) A + (n � 1) s0

⇤
t

+ s0
⇥
A � s0 + (n � R) (1� A)

⇤
� 0.

(4.34)

• Sign of RA2� (ns0�1+ R) A+ (n�1) s0. The discriminant of this 2nd degree
polynomial in A is

1R = R2 � 2 ((n � 2) s0 + 1) R + (ns0 � 1)2. (4.35)

The discriminant of 1R (viewed as a polynomial in R) is

10

= 16(n � 1) s0(1� s0) > 0 since s0 2 (0, 1). (4.36)

Thus, the 1R vanishes at R1 = (n � 2)s0 + 1 � 2
p

(n � 1)s0(1� s0) and R2 =

(n � 2)s0 + 1+ 2
p

(n � 1)s0(1� s0).

Lemma 4.15. With our usual notation R := {↵}
n/{↵}

n�1. {�}, we have: R1 <
R2  n < R.
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Proof. Only the inequality R2  n needs a proof. It is equivalent to

(n � 2)s0 + 2
p

(n � 1)s0(1� s0)  n � 1

() 2
p

(n � 1)s0(1� s0)  (n � 1)(1� s0) + s0
() (

p
(n � 1) (1� s0) �

p

s0)2 � 0,
which clearly holds.

The upshot is that 1R > 0, so RA2 � (ns0 � 1+ R) A + (n � 1) s0 vanishes
at A1 = (ns0 � 1+ R �

p

1R)/2R and A2 = (ns0 � 1+ R +

p

1R)/2R.
Lemma 4.16. With our notation A := 1 �

n
R (1 � s0) 2 [0, 1), we have: A1 <

A < A2.
Proof. The inequality A1 < A is equivalent to
ns0 � 1+ R �

p

1R
2R

<
R � n + ns0

R
() n(2� s0) � 1� R <

p
1R . (4.37)

If n(2� s0) � 1� R  0, (4.37) is obvious. If n(2� s0) � 1� R > 0, inequality
(4.37) is equivalent to

R2+[n(2� s0) � 1]2�2[n(2� s0) � 1]R< R2�2[(n � 2)s0+1]R+(ns0 � 1)2

() [n(2� s0) � ns0] [n(2� s0) + ns0 + 2]
< 2[n(2� s0) � (n � 2)s0 � 2] Rn(n � 1)(1� s0)
< (1� s0)(n � 1)R () n < R,

where the last inequality holds thanks to our assumption {↵}
n

� n{↵}
n�1. {�} > 0.

The inequality A < A2 is equivalent to
R � n + ns0

R
<
ns0 � 1+ R +

p

1R
2R

() R + 1� (2� s0)n <
p
1R . (4.38)

If R + 1� (2� s0)n  0, (4.38) is obvious. If R + 1� (2� s0)n > 0, inequality
(4.38) is equivalent to

R2+[1�(2�s0)n]2+2[1�(2�s0)n]R < R2 � 2 [(n � 2)s0 + 1] R + (ns0 � 1)2

() 2[2� (2� s0)n + (n � 2)s0] R < [ns0 � (2� s0)n] [ns0 � 2+ (2� s0)n]
() (n � 1) (s0 � 1) R < n(n � 1)(s0 � 1) () R > n since s0 � 1 < 0,

where the last inequality holds thanks to our assumption {↵}
n
�n{↵}

n�1.{�}>0.

The obvious corollary of Lemma 4.16 is the following inequality:

RA2 � (ns0 � 1+ R) A + (n � 1) s0 < 0. (4.39)
• Monotonicity of g : [1, R

n ] ! R. Picking up where we left off in (4.34), we
get the equivalence:

g0(t) � 0 () t � s0
A � s0 + (n � R) (1� A)

RA2 � (ns0 � 1+ R) A + (n � 1) s0
. (4.40)
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Lemma 4.17. The following inequalities hold:
(a) A� s0 + (n� R) (1� A) < 0;

(4.41)
(b) 1 > s0

A� s0 + (n� R) (1� A)

RA2 � (ns0 � 1+ R)A+ (n� 1) s0
.

Proof. (a) We have:

A � s0 + (n � R) (1� A) = (1� s0) (1�

n
R

) +

n
R

(1� s0) (n � R)

=

(1� s0)(n � R)(n � 1)
R

and the last expression is negative since n� R < 0 while 1� s0 > 0 and n�1 > 0.

(b) Thanks to (4.39), inequality (b) in (4.41) is equivalent to

RA2�(ns0�1+R)A+(n�1)s0<s0[A � s0 + (n � R)(1� A)]

() RA2 � (Rs0 + R + s0 � 1) A + s0 (s0 + R � 1) < 0.
(4.42)

The discriminant of the left hand side in (4.42), viewed as a 2nd degree polynomial
in A, is 100

= (R � 1)2(1� s0)2, so the left hand side of (4.42) vanishes at

A3 =

R(s0 + 1) + s0 � 1� (R � 1)(1� s0)
2R

= s0

and A4 = 1�

1� s0
R

, where clearly A3 < A4.

Thus, inequality (4.42) is equivalent to s0 < A < 1 �
1�s0
R . We have seen in

Lemma 4.14 that A > s0. On the other hand, proving A < 1 �
1�s0
R amounts to

proving

1�

n
R

(1� s0) < 1�

1� s0
R

() 1 < n (since 1� s0 > 0 and R > 0).

The last inequality being obvious, the proof of (b) in (4.41) is complete.

Conclusion 4.18. Inequality (4.40) holds strictly for every t � 1 thanks to part
(b) of (4.41). So, in particular, g0(t) > 0 for all t 2 [1, R

n ], i.e. the function
g : [1, R

n ] ! R is increasing.
Since Vol({↵ � �}) � g(t) for all t 2 [1, R

n ] (cf. Lemma 4.14), the best
lower bound for Vol({↵ � �}) that we get through this method in the case when
s0 := N (�)(↵) < 1 is

Vol({↵ � �}) � g
✓
R
n

◆

= ({↵}
n

� n {↵}
n�1. {�})

 
{↵}

n
� n {↵}

n�1. {�}

{↵}
n

� ns0 {↵}
n�1. {�}

!n�1
.

(4.43)



VOLUME AND SELF-INTERSECTION OF DIFFERENCES OF TWO NEF CLASSES 1281

This proves Theorem 1.4. Note that this lower bound for the volume improves on
the lower bound g(1) (cf. (4.33)) obtained in (3.6).

5. Intersection numbers

In this section we prove Theorem 1.3. We start by deriving analogues in bidegree
(p, p) with p � 2 of the inequalities established in Section 3. We will use the
standard notion of positivity for (q, q)-forms whose definition is recalled at the
beginning of the Appendix before Lemma 7.1.

