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A problem about Mahler functions

BORIS ADAMCZEWSKI AND JASON P. BELL

In memory of Alf van der Poorten

Abstract. Let K be a field of characteristic zero and k and / be two multi-
plicatively independent positive integers. We prove the following result that was
conjectured by Loxton and van der Poorten during the Eighties: a power series
F(z) € K[[z]] satisfies both a k- and a /-Mabhler-type functional equation if and
only if it is a rational function.
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(secondary).

1. Introduction

In a series of three papers [27-29] published in 1929 and 1930, Mahler initiated a
totally new direction in transcendence theory. Mahler’s method, a term coined much
later by Loxton and van der Poorten, aims at proving transcendence and algebraic
independence of values at algebraic points of locally analytic functions satisfying a
certain type of functional equations. In its original form, it concerns equations of
the form

F(Z) = Rz F2)), (1.1)
where R(z, x) denotes a bivariate rational function with coefficients in a number
field and k > 2 is an integer. For instance, using the fact that F(z) = Y 2, %
satisfies the basic functional equation

F(*)=F@) -z,

Mabhler was able to prove that F'(«) is a transcendental number for every algebraic
number o with 0 < || < 1. As observed by Mahler himself, his approach allows
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one to deal with functions of several variables and systems of functional equations
as well. It also leads to algebraic independence results, transcendence measures,
measures of algebraic independence, and so forth. Mahler’s method was later de-
veloped by various authors, including Becker, Kubota, Loxton and van der Poorten,
Masser, Nishioka, Topfer, among others. For classical aspects of Mahler’s theory,
we refer the reader to the monograph of Ku. Nishioka [35] and the reference therein.
However, a major deficiency of Mahler’s method is that, contrary to Siegel E- and
G-functions, there is not a single classical transcendental constant that is known to
be the value at an algebraic point of an analytic function solution to a Mahler-type
functional equation'. This may explain why it was somewhat neglected for almost
fifty years.

At the beginning of the Eighties, Mahler’s method really took on a new sig-
nificance after Mendes France popularized the fact that some Mahler-type systems
of functional equations naturally arise in the study of automata theory (see for in-
stance [31]). Though already noticed in 1968 by Cobham [11], this connection
remained relatively unknown at that time, probably because Cobham’s work was
never published in an academic journal. Cobham claimed that Mahler’s method has
the following nice consequence for the Hartmanis-Stearns problem about the com-
putational complexity of algebraic irrational real numbers [21]: the expansion of an
algebraic irrational number in an integer base cannot be generated by a finite au-
tomaton. His idea was to derive this result by applying Mahler’s method to systems
of functional equations of the form

Fi(z% Fi(z)
: =A@ | : |+B@, (12)
F (75 Fn(2)

where A(z) is an n X n matrix and B(z) is an n-dimensional vector, both having
entries that are rational functions with algebraic coefficients. Though Cobham’s
conjecture is proved in [1] by means of a completely different approach, it still re-
mained a challenging problem to complete the proof he envisaged. In this direction,
a great deal of work has been done by Loxton and van der Poorten [25,26] and a
particular attention was then paid to systems of functional equations as in (1.2) (see
for instance [9,32,33,35,38]). Very recently, another proof of Cobham’s conjecture
using Mahler’s method is finally obtained in [4,38], thus solving a long-standing
problem in Mahler’s method.

Let K be a field. We observe that a power series F(z) € K[[z]] is a component
of a vector satisfying a system of functional equations of the form (1.2)? if and only

I A remarkable discovery of Denis (see [13]), which deserves to be better understood, is that
Mabhler’s method can be also applied to prove transcendence and algebraic independence results
involving periods of -modules which are variants of the more classical periods of abelian vari-
eties, in the framework of the arithmetic of function fields of positive characteristic. For a detailed
discussion on this topic, we refer the reader to the recent survey by Pellarin [37], see also [36].

2 We assume here that the entries of A(z) and B(z) are in K ().
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if the family
1, F(2), F(zk), F(zk2>, .

is linearly dependent over the field K (z), that is, if there exist a natural number n

and polynomials Q(z), Py(z), ..., P,(z) € K|[z], not all of which are zero, such
that
n .
0@ + Y P@F() =0, (13)
i=0

Following Loxton and van der Poorten [26], we use the following definition.

Definition 1.1. Let K be a field and & > 2 be an integer. A power series F(z) €
K[[z]] is a k-Mahler function, or for short is k-Mahler, if it satisfies a functional
equation of the form (1.3).

Beyond transcendence, Mahler’s method and automata theory, it is worth men-
tioning that Mahler functions naturally occur as generating functions in various
other topics such as combinatorics of partitions, numeration and the analysis of al-
gorithms (see [15] and the references therein and also dozens of examples in [7,8]
and [19, Chapter 14]). A specially intriguing appearance of Mahler functions is
related to the study of Siegel G-functions and in particular of diagonals of ratio-
nal functions®. Though no general result confirms this claim, one observes that
many generating series associated with the p-adic valuation of the coefficients of
G-functions with rational coefficients turn out to be p-Mabhler functions.

As a simple illustration, we give the following example. Let us consider the

algebraic function
2k
o e SEC)
DT X(:);

Note that f is a G-function which satisfies the following minimal differential equa-

tion: 3 — 62)
, _ — 0Z
Fo=a—ga-au'?"

