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Multiplicative relations among singular moduli

JONATHAN PILA AND JACOB TSIMERMAN

Abstract. We consider some Diophantine problems of mixed modular-multipli-
cative type. In particular, we prove, for each n � 1, a finiteness result for n-tuples
of singular moduli minimally satisfying a non-trivial multiplicative relation.

Mathematics Subject Classification (2010): 14G18 (primary); 03C64 (sec-
ondary).

1. Introduction

We consider some Diophantine problems of mixed modular-multiplicative type as-
sociated with the Zilber-Pink conjecture (ZP; see [4, 26, 35] and Section 2). Our
results rely on the “modular Ax-Schanuel” theorem recently established by us [24].

Recall that a singular modulus is a complex number which is the j-invariant
of an elliptic curve with complex multiplication; equivalently it is a number of the
form � = j (⌧ ) where j : H ! C is the elliptic modular function, H = {z 2 C :

Im(z) > 0} is the complex upper-half plane, and ⌧ 2 H is a quadratic point (i.e.
[Q(⌧ ) : Q] = 2).
Definition 1.1. An n-tuple (�1, . . . , �n) of distinct singular moduli will be called a
singular-dependent n-tuple if the set {�1, . . . , �n} is multiplicatively dependent (i.e.Q

�
ai
i = 1 for some integers ai not all zero), but no proper subset is multiplicatively

dependent.

Theorem 1.2. Let n � 1. There exist only finitely many singular-dependent n-
tuples.

The independence of proper subsets is clearly needed to avoid trivialities. The
result is ineffective. Some examples (including a singular-dependent 5-tuple) can
be found among the rational singular moduli (listed in [29, A.4]; see 6.3). Bilu-
Masser-Zannier [3] show that there are no singular moduli with �1�2 = 1. This
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result is generalised by Bilu-Luca-Pizarro-Madariaga [2] to classify all solutions
of �1�2 2 Q⇥. Habegger [12] shows that only finitely many singular moduli are
algebraic units.

In addition to the “modular Ax-Schanuel”, we make use of isogeny estimates
and other arithmetic ingredients, gathered in Section 6, and we require the follow-
ing result showing that distinct rational “translates” of the j-function are multi-
plicatively independent modulo constants. To formulate it, recall that, for g1, g2 2

GL+

2 (Q), the functions j (g1z), j (g2z) are identically equal if and only if [g1] =

[g2] in PSL2(Z)\PGL+

2 (Q); functions f1, . . . , fk : H ! C will be called mul-
tiplicatively independent modulo constants if there is no relation

Qk
i=1 f

ni
i = c

where ni are integers, not all zero, and c 2 C.

Theorem 1.3. Let g1, . . . , gk 2 GL+

2 (Q). If the functions j (g1z), . . . , j (gkz) are
pairwise distinct then they are multiplicatively independent modulo constants.

Theorem 1.3 is not predicted by ZP, nor would it follow from “Ax-Schanuel”
for exp and j (see Section 3). But in view of Theorem 1.3, Theorem 1.2 is implied
by ZP.

The Zilber-Pink setting is introduced in Section 2. After the proofs of 1.3 and
1.2 in Section 4 and Section 6, we discuss further ZP problems in the same setting in
Section 7, Section 8, and Section 9, obtaining some partial results and some results
conditional on certain “weakly bounded height conjectures” which we formulate in
this setting. These are along the lines of a conjecture of Habegger [10] (see also [11,
Appendix B]) in the modular setting, itself an analogue of the “Bounded Height
Conjecture” for (C⇥)n formulated by Bombieri-Masser-Zannier [4] and proved by
Habegger [9].

ACKNOWLEDGEMENTS. We thank Gareth Jones for comments. We are grateful to
the referee for corrections and careful comments as well as for raising the question
addressed in Section 9.

2. The Zilber-Pink setting

We identify varieties and subvarieties with their sets of complex points (thus
Y (1)(C) = C and Gm(C) = C⇥). Varieties and subvarieties are assumed irre-
ducible over C.

For m, n 2 N = {0, 1, 2, . . .} set

X = Xm,n = Y (1)m ⇥ Gn
m.

Definition 2.1.

1. A weakly special subvariety of Y (1)m = Xm,0 = Cm is a subvariety of the
following form. There is a “partition” m0, . . . ,mk of {1, . . . ,m}, in which only
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m0 is permitted to be 0, but k = 0 is permitted such that M = M0 ⇥ M1 ⇥

. . . ⇥ Mk where M0 is a point in Cm0 (here Cmi refers to the cartesian product
of the coordinates contained in mi , which is a subset of {1, . . . ,m}) and, for
i = 1, . . . , k, Mi ⇢ Cmi is a modular curve;

2. A special point of Cm is a weakly special subvariety M of dimension zero (so
n0 = {1, . . . , n} and M = M0) such that each coordinate of M is a singular
modulus;

3. A special subvariety of Cm is a weakly special subvariety such that m0 = ; or
M0 2 Cm0 is a special point. It is strongly special if m0 = ;;

4. A weakly special subvariety ofGn
m = X0,n = (C⇥)n is a coset of a subtorus, i.e.

a subvariety defined by a finite system of equations
Q
xai ji = ⇠ j , j = 1, . . . , k

where, for each j , ai j 2 Z are not all zero, ⇠ j 2 C⇥ and the lattice generated by
the exponent vectors (a1 j , . . . , anj ), j = 1, . . . , k is primitive;

5. A special point of Gn
m is a torsion point;

6. A special subvariety of Gn
m is a weakly special subvariety such that each ⇠ j is a

root of unity; i.e. it is a coset of a subtorus by a torsion point;
7. A weakly special subvariety of X is a product M ⇥ T where M, T are weakly
special subvarieties of Y (1)m, Gn

m, respectively, and likewise for a special point
of X and special subvariety of X .

Definition 2.2. Let W ⇢ X be a subvariety. A subvariety A ⇢ W is called an
atypical component (of W in X) if there is a special subvariety T ⇢ X such that
A ⇢ W \ T and

dim A > dimW + dim T � dim X.

The atypical set of W (in X) is the union of all atypical components (of W in X),
and is denoted Atyp(W, X), or Atyp(W ) if X is implicit from the context.

Variants of the following conjecture, in different settings, were made indepen-
dently by Zilber [35], Bombieri-Masser-Zannier [4], and Pink [26].
Conjecture 2.3 (Zilber-Pink for X). Let W ⇢ X . Then Atyp(W ) is a finite union
of atypical components; equivalently, there are only finitely many maximal atypical
components.

The full Zilber-Pink conjecture is the same statement about an arbitrary mixed
Shimura variety (with its special subvarieties), and an algebraic subvariety W ⇢ X .
In fact the above is the analogue of the statements in [4, 35] in the general setting
considered by Pink, and is notionally stronger than the statement in [26]. For a
general discussion of the conjecture see [34].
Definition 2.4. Let A ⇢ X be a subvariety. We denote by hAi the smallest special
subvariety containing A (which exists as it is just the intersection of all special
subvarities containing A), and define the defect of A by

�(A) = dimhAi � dim A.

Thus A ⇢ W is atypical if �(A) < dim X � dimW , and W itself is atypical if
hW i 6= X .
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Now in Conjecture 2.3 we only look for maximal atypical components, and we
do not care if a larger atypical component contains a smaller but more atypical (i.e.
smaller defect) one. But in fact the conjecture (taken over all special subvarieties of
X) implies a formally stronger version (see [14, Proposition 2.4]).
Definition 2.5. A subvariety W ⇢ V is called optimal for V if there is no strictly
larger subvariety W ⇢ W 0

⇢ V with �(W 0)  �(W ).
Conjecture 2.6. Let V ⇢ X . Then V has only finitely many optimal subvarieties.

For a particular V and X , finding (or establishing the finiteness of) all optimal
subvarieties could be more difficult than finding (or establishing the finiteness of)
all maximal atypical subvarieties.