Proposition 5.1. Let X be a compact Kähler manifold with dimC X = n and let
↵,� be Kähler metrics on X . Then, for every t 2 [0, +1), every p 2 {1, . . . , n}
and every C1 positive (n � p, n � p)-form �n�p, n�p

� 0 on X such that
@@̄�n�p, n�p

= 0, we have:
Z
X

�
↵ p � tp ↵ p�1 ^ �

�
^�n�p, n�p

�

⇣
1� t

n
R

⌘ Z
X
↵ p ^�n�p, n�p, (5.1)

where, as usual, we let R :=
{↵}

n

{↵}
n�1.{�}

. We also have:

Z
X

�
↵ p � t p� p

�
^�n�p, n�p

�

 
1� t p

�n
p
�

Rp

! Z
X
↵ p ^�n�p, n�p, (5.2)

where we let Rp :=
{↵}

n

{↵}
n�p .{�}

p .

Proof. Wemay and will assume without loss of generality that�n�p, n�p is strictly
positive. Inequality (5.1) is equivalent to

t
n
R

Z
X
↵ p ^�n�p, n�p

� tp
Z
X
↵ p�1 ^ � ^�n�p, n�p,

which, in turn, after the simplification of t � 0 and the unravelling of R, is equiva-
lent to

n
p

✓Z
X
↵ p ^�n�p, n�p

◆
·

✓Z
X
↵n�1 ^ �

◆
� {↵}

n
Z
X
↵ p�1^�^�n�p, n�p. (5.3)

This inequality can be proved using the method in the proof of Lemma 3.1, the
pointwise inequality (7.5) proved in the Appendix and an approximate fixed point
technique that we now describe. Here are the details.
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Approximate fixed point technique

We consider the following Monge-Ampère equation whose unique C1 solution in
the Kähler class {↵} is denoted bye↵ := ↵ + i@@̄' > 0:

e↵n =

{↵}
n

{↵}
p�1.{�}.[�n�p, n�p

]A
↵ p�1 ^ � ^�n�p, n�p. (5.4)

By {↵}
p�1.{�}.[�n�p, n�p

]A we mean the positive real number
R
X ↵

p�1
^ � ^

�n�p, n�p which clearly depends only on the Bott-Chern classes {↵}, {�} 2

H1, 1(X, R) and on the Aeppli class [�n�p, n�p
]A 2 Hn�p, n�p

A (X, R).
We will vary the form ↵ on the right-hand side of (5.4) in its Kähler class {↵}.

Let E↵ := {T 2 {↵} / T � 0} be the set of d-closed positive (1, 1)-currents in the
Kähler class {↵}. Thus E↵ is a compact convex subset of the locally convex space
D01, 1(X, R) endowed with the weak topology of currents. (The compactness is a
consequence of the existence of Gauduchon metrics and holds for any psef class
{↵} even if X is not Kähler.) Fix an arbitrary Kähler metric ! in {↵}. For every
" > 0, we associate with equation (5.4) the map:

R" : E↵ ! E↵, R"(T ) = ↵T, ", (5.5)

defined in three steps as follows. Let T 2 E↵ be arbitrary.
(i) By the Blocki-Kolodziej version [4] for Kähler classes of Demailly’s
regularisation-of-currents theorem [11, Theorem 1.1], there exist C1 d-closed
(1, 1)-forms !" 2 {↵} = {T } for " > 0 such that !" � �"! and !" ! T in
the weak topology of currents as " ! 0. (The Kähler assumption on the class {↵}

crucially ensures that the possible negative part of !" does not exceed "!, see [4].)
Note that for every sequence of currents Tj 2 E↵ converging weakly to a

current T 2 E↵ and for every fixed " > 0, the sequence of C1 forms (! j, ") j
(obtained by applying to each Tj the Blocki-Kolodziej regularisation procedure just
described producing a family ! j, " ! Tj as " ! 0) converges in the C1 topology
to the C1 form !" (obtained by applying to T the Blocki-Kolodziej regularisation
procedure producing a family !" ! T as " ! 0). In other words, for every fixed
" > 0, the map E↵ 3 T 7! !" 2 C1

1, 1(X, C) is continuous if E↵ has been equipped
with the weak topology of currents and the space of smooth (1, 1)-forms has been
given the C1 topology.

To see this, it suffices to work locally with currents Tj = i@@̄ j � 0 and
T = i@@̄ � 0 for which the psh potentials have the property that  j �!  in
the L1 topology as j ! +1, and to show that for every fixed " > 0 we have
i@@̄ j ? ⇢" �! i@@̄ ? ⇢" in the C0 topology as j ! +1. (The convergence
in the C1 topology follows from this by taking derivatives.) Indeed, currents are
regularised in [4] by convolution of their local potentials with regularising kernels
⇢". Since i@@̄ j ? ⇢" =  j ? i@@̄⇢" and i@@̄ ? ⇢" =  ? i@@̄⇢", we have to ensure,
for every fixed " > 0, thatZ
U 0

( j� )(y), u"(x � y) �!

j!+1

0 locally uniformly with respect to x 2 U 0 bU
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for every C1 function u" (which is an arbitrary coefficient of i@@̄⇢" in this case)
defined on the open subset U ⇢ X on which we work. This is clear from the L1
convergence  j �!  on U .

(ii) Set uT, " := (1� ")!"+ "!. Thus uT, " is a Kähler metric in the class {↵} since
it is C1 and uT, " � �(1� ") " ! + " ! = "2 ! > 0. Moreover, uT, " ! T in the
weak topology of currents as " ! 0.

(iii) Solve equation (5.4) with right-hand term defined by uT, " instead of ↵:

↵nT, " =

{↵}
n

{↵}
p�1.{�}.[�n�p, n�p

]A
u p�1T, " ^ � ^�n�p, n�p. (5.6)

This means that we denote by ↵T, " the unique Kähler metric in the Kähler class {↵}

solving equation (5.6) whose existence is ensured by Yau’s theorem [26]. We put
R"(T ) := ↵T, ". Thus, in particular, the image of R" consists of (smooth) Kähler
metrics in {↵}.
Now, R" is a continuous self-map of the compact convex subset E↵ of the locally
convex space D01, 1(X, R), so by the Schauder fixed point theorem, there exists
a current T" 2 E↵ such that T" = R"(T") = ↵T", ". Since ↵T", " := e↵" is C1,
by construction, the fixed-point current T" must be a C1 form, so T" = e↵" and
!" � e↵" � �"! for some �" # 0 when " ! 0. (The last statement follows from the
fact that !" converges in the C1 topology to T if T is C1 – see the explanations
under (3) below.) Hence uT", " = (1� ")!"+ "! � (1� ")e↵"+["� (1� ") �"]!.
We put ⌘" := " � (1� ") �", so ⌘" ! 0 when " ! 0.