= (3(%))

where v3 denotes the 3-adic valuation. We claim that the function

fi@) =) _a(mz" € Qlzl

n>0

Let us define the sequence

3 See for instance [3] for a discussion of the links between diagonals of rational functions with
algebraic coefficients and G-functions.
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is a 3-Mahler function*. This actually comes from the following nice equality

S(E0)) = ()

independently proved by Allouche and Shallit in 1989 (unpublished) and by Zagier
[45]. Indeed, setting f2(z) := ) _,-oa(Bn)z" and f3(z) := Y ,-oaBn + 1)z", we
infer from Equality (1.4) that B B

f1(z%) f1(2)
22> | = A | 20 | + B,
f3(z%) f3(2)
with
| +z+7%) =22 -z
AQ) = 5— 0 21+ =7
1 2
(1 +z2+4+2%) 0 2 2042
and
7272 - 1)
z—1
Bo = | 2
YT B0t z+ 2 -1
22(1+2)
z—1

A simple computation then gives the relation

ao(z) + a1 (D1 (2) + a2(2)f1 () + a3 (D1 (2°) + as@f1 (z*7) = 0,
where

ap(z) i= 2 4+22 — P+ 4320 — 27 #3838 427 — M 43712 2714
_ZIS + 2Z16 _ 2Z17 _ 2Z18 + 2221,

aj(z) = —1 -7 =B +22 478477,

@) =147+ +2++2+ 0+ 7+ BB -5 10
1T 18 19 20 21

a3(z) = =73 — 0 — 77— 70— 10 g _ 13 14 4 16 17 4 19
4220 4 222 4 223 4 24 4 226 4 Y +Z3O,

ag(z) = 72 — %8

4 It would be interesting to know the set of primes p for which ano Vp (ZIIZ:O (Zkk)) Misa
p-Mahler function.
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Of course, one could produce similar examples associated with transcendental G-
functions by considering the Hadamard product (denoted by © below) of several
well-chosen algebraic functions. For instance, the elliptic integral

d6 1 e )
gle) = / 11620 J1-1%z Jl X Z()

n=0

is a transcendental G-function which satisfies the following minimal differential
equation
(z* = 162%)g"(2) + (z — 322%) g/ (2) — 428(2) =0,

and it is not hard to see that, for every prime p,

00 0 2
gp(2) == va ((:) )z"
n=0

is a p-Mabhler function. More precisely, one can show that g, satisfies a relation of
the form

a0(2) + @128y () + @228, ) + @35, (277) + as@g,p () =0,

where the a; (z) are polynomials of degree O(p?) too long to be reproduced here.

Regarding (1.1), (1.2) or (1.3), it is tempting to ask about the significance of
the integer parameter k. Already in 1976, van der Poorten [40] suggested that two
solutions of Mahler-type functional equations associated with essentially distinct
parameters should be completely different. For instance, one may naturally expect
[40] (and it is now proved [34]) that the two functions

o0 o0
n n
E 722" and E z

are algebraically independent over C(z). This idea was later formalized by Loxton
and van der Poorten who made a general conjecture whose one-dimensional version
can be stated as follows>.

Conjecture 1.2 (Loxton and van der Poorten). Let k and / be two multiplica-
tively independent positive integers and L be a number field. Let F(z) € L[[z]]
be a locally analytic function that is both k- and ¢-Mahler. Then F(z) is a rational
function.

5 Note that in fact this conjecture does not imply any statement concerning algebraic indepen-
dence. It does, however, cover linear independence. Indeed, say that F'(z) and G(z) are irrational
power series such that F is 2-Mahler and G is 3-Mahler, then 1, F and G are linearly independent
over C(z) (otherwise F is at once 2- and 3-Mahler, and thus rational).
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We recall that two integers k and [ larger than 1 are multiplicatively indepen-
dent if there is no pair of positive integers (n, m) such that k" = ¢, or equivalently,
if log(k)/log(¢) € Q. Conjecture 1.2 first appeared in a 1987 paper of van der
Poorten [41]. Since then it was explicitly studied in a number of different contexts
including some papers of Loxton [24], Becker [9], Randé [42], Bell [10] and the
monograph of Everest et al. [19]. Independently, Zannier also considered a similar
question in [46].

In this paper, our aim is to prove the following result, which has been proven
independently by Schifke and Singer [39].

Theorem 1.3. Let K be a field of characteristic zero and let k and | be two mul-
tiplicatively independent positive integers. Then a power series F(z) € K[[z]] is
both k- and £-Mabhler if and only if it is a rational function.

Let us make few comments.

e Taking K to be a number field in Theorem 1.3 gives Conjecture 1.2;

e If k and ¢ denote two multiplicatively dependent natural numbers, then it is easy
to see that a power series is k-Mabhler if and only if it is also £-Mabhler (see
Remark 8.2);

e As explained in more detail in Section 2, one motivation for proving Theorem
1.3 is that it provides a far-reaching generalization of one fundamental result in
the theory of sets of integers recognizable by finite automata: Cobham’s the-
orem. Loxton and van der Poorten [24,41] actually guessed that Conjecture
1.2 should be a consequence of some algebraic independence results for Mahler
functions of several variables. In particular, they hoped to obtain a totally new
proof of Cobham’s theorem by using Mahler’s method. Note, however, that our
proof of Theorem 1.3 follows a totally different way and ultimately relies on
Cobham’s theorem, so we do not obtain an independent derivation of that result;

e Another important motivation for establishing Theorem 1.3 comes from the fact
that this kind of statements, though highly natural and somewhat ubiquitous,
are usually very difficult to prove. In particular, similar independence phenom-
ena, involving two multiplicatively independent integers, are expected in various
contexts but only very few results have been obtained up to now. As an illustra-
tion, we cite below three interesting open problems that rest on such a principle,
all of them being widely open®. A long-standing question in dynamical systems
is the so-called x 2 x 3 problem addressed by Furstenberg [20]: prove that the
only Borel measures on [0, 1] that are simultaneously ergodic for 7>(x) = 2x
(mod 1) and T3(x) = 3x (mod 1) are the Lebesgue measure and measures sup-
ported by those orbits that are periodic for both actions 7> and 73. The follow-
ing problem, sometimes attributed to Mahler, was suggested by Mendes France

6 In all of these problems, the integers 2 and 3 may of course be replaced by any two multiplica-
tively independent integers larger than 1.
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in [31] (see also [2]): given a binary sequence (a,),>0 € {0, 1}N , prove that

]2
N
o
B
]2
2

(=]

n=0

S

are both algebraic numbers only if both are rational numbers. The third prob-
lem we mention appeared implicitly in work of Ramanujan (see [44]): prove
that both 2¥ and 3* are integers only if x is a natural number. This is a par-
ticular instance of the four exponentials conjecture, a famous open problem in
transcendence theory [43, Chapter 1, page 15].