Now (as in [14]) we can repeat the same pattern of definitions with weakly
special subvarieties instead of special ones. The smallest weakly special subvariety
containing W we denote hW igeo, and we define the geodesic defect to be

�geo(W ) = dimhW igeo � dimW.

A subvariety W ⇢ V is called geodesic-optimal if there is no strictly larger subva-
riety W 0

⇢ V with �geo(W 0)  �geo(W ). (This property is termed “cd-maximal” in
the multiplicative setting in [27]). The following fact was established for modular,
multiplicative and Abelian varieties separately in [14].

Proposition 2.7. Let V ⇢ Xm,n . An optimal subvariety of V is geodesic-optimal.

Proof. It is easy to adapt the proof of [14, Proposition 4.3] to show that Xm,n has
the “defect condition”, and then the above follows from the formal properties of
weakly special and special subvarieties, as in [14, Proposition 4.5].

Now we consider

V = Vn = {(x1, . . . , xn, t1, . . . , tn) : xi = ti , i = 1, . . . , n} ⇢ Xn = Xn,n.

We see that if a tuple (�1, . . . , �n) of singular moduli satisfies a non-trivial multi-
plicative relation then the point

6 = (�1, . . . , �n, �1, . . . , �n) 2 V

lies in the intersection of V with a special subvariety of X of codimension n + 1.
So such a point is an atypical component of Vn .

3. Mixed Ax-Schanuel

We now take again

X = Xm,n = Y (1)m ⇥ Gn
m, U = Um,n = Hm

⇥ Cn, and ⇡ : U ! X

given by

⇡(z1, . . . , zm, u1, . . . , un) =

�
j (z1), . . . , j (zm), exp(u1), . . . , exp(un)

�
.
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Definition 3.1.

1. An algebraic subvariety ofU will mean a complex-analytically irreducible com-
ponent of Y \U where Y ⇢ Cm

⇥ Cn is an algebraic subvariety;
2. A weakly special subvariety ofU is an irreducible component of ⇡�1(W )where

W is a weakly special subvariety of X . Likewise for special subvariety of U .

The following result leads to the analogue of the “Weak Complex Ax” (WCA; [14,
Conjecture 5.10]) in this mixed modular-multiplicative setting. It is deduced from
the same statement in the two extreme special cases: WCA for Y (1)n , which is a
consequence of the full modular Ax-Schanuel result established in [24], and WCA
for Gn

m, which is a consequence of Ax-Schanuel [1].
Note that we could avoid talking about “algebraic subvarieties ofU” by taking

Y to be an algebraic subvariety of Cm
⇥ Cn and A to be a complex-analytically

irreducible component of Y \ ⇡�1(V ).

Theorem 3.2. Let V ⇢ X and W ⇢ U be algebraic subvarieties and A ⇢ W \

⇡�1(V ) a complex-analytically irreducible component. Then

dim A = dim V + dimW � dim X ,

unless A is contained in a proper weakly special subvariety of U .

Proof. We suppose that A is not contained in a proper weakly special subvariety of
U , and prove the dimension statement. We may suppose that A is Zariski-dense in
W and that ⇡(A) is Zariski-dense in V .

Let V0 be the image of V under the projection X ! Gn
m, and W0 the image of

W under the projection p0 : U ! Cn . Then the image A⇤ of A under p0, being
connected, is contained in some complex-analytically irreducible component A0 ⇢

W0 \ exp�1(V0). Then A0 is not contained in a proper weakly special subvariety
of Cn , otherwise A would be contained in a proper weakly special subvariety of U .
So by Ax-Schanuel ([1]; see also [32]) we have

dim A0  dimW0 + dim V0 � dimCn.

Now we look at fibres inHm and Cm . We let Au,Wu ⇢ Hm, Vt ⇢ Cm be the fibres
(of A,W, V respectively) over u = (u1, . . . , un) 2 A0, u 2 W0, t = (t1, . . . , tn) 2

V0, respectively. Now A0 must be Zariski-dense inW0, else A could not be Zariski-
dense in W , and similarly exp(A0) must be Zariski-dense in V0.

Since A is irreducible, the image A⇤ has constant dimension (see [16, V. 3.2,
Corollary 2]) equal to the rank rk(p0) of p0 : A ! A0, and dim A⇤

 dim A0.
Further we have [16, V. 3.3] that dim A = rk(p0)+�(p0) = dim A⇤

+�(p0) where
�(p0) is the generic (i.e. minimal) fibre dimension of p0.

The projection W ! W0 has a generic fibre dimension away from a locus
W 0

⇢ W of lower dimension, which does not contain A. So a generic fibre over
A⇤ outside the image of W 0 is generic for A⇤ as well as W0, and likewise for the
corresponding fibre over V0.
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For u 2 A⇤, if Au is not contained in a proper weakly special subvariety of
Hm , then by Ax-Schanuel for the j-function [24] we have,

dim Au  dimWu + dim Vu � dimHm .

If this holds generically, adding up the two last displays gives us the statement we
want.

So we consider what happens when this fails generically. If the Au were con-
tained in a fixed proper weakly special, than A would be, which we have precluded.
So the fibres must belong to a “moving family” of proper weakly specials. As
elements of GL+

2 (Q) can’t vary analytically, the only possibility is that some coor-
dinates are constant on the fibres (though not constant on A).

Without loss of generality, we can suppose that these coordinates are z1, . . . , zk .
For 1  `  k, let V` be the image of V under the projection X ! C`

⇥ Gn
m, and

W` the image of W under the projection p` : U ! H`
⇥ Cn . Then the image

of A under p`, being connected, is contained in some complex-analytically irre-
ducible component A` ⇢ W` \⇡�1

`,n (V`). Note that this is consistent with the earlier
definition of A0,W0, V0.

Now we prove inductively that the dimension inequality holds at “level” `, and
once it holds at level k we are done. We assume that, for some 0  h < k:

(A) Ah is Zariski-dense in Wh and ⇡h(Ah) is Zariski-dense in Vh ;
(B) dim Ah  dimWh + dim Vh � (n + h).

We know that these both hold for h = 0, and that (A) holds for all h.
Now zh+1 is constant on the fibres, so dim Ah+1 = dim Ah . To show (B) we

need only show that either dimWh+1 > dimWh or dim Vh+1 > dim Vh .
Suppose that dimWh+1 = dimWh . This means that, as functions on W , zh+1

is algebraic over z1, . . . , zh, u1, . . . , un . But, as W is not contained in a proper
weakly special subvariety, zh+1 is not constant on W nor does it satisfy any re-
lation zh+1 = gzi where 1  i  h and g 2 GL+

2 (Q). But then, by the “Ax-
Lindemann” result of [22] for the j-function, j (zh+1) is algebraically indepen-
dent of j (z1), . . . , j (zh), exp(u1), . . . , exp(un) as functions on W . Hence by the
Zariski density these functions are independent as functions on Ah+1, and hence,
by the Zariski-density of ⇡h+1(Ah+1) in Vh+1, we must have that dim Vh+1 =

dim Vh + 1.

From this statement one may deduce, as explained in [23, above 5.7], the ana-
logue of [14, Conjecture 5.10] (for j itself this follows from [24]).

Theorem 3.3. Let U 0
⇢ U be a weakly special subvariety, and put X 0

= ⇡(U 0).
Let V ⇢ X 0 andW ⇢ U 0 be subvarieties, and A a complex-analytically irreducible
component of W \ ⇡�1(V ). Then

dim A = dim V + dimW � dim X 0

unless A is contained in a proper weakly special subvariety of U 0.
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It is shown in [14] that Theorem 3.2 is equivalent by arguments using only the
formal properties of the collection of weakly special subvarieties to the following
version. We need the following definition from [14].
Definition 3.4. Fix a subvariety V ⇢ X .

1. A component with respect to V is a complex analytically irreducible component
of W \ ⇡�1(V ) for some algebraic subvariety W ⇢ U ;

2. If A is a component with respect to V we define its defect to be @(A) =

dimZcl(A) � dim A, where Zcl(A) denotes the Zariski closure of A;
3. A component A with respect to V is called optimal for V if there is no structly
larger component B with respect to V with @(B)  @(A);

4. A component A with respect to V is called geodesic if it is a component of
W \ ⇡�1(V ) for some weakly special subvariety W .