To conclude, for every " > 0, we have got a Kähler metric e↵" in the Kähler
class {↵} such that

e↵n" =

{↵}
n

{↵}
p�1.{�}.[�n�p,n�p

]A
[(1� ")!" + "!]

p�1
^ � ^�n�p, n�p

�(1� ")p�1
{↵}

n

{↵}
p�1.{�}.[�n�p,n�p

]A
e↵ p�1" ^�^�n�p,n�p

�O(|⌘"|),

(5.7)

where ! is an arbitrary, fixed Kähler metric in the class {↵} and O(|⌘"|) is a quan-
tity that converges to zero as " ! 0. The Kähler metric e↵" can be viewed as an
approximate fixed point in the class {↵} of equation (5.4).

Explanations. Here are a few additional comments on the choice of a continuous
regularising operator R" for every " > 0. We are indebted to J.-P. Demailly and to
A. Zeriahi for many of the ensuing remarks that were left out of the first version of
this paper.

(1) The existence of a continuous regularising operator is an easy consequence of
the regularisation theorem (whatever version of it may be used, be it Demailly’s
regularisation of currents [11, Theorem 1.1] or the Blocki-Kolodziej one [4] or
any other one) applied to finitely many currents. The argument for this statement,
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which has been very kindly and effectively explained to the author by J.-P. De-
mailly, makes use of the compactness and convexity of E↵ in D

01, 1(X, R). Indeed,
the cone of positive currents has a compact and metrisable, hence countable, base.
For this reason, there are several different topologies that induce the same topology
on this cone (= the weak topology of currents). If we fix a smooth representative
↵ of the class {↵} (and ↵ can be chosen to be a Kähler metric in this case, but this
is irrelevant here), any current T 2 E↵ can be written as T = ↵ + i@@̄' � 0 for a
global quasi-psh (hence L2 and indeed L p for every p 2 [1, +1)) potential ' that
is unique up to a constant. We can equip the space of potentials {' / i@@̄' � �↵}

with the topology induced by the L2 Hilbert space topology, which is separable,
hence has a countable orthonormal base. This topology induces on E↵ the weak
topology of currents.

Now, by compactness of E↵ , for every ", there is a finite covering of E↵ by
open balls of radius ". Let T1, . . . , TN" 2 E↵ be the centres of these balls and let
E↵, " be the convex polyhedron generated by T1, . . . , TN" . We can take " = 1/m for
m 2 N? and by convexity of E↵ we get

E↵ =

+1[
m=1

E↵, 1m .

Thus, it suffices to regularise the finitely many currents T1, . . . , TN" and to extend
the regularisation to all the currents T 2 E↵, " by mere convex combinations. This
clearly produces a continuous regularising operator.
(2) The main result of [4], namely that in a Kähler class positive currents can be
regularised with only an O(") loss of positivity (so, ultimately, with no loss at all,
as explained above – hence the Kähler metrics in a given Kähler class are dense
in the positive currents of that class) can also be obtained as an easy consequence
of Demailly’s regularisation theorem [11]. The argument for this statement, which
was very kindly explained to the author by A. Zeriahi, proceeds by first regularising
by a mere cut-off operation. Indeed, let T = ↵ + i@@̄' � 0 be an arbitrary positive
current in the Kähler class {↵}, where ↵ > 0 is a Kähler metric in this class. For
every " > 0, put T" := ↵ + i@@̄ max(', �

1
" ) � 0. The current T" is still positive

since the maximum of any two ↵-psh functions is still ↵-psh when ↵ is a Kähler
metric ( [17, Proposition 2.3, (4)]). We have max(', �

1
" ) # ' pointwise and T" !

T weakly as " ! 0. Moreover, the currents T" have bounded potentials, so we
can apply Demailly’s regularisation theorem [11] to each of them to write T" as the
weak limit of a sequence of C1 forms T", � 2 {↵} as � ! 0. Since all the Lelong
numbers of T" vanish (because the potential is bounded), Demailly’s theorem [11]
ensures that only a loss of positivity of O(�) is introduced by the regularisation
process. Taking the diagonal sequence with " = �, we get an approximation of the
original current T by C1 forms in its class with only an O(") loss of positivity.

The interest in the Blocki-Kolodziej regularisation procedure [4] lies in its giv-
ing a much simpler proof of the existence of a good regularisation of currents (which
is by no means unique) for the special case of a Kähler class than Demailly’s proof
of the general case.
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(3) The Blocki-Kolodziej regularisation [4] proceeds by convolution of the local
potentials of the current T with regularising kernels ⇢". This method produces a
continuous regularising operator R" for every ". Moreover, if T is a C1 form in
the class {↵}, the C1 forms T" obtained by regularising T converge to T in the
C1 topology as " ! 0. This is because locally, if  is a C1 function defined
on an open subset � ⇢ Cn containing the origin, then all the derivatives of the
convolutions ⇢" ?  converge uniformly on all the compact subsets K ⇢ � to the
corresponding derivatives of  and the (standard) patching procedure used in [4]
does not destroy this property. On the other hand, Yau’s theorem [26] gives uniform
estimates in all the Cl norms of the solution of the Monge-Ampère equation in
terms of the right-hand side term of this equation. Putting these facts together,
we get that the regularising operator R" obtained by regularisation followed by an
application of Yau’s theorem is indeed continuous in the weak topology of currents
and, moreover, R"(T ) converges in the C1 topology to T whenever T 2 E↵ is C1.

Use of the approximate fixed point

Let us fix any smooth volume form dV > 0 on X . The left hand side term in (5.3)
reads:
n
p

✓Z
X
↵ p ^�n�p, n�p

◆
·

✓Z
X
↵n�1 ^ �

◆

=

n
p

✓Z
X

e↵ p" ^�n�p, n�p

dV
dV

◆
·

 Z
X

e↵n�1" ^ �

e↵n"
e↵n"
dV

dV

!