The outline of the paper is as follows. In Section 2, we briefly discuss the connec-
tion between Theorem 1.3 and Cobham’s theorem. In Section 3, we describe our
strategy for proving Theorem 1.3. Then the remaining Sections 4-11 are devoted to
the different steps of the proof of Theorem 1.3. Throughout this paper, k and / will
denote integers larger than or equal to 2.

ACKNOWLEDGEMENTS. The authors would like to thank Michel Mendes France
for his comments and encouragements, as well as the anonymous referee for his
useful suggestions and careful reading. The first author is indebted to Eric Delaygue
for his help with Maple. He is also most grateful to Macha and Vadim for inspiring
discussions.

2. Connection with finite automata and Cobham’s theorem

One motivation for proving Theorem 1.3 is that it provides a far-reaching gener-
alization of a fundamental result in the theory of sets of integers recognizable by
finite automata. The aim of this section is to briefly describe this connection. For
more details and formal definitions on automatic sets and automatic sequences, we
refer the reader to the book of Allouche and Shallit [6].

Let k > 2 be a natural number. A set NV C N is said to be k-automatic
if there is a finite automaton (more formally a k-deterministic finite automaton)
that accepts as input the expansion of n in base k and outputs 1 if n € N and
0 otherwise. For example, the set of Thue-Morse integers 1,2,4,7,8, 11,13, ...,
formed by the integers whose sum of binary digits is odd, is 2-automatic. The
associated automaton is given in Figure 1 below. It has two states. This automaton
successively reads the binary digits of n (starting, say, from the most significant
digit and the initial state gg) and thus ends the reading either in state go or in state
q1. The initial state gg gives the output 0, while g; gives the output 1.

Another typical 2-automatic set of integers is given by the powers of 2: 1, 2,
4, 8, 16, .... Though these integers have very simple expansions in base 2, one
can observe that this is not the case when writing them in base 3. One of the
most important results in the theory of automatic sets formalizes this idea. It says
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1
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Figure 2.1. The finite-state automaton recognizing the set of Thue-Morse integers.

that only very well-behaved sets of integers can be automatic with respect to two
multiplicatively independent numbers. Indeed, in 1969 Cobham [12] proved the
following result.

Theorem 2.1 (Cobham). Let k and ¢ be two multiplicatively independent integers.
Then a set N C N is both k- and £-automatic if and only if it is the union of a finite
set and a finite number of arithmetic progressions.

The proof given by Cobham of his theorem is elementary but notoriously dif-
ficult, and it remains a challenging problem to find a more natural/conceptual proof
(see for instance the comment in Eilenberg [17, page 118]). There are many inter-
esting generalizations of this result. A very recent one is due to Durand [16] and we
refer the reader to the introduction of [16] for a brief but complete discussion about
such generalizations.

To conclude this section, let us briefly explain why Cobham’s Theorem is a
consequence of Theorem 1.3. Let us assume that N' C N is k-automatic. Set
F(x) = Y ,enp X" € Z[[x]]. Then it is known that F(x) is k-Mahler (see for
instance [19, page 232]). In addition, let us assume that A is also £-automatic where
k and ¢ are multiplicatively independent. Then by Theorem 1.3, it follows that F (x)
is a rational function and thus the sequence of coefficients of F(x) satisfies a linear
recurrence. Since the coefficients of F(x) take only two distinct values (0 and 1),
we see that this linear recurrence is ultimately periodic. This exactly means that N/
is the union of a finite set and a finite number of arithmetic progressions, as claimed
by Cobham’s theorem.

3. Sketch of proof of Theorem 1.3

In this section we describe the main steps of the proof of Theorem 1.3.
Let R be a ring and ‘3 be an ideal of R. If F(x) = Zfﬁzo fm)x™ € R[[x]],
then we denote by Fyz(x) the reduction of F (x) modulo B, that is

Fp(x) = ) _(f(n) mod P)x" € (R/P)[[x]].

n=0
Let K be a field of characteristic zero and F(x) € K[[x]] be both k- and £-Mahler.

Step 0. This is a preliminary step. In the introduction, we defined Mahler functions
as those satisfying Equation (1.3) but it is not always convenient to work with this
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general form of equations. In Sections 4 and 6 we show that there is no loss of
generality to work with some more restricted types of functional equations. Also in
Section 8, we prove that one can assume without loss of generality some additional
assumptions on k and £; namely that there are primes p and g such that p divides k
but does not divide £ and ¢ divides £ but does not divide k.

Step 1. A first observation, proved in Section 5, is that the coefficients of the formal
power series F(x) only belong to some finitely generated Z-algebra R € K. Then
we prove the following useful local-global principle: F(x) is a rational function
if it has rational reduction modulo a sufficiently large set of maximal ideals of R.
Using classical results of commutative algebra about Jacobson rings, we derive
from our local-global principle that there is no loss of generality to assume that K
is a number field and that R is a localization of the ring of integers of K formed
by inverting a positive integer (that is, R is of the form Og[1/N] for some positive
integer N).