Proposition 3.5. Let V ⇢ X . An optimal component with respect to V is geodesic.

Proof. The same as the proof that “Formulation A” implies “Formulation B” in [14].
(The proof of the reverse implication is also the same as given there.)

4. Proof of Theorem 1.3

We start by recalling some background on trees and lattices associated to GL+

2 (Q).
Let TQ = PSL2(Z)\PGL+

2 (Q), where we assume their images are distinct. For a
prime number p, TQ maps into Tp = PSL2(Zp)\PGL2(Qp), and embeds into the
product of the Tp over all p.

Now TQ may be identified with the space of Z-lattices in Q2 up to scaling,
by sending g to the lattice spanned by e1g, e2g, where e1 = (1, 0), e2 = (0, 1).
Likewise, Tp may be identified with the space of Zp-lattices in Q2

p up to scale.
Moreover, Tp may be given the structure of a connected (p + 1)-regular tree by
saying that two lattices L , L 0 are adjacent if one can scale L 0 to be inside L with
index p. There is a natural right action of PGL2(Qp) on Tp: it acts on Q2

p (up to
scaling) in the natural way and thus on the lattices in it.

Since Tp is a tree there is a unique shortest path between any two nodes, and
any path between those nodes traverses that path.

Our proof will study curves isogenous to the curve E0 whose j-invariant is
0. These curves have CM by Z[⇣ ], where ⇣ = exp(2⇡ i/3). A point z 2 H with
j (z) = 0 corresponds to the elliptic curve E0 together with a basis v1, v2 for its
integral homology H1(E0, Z). For any sub-lattice L ⇢ H1(E0, Q) we can define
an elliptic curve EL isogenous to E0 which only depends on L up to scale. To
do this, scale L until it contains H1(E0, Z) and the quotient is cyclic. We can
identify QL = L/H1(E0, Z) with a subgroup of the torsion group of E0 and take
the quotient. Define T 0

Q to be the space of lattices in H1(E0, Q), up to scaling, and
correspondingly T 0

p the space of Zp-lattices in H1(E0, Qp), up to scaling.
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Now suppose that EL is isomorphic to E0. This implies that the quotient QL is
the same as that of the kernel of an endomorphism x of E0. If we identify H1(E, Z)
with Z[⇣ ], then the kernel of multiplication by x is (x�1)/Z[⇣ ], where (m) denotes
the fractional ideal generated by m. These correspond to elements of the fractional
ideal group of Zp[⇣ ] (providing the endomorphisms giving the kernels) quotiented
out by Q⇥

p (scaling). Explicitly we find the following.

1. If p ⌘ 1 mod 3 then (p) has two disctinct primes above it, whose product is
(p). Then Zp[⇣ ] = Zp � Zp with ideal group Z2, which we quotient by the
diagonal Z. These nodes give a line in the tree: each such node being adjacent
to two other such nodes for which the edges correspond to the two primes over
(p);

2. If p ⌘ 2 mod 3 then Zp[⇣ ] = Zp2 , with ideal group Z which we quotient by Z.
Thus in this case there is just one node coming from curves isomorphic to E0;

3. If p = 3 we get a ramified extension of Z3, which still has ideal group Z (gen-
erated by powers of the uniformiser) but now we quotient by 2Z since 3 has
valuation 2. We thus have two nodes coming from curves isomorphic to E0,
which are adjacent in the tree.

Note that in every case there is at least one node N 0 of T 0

p adjacent to H1(E0, Z)
such that any lattice L for which the shortest path from H1(E0, Z) to L goes through
N 0 is not isomorphic to E0.

Proposition 4.1. Let g1, . . . , gk 2 GL+

2 (Q) and suppose that the functions j (gi z)
are distinct. Then there exists z 2 H such that j (gi z) = 0 for exactly one i .

Proof. Suppose first that there exists a prime number p such that the images ui of
the gi in T 0

p are distinct. Without loss of generality we may assume that g1, g2 have
images u1, u2 in T 0

p whose distance is at least as large as that between the images of
any distinct gi , gk . This implies there is a unique node N adjacent to u1 such that
the shortest path from u1 to any other ui goes through N . We may further suppose
without loss of generality that g1 = 1.

Fixing a basis v1, v2 for H1(E0, Z) gives a map from Tp to T 0

p, sending Z2 to
H1(E0, Z). By choosing v1, v2 appropriately we can send N to N 0. It follows that
the z with j (z) = 0 corresponding to this choice has j (gi z) 6= 0 for all i > 1.

Now we give the proof without the simplifying assumption. While no single
p may separate all the gi , finitely many p do. Let S = {g1, . . . , gk}. Consider
the image of S in T2 and pick two nodes with maximal distance among images of
pairs from S. Let u2 be one of these “extremal” nodes, and let S2 be the subset of S
whose image in T2 is u2.

Now consider the image of S2 in T3, choose an extremal node u3 and let S3 be
the subset of S2 whose image in T3 is u3. After finitely many steps we arrive at a set
Sp with only a single element. We may assume this element is g1 and that g1 = 1.

For each prime q  p we let Nq be the unique node adjacent to uq through
which all paths from uq to other images Sr go, where r is the prime preceding q (or
r = 0 for p = 2).
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Choose a basis v1, v2 of H1(E0, Z) such that the induced map from Tq to T 0

q
takes Nq to N 0

q for all q  p. The fact that this is possible amounts to the fact that
SL2(Z) subjects onto SL2(Z/nZ) for every n.

The claim now is that, for each i > 1, j (gi z) 6= 0. To see this, let q < p be
the largest prime such that gi 2 Sq , and q 0

 p the next prime after q. The above
argument in the tree T 0

q 0
shows that gi z does not represent E0. This proves the claim

and the proposition follows.

Proof of Theorem 1.3. Theorem 1.3 follows directly from Proposition 4.1

5. Arithmetic estimates

The proof of Theorem 1.2, and further results considered in the sequel, use some
basic arithmetic estimates which are gathered here. Several of them were used
for similar purposes in [13]. The absolute logarithmic Weil height of a non-zero
algebraic number ↵ is denoted h(↵); the absolute Weil height is H(↵) = exp h(↵).

Constants c0, c1, c2 . . . here and in the sequel are positive and absolute (though
not necessarily effective), and have only the indicated dependencies.

Weak Lehmer inequality

A lower bound for the height by any fixed negative power of the degree suffices for
our purposes. Loher has proved (see [17]): if [K : Q] = d � 2 and 0 6= ↵ 2 K is
not a root of unity then

h(↵) �

1
37
d�2(log d)�1. (5.1)

Singular moduli

For a singular modulus � , we denote by R� the associated quadratic order and
D� = D(R� ) its discriminant. Habegger [12, Lemma 1] shows that

h(� ) � c1 log |D� | � c0, (5.2)

based on results of Colmez and Nakkajima-Taguchi.
No singular modulus is a root of unity (we thank Gareth Jones for pointing

this out: a singular modulus has a Galois conjugate which is real, but ±1 are not
singular moduli by inspecting the list of rational singular moduli, e.g., in [29, A. 4]).
This together with Kronecker’s theorem imply, for a non-zero singular modulus � ,

h(� ) > c2. (5.3)

In the other direction [13, Lemma 4.3], for all ✏ > 0,

h(� )  c3(✏)|D� |
✏ . (5.4)
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Finally, we note that if ⌧ is a pre-image of a singular modulus � in the classical
fundamental domain for the SL2(Z) action then (see [22, 5.7])

H(⌧ )  2D� . (5.5)

Class numbers of imaginary quadratic fields

The class number of an imaginary quadratic order R will be denoted Cl(R). Recall
that, for a singular modulus � , [Q(� ) : Q] = Cl(R� ). By Landau-Siegel, for every
✏ > 0,

Cl(R) � c4(✏)|D(R)|
1
2�✏ . (5.6)

In the other direction,
Cl(R)  c5(✏)|D(R)|

1
2+✏ (5.7)

with c5(✏) explicit (see, e.g., Paulin [20, Proposition 2.2], for a precise statement).