(a)
�

2
4Z

X

 
n
p
e↵ p" ^�n�p, n�p

dV
e↵n�1" ^ �

e↵n"
! 1
2 ✓e↵n"

dV

◆ 1
2
dV

3
5
2

(b)
�

2
4Z

X

 e↵ p�1" ^ � ^�n�p, n�p

dV

! 1
2 ✓e↵n"

dV

◆ 1
2
dV

3
5
2

(c)
� (1� ")p�1

{↵}
n

{↵}
p�1.{�}.[�n�p, n�p

]A

·

2
4Z

X

 e↵ p�1" ^ � ^�n�p, n�p

dV

! 1
2
 e↵ p�1" ^ � ^�n�p, n�p

dV

! 1
2

dV

3
5
2

� O(|⌘"|)

(d)
= (1�")p�1

{↵}
n

{↵}
p�1.{�}.[�n�p, n�p

]A

Z
X
↵ p�1 ^ � ^�n�p, n�p

�2
� O(|⌘"|)

= (1� ")p�1 {↵}
n
Z
X
↵ p�1 ^ � ^�n�p, n�p

� O(|⌘"|),

for every " > 0. Letting " ! 0, we get the desired inequality (5.3) since ⌘" ! 0.
Inequality (a) was an application of the Cauchy-Schwarz inequality, (b) was an
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application of the pointwise inequality (7.5) of Lemma 7.1 in the Appendix, (c)
followed from (5.7), while identity (d) followed frome↵" belonging to the class {↵}.
The proof of (5.1), which is equivalent to (5.3), is complete.

The proof of (5.2) runs along the same lines. Indeed, (5.2) is equivalent to

t p
�n
p
�

Rp

Z
X
↵ p ^�n�p, n�p

� t p
Z
X
� p ^�n�p, n�p,

which, in turn, after the simplification of t p � 0 and the unravelling of Rp, is
equivalent to✓
n
p

◆ ✓Z
X
↵ p ^�n�p, n�p

◆
·

✓Z
X
↵n�p

^ � p
◆

� {↵}
n
Z
X
� p^�n�p, n�p. (5.8)

The proof of (5.8) is almost identical to that of (5.3) spelt out above except for the
replacement of equation (5.4) with the following Monge-Ampère equation:

e↵n =

{↵}
n

{�}
p.[�n�p, n�p

]A
� p ^�n�p, n�p, (5.9)

and for the replacement of the pointwise inequality (7.5) with (7.4). Note that, since
↵ does not feature on the right-hand side of equation (5.9), the approximate fixed
point technique is no longer necessary in this case. It suffices to work with the
unique Kähler-metric solutione↵ of (5.9).
Remark 5.2. If an exact (rather than an approximate) fixed point for equation (5.4)
had been sought, we would have needed to consider the following equation in which
the Kähler-metric solutione↵ 2 {↵} features on both sides:

↵n =

{↵}
n

{↵}
p�1.{�}.[�n�p, n�p

]A
e↵ p�1 ^ � ^�n�p, n�p.

Equations of this type, going back to Donaldson’s J -flow and to work by Chen,
admit a solution under a certain assumption on the class {↵}. See [15] and the ref-
erences therein for details. Our approximate fixed point technique does not require
any particular assumption on {↵}.

We can now prove the main result of this section which subsumes Theorem 1.3.

Theorem 5.3. Let X be a compact Kähler manifold with dimC X = n and let
{↵}, {�} be Kähler classes such that {↵}

n
� n {↵}

n�1.{�} > 0. Then, for every
k 2 {1, 2, . . . , n} and every smooth positive (n � k, n � k)-form �n�k, n�k

� 0
such that @@̄�n�k, n�k

= 0, the following inequalities hold:

{↵k � �k}.
⇥
�n�k, n�k⇤

A
(Ik)
� {↵ � �}

k .
⇥
�n�k, n�k⇤

A
(I Ik)
�

�
↵k � k ↵k�1 ^ �

 
.
⇥
�n�k, n�k⇤

A
(I I Ik)
�

⇣
1�

n
R

⌘
{↵}

k .
⇥
�n�k, n�k⇤

A � 0,

(5.10)
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where, as usual, R :=
{↵}

n

{↵}
n�1.{�}

. (Thus R > n by assumption.) In particular, (I In)
and (I I In) read:

{↵ � �}
n

� {↵}
n

� n {↵}
n�1.{�} =

⇣
1�

n
R

⌘
{↵}

n > 0. (5.11)

Proof. We may and will assume without loss of generality that �n�k, n�k is strictly
positive.
Inequality (I I Ik) is nothing but (5.1) for t = 1 and p = k.
We will now prove (I Ik) by induction on k 2 {1, . . . , n}. Let us fix Kähler metrics
↵,� in the classes {↵}, respectively {�}. For k = 1, (I I1) is obviously an identity.
Now, proving (I Ik) for an arbitrary k amounts to proving that the quantity

Sk :=

Z
X

⇣
(↵ � �)k � ↵k + k ↵k�1 ^ �

⌘
^�n�k, n�k (5.12)

is non-negative. To this end, we first prove the identity:

Sk =

k�1X
l=1

l
Z
X
(↵ � �)k�l�1 ^ ↵l�1 ^ �2 ^�n�k, n�k, k = 1, . . . , n. (5.13)

This follows immediately by writing the next pointwise identities:

(↵ � �)k � ↵k + k ↵k�1 ^ � = �� ^

kX
l=1

(↵ � �)k�l ^ ↵l�1 + k ↵k�1 ^ �

=

k�1X
l=1

↵l�1^�^

⇣
↵k�l � (↵ � �)k�l

⌘
=

k�1X
l=1

↵l�1^�2^
k�l�1X
r=0

↵k�l�1�r^(↵��)r

=

k�1X
l=1

k�l�1X
r=0

↵k�r�2 ^ �2 ^ (↵ � �)r

=

k�2X
r=0

↵k�r�2 ^ �2 ^ (↵ � �)r + . . .

+

k�l�1X
r=0

↵k�r�2 ^ �2 ^ (↵ � �)r + · · · + ↵k�2 ^ �2

= �2 ^ (↵ � �)k�2 + 2↵ ^ �2 ^ (↵ � �)k�3 + . . .

+ l ↵l�1 ^ �2 ^ (↵ � �)k�l�1 + · · · + (k � 1)↵k�2 ^ �2

=

k�1X
l=1

l (↵ � �)k�l�1 ^ ↵l�1 ^ �2.

This clearly proves (5.13).
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Now we can run the induction on k 2 {1, . . . , n} to prove (I Ik). Suppose that
(I I1), . . . , (I Ik�1) have been proved. Combining them with (I I Ik) that was proved
in (5.1) for all k 2 {1, . . . , n}, we deduce that the classes {↵� �}

k�r are positive in
the following sense:

{↵ � �}
k�r .