Comment. Our strategy consists now in applying again our local-global principle.
Indeed, since R is of the form Og[1/N], we have that the quotient ring R/ is a
finite field for every prime ideal 3 of R. Our plan is thus to exploit the fact that
Fip(x) has coefficients in the finite set R/ to prove that Fi(x) is both a k- and
an £-automatic power series (see Section 7 for a definition), for some prime ideals
‘B. If this is the case, then Cobham’s theorem applies and we get that Fip(x) is a
rational function. The local-global principle actually implies that it is enough to
prove that Fi(x) is both k- and £-automatic for infinitely many prime ideals ‘3 of
R.

Step 2. In Section 7, we underline the relation between k-Mahler, k-regular, and
k-automatic power series. The latter two notions are defined in that section. In
particular, we will use a result of Dumas [14] showing that every k-Mahler power
series can be decomposed as

F(x)=G(x) - T(x),

where G(x) € R[[x]] is a k-regular power series and I[1(x) € R[[x]] is the inverse
of an infinite product of polynomials. Since F(x) is also £-Mahler, we also have a
similar decomposition

F(x)=H(x) - TI'(x),

where H(x) € R[[x]] is a £-regular power series and IT'(x) € R[[x]] is the inverse
of an infinite product of polynomials. Furthermore, the theory of regular power
series implies that Gis(x) is k-automatic and that Hsg(x) is £-automatic for every
prime ideal I3 of R.

In Section 13 we will split both infinite products IT(x) and IT'(x) and get an
expression of the form

F(x) = Gx) - T (x) - Ta(x) = H(x) - I} (x) - TTH(x)



1310 BORIS ADAMCZEWSKI AND JASON P. BELL

where IT; (x), [T (x), T} (x), IT;(x) € R[[x]] are inverses of some other infinite
products of polynomials.

Step 3. After proving preliminary results in Sections 9 and 10, we look at the
singularities of Mahler functions at roots of unity in Section 11. We use asymptotic
techniques to show that one can reduce to the case of considering Mahler equations
whose singularities at roots of unity have a restricted form. This ensures, using
some results of Section 7, that IT; (x) is k-automatic and that 1'[/1 (x) is £-automatic
when reduced modulo every prime ideal ‘3 of R.

Step 4. In our last step, we use Chebotarev’s density theorem in order to ensure the
existence of an infinite set S of prime ideals of R such that T, (x) is k-automatic
and IT) (x) is £-automatic when reduced modulo every ideal 3 € S.

Conclusion. Since the product of k-automatic power series is k-automatic, we infer
from Steps 2, 3 and 4 that for every prime ideals ‘3 € S the power series Fip(x) is
both k- and £-automatic. By Cobham’s theorem, Fis(x) is rational for every such
prime ideal. Then the local-global principle ensures that F'(x) is rational, as desired.

4. Preliminary reduction for the form of Mahler equations

In the introduction, we defined k-Mahler functions as power series satisfying a func-
tional equation of the form given in (1.3). In the literature, they are sometimes de-
fined as solutions of a more restricted type of functional equations. We recall here
that these apparently stronger conditions on the functional equations actually lead
to the same class of functions. In the sequel, it will thus be possible to work without
loss of generality with these more restricted type of equations.

Lemma 4.1. Let us assume that F(x) satisfies a k-Mahler equation as in (1.3).
Then there exist polynomials Py(x), ..., P,(x) in K[x], with gcd(Py(x),...,
P,(x)) =1 and Py(x) P,(x) # 0, and such that

n .
ZP,(x)F(xkl) —0. 4.1)
i=0
Proof. Let us assume that F(x) satisfies a k-Mahler equation as in (1.3). There
thus exist some nonnegative integer n and polynomials A(x), Ag(x), ..., Ay(x) in

K|[x], with A, (x) nonzero, such that

n | kY _ '
;A,(x)F(x) A(x)

We first show that we can assume that A(x) = 0. Indeed, let us assume that A(x) #
0. Applying the operator x > x* to this equation, we get that

> A r(+7) = a(+).
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Multiplying the first equation by A(x*) and the second by A(x) and subtracting, we
obtain the new equation
n+1

. K _
;Bl(x)F<x) 0,

where B; (x) := A; (x) A(x*)— A; (x¥) A(x) for every integeri, 1 <i < n and where
Bui1(x) := A, (x¥)A(x) # 0. We can thus assume without loss of generality that
A(x) =0.

Now, among all such nontrivial relations of the form

Xn: P, (x)F(xkl) —0, 42)
i=0

we choose one with n minimal. Thus P, (x) is nonzero. We claim Py(x) is nonzero.
Let us assume this is not the case. Pick the smallest integer j such that P;(x) is
nonzero. By assumption, j > 0. Then there is some nonnegative integer a such
that the coefficient of x in P;(x) is nonzero. Let b be the unique integer such that
a=bmodk and 0 < b < k. Let us define the operator A, from K [[x]] into itself

by
Ap (Z f(i)xi) =Y fki+Db)x'.
i=0 i=0

These types of operators are classically used for studying algebraic power series
over fields of characteristic p > 0, where one takes k = p (see for instance [6,
Chapter 12] and the references therein). In this context, these operators are often
referred to as Cartier operators. With this definition, every F(x) € K[[x]] has a
unique decomposition as

k—1
Fx) =Y xPAp(F)(x*),
b=0
which implies that

Ay (FOG () = Ay (F) G@)
for every pair of power series F(x), G(x) € K[[x]]. Applying A, to Equation
(4.2), we thus get that

1

0=Ap (Z B-(x)F(x"’)) -3 (P10 F(x).

i=j i=j—1

By construction, A, (Pj(x)) is nonzero, which shows that this relation is nontrivial.
This contradicts the minimality of n. It follows that Py(x) is nonzero.
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Furthermore, if gcd(Po(x), ..., Py(x)) = D(x) # 0, it suffices to divide (4.2)
by D(x) to obtain an equation with the desired properties. This ends the proof. [

5. Reduction to the number field case

In this section we show that we may restrict our attention to the case where the
base field K is replaced by a number field and more precisely by a localization of
the ring of integers of that number field formed by inverting a single integer. This
means a ring of the form Og[1/N], where K denotes a number field, Ok the ring
of integers of K, and N a positive integer.