Faltings height of an elliptic curve

Let E be an elliptic curve defined over a number field. Let hF(E) denote the semi-
stable Faltings height of E , and jE its j-invariant. Then ([31, 2.1]; see also [10])����h( jE ) �

1
12
hF(E)

����  c6 logmax{2, h( jE )} (5.8)

with an absolute constant c6.
Further, if E1, E2 are elliptic curves defined over a number field with a cyclic

isogney of order N between them (i.e. 8N ( jE1, jE2) = 0) then ( [28, 2.1.4]; see
also [13, proof of Lemma 4.2])

|hF(E1) � hF(E2)| 

1
2
log N . (5.9)

Isogeny estimate

Let K be a number field with d = max{2, [K : Q]}. Let E, E 0 be elliptic curves
defined over K , with hF(E) and hF(E 0) their semi-stable Faltings heights. When E
and E 0 are isogenous, the fundamental results of Masser and Wüstholz [19] give an
estimate for the degree of as minimal isogeny between E, E 0 in terms of [K : Q]

and the height of one of them. Gaudron and Rémond [8] prove the following explicit
result improving that of Pellarin [21].

If E, E 0 are isogenous then there exists an isogeny E ! E 0 of degree N
satisfying

N  1013d2 max{hF(E), log d, 1}2. (5.10)

In particular there exists a cyclic isogeny with the same degree bound.
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Estimate for the height of a multiplicative dependence

The following result, due to Yu (see [17]), allows us to get control of the height of
a multiplicative relation on our singular moduli in terms of their height. It is thus a
kind of “multiplicative isogeny estimate”.

Let ↵1, . . . ,↵n be multiplicatively dependent non-zero elements of a number
field K of degree d � 2. Suppose that any proper subset of the ↵i is multiplicatively
independent. Then there exist rational integers b1, . . . , bn with ↵

b1
1 . . .↵

bn
n = 1 and

|bi |  c7(n)dn log dh(↵1) . . . h(↵n)/h(↵i ), i = 1, . . . , n. (5.11)

6. Proof of Theorem 1.2

Fix n. Let X = Xn = Xn,n = Y (1)n ⇥ Gn
m, and let

V = Vn = {(x1, . . . , xn, t1, . . . , tn) 2 X : ti = xi , i = 1, . . . , n}.

So dim V = codimV = n and a singular-dependent n tuple (x1, . . . , xn) gives rise
to an atypical point (x1, . . . , xn, x1, . . . , xn) 2 V .

Lemma 6.1. A singular-dependent n-tuple may not be contained in an atypical
component of V of positive dimension.

Proof. A singular-dependent tuple can never be contained in a special subvariety
of X defined by two (independent) multiplicative conditions, for between them we
could eliminate one coordinate, contradicting the minimality.

Now a special subvariety of the form M⇥Gn
m, where M is a special subvariety

of Y (1)n , can never intersect V atypically; neither can one of the form Y (1)n ⇥ T
where T is a special subvariety of Gn

m.
Let us consider a special subvariety of the form M ⇥ T where T is defined by

one multiplicative condition. The intersection of M ⇥ T with V consists of those
n-tuples of M which belong to T . This would typically have dimension dimM�1,
and so to be atypical we must have M\Gn

m ⇢ T . Now Theorem 1.3 implies that M
has two identically equal coordinates, but then cannot contain a singular-dependent
tuple.

Proof of Theorem 1.2. If � = j (⌧ ) is a singular modulus, so that ⌧ 2 H is quadratic
over Q, we define its complexity 1(� ) to be the absolute value of the discriminant
of ⌧ i.e. 1(� ) = |D� | = |b2 � 4ac| where ax2 + bx + c 2 Z[x] with (a, b, c) = 1
has ⌧ as a root. For a tuple (�1, . . . , �n) of singular moduli we define the complexity
of � to be 1(� ) = max(1(�1), . . . ,1(�n)).

Now suppose that V contains a point corresponding to a singular-dependent
n-tuple of sufficiently large complexity, 1. By Landau-Siegel (5.6) with ✏ = 1/4,
such a tuple has, for sufficiently large (though ineffective) 1, at least c511/4 con-
jugates over Q. Each is a singular-dependent n-tuple, and they give rise to distinct
points in V .



1368 JONATHAN PILA AND JACOB TSIMERMAN

Let Fj be the standard fundamental domain for the action of SL2(Z) onH, and
Fexp the standard fundamental domain for the action of 2⇡ iZ (by translation) onC.

We now consider the sets

Y =

n
(z, u, r, s) 2 Fnj ⇥ Fnexp ⇥ Rn

⇥ R : j (z) = exp(u), r · u = 2⇡ is
o

,

so that ( j (z), exp(u)) 2 V for (z, u, r, s) 2 Y and

Z =

n
(z, r, s) 2 Fnj ⇥ Rn

⇥ R : 9u, (z, u, r, s) 2 Y
o

.

Then Z is a definable set in the o-minimal structure Ran exp.
A singular-dependent n-tuple � 2 V has a pre-image

⌧ = (z1, . . . , zn, u1, . . . , un) 2 Fnj ⇥ Fnexp,

and this gives rise to a point in Z , where the coordinates in Rn+1 register the mul-
tiplicative dependence of the tuple, as follows. The Fj coordinates are the zi , so
they are quadratic points, and as recalled in (5.5) their absolute height is bounded
by 21(�i ). The point in Rn+1 has integer coordinates (b1, . . . , bn, b), not all zero,
such that

nX
i=1

biui = 2⇡ ib.

Now in view of the height estimate (5.4), and degree estimate (5.7) on the j (zi ),
(5.11) gives that the bi in a multiplicative relation among the �i may be taken to be
bounded in size by c8(n)1n . With this bound on the |bi |, and since the imaginary
parts of the ui are bounded by 2⇡ i , we get an upper bound on |b|. We find that the
height of (z1, . . . , zn, b1, . . . , bn, b) is bounded by c9(n)1n .

In view of the Galois lower bound, a singular-dependent n-tuple of complexity
1 gives rise to at least

T
1
4n quadratic points on Z with absolute height at most T = c10(n)1n.

For sufficiently large 1, the Counting Theorem [25] applied to quadratic points
on Z (considered in real coordinates) implies that it contains a semi-algebraic set of
positive dimension. This implies (by the arguments used in [13,14]: the correspond-
ing points (z, u) inHn

⇥Cn cannot be constant on all such semi-algebraic sets) that
there is a complex algebraic Y ⇢ U which intersects Z in a positive-dimensional
component A which is atypical in dimension and contains singular-dependent n-
tuples.

By the mixed Ax-Schanuel of Section 3 this implies that there is a positive-
dimensional weakly special subvariety W containing Y containing a component B
with A ⇢ B and @(B)  @(A). Moreover, it contains the special subvarieties that
contain (some of) the singular-dependent points, so W is a special subvariety of
positive dimension containing singular-dependent points of V , which we have seen
is impossible.

So 1 is bounded, giving the finiteness.
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Example 6.2. An example of a singular-dependent 5-tuple is (see [29, A. 4]):
�
� 2153353113, �215, 2333113, 2633, 2153153

�
.

One also has a 3-tuple (�215,�21533, 2633) and 4-tuple (243353,�2153153,�3353,
2653).

7. On the atypical set of Vn

The atypical set of Vn is the union of its proper optimal components (Vn itself is
always optimal but never atypical). Since optimal components are geodesic-optimal
Proposition 2.7, we will investigate the possibilities for these.

We observe that any geodesic-optimal components which dominate every co-
ordinate can only come from an optimal strongly special subvariety. The finiteness
of these, even if we cannot identify them, is guaranteed by o-minimality.
Definition 7.1. Complexnumbers x,ywill be calledHecke equivalent if8N (x,y)=
0 for some N � 1. I.e., if the elliptic curves with j-invariants x and y are isogenous.