⇥
�n�k+r, n�k+r ⇤

A � 0

for all r 2 {1, . . . , k} and for all C1 strictly positive (n � k + r, n � k + r)-forms
�n�k+r, n�k+r > 0 such that @@̄�n�k+r, n�k+r

= 0.
Choosing forms of the shape �n�k+r, n�k+r

:= ↵r�2 ^ �2 ^ �n�k, n�k with
�n�k, n�k > 0 of bidegree (n � k, n � k) satisfying @@̄�n�k, n�k

= 0, we get:

{↵ � �}
k�r .{↵}

r�2.{�}
2.
⇥
�n�k, n�k⇤

A � 0, r 2 {2, . . . , k}.

Setting r := l + 1, this translates toZ
X
(↵ � �)k�l�1 ^ ↵l�1 ^ �2 ^�n�k, n�k

� 0, l 2 {1, . . . , k � 1},

which means precisely that all the terms in the sum expressing Sk in (5.13) are
non-negative. Hence, Sk � 0, which proves (I Ik) (see 5.12).

Let us now prove (Ik) as a consequence of (I Ik) and (I I Ik). For every k 2

{1, . . . , n}, the following pointwise identities are obvious:

↵k��k�(↵ � �)k =� ^

k�1X
l=0

↵k�l�1 ^ (↵ � �)l � �k

=�^

 
↵k�1 � �k�1 +

k�1X
l=1

↵k�l�1 ^ (↵ � �)l

!

=�^

 
(↵ � �) ^

k�2X
r=0

↵k�r�2 ^ �r +

k�1X
l=1

↵k�l�1 ^ (↵ � �)l

!
.

Hence, for every smooth (n�k, n�k)-form�n�k, n�k
� 0 such that @@̄�n�k, n�k

=

0, we have: ⇣�
↵k � �k

 
� {↵ � �}

k
⌘
.
⇥
�n�k, n�k⇤

A

=

k�2X
r=0

Z
X
(↵ � �) ^ ↵k�r�2 ^ �r+1 ^�n�k, n�k

+

k�1X
l=1

Z
X
(↵ � �)l ^ ↵k�l�1 ^ � ^�n�k, n�k

=

k�2X
r=0

{↵ � �}.
h
�n�1, n�1
r

i
A

+

k�1X
l=1

{↵ � �}
l .
h
0n�l, n�ll

i
A

� 0,
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where we have put �n�1, n�1
r := ↵k�r�2 ^ �r+1 ^ �n�k, n�k and 0n�l, n�ll :=

↵k�l�1 ^ � ^ �n�k, n�k . It is clear that �n�1, n�1
r and 0n�l, n�ll are positive

@@̄-closed forms of bidegree (n � 1, n � 1), respectively (n � l, n � l), so the
last inequality follows from the combination of (I Ik) and (I I Ik). Thus (Ik) is
proved.

We immediately get the following consequence of Theorem 5.3 which is the
analogue of Theorem 3.5 in bidegree (k, k) for an arbitrary k.

Corollary 5.4. Let X be a compact Kähler manifold with dimC X = n and let
↵,� > 0 be Kähler metrics such that {↵}

n
� n {↵}

n�1.{�} > 0. Then, for every
k 2 {1, 2, . . . , n}, there exist closed positive (k, k)-currents Uk 2 {↵k � �k} and
Sk 2 {(↵ � �)k} such that

Uk �

⇣
1�

n
R

⌘
↵k and Sk �

⇣
1�

n
R

⌘
↵k (5.14)

on X , where, as usual, we let R :=
{↵}

n

{↵}
n�1.{�}

. (So R > n by assumption.)

Proof. This follows immediately from Theorem 5.3 by using the analogue of La-
mari’s positivity criterion [18, Lemme 3.3] in bidegree (k, k) for every k.

6. A conjecture in the non-Kähler context

Let X be a compact complex manifold with dimC X = n. It is standard that if X is
of class C, then X is both balanced (i.e. it admits a balanced metric: a Hermitian
metric ! such that d!n�1 = 0) by [1, Corollary 4.5] and a @@̄-manifold (i.e. the
@@̄-lemma holds on X). On the other hand, there are a great deal of examples
of balanced manifolds that are not @@̄-manifolds (e.g., the Iwasawa manifold), but
it is still an open problem to find out whether or not every @@̄-manifold admits
a balanced metric. To the author’s knowledge, all the examples of @@̄-manifolds
known so far are also balanced. We now briefly indicate how a generalised version
of Demailly’s Transcendental Morse Inequalities Conjecture for a difference of two
nef classes might answer a stronger version of this question. The main idea is
borrowed from Toma’s work [22] in the projective setting and was also exploited
in [9] in the Kähler setting.

It is standard that the canonical linear map induced in cohomology by the iden-
tity:

In�1 : Hn�1, n�1
BC (X, C) ! Hn�1, n�1

A (X, C), [�]BC 7! [�]A, (6.1)

is well defined on every X , but it is neither injective, nor surjective in general.
Moreover, the balanced cone of X consisting of Bott-Chern cohomology classes of
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bidegree (n � 1, n � 1) representable by balanced metrics !n�1:

BX =

�
[!n�1]BC /! > 0, C1 (1, 1)-form such that d!n�1 = 0 on X

 
⇢ Hn�1, n�1

BC (X, R),

maps under In�1 to a subset of the Gauduchon cone of X (introduced in [19]) con-
sisting of Aeppli cohomology classes of bidegree (n � 1, n � 1) representable by
Gauduchon metrics !n�1:

GX =

�
[!n�1]A /! > 0, C1 (1, 1)-form such that @@̄!n�1 = 0 on X

 
⇢ Hn�1, n�1

A (X, R).

Clearly, the inclusion In�1(BX ) ⇢ GX is strict in general. So is the inclusion
In�1(BX ) ⇢ GX involving the closures of these two open convex cones.

Now, if X is a @@̄-manifold, In�1 is an isomorphism of the vector spaces
Hn�1, n�1
BC (X, C) and Hn�1, n�1

A (X, C), as is well known. It is tempting to make
the following:
Conjecture 6.1. If X is a compact @@̄-manifold of dimension n, then In�1(BX )=

GX .
If proved to hold, this conjecture would imply that every @@̄-manifold is ac-

tually balanced since the Gauduchon cone is never empty (due to the existence of
Gauduchon metrics by [16]), so the balanced cone would also have to be non-empty
in this case. Moreover, a positive answer to this conjecture would have far-reaching
implications for a possible future non-Kähler mirror symmetry theory since it would
remove the ambiguity of choice between the balanced and the Gauduchon cones on
@@̄-manifolds. These two cones would be canonically equivalent on @@̄-manifolds
in this event.