Theorem 5.1. Let us assume that the conclusion of Theorem 1.3 holds whenever
the field K is replaced by a localization of the ring of integers of a number field of
the form Og[1/N]. Then Theorem 1.3 is true.

We first observe that the coefficients of a Mahler function in K[[x]] actually
belong to some finitely generated Z-algebra R C K.

Lemma 5.2. Let K be a field of characteristic zero, let k > 2 be an integer, and let
F(x) € K[[x]] be a k-Mahler power series. Then there exists a finitely generated
Z-algebra R C K such that F (x) € R[[x]].

Proof. Let F(x) := Z;O:o f(m)x™ € K[[x]] be a k-Mahler power series. We
first infer from Lemma 4.1 that there exist a natural number n and polynomials
Py(x), ..., Py(x) € K[x] with Py(x)P,(x) # 0O such that

. N
;Pl(x)F(x) 0.

Let d be a natural number that is strictly greater than the degrees of the polynomials
Po(x), ..., Py(x). Let R denote the smallest Z-algebra containing:

e The coefficients of Py(x), ..., P,(x);
e The coefficients f(0), ..., f(d);
e The multiplicative inverses of all nonzero coefficients of Py(x).

By definition, R € K is a finitely generated Z-algebra. We claim that F(x) €
R[[x]]. To see this, suppose that this is not the case. Let ng be the smallest non-
negative integer such that f(ng) ¢ R. By assumption, ng > d. Consider the
equation

Po(x)F(x) = —ZP,-(x)F(xki). (5.1)
i=1

Let j denote the order of Py(x) at x = 0 and let ¢ # O denote the coefficient of
x/ in Py(x). Then if we extract the coefficient of x"0*/ in Equation (5.1), we see
that cf (ng) can be expressed as an R-linear combination of f(0),..., f(ng — 1).
Hence cf (ng) belongs to R by the minimality of ng. Since ¢c~! € R we see that
f(ng) € R, acontradiction. This ends the proof. O
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We now prove that the height of a rational function which satisfies a Mahler-
type equation can be bounded by the maximum of the degrees of the polynomials
defining the underlying equation.

Lemma 5.3. Let K be a field, let n and d be natural numbers, and let Py(x), .. .,
P, (x) be polynomials in K[x] of degree at most d with Py(x) P,(x) # 0. Suppose
that F(x) € K[[x]] satisfies the Mahler-type equation

n ,
Z Pi(x)F(x*)=0.
i=0

If F (x) is rational, then there exist polynomials A(x) and B(x) of degree at most d

with B(0) = 1 such that F (x) is the power series expansion of A(x)/B(x).

Proof. Without any loss of generality we can assume that F (x) is not identically
zero. If F(x) is rational, then there exist two polynomials A(x) and B(x) in K[x]
with ged 1 and with B(0) = 1 such that F(x) = A(x)/B(x). Observe that

! ' K kY _
;P,(x)A(x )/B(x ) 0.

Multiplying both sides of this equation by the product B(x)B(x¥)--- B(x*"), we
see that B(x*") divides

Pn(x)A(xk”)B(x) . B(x""") .

Since gcd(A(x), B(x)) = 1 and A(x) is nonzero, we actually have that B(xk")
divides

Py(x)B(x) - - B(xkn_l) .
Let dp denote the degree of B(x). Then we have

n—1

k'dy < deg(Py(x)) + X_:deg (B (xki))
i=0

< d+do(1+k+---+k"*1)
—d+dy(k" — 1))k —1).

Thus
do(k"' —2k" + 1)/ (k—1) < d,
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which implies dy < d since (k"*! — 2k" 4-1)/(k — 1) > 1 for every integer k > 2.
A similar argument gives the same upper bound for the degree of A(x). O

We derive from Lemma 5.3 a useful local-global principle for the rationality of
Mahler functions with coefficients in a finitely generated Z-algebra.

Lemma 54. Let K be a field, let k > 2 be an integer, and let R C K be aring. Let
us assume that F (x) € R[[x]] has the following properties.

(i) There exist a natural number n and polynomials Py(x), ..., P,(x) € R[x]
with Py(x) P,(x) # 0 such that

- , K\ _q-
;Pl(x)F(x) 0;

(ii) There exists a set S of maximal ideals of R such that F (x) mod I is a rational
power series in (R/I)[[x]] for every I € S;
(ili) One has (\;es1 = {0}.

Then F (x) is a rational function.

Proof. Let d be a natural number greater than the degrees of all polynomials
Po(x), ..., P,(x). By (ii), we have that for each maximal ideal I in S, F (x) mod [/
is a rational function. Thus by (i) and Lemma 5.3, we see that for each maxi-
mal ideal I in S, there exist two polynomials A;(x) and By(x) € (R/I)[x] of
degree at most d with B;(0) = 1 and such that F(x) = Aj(x)/B;(x) mod
I. In particular, if F(x) = ) >0 f(j)x/, we see that the sequences in the set
{(f(d +1+4+i+j) mod I)j> | i =0,.. .,d} are linearly dependent over R/ 1.
Thus the determinant of each (d + 1) x (d + 1) submatrix of the infinite
matrix

fd+1) fd+2) fd+3) ---

fd+2 fd+3) fd+4 ---

f(2d'+1) f(2d'+2) f(2d.+3)

lies in the maximal ideal /. Since this holds for every maximal ideal I in S, we
infer from (iii) that every (d + 1) x (d + 1) minor of M vanishes. It follows that M
has rank at most d and thus the rows of M are linearly dependent over the field of
fractions of R. In particular, there exist cg, ..., ¢4 € R, not all zero, such that

d
Yocifd+1+i+j) =0
i =0



A PROBLEM ABOUT MAHLER FUNCTIONS 1315

forall j > 0. Letting B(x) :=cq +c4—1x+---+ cox?, we see that B(x)F (x) is a
polynomial. Hence F(x) is a rational function. This ends the proof. O

We are now ready to prove the main result of this section.