7.1. Geodesic-optimal components of dimension n

As already observed, Vn is not atypical since it dominates both Y (1)n and Gn
m. In

other words, the defect of Vn is equal to its codimension.

7.2. Geodesic-optimal components of dimension n� 1

Let T ⇢ X be a geodesic subvariety of co-dimension 2. Can T \V have dimension
n � 1? There are two equations defining T , each being one of four possible types:
a single modular relation, a constant modular coordinate, a single multiplicative
relation, a constant multiplicative coordinate.

Now if both equations are of modular (respectively multiplicative) type we
never get an atypical component, because V dominates Y (1)n (respectively Gn

m).
The same is true for any T which is defined purely by modular (respectively multi-
plicative) relations.

So we consider T defined by one condition of each type. Let us call T1 the
projection of T to the Y (1)n factor, which is a geodesic subvariety of codimension
1, and T2 its projection to Gn

m. We get an atypical component of dimension n � 1
if either T1 \ Gn

m is contained in T2, or if T2 is contained in T1 (i.e. when both are
considered in the same copy of (C⇥)n).

If the modular condition is a modular relation (rather than a constant coordi-
nate) then the first is excluded by Theorem 1.3, unless it is of the form xi = x j .
If the multiplicative relation is not a fixed coordinate, the other inclusion is also
impossible unless it is of the form ti = t j .

So we are reduced to considering constant coordinate conditions on both sides.
This obviously leads to a component of dimension n� 1 if the conditions coincide:
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xi = ⇠ = ti . However such a component can only be atypical (i.e. arise from
the intersection of Vn with a special subvariety of codimension (at most) 2 if ⇠ is
both a singular modulus and a root of unity. But this never occurs, as remarked in
Section 5.

This establishes ZP for V1, which is the curve defined by x1 = t1 in C ⇥ C⇥.
And it shows that V2 has no atypical subvarieties of positive dimension apart from
the “diagonal” x1 = x2.

Proposition 7.2. ZP holds for V2.

Proof. In view of the fact that the only atypical component of positive dimension is
the “diagonal”, which has defect zero, we are reduced to showing that V2 has only
finitely many optimal points, i.e. points which are atypical but not contained in the
“diagonal”. A point (x1, x2, x1, x2) 2 V2 is atypical if it lies on a special subvariety
of codimension 3. There are then two cases: we have two independent modular
conditions and one multiplicative, or two multiplicative and one modular relation.

The former case is exactly the question of singular-dependent 2 tuples, whose
finiteness we have already established. The latter leads to the question of two (un-
equal) roots of unity which satisfy a modular relation. This is established in the
following proposition, by a similar argument to that used in (5.2); and with this the
proof is complete.

We may observe that the optimal points of V2 satisfy 3 special relations (never
4), so have “defect” 1.
Definition 7.3. A pair of distinct roots of unity is called a modular pair if they
satisfy a modular relation.

Proposition 7.4. There exist only finitely many modular pairs.

Proof. Let (⇣1, ⇣2) be such a point, where the order of ⇣i is Mi and8L(⇣1, ⇣2) = 0.
The point is that the order of the root of unity, and their bounded height, leads to
a bound on the degree of the modular relation. Specifically, by (5.8), the semi-
stable Faltings height of the corresponding elliptic curves E1, E2 with j-invariants
⇣1, ⇣2 are bounded, and so by the isogeny estimate (5.10) there is a modular relation
8N (⇣1, ⇣2) = 0 with N  c11 max{M1,M2}5. Thus such a point leads to a rational
point on a suitable definable set whose height is bounded by a polynomial in the
orders of the two roots, and if it is of sufficiently large complexity it forces the
existence of a higher dimensional atypical intersection containing such points. But
the only atypical set of dimension 1 is given by x1 = x2, t1 = t2.

As modular relations always subsist between two numbers, there is no notion
of “modular-multiplicative n-tuples” analogous to singular-dependent tuples. How-
ever, an immediate consequence of the above is that, for any n, there exists only
finitely many n-tuples of distinct roots of unity which are pairwise Hecke equiva-
lent (and none for sufficiently large n).
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7.3. Geodesic-optimal components of dimension n� 2

These arise from intersecting Vn with a geodesic subvariety T of codimension (at
least) 3. We must have at least 1 relation of each type, and if they are all of “non-
constant” type (no fixed coordinates) then we get finiteness by o-minimality.

If there is one constant condition, this immediately gives a second such con-
dition of the other type, and then any additional non-constant condition (i.e. not
forcing any further constant coordinates) will give a component of dimension n�2.
However, no such component can be atypical.

Consider the case of 3 constant conditions. First the case of two fixed modular
coordinates. This will give rise to an atypical intersection if the two fixed values are
multiplicatively related. Next the case of two fixed multiplicative coordinates. This
will give rise to an atypical component if the two fixed values are Hecke equivalent.
The finiteness of such components follows from ZP for V2, and they all have defect
2. Thus:

Proposition 7.5. For n � 1, Vn has only finitely many maximal atypical compo-
nents of dimension n � 2.

But for n = 3 we can in fact exclude “strongly atypical” altogether. Such a
component has one of two shapes.

1. Two modular relations and one multiplicative relation. This would be atypical
if the resulting modular curve satisfied the multiplicative relation, but this is
impossible by Theorem 1.3;

2. Two multiplicative relations and one modular relation. This gives a “multiplica-
tive curve”, which can be parameterised as (⇣1ta1, ⇣2ta2, ⇣3ta3), where ⇣i are
roots of unity and ai integers. As the 8N , N � 2 are symmetric, two coor-
dinates cannot satisfy a modular equation unless ai = a j (so that N = 1 and
81 = X � Y ) and ⇣i = ⇣ j .

Proposition 7.6. The positive dimensional atypical components of V3 and their de-
fects may be described as follows:

1. The intersection of V3 with xi = x j , i 6= j is a copy of V2 contained in X2
(hence of defect 2) and has some atypical points in it, which have defect 1. It
contains also the subvariety with x1 = x2 = x3, which has defect 0;

2. A singular-dependent 2-tuple � = (�1, �2) gives rise to an atypical component
A� of dimension 1 and defect 2. (There may exist singular moduli which belong
to two distinct such pairs �, � 0. Then we get a point (A� \ A� 0) of defect 1);

3. Amodular pair ⇣ = (⇣1, ⇣2) gives rise to an atypical component B⇣ of dimension
1 and defect 2. (There may exist roots of unity belonging to two distinct modular
pairs ⇣, ⇣ 0. Then we get a point (B⇣ \ B⇣ 0) of defect 1.)

In particular, there are no positive dimensional “strongly atypical” components
(i.e., with no constant coordinates).



1372 JONATHAN PILA AND JACOB TSIMERMAN

Thus ZP for V3 depends on the finiteness of its atypical points off all the above
positive dimensional atypical components. This leads to some Diophantine ques-
tions which would establish ZP for V3, which we study in the next section.
Remark 7.7. Note that X contains families of weakly special subvarieties which
intersect Vn atypically, namely those defined be relations the form xi = x j (and
ti = t j ) or xk = tk = ck 2 C⇥ for various choices of (i, j), i 6= j, k. If m
such conditions are imposed, the resulting weakly special subvariety has dimension
2n � 2m and intersects Vn in a component of dimension n � m, so has geodesic
defect n � m.
Conjecture 7.8. The atypical geodesic components described in Remark 7.7 give
all geodesic optimal subvarieties of Vn for any n; in particular, apart from com-
ponents defined by “diagonal” equations xi = x j there are no “strongly optimal”
geodesic optimal components (i.e. with no constant coordinates).

8. Optimal points in V3

The optimal points in (x1, x2, x3, x1, x2, x3) 2 V3 fall into two classes. Those
which are atypical in satisfying at least 4 special conditions, but are not contained
in atypical component of higher dimension. And those which are “more atypi-
cal”, satisfying 5 special conditions (it is not possible to have 6: only a triple of
singular moduli which were also roots of unity could achieve this), though lying
in an atypical set of larger dimension but larger defect. Those lying on diagonals
xi = x j , i 6= j are easy to describe, we consider here those that do not.