One piece of evidence supporting Conjecture 6.1 is that it holds on every class
C manifold X if the whole of Demailly’s Transcendental Morse Inequalities Con-
jecture for a difference of two nef classes is confirmed when X is Kähler. This is
the gist of the observations made in [22] and in [9] alluded to above. Indeed, if
X is of class C, we may assume without loss of generality that X is actually com-
pact Kähler. As proved in [6], a complete positive answer to Conjecture 1.1 would
imply that the pseudo-effective cone EX ⇢ H1, 1(X, R) of classes of d-closed pos-
itive (1, 1)-currents T is the dual of the coneMX ⇢ Hn�1, n�1(X, R) of movable
classes (i.e. the closure of the cone generated by classes of currents of the shape
µ?(e!1^· · ·^e!n�1), whereµ :

eX ! X is any modification of compact Kähler man-
ifolds and the e! j are any Kähler metrics on eX – see [6, Definition 1.3]). Since on
@@̄-manifolds (hence, in particular, on compact Kähler ones) the Bott-Chern, Dol-
beault and Aeppli cohomologies are canonically equivalent, it is irrelevant in which
of these cohomologies the groups H1, 1(X, R) and Hn�1, n�1(X, R) are considered.

The closure GX ⇢ Hn�1, n�1(X, R) of the Gauduchon cone is dual to the
pseudo-effective cone EX ⇢ H1, 1(X, R) by Lamari’s positivity criterion (Lemma
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1.5), while the same kind of argument (i.e. duality and Hahn-Banach) going back
to Sullivan shows that the closure BX ⇢ Hn�1, n�1(X, R) of the balanced cone is
dual to the cone

SX =

�
[T ]A / T � 0, T is a (1, 1)-current such that @@̄T = 0 on X

 
⇢ H1, 1A (X, R).

Note that SX is closed if X admits a balanced metric !n�1 (against which the
masses of positive @@̄-closed (1, 1)-currents T can be considered), hence so is it
when X is Kähler. Thus, by duality, the identity In�1(BX ) = GX is equivalent to
I1(EX ) = SX , where I1 is the canonical linear map induced in cohomology by the
identity:

I1 : H1, 1BC (X, C) ! H1, 1A (X, C), [� ]BC 7! [� ]A. (6.2)

In general, I1 is neither injective, nor surjective, but it is an isomorphism when X
is a @@̄-manifold.

With these facts understood, the identity I1(EX ) = SX can be proved when
X is Kähler (provided that Conjecture 1.1 can be solved in the affirmative) as ex-
plained in [9, Proposition 2.5] by an argument generalising to transcendental classes
an earlier argument from [22] that we now recall for the reader’s convenience.

The inclusion I1(EX ) ⇢ SX is obvious. To prove the reverse inclusion, let
[T ]A 2 SX , i.e. T � 0 is a (1, 1)-current such that @@̄T = 0. Since I1 is an iso-
morphism, there exists a unique class [� ]BC 2 H1, 1BC (X, R) such that I1([� ]BC) =

[T ]A. This means that [� ]A = [T ]A. We will show that [� ]BC 2 EX . If the [6]
conjecture (predicated on Conjecture 1.1) predicting that EX is dual toMX is con-
firmed, showing that [� ]BC 2 EX amounts to showing that

[� ]BC . [µ?(e!1 ^ · · · ^ e!n�1)]A � 0 (6.3)

for all modifications µ :
eX ! X and all Kähler metrics e! j on eX . On the other

hand, Alessandrini and Bassanelli proved in [2, Theorem 5.6] the existence and
uniqueness of the inverse image under proper modifications µ :

eX! X of arbitrary
complex manifolds of any positive @@̄-closed (1, 1)-current T � 0 in such a way
that the Aeppli cohomology class [T ]A is preserved:

9 ! (1, 1)-current µ?T � 0 on eX such that @@̄ (µ?T ) = 0,
[µ?T ]A = µ?([T ]A) and µ?(µ

?T ) = T .

(Note that the inverse image µ?([T ]A) of any Aeppli class is trivially well defined
by taking smooth representatives of the class and pulling them back. Indeed, @@̄-
closedness is preserved, while pullbacks of Aeppli-cohomologous smooth forms
are trivially seen to be Aeppli-cohomologous.) Using this key ingredient from [2],
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we get:

[� ]BC . [µ?(e!1 ^ · · · ^ e!n�1)]A
=

Z
X
� ^ µ?(e!1 ^ · · · ^ e!n�1) =

Z
eX (µ?� ) ^ (e!1 ^ · · · ^ e!n�1)

= [µ?� ]A . [e!1 ^ · · · ^ e!n�1]BC =

Z
eX (µ?T ) ^ (e!1 ^ · · · ^ e!n�1) � 0,

which proves (6.3). Note that � and µ?� have no sign, so the key point has been the
replacement in the integral over eX of µ?� by µ?T � 0 which was made possible bye!1^ · · ·^e!n�1 being d-closed (so we could switch the roles of the Bott-Chern and
the Aeppli cohomologies) and by the identity [µ?� ]A = [µ?T ]A following from
[� ]A = [T ]A (see above) and from [µ?T ]A = µ?([T ]A).

The techniques employed in this paper do not seem to be using the full force of
the Kähler assumption on X and many of the arguments are valid in a more general
context. This is part of the justification for proposing Conjecture 6.1.

7. Appendix: Hovanskii-Teissier-type inequalities

In this section we prove the pointwise inequalities for Hermitian metrics that were
used in earlier sections. They generalise the inequality in [20, Lemma 3.1].

For the sake of enhanced flexibility, we shall deal with positive (q, q)-forms
that are not necessarily the qth power of a positive (1, 1)-form. Given any q 2

{0, . . . , n} and any C1 real (q, q)-form �q, q on X , we make use of the standard
notion of (weak) positivity (see, e.g., [13, III.1.1]): �q, q is said to be positive (re-
spectively strictly positive) if for any (1, 0)-forms ↵1, . . .↵n�q , the (n, n)-form
�q, q

^ i↵1 ^ ↵1 ^ · · · ^ i↵n�q ^ ↵n�q is non-negative (respectively positive). We
write �q, q

� 0 (respectively �q, q > 0) in this case. If, in local holomorphic
coordinates z1, . . . , zn , we write

�q, q

q!

=

X
|L|=|R|=q

�L R̄ idzL ^ dz̄R, (7.1)

then it is clear by considering �q, q
^ idzs1 ^ dz̄s1 ^ · · · ^ idzsn�q ^ dz̄sn�q that

�q, q
� 0 implies �L L̄ � 0 for all L with |L| = q. (7.2)

(We have used the usual notation: L and R stand for ordered multi-indices L =

(1  l1 < · · · < lq  n), respectively R = (1  r1 < · · · < rq  n) of length q
and idzL ^ dz̄R := idzl1 ^ dz̄r1 ^ · · · ^ idzlq ^ dz̄rq .)