Proof of Theorem 5.1. Let K be a field of characteristic zero and let F(x) € K[[x]]
be a power series that is both k- and £-Mabhler for some multiplicatively independent
natural numbers k and £. By Lemma 4.1, there are natural numbers n and m and
polynomials Py(x), ..., P,(x) and Qo(x), ..., Qm(x) with

Po(x) Pn(x) Qo(x) Om (x) # 0

and such that . "
ZP,-(x)F(x"’> :ZQj(x)F(x“) —0. (52)
=0 i=0

Then by Lemma 5.2, there is a finitely generated Z-algebra R € K such that
F(x) € R[[x]]. By adjoining all the coefficients of Py(x),..., P,(x) and of
Qo(x), ..., Qm(x) to R, we can assume that P;(x) and Q;(x) are in R[x] for
@ j)e{l,....,n} x{l,...,m}. By localizing at the multiplicatively closed set
consisting of nonzero integers in R, we can assume that R is a finitely generated
Q-algebra.

Let M C Spec(R) denote the collection of maximal ideals of R. Since R is a
finitely generated Q-algebra, R is a Jacobson ring and R/ is a finite extension of
forevery I € M (see [18, Theorem 4.19, page 132]). Thus, for each maximal ideal
I of R, the quotient field R/ is a number field. If we assume that the conclusion of
Theorem 1.3 holds when the base field is a number field, then we get that F (x) mod
[ is a rational function in (R/I)[[x]] for it is clearly both k- and ¢-Mahler’. Since
R is a Jacobson ring that is also a domain, we have that ﬂIeM I = {0} (cf. [18,
page 132]). Then Lemma 5.4 implies that F(x) is a rational function in R[[x]].
This shows it is sufficient to prove Theorem 1.3 in the case that K is a number
field.

We can thus assume that F'(x) € K[[x]] where K is a number field. Now, if we
apply again Lemma 5.2, we see that there is a finitely generated Z-algebra R € K
such that F(x) € R[[x]]. Furthermore, every finitely generated Z-subalgebra of
a number field K has a generating set of the form {a;/b, ..., a;/b}, where b is a
nonzero (rational) integer and ay, ..., a; are algebraic integers in K. Thus R is
a subalgebra of a localization of the ring of integers of a number field formed by
inverting a single nonzero integer, thatis R C Og[1/b], where Ok denotes the ring
of algebraic integers in K . Thus to establish Theorem 1.3 it is sufficient to prove the
following result: let k and £ be two multiplicatively independent natural numbers,

7 Note that since Py(0)Q¢(0) # 0, we may assume that Py(0) = Qg(0) = 1 by multiplying the
left side of (5.2) by 1/Py(0) and the right side of (5.2) by 1/Q¢(0). This ensures that, for each
functional equation, not all the coefficients vanish when reduced modulo a maximal ideal / of R.
Hence F(x) mod [ is both k- and ¢-Mahler.
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let R be of the form Ok[1/b] where K is a number field, and let F(x) € R[[x]],
then if F(x) is both k- and £-Mahler it is a rational function. This concludes the
proof. O

6. Further reductions for the form of Mahler equations

In this section we refine the results of Section 4. We show that a power series
satisfying a Mahler equation of the form given in (4.1) is also solution of a more
restricted type of functional equations.

Lemma 6.1. Let K be a field and k > 2 be an integer. Let us assume that F (x) :=
2320 f(s)x® € K[[x]] satisfies a k-Mahler equation of the form

" ~
;P,(x)F<x> 0,

where Py(x), ..., P,(x) € K[x], gcd(Py(x), ..., P,(x)) = 1 and Py(x)P,(x) #
0. Then there exists a natural number N such that, for every integer a > N with
f(a) #0, F(x) can be decomposed as

F(x) = Ty(x) + x“Fo(x),

where T,(x) € K|[x] is the Taylor approximation of F(x) at x = 0 up to degree
a — 1 and Fo(x) has nonzero constant term and satisfies a k-Mahler equation

n+1 :
> Qi(x)Fo(xk ) =0
i=0
for some polynomials Qo, ..., Qnt+1 € K[x] satisfying the following conditions.
(1) It holds Qo(0) = 1;

(1) Ifa #0and Py(a) =0, then Qp(a) = 0;
(iii) Ifa # 0, Py(ar) = 0 and o* = «, then Qj(a) #0forsome je{l,...,n+1}.