Let us first consider points satisfying 5 special conditions. These also fall
into two types: 3 modular, 2 multiplicative, or the other way around. If there are
3 modular conditions then each xi is a singular modulus. The two multiplicative
conditions mean either than one x j is torsion, and the other two multiplicatively
related, or the three are pairwise multiplicatively related. The former is impossible.
Now only finitely many pairs of singular moduli have a multiplicative relation, so
x1, x2 comes from a finite set, and x3 comes also from a finite set. If there are
three multiplicative relations then each xi is torsion. Only finitely many pairs of
(distinct) roots of unity satisfy isogenies, and we get finiteness (there are no “Hecke
equivalences” involving three points!). All these points have defect 1.

Now we consider points (x1, x2, x3, x1, x2, x3) 2 V3, away from positive di-
mensional atypical subvarieties, satisfying 4 special conditions. The “generic” sit-
uation involves no singular moduli or roots of unity.
Problem 8.1. Prove that there exist only finitely many triples x1, x2, x3 of distinct
non-zero algebraic numbers, which are not roots of unity and not singular moduli,
such that they are pairwise Hecke equivalent, and also pairwise multiplicatively
dependent.

The various arithmetic estimates seem insufficient to get a lower degree bound
in terms of the “complexity”: the degrees of the two isogenies and the heights of
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the two multiplicative relations. This seems to be a problem of a similar nature to
that encountered in [13] dealing with curves which are not “asymmetric” (see [13,
Section 1]).

There are three “non-generic” variations of which we can resolve two. The
multiplicative relations may take the form that one coordinate is a root of unity,
the other two coordinates being multiplicatively dependent. Similarly, the modular
relations may take the form that one coordinate is singular, the other two Hecke
equivalent. Or both. Note that if two coordinates are singular the point is not
optimal, but lies on one of the atypical components in Propositions 7.6(3); if two
coordinates are roots of unity, the point is on a component as in Proposition 7.6(2).

We consider the non-generic multiplicative condition first. Up to permutations
we may assume the singular coordinate is x1

Proposition 8.2. There exist only finitely many triples x1, x2, x3 of distinct non-
zero algebraic numbers such that:

1. x3 is a root of unity, x1, x2 are multiplicatively dependent but not roots of
unity;

2. The three points are pairwise Hecke equivalent, but are not singular moduli.

Proof. Define the complexity1 of such a triple to be the maximum of: the order M
of the root of unity x3 and the minimum degrees of isogenies N1, N2 between x3 and
x1, x2, respectively. By (5.8), the stable Faltings height of an elliptic curves whose
j-invariant is a root of unity is absolutely bounded. Now by (5.9), h(x j ) ⌧ (1 +

logmax{N j }), j = 1, 2, so by (5.10) the degrees d j = [Q(x3, x j ) : Q] � N1/5j .
By (5.11) and (5.1) (to get a lower bound for h(xi )) the height of a multiplicative
relation between x1, x2 is bounded by some c121c13 . And [Q(x3) : Q] = �(M) �✏

M1�✏ , where � is the Euler �-function. We may take ✏ = 1/2 say.
Thus, a triple of complexity 1 gives rise to “many” (i.e. at least c141c15)

quadratic points on a certain definable set, and so all but finitely many such points
lie on atypical components of positive dimension.

But no such triples lie on positive dimensional atypical components: by Propo-
sition 7.6, such components have either two singular coordinates or two modular
coordinates, so the conditions on our triples would then force all xi to be singular,
which is impossible (as then x3 cannot be torsion) or all torsion, which leads to the
same impossible requirement for x1.

Symmetrically, we have the case where the modular relations are of the non-
generic form. We seem unable to establish finiteness here, so we pose it as a prob-
lem.
Problem 8.3. Prove that there exist only finitely many triples x1, x2, x3 of distinct
non-zero algebraic numbers such that x1 is singular, x2, x3 are Hecke equivalent,
and the three are pairwise multiplicatively dependent.

Finally, we have the following.
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Proposition 8.4. There exist only finitely many triples x1, x2, x3 of distinct non-
zero algebraic numbers such that

1. x1 is a singular modulus, x2, x3 are Hecke equivalent but are not singular mod-
uli;

2. x3 is a root of unity, x1, x2 are multiplicatively dependent but not roots of unity.

Proof. Let D be the discriminant of x1 (see Section 5), and M the (minimal) order
of x3. Take N minimal with 8N (x2, x3) = 0, and B minimal for a non-trivial mul-
tiplicative relation xb11 x

b2
2 = 1 with B = max{b1, b2}. Set 1 = max{|D|,M, N } to

be the complexity of the tuple (x1, x2, x3). Set d = [Q(x1, x2, x3) : Q].
Let E⇠ be the elliptic curve with j-invariant ⇠ . As in the proof of Proposi-

tion 8.2, hF(Ex3) is bounded by some absolute c16. Then, by the isogeny estimates
(5.10), we have N  c17([Q(x2, x3) : Q])5. Also M1�✏

⌧✏ �(M) = [Q(x3) : Q],
and |D| ⌧ [Q(x1) : Q]

4 by (5.6).
Arguing as in [13], the height inequalities (5.8), (5.9) imply that h(x2) is

bounded above by c18(1+ log N ). By the Weak Lehmer estimate (5.1) it is bounded
below by c19d�3. Corresponding estimates for h(x1) are provided by (5.4) and
(5.3). Therefore (5.11) ensures that

B  c20d3D.

The rest of the proof is the same as the proof of Proposition 8.2.

Thus Problems 8.1 and 8.3 imply (and are implied by) ZP for V3. If one takes
two complex numbers and three conditions, then either two “modular” conditions or
two “multiplicative” special conditions will force the points to be special, and one
can prove finiteness. However one can consider two complex numbers satisfying a
special condition of each of three (or more) different types.

Let S be a Shimura curve corresponding to a quaternion algebra over Q (see,
e.g., Elkies [6]). There is a notion of Hecke orbit of a point on S (see, e.g., [5]), an
equivalence class of points under a certain equivalence relation. This relation is the
existence of a “cyclic N -isogeny” between the corresponding parameterised objects
for some N ; see [6, Section 2.3, page 12]. If S has genus zero, there is an analogue
jS : H ! P1 of the j-function (see [7,30]) which generates the function field of S,
and we may speak of points in C being “Hecke equivalent (for S)” if they are in the
same Hecke orbit.
Problems 8.5. Prove that there are only finitely many pairs of distinct non-zero
algebraic numbers x1, x2 in each situation.

1. x1, x2 are Hecke equivalent (in the sense of 7.1), and multiplicatively dependent,
and are also Hecke equivalent for some other Shimura curve;

2. x1, x2 are Hecke equivalent, and multiplicatively dependent, and the points with
these x-coordinates are dependent in some specific elliptic curve;

3. As in the previous problems, but with more or different conditions: say the
points are Hecke equivalent/dependent for 10 pairwise incommensurable Shi-
mura curves.
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Finally we state a “weakly bounded height conjecture” on the height of “just likely”
intersections of mixed multiplicative-modular type under which Problems 8.1
and 8.3 are affirmed.
Definition 8.6. Amodular-dependent pair is a point (x, y) 2 (C⇥)2 such that there
exists integers N , a, b, ` with N � 2, ` � 1 and gcd(a, b) = 1 such that

8N (x, y) = 0, (xa yb)` = 1.

The complexity 1(x, y) of such a pair is the minimum of max(N , |a|, |b|, `) over
all N , a, b, ` for which the above equations hold for x, y.
Conjecture 8.7. For ✏ > 0 we have h(x), h(y)  c✏1(x, y)✏ for all modular-
dependent pairs (x, y).
Proposition 8.8. Assume Conjecture 8.7. Then finiteness holds in Problems 8.1
and 8.3.
Proof. Let (x, y) be a modular-dependent pair with complexity 1 = 1(x, y) =

max(|a|, |b|, `) for suitable a, b, `. Constants denoted c are absolute but may vary
at each occurrence.