In the special case when �q, q
= � q for some positive definite smooth (1, 1)-

form (= Hermitian metric) � on X , if we write

� =

nX
j,k=1

� j k̄ idz j ^ dz̄k, (7.3)
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then Sylvester’s criterion ensures that MLL̄(� ) > 0 for all multi-indices L ⇢

{1, . . . , n} of any length l 2 {1, . . . , n}. (For any multi-indices L , K ⇢ {1, . . . , n}
of equal lengths, MK L̄(� ) denotes the minor of the matrix (� j k̄) j, k corresponding
to the rows with index in K and the columns with index in L .) Clearly, MLL̄(� ) =

�L L̄ for all L with |L| = q.

Lemma 7.1. Let ↵, � be arbitrary Hermitian metrics on a complex manifold X
with dimC X = n.

The following pointwise inequalities hold for every p 2 {1, . . . , n} and for
every smooth form �n�p, n�p

� 0 of bidegree (n � p, n � p) on X:✓
n
p

◆
↵n�p

^ � p

↵n
·

↵ p ^�n�p, n�p

↵n
�

� p ^�n�p, n�p

↵n
(7.4)

and
n
p
↵n�1 ^ �

↵n
·

↵ p ^�n�p, n�p

↵n
�

↵ p�1 ^ � ^�n�p, n�p

↵n
. (7.5)

Proof. Let us first prove (7.4). The special case when p = 1 and�n�1, n�1
= � n�1

for some (1, 1)-form � > 0 was proved in [20, Lemma 3.1]. We fix any point
x 2 X and choose local coordinates z1, . . . , zn about x such that

↵(x) =

nX
j=1

idz j ^ dz̄ j and �(x) =

nX
j=1

� j idz j ^ dz̄ j . (7.6)

Thus � j > 0 for all j . At x we get: �
p

p! =

P
j1<···< jp � j1 . . .� jp

V
l2{ j1,..., jp}(idzl^

dz̄l), hence

↵n�p
^ � p

↵n
=

1�n
p
� X
j1<···< jp

� j1 . . .� jp =

�1 . . .�n�n
p
�

 X
|K |=n�p

1
�K

!
at x, (7.7)

where �K := �k1 . . .�kn�p whenever K = (1  k1 < . . . kn�p  n). On the other
hand, using (7.1) with q = n � p, we get at x :

↵ p ^�n�p, n�p

↵n
=

1�n
p
� X

|L|=n�p
�L L̄

and
� p ^�n�p, n�p

↵n
=

�1 . . .�n�n
p
� X

|L|=n�p

�L L̄
�L

.

Thus, inequality (7.4) at x is equivalent to: X
|L|=n�p

�L L̄

!
�1 . . .�n�n

p
�

 X
|K |=n�p

1
�K

!
�

�1 . . .�n�n
p
� X

|L|=n�p

�L L̄
�L

,

which clearly holds since �L L̄ � 0 and �K > 0 for all multi-indices K , L .
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Let us now prove (7.5). With the above notation, we have at x :

↵n�1 ^ �

↵n
=

1
n

nX
j=1

� j and
↵ p�1

(p � 1)!
=

X
|J |=p�1

idz J ^ dz̄ J ,

and the second identity yields at x :

↵ p�1 ^ �

(p � 1)!
=

X
|J |=p�1

X
j2{1,...,n}\J

� j idz j ^ dz̄ j ^ idz J ^ dz̄ J ,

which, in turn, implies the following identity at x :

↵ p�1 ^ � ^�n�p, n�p

(p � 1)! (n � p)!
=

X
|J |=p�1

X
j2{1,...,n}\J

� j �L j J L̄ j J

↵n

n!
,

where we have set �L j J L̄ j J
:= �L L̄ with L := {1, . . . , n} \ ({ j} [ J ) ordered

increasingly. Thus, { j}, J and L form a partition of {1, . . . , n}, so any two of them
uniquely determine the third.

Consequently, inequality (7.5) at x translates to

n
p

1�n
p
�
n

 X
|L|=n�p

�L L̄

!  
nX
j=1

� j

!

�

(p � 1)! (n � p)!
n!

X
|J |=p�1

X
j2{1,...,n}\J

� j �L j J L̄ j J
,

which is clear since n
p

1
(np) n

=
(p�1)! (n�p)!

n! , �L L̄ � 0 for every L , � j > 0 for every
j and the terms in the double sum on the right-hand side of the above inequality are
precisely all the products of the shape �L L̄ � j with j /2 L , so they form a subset of
the terms on the left hand side

Note that inequalities (7.4) and (7.5) of Lemma 7.1 allow a kind of “simpli-
fication” of ↵n between the numerators and the denominators. For possible future
use, we notice a simultaneous reinforcement of inequalities (7.4) and (7.5) that has
not been used in this paper. For this reason and since the proof of the general case
involves rather lengthy calculations, we will only prove a special case.

Lemma 7.2. Let ↵, � be arbitrary Hermitian metrics on a complex manifold X
with dimC X = n. Let p 2 {1, . . . , n} be arbitrary.

If�n�p, n�p is proportional to ↵k ^�n�p�k for some k 2 {0, . . . , n� p}, then
the factor

�n
p
�
can be omitted from (7.4). In other words, for all p, k 2 {0, . . . , n}

such that p + k  n we have:

↵n�p
^ � p

↵n
·

↵ p+k ^ �n�p�k

↵n
�

↵k ^ �n�k

↵n
on X. (7.8)
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Proof. We will only prove here the case when p + k = n � 1, i.e.

↵n�p
^ � p

↵n
·

� ^ ↵n�1

↵n
�

↵n�p�1
^ � p+1

↵n
on X, (7.9)

which is equivalent to (3�↵) (3↵�) � n3�� when � n�1 = t ↵n�p�1
^ � p for

some constant t > 0. Notice that this last inequality improves by a factor n in
the special case when � n�1 = t ↵n�p�1

^ � p the general lower bound proved
in [20, Lemma 3.1].