Proof. By assumption, we have that F'(x) satisfies a k-Mahler equation

. e
;Pl(x)F<x> 0,

where Py(x)P,(x) is nonzero. Let N denote the order of vanishing of Py(x) at
x = 0. Suppose that a > N and f(a) # 0. Then we have that

F(x) = Ta(x) + x“Fy(x),
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where T, (x) is the Taylor approximation of F'(x) up to degree a — 1 and Fp(x) is a
power series with nonzero constant term. Then we have

Z P;(x) (Ta (xkl> + KR, (xkl)> =0,
i=0
which we can write as
n . .
Y p, (x)x""“Fo(xk’) —C(), (6.1)
i=0
where C (x) denotes the polynomial
n i
Ck) ==Y P (xk ) .
i=0

Set S(x) := Py(x)x V. By definition of N, S(x) is a polynomial with S(0) # 0.
Then if we divide both sides of Equation (6.1) by x**V we obtain that

S Fo) + Y Pk e N R <xki> = x N, (62)
i=1

Observe that the left side is a power series with constant term S(0) Fp(0) # 0 and
thus Co(x) := x~*~NC(x) is a polynomial with Cy(0) # 0. Applying the operator
x > xK, we also obtain that

) + Z Py (k) T amka—kN gy (KT — oo (xb) . (6.3)
Multiplying (6.2) by Co (x*) and (6.3) by Co(x) and then subtracting, we get that
Co(x¥) S(x) Fox) + Zco )Py (x)xK eaN ( )
—Co(0)S(x Z T e L

Since Cy(0) and S(0) are nonzero, we see that Fp(x) satisfies a non-trivial k-Mahler
equation

n+1 ;
Z Qi(x)F0<Xk ) =0,
i=0
where .
C S
Qo) = — o)W

gcd (co(x), Co(xk))



1318 BORIS ADAMCZEWSKI AND JASON P. BELL

and
Co (xk)Pl (x)xka—a=N _ ¢, (x)S(xk)

Qi(x) =
ged (Co(x), Co())

and, fori € {2,...,n+ 1},
xkiafkafN (Co(xk)x(kfl)a P; (x) _ CO(x)Pi—l ()Ck)>

ged (Co ), Co (xk)>

’

Qi(x) =

with the convention that P, 1 (x) := 0. By construction, Q¢ (0) # 0, which we may
assume to be equal to 1 by multiplying our equation by 1/Q¢(0). Since S(x) divides
Qo(x), we have that if Pyp(e) = 0 for some nonzero « then Qg(«) =0. Finally, sup-
pose that Py(«r) =0 for some nonzero « such that ok = . We claim that Qi(x) is
nonzero for some i € {1, ..., n 4+ 1}. Note that since gcd(Py(x), ..., P,(x))= 1,
there is smallest positive integer j such that P;(«) is nonzero. We claim that
Qj(a) # 0. Indeed, otherwise a would be a root of Co(x)/ gcd(Co(x), Co(x5)),
but this is impossible since a* = «. This ends the proof. U

Corollary 6.2. Let K be a field and let k and ¢ be multiplicatively independent
natural numbers. Let F(x) := ) .. f(s)x* € K[[x]] be a power series that is
both k- and £-Mahler and that is not a polynomial. Then there is a natural number
a such that F (x) can be decomposed as

F(x) = Ta(x) + x“Fo(x),

where T, (x) is the Taylor approximation of F (x) up to degree a—1, Fo(x) satisfies a
k-Mahler equation as in Lemma 6.1, and Fy(x) also satisfies an £-Mahler equation

of the form
Ri(x)Fo(x") =0

with Ro(x), ..., R.(x) € K[x] and Ry(0) = 1.

Proof. Applying Lemma 6.1 to F(x), viewed as a k-Mahler function, we obtain
the existence of a positive integer N (which corresponds to N in Lemma 6.1) for
which the conclusion of this lemma holds. Similarly, applying Lemma 6.1 to F'(x),
viewed as a £-Mahler function, we obtain the existence of a positive integer N.
Now, we can choose N3 := max(Ny, Np) and pick a > N3 such that f(a) # 0 to
obtain the desired conclusion. O

7. Links with automatic and regular power series

The aim of this section is to emphasize the relation between k-Mabhler, k-regular,
and k-automatic power series. We gather some useful facts about automatic and
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regular power series that will turn out to be useful for proving Theorem 1.3. We
also recall a result of Dumas [14] showing that every k-Mahler power series can
be decomposed as the product of a k-regular power series of a special type and the
inverse of an infinite product of polynomials. Such a decomposition will play a key
role in the proof of Theorem 1.3.

7.1. Automatic and regular power series

We recall here basic facts about regular power series, which were introduced by Al-
louche and Shallit [7] (see also [8] and [6, Chapter 16]). They form a distinguished
class of k-Mahler power series as well as a natural generalization of k-automatic
power series.

A useful way to characterize k-automatic sequences, due to Eilenberg [17], is
given in terms of the so-called k-kernel.

Definition 7.1. Let k£ > 2 be an integer and let f = (f(n)),>0 be a sequence with
values in a set E. The k-kernel of f is defined as the set

{(fKn+b)pz0 la>0,b€{0,.... k" —1}} .

Theorem 7.2 (Eilenberg). A sequence is k-automatic if and only if its k-kernel is
finite.

This characterization gives rise to the following natural generalization of auto-
matic sequences introduced by Allouche and Shallit [7].

Definition 7.3. Let R be a commutative Noetherian ring and letf = (f(n)),>0 be a
R-valued sequence. Then f is said to be k-regular if the dimension of the R-module
spanned by its k-kernel is finite.

In the sequel, we will say that a power series F(x) € R[[x]] is k-regular
(respectively k-automatic) if its sequence of coefficients is k-regular (respectively
k-automatic). Of course, with a subset £ of N, we can associate its characteristic se-
quence x (n), taking values in {0, 1}, and thus a power series Fg(x) := >_ x(n)x" €
Z[[x]]. When the set & is k-automatic, Fg(x) is a k-automatic power series. More
generally, a power series F(x) = Y f(n)x" with coefficients in a finite set S is k-
automatic if and only if for every s € S the set {n € N | f(n) = s} is k-automatic.
In the following proposition, we collect some useful general facts about k-regular
power series.

Proposition 7.4. Let R be a commutative ring and k > 2 be an integer. Then the
following properties hold.