Let Ex , Ey be elliptic curves with j-invariants x, y and semistable Faltings
heights hF(x) = hF(Ex ) and hF(y) = hF(Ey) respectively. Then Ex , Ey may both
be defined over Q(x, y), and we set d = [Q(x, y) : Q].

By the isogeny estimate (5.10), N  cd2 max{hF(x), log d, 1}2. Now hF(x)
and h(x) differ by at most c logmax(2, h(x)). So

N  cd2 max(1, log d)2
�
1+ h(x) + c logmax(2, h(x))

�2
.

We have d2 max(1, log d)2  d4, and under Conjecture 8.7 (with ✏ = 1/20 say) we
have

N  cd411/10.

For the purposes of Proposition 8.1 and 8.3 we may assume that neither x nor y is a
root of unity. By a Weak Lehmer inequality (5.1) we have h(x) � cd�3, h(y) �

cd�3. Since neither x, y is a root of unity, we find (5.11) that there exists a non-
trivial multiplicative relation x↵ y�

= 1 with

|↵|  cd3h(y)  cd311/10, |�|  cd3h(x)  cd311/10.

Again since x, y are not roots of unity, we have that (↵,�) is a multiple of (`a, `b).
So we find that |a|, |b|, c`  cd311/10. Now 1 = max(N , |a|, |b|, |`|) and so
combining the various inequalities we find

1  cd7.

Now points x1, x2, x3 as in Problem 8.1 give rise to rational points on some suitable
definable set of height at most max

�
1(x1, x2),1(x2, x3),1(x1, x3)

�
. This lower

estimate for the degree is then suitable to complete a finiteness proof for isolated
points of this form by point-counting and o-minimality as in the proofs of Theo-
rem 1.2, Propositions 8.2, and 8.4. The argument for Problem 8.3 is similar.
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9. On ZP for Vn

The referee asked us whether there is a natural generalization of the height-theoretic
Conjecture 8.7 which would imply ZP for Vn, n � 3. We thank the referee for
raising this question, to which we offer an affirmative answer here. As this Conjec-
ture 9.5 is rather more speculative than the very special case in Conjecture 8.7 we
have preferred to keep this section separate.

We continue to let Xn = Y (1)n ⇥ Gn
m and Un = Hn

⇥ Cn , and F a standard
fundamental domain for the action onUn by SL2(Z)n ⇥Zn where m 2 Z acts on C
be translation by 2⇡ im. Constants c, c(n), c(n, ✏), . . . depend only on the indicated
quantities, but may differ at each occurence.

First, we will assume Conjecture 7.8. This seems to be necessary, in view of
the following. We have seen that an optimal component with respect to Vn ⇢ Xn
is geodesic optimal. Now weakly special subvarieties of Un are contained in larger
definable families of “Mobius varieties” which are defined by some finite number
of relations of the form zi = gi j z j , gi j 2 SL2(R) or of the form zk = ck 2 C
on the Hn variables and of the form � nj=1ri j u j = 0 with (r1, . . . , rn) 2 Rn on the
Cn variables (see Mobius varieties in [14, Section 6.2] and “linear varieties” in [22,
10.1]). Then the set of Mobius varieties which intersect Z = ⇡�1(Vn)\F optimally
among Mobius varieties gives the full set of weakly special varieties intersecting Z
optimally. By o-minimality, the set of relations among non-constant coordinates is
then finite, since the corresponding coefficients ri j and group elements gi j must in
fact be rational (see [14, Proposition 6.6; 22, 10.2]).

We are thus led to consider, for example, the intersections of a fixed strongly
special modular special subvariety M with a family of translates {aT : a 2 A} of
a subtorus T , i.e. a family of weakly special multiplicative weakly special subvari-
eties. Here A can be taken to be a copy of some (C⇥)m . Since optimal components
are geodesic-optimal, these components will correspond to those a 2 A for which
M \ aT has atypical dimension, which give some subvarieties Ai ⇢ A. However,
if the component is optimal, the corresponding special subvariety will in general be
larger, and we will be led to consider atypical points in Ai ⇢ (C⇥)m , i.e. to some
cases of ZP for the multiplicative group, which we do not know how to handle at
present.

We will say that a point C = (x1, . . . , xn) 2 (C⇥)n satisfies h special rela-
tions if the smallest special subvariety of Xn containing (x1, . . . , xn, x1, . . . , xn)
has codimension h. On the modular side, the relation of being in the same Hecke
orbit divides the non-special coordinates into k equivalence classes. Such equiva-
lence classes of non-special points we call cliques. Then we see that if C satisfies
h special relations we have

h = n + m � k ,

where m is the number of independent multiplicative relations satisfied by C , and k
is the number of cliques. We set

@(C) = n � h = k � m.
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Definition 9.1. A tuple C = (c1, . . . , cn) 2 (C⇥)n with pairwise distinct coordi-
nates is called n-optimal if no proper subtuple C 0 has @(C 0)  @(C). I.e. removing
any ` points from C loses at least ` + 1 special relations.

Proposition 9.2. Assuming Conjecture 7.8, ZP for all Vn is equivalent to the state-
ment that, for all n, there are only finitely many n-optimal points.

Proof. Assuming Conjecture 7.8, all optimal components are, up to permutations
of coordinates, of the form {(W,W ) 2 Vn} where W ⇢ Cn is of the form

{(c1, c2, . . . , c`, x`+1, . . . , xn) : xi 2 C⇤, xi = x j : (i, j) 2 I }

for some set I of pairs (i, j) with max(i, `) < j from {1, . . . , n}, where c1, . . . , c`
are distinct non-zero complex numbers.

If the tuple C = (c1, . . . , c`) satisfies h special relations, we have

dimW = n � ` � |I |, dimhW i = 2n � 2|I | � h,

whence

�(W ) = 2n � 2|I | � h � (n � ` � |I |) = n + (` � h) � |I | = n + @(C) � |I |.

Therefore, the component W is optimal just if C is `-optimal.

Suppose C is an n-optimal tuple, with (C,C) contained in some smallest
special subvariety T ⇢ Xn . Then the component of T \ Vn containing (C,C)
must be just the point {(C,C)}. Otherwise, the component is clearly not opti-
mal. Thus, an n-optimal tuple is a tuple of algebraic numbers, and the degree
d(C) = [Q(c1, . . . , cn) : Q] is bounded in terms of the degrees of the equations
defining T .

We now frame a “weakly bounded height conjecture” for certain “just likely”
intersections that seems plausible and is sufficient to establish this finiteness (as-
suming Conjecture 7.8). Of course one only needs the conjecture to hold for optimal
points, which must in fact be “unlikely”.

Consider a point C = (c1, . . . , cn) 2 (C⇥)n with ci distinct, together with a Z-
module0 of exponents of multiplicative relations onC . That is, 0 is aZ-submodule
of the relation group

0(C) = {(a1, . . . , an) 2 Zn
: ca11 · · · cann = 1}.

Suppose C has k cliques and rank(0) = m. Removing some points from C yields
a tuple C 0, and it inherits a submodule 00 of relations from 0 which are trivial on
the points removed (i.e. 00 is the submodule of exponent vectors for which the
coordinates corresponding to C � C 0 are zero). We call 00 the induced relations.
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Definition 9.3. A pair (C,0) consisting of a tuple C 2 (C⇥)n with pairwise dis-
tinct coordinates having k cliques and a Z-module of 0 ⇢ Zn of exponent vectors
of multiplicative relations on C is called grounded if, for any subtuple C 0 formed
by removing any  cliques, where 0 <  < k, together with any number of special
points, the induced relation module 00 satisfies rank(00) < rank(0)�  . I.e. losing
 cliques loses at least  + 1 multiplicative relations.

Note that a grounded tuple can never contain a singleton clique, for omitting
such a clique will lead to the loss of at most one multiplicative relation.
Definition 9.4. We define the height of a tuple C = (c1, . . . , cn) to be

h(C) = max(h(c1), . . . , h(cn)).