We fix an arbitrary point x 2 X and choose local coordinates as in (7.6). Using
identities analogous to those in the proof of Lemma 7.1, we see that (7.9) translates
at x to

n � p
n

0
@ X
j1<···< jp

� j1 . . .� jp

1
A

 
nX
l=1

�l

!
� (p+1)

X
k1<···<kp+1

�k1 . . .�kp+1 . (7.10)

Now, the left hand side of inequality (7.10) equals

n � p
n

0
@(p + 1)

X
k1<···<kp+1

�k1 . . .�kp+1 +

X
j1<···< jp

� j1 . . .� jp (� j1 + · · · + � jp )

1
A ,

so (7.10) is equivalent to

(n� p)
X

j1<···< jp
� j1 . . .� jp (� j1+. . .+� jp )� p(p+1)

X
k1<···<kp+1

�k1 . . .�kp+1 . (7.11)

We will now prove (7.11). Let us fix an arbitrary ordered sequence 1  k1 < · · · <
kp+1  n. For every r, s 2 {k1, . . . , kp+1} with r < s, we have:

2�k1 . . .�kp+1 = (2�r �s)
Y
l /2{r,s}

�l  �2r
Y
l /2{r,s}

�l + �2s
Y
l /2{r,s}

�l , (7.12)

where all the products above bear on the indices l 2 {k1, . . . , kp+1} \ {r, s}. Note
that �2r

Q
l /2{r,s} �l is obtained from �k1 . . .�kp+1 by omitting �s and counting �r

twice. Summing up these inequalities over all the
�p+1
2
�
pairs of indices r < s

selected from k1, . . . , kp+1, we get
✓
p + 1
2

◆
2�k1 . . .�kp+1  �k2 . . .�kp+1

�
�k2 + · · · + �kp+1

�
+ �k1 �k3 . . .�kp+1

�
�k1 + �k3 + · · · + �kp+1

�
+ . . . . . . . . .

+ �k1 . . .�kp
�
�k1 + · · · + �kp

�
.

(7.13)
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Note that for every s 2 {1, . . . , p + 1}, �ks does not feature in the sth line on
the right-hand side of (7.13). Adding up these inequalities over all the ordered
sequences 1  k1 < · · · < kp+1  n, we get the desired inequality (7.11) because
any ordered sequence 1  j1 < · · · < jp  n occurs inside exactly (n� p) ordered
sequences 1  k1 < · · · < kp+1  n. Indeed, the extra index for 1  k1 < · · · <
kp+1  n can be chosen arbitrarily in {1, . . . , n} \ { j1, . . . , jp}, so there are (n� p)
choices for it.

This completes the proof of (7.11), hence the proof of (7.8) when p + k =

n � 1.

Again for the record, we notice that an application of Lemma 7.2 is an in-
equality between intersection numbers of cohomology classes reminiscent of the
Hovanskii-Teissier inequalities (cf., e.g., [12, Proposition 5.2]). It has an interest of
its own.

Proposition 7.3. Let X be a compact Kähler manifold with dimC X = n and let
{↵}, {�} 2 H1, 1BC (X, R) be nef Bott-Chern cohomology classes. Then

�
{↵}

n�p.{�}
p��

{↵}
p+k .{�}

n�p�k�
�

�
{↵}

n��
{↵}

k .{�}
n�k� (7.14)

for all p, k 2 {0, . . . , n} such that p + k  n.

By the density of the nef cone in the Kähler cone, we may assume without loss
of generality that {↵} and {�} are Kähler classes in which we fix respective Kähler
metrics ↵,�.

Proof 1 (deduced from a known result).1 For every j 2 {0, . . . n}, let

c j := log
�
{↵}

j .{�}
n� j�.

It is a standard result that the function j 7! c j is concave. Now, k  n � p  n
and

n � p =

p
n � k

k +

n � k � p
n � k

n,

hence, by concavity, cn�p �

p
n � k

ck +

n � k � p
n � k

cn.
(7.15)

Similarly, k  p + k  n and

p + k =

n � p � k
n � k

k +

p
n � k

n,

hence, by concavity, cp+k �

n � p � k
n � k

ck +

p
n � k

cn.
(7.16)

Taking the sum of (7.15) and (7.16), we get: cn�p + cp+k � cn + ck, which is
nothing but (7.14).

1 This argument was kindly pointed out to the author by S. Boucksom.
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Proof 2. It uses the pointwise inequality (7.8) via the technique introduced in [20]
and the approximate fixed point technique introduced in the proof of Proposition
5.1. The arguments are essentially a repetition of some of those used above, so we
will only indicate the main points.

First notice that the case when k = 0 is an immediate consequence of the
Hovanskii-Teissier inequalities (cf. [12, Proposition 5.2]) which spell:

{↵}
n�p.{�}

p
�

�
{↵}

n� n�p
n
�
{�}

n� p
n and {↵}

p.{�}
n�p

�

�
{↵}

n� p
n
�
{�}

n� n�p
n .

Multiplying these two inequalities, we get (7.14) for k = 0.
For the general case of an arbitrary k, we consider the Monge-Ampère equa-

tion:

e↵n =

{↵}
n

{↵}
k .{�}

n�k ↵
k
^ �n�k,

or equivalently det
�

e↵ =

{↵}
n

{↵}
k .{�}

n�k
↵k ^ �n�k

�n
,

(7.17)

for which the approximate fixed point technique introduced in the proof of Propo-
sition 5.1 produces, for every " > 0, a Kähler metrice↵" in the Kähler class {↵} (in
which we have fixed beforehand a Kähler metric !) such that

e↵n" =

{↵}
n

{↵}
k .{�}

n�k [(1�")!"+"!]
k̂ �n�k�(1�")k

{↵}
n

{↵}
k .{�}

n�ke↵k"^�n�k�O(|⌘"|),

for some constant ⌘" ! 0 as " ! 0. Hence

det
�

e↵" � (1� ")k
{↵}

n

{↵}
k .{�}

n�k
e↵k" ^ �n�k

�n
� O(|⌘"|). (7.18)

We can now rerun the argument used several times above. For every " > 0, we
have:

({↵}
n�p.{�}

p)
⇣
{↵}

p+k .{�}
n�p�k

⌘

=

 Z
X

e↵n�p
" ^ � p

�n
�n

!  Z
X

e↵ p+k" ^ �n�p�k

e↵n" (det
�

e↵")�n
!

(a)
�

2
4Z

X

 e↵n�p
" ^ � p

�n
e↵ p+k" ^ �n�p�k

e↵n"
! 1
2

(det
�

e↵") 12 �n
3
5
2

(b)
�

2
4Z

X

✓e↵k" ^ �n�k

�n

◆ 1
2

(det
�

e↵") 12 �n
3
5
2

(c)
� (1� ")k

{↵}
n

{↵}
k .{�}

n�k

✓Z
X
e↵k" ^ �n�k

◆2
� O(|⌘"|)

= (1� ")k {↵}
n �

{↵}
k .{�}

n�k�
� O(|⌘"|).
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As usual, (a) follows from the Cauchy-Schwarz inequality, (b) follows from the
pointwise inequality (7.8), while (c) follows from the inequality (7.18). Letting
" ! 0, we get (7.14).
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