The modular complexity of a tuple is

1mod(C) = max{N }

over N such that there exists ci , c j (allowing i = j) with 8N (ci , c j ) = 0, and
N � 2 minimal for this pair i, j . We define the complexity of a Z-submodule of Zn

to be
1(0) = min{T }

over T such that there is a basis of 0 consisting of vectors with all entries of absolute
value bounded by T . The complexity of a pair (C,0) is

1(C,0) = max{1mod(C),1(0)}.

Finally, the complexity of C is

1(C) = 1(C,0(C)).

Conjecture 9.5. Let (C,0) be grounded, where C 2 (C⇥)n , and suppose that
rank(0) equals the number k of cliques of C . Then

h(C)  c(n, ✏)1(C,0)✏

for any ✏ > 0.
Note that such C is in the intersection of Vn with a special subvariety of di-

mension n+ k� rank(0) = n, hence is a “just likely” intersection, though this may
not be the smallest special subvariety containing C .

It seems that one cannot hope to have a suitable weakly bounded height con-
jecture for tuples which are not grounded. For example, if one has a clique C 0

satisfying some relations 00, then imposing just one additional relation � 2 Zn

on C = (C 0,C 00) for an additional clique C 00 would allow the height of C 00 to be
roughly 1(Z� )h(C 0). An interesting question seems to be whether one should ex-
pect in fact an upper bound of the form⌧n (log1(C,0))c(n) in Conjecture 9.5.

We now gather some further arithmetic estimates. Various forms of the fol-
lowing result, which we do not need in the sharpest forms, appear in the literature;
see [17]. The following is extracted from [18].
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Proposition 9.6. For an n-tuple C of degree d = d(C) and height h = h(C), there
is a basis of 0(C) consisting of vectors of integers of size at most

c(n)dn log(d + 2)3n max(h, 1)n.

Proof. This is a weakened form of the bound in [18, page 253] together with the
estimates for the quantities there established on page 254.

Lemma 9.7. Suppose C 2 (C⇥)n is n-optimal. Then (C,0(C)) is grounded.
Moreover, if C has k cliques, then there is a submodule 0 of relations on C with
rank(0) = k such that (C,0) is grounded and 1(0)  c(n)1(0(C)).

Proof. For the first assertion, if we remove  cliques (and some special points) from
C to form C 0 and lose only  multiplicative relations then @(C 0)  @(C), and C
was not n-optimal. So n-optimal is stronger than grounded.

For the second assertion, we show how to find a suitable submodule 0 of 0(C)
of rank equal to k, the number of cliques.

We first show that there is a vector v1 2 0(C) with a height bound as in the
assertion of the lemma which “involves” all special points and cliques, i.e. where
the exponent is non-zero on every coordinate i where ci is special, and for some
coordinate in every clique.

Let B be a basis of 0(C) consisting of vectors of integers of size at most
1(0(C)). Since (C,0(C)) is n-optimal, such a vectorw j exists for each individual
special coordinate, and for each individual clique; say there are J such vectors.
Moreover, we can assume that each w j 2 B. We consider vectors of the form

w =

JX
j=1

a jw j , a j 2 Q.

For each special coordinate or clique, the condition that w vanishes on that coordi-
nate or clique gives a proper subspace ofQn . It therefore contains at most c(n)T n�1
integer points in the box [�T, T ]

n . We must avoid J  n such subspaces, so
T = c(n) suffices.

We now construct v2 2 0(C) such that, for every clique, v2 does not vanish
modulo v1. For each clique individually the existence of such a vectorw j is assured
since (C,0(C)) is grounded, and so we can take w j 2 B. A similar box argument
produces v2 (the number of subspaces to avoid is now at most the number of pairs of
cliques), and we continue to produce v3, . . . , vk , where vk does not vanish modulo
Z[v1, . . . , vk�1] on any choice of k � 1 cliques.

Proposition 9.8. Let � be a singular modulus of discriminant D� . Then there exists
N � 2 with 8N (�, � ) = 0 satisfying N  |D� |. Conversely, if 8N (�, � ) = 0
where N � 2 then |D� |  cN20, with an explicit c.
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Proof. Let ⌧ be a preimage of � in the standard fundamental domain. Then ⌧
satisfies a minimal quadratic equation over Z of the form A⌧ 2 + B⌧ + C = 0
which is reduced, meaning |B|  A  C and B � 0 if A = |B| or A = C .
Thus 4AC = B2 � D�  AC � D� whence 3AC  |D� |. Now g⌧ = ⌧ for
g =

�
�B �C
A 0

�
, which is primitive of determinant N = AC  |D� |.

In the other direction, suppose 8N (�, � ) = 0. This means that g⌧ = h⌧ for
a matrix g of the form g =

� a b
0 d

�
with 0 < a, 0  b < d, ad = N (see [15,

5.1, page 52]), and h 2 SL2(Z). Now |Re(g⌧ )|  2N and |Im(⌧ )�1|  2N so
the matrix h has entries at most c(2N )9 by [13, Lemma 5.1]. Thus ⌧ is fixed by
h�1g, an integer matrix with entries bounded by c(2N )10. This gives an integral
quadratic polynomial satisfied by ⌧ whose coefficients have size at most 2c(2N )10.
The minimal equation for ⌧ must divide this one, and so (with a new constant)
|D� |  cN20

Theorem 9.9. Assuming Conjectures 7.8 and 9.5, ZP holds for Vn ⇢ Xn for all n.

Remark 9.10. One might hope to prove at this juncture that Conjecture 9.5 im-
plies finiteness of n-optimal tuples for each n (without assuming Conjecture 7.8).
However, our proof will require Conjecture 7.8.

Proof. Suppose C 2 (C⇥)n is n-optimal. Then the point (C,C) 2 Vn is an optimal
component. Thus C is grounded, and the relation group 0(C) has rank exceeding
k, the number of cliques in C (because (C,C) must be an unlikely intersection).

By Lemma 9.7 we find a submodule 0 of relations on C with rank k and with
1(0)  c(n)0(C). By Conjecture 9.8 with ✏ = (20n)�1 we have

h(C)  c(n)1(C,0)1/(20n).

We now obtain a lower bound for d(C) in terms of 1(C). We start considering
1mod(C). If x, y are distinct and 8N (x, y) = 0 with N minimal then, as in the
proof of Proposition 8.8,

N  c(n)[Q(x, y) : Q]
41(C,0)1/(10n).

If x is special, then we have 8N (x, x) = 0 for some N  |Dx |, while d(x) �✏

|Dx |
1/2�✏ (ineffectively) by Landau-Siegel. Thus again N  c[Q(x) : Q]

4, and we
find

1mod(C)  c(n)d(C)41(C,0)1/(10n)

for some (ineffective if any ci are special) positive c(n).
Now by Proposition 9.6, there is a basis of 0(C) of height at most

1(0(C))  c(n)d(C)4n1(C,0)1/10,

and since 1(0)  c(n)1(C) we have that 1(C)  c(n)d(C)4n1(C)1/10. Hence

1(C)  c(n)d(C)5n.
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Now consider the uniformisation ⇡ : F ! X , which is definable in an o-minimal
structure. As in the proof of 1.2, the point C and each of its conjugates gives rise
to a rational point P of height H(P)  c1(C) on a suitable definable subset of
a suitable power of GL2(R). We follow the argument in the proof of Theorem 1.2
(which follows that in [13,14]). If1 is sufficiently large then the Counting Theorem
implies that the above-mentioned definable set contains positive-dimensional real
semi-algebraic sets.

Since there are many conjugates of C giving rise to rational points, some
positive-dimensional semi-algebraic set must give rise to a moving component of
the given dimension and defect. Complexifying the real parameter, there is a larger
component of Vn with the same defect. The mixed Ax-Schanuel implies there is a
larger geodesic component with the same defect so that (in virtue of Conjecture 7.8)
the point C was not n-optimal. This contradiction shows that the complexity of an
optimal n-tuple is bounded. Then the degree d(C) and the height h(C) are bounded
by some c(n), and so there are only finitely many such C .
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