() If F(x) € Rl[x]] is k-regular and I is an ideal of R, then F(x) mod I €
(R/D[[x]] is k-regular;

(i1) If F(x) € R[[x]] is k-regular, then the coefficients of F (x) take only finitely
many distinct values if and only if F (x) is k-automatic;
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(iii) If F(x) = Y ;0 f)x! and G(x) = Y ;. 8(i)x" are two k-regular power
series in R[[x]], then the Cauchy product

Fuxxm:=§:(Z:C)fuma—ijf
i=0 \j=0 \J
is k-regular.

Proof. The property (i) follows directly from the definition of a k-regular sequence,
while (ii) and (iii) correspond respectively to Theorem 16.1.5 and Corollary 16.4.2
in [6]. O

In Section 11, we will need to use that k-regular sequences with complex values
do have strict restrictions on the growth of their absolute values, a fact evidenced
by the following result.

Proposition 7.5. Let k > 2 be a natural number and let F(x) € C[[x]] be a k-
regular power series. Then F(x) is analytic in the open unit disk and there exist
two positive real numbers C and m such that

|[F()] <CA =[x,
forall x € B(O, 1).

Proof. Let F(x) = Y72, f(i)x' € C[[x]] be a k-regular power series. Then there
is some positive constant A and some integer d > 0 such that

If()] < AG + 1Y,

for every nonnegative integer i (see [6, Theorem 16.3.1]). This immediately gives
that F'(x) is analytic in the open unit disk. Moreover, for x € B(0, 1),

IF)I <) AG+ Dx| < ZAd!( >|x|’ = Ad'(1 — |x])~4 1.
i=0 i=0 d
The result follows. O

7.2. Becker power series

Becker [9, Theorem 1] showed that a k-regular power series is necessarily k-Mabhler.
In addition to this, he proved [9, Theorem 2] the following partial converse (see
Theorem 7.6 below). The general converse does not hold. For example, the power
series in Q[[x]] defined by the k-Mahler equation

(1—x)F(x) = F(x")

and satisfying F(0) = 1 is not k-regular. This can easily be shown using Proposi-
tion 7.5.
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Theorem 7.6 (Becker). Let K be a field, let k be a natural number > 2, and let
F(x) € K[[x]] be a power series that satisfies a k-Mahler equation of the form

F(x) = Xn: P,'(x)F<xki) (7.1)
i=1

for some polynomials P\(x), ..., P,(x) € K[x]. Then F(x) is a k-regular power
series.

Definition 7.7. In honour of Becker’s result, a power series F(x) € K[[x]] that
satisfies an equation of the form given in Equation (7.1) will be called a k-Becker
power series.

Theorem 7.6 shows that the set of k-Becker power series is contained in the set
of k-regular power series. However, the converse is not true. As an example, we
provide the following result that will also be used in Section 13.

Proposition 7.8. Let k be a natural number, and let » € C be a root of unity with
the property that if j > 1 then o' # w. Then

is k-regular but it is not k-Becker.

. . . 2 . ..
Proof. Since w is a root of unity, the sequence w, ¥ s ¥ , ... is eventually periodic

and there is some smallest natural number N such that

Set 8 := k" and let us consider the polynomial

O(x) = (1 — Bx)(1 — pxk) - (1 _ ﬂka,l) _
Then
O(x*) 1 pxt" ‘
0(x) B 1 —Bx

Since N
1= =1 (Bx)",
we see that Q (x¥) /Q(x) is a polynomial.
Since
0(x*)
0(x)

1— (B0 = (1= Bx),
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we get that (1 — wx) divides the polynomial Q(x*)(1 — Bx)/Q(x). Furthermore,
(1 — wx) cannot divide (1 — Bx) since by assumption w # . By Euclid’s lemma,
we thus obtain that

0(x")

0)

=(1—wx)Skx)
for some polynomial S(x).
Set
00 ) -1
F(x) = (l_[ <1 - a)xkj)>
j=0
and G(x) := Q(x)" ' F(x). Since F (x) satisfies the k-Mahler recurrence
F(x*) = (1 —ox)F(x),

we see that

G(+) = 0(x*) 7' (1 — o) Q)G (),

or equivalently,
G(x) = S(x)G(x*).

Thus G(x) is a k-Becker power series. By Proposition 7.4, F(x) is k-regular as it
is a product of a polynomial (which is k-regular) and a k-regular power series.

On the other hand, F(x) cannot be a k-Becker power series. To see this, sup-
pose that F (x) satisfies an equation of the form

d .
Fx =3P, (x)F(x"’) .
i=1
Now, dividing both sides by F (x*), the right side becomes a polynomial in x, while

the left side is (1 — wx)~', a contradiction. The result follows. O

In Section 11, we will need the following basic result about k-Becker power
series.

Lemma 7.9. Let k > 2 and let us assume that F (x) € K[[x]] satisfies a k-Mahler

equation of the form
n .
F(x) = Za,-F(xkl)
i=1

for some constants ay, . .., a, € K. Then F(x) is constant.

Proof. Let us denote by F(x) = Zizo f(i)x' the power series expansion of F (x).
If F(x) were non-constant, there would be some smallest positive integer ip such
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that f(ig) # 0. Thus F(x) = A + xif)Fo(x) for some A in K and some Fy(x) €
K[[x]]. But taking the coefficient of x' in the right-hand side of the equation

Fx) = iaiF(xki) ,
i=1

we see that f(ig) = 0, a contradiction. The result follows. ]

Though there are some Mahler functions that are not Becker functions, the
following result shows that every k-Mahler power series can be decomposed as
the product of a k-Becker power series and the inverse of an infinite product of
polynomials. This decomposition will turn out to be very useful to prove Theorem
1.3. This result appears as Theorem 31 in the These de Doctorat of Dumas [14].

Proposition 7.10. Let k be a natural number, let K be a field, and let F(x) €
K[[x]] be a k-Mahler power series satisfying an equation of the form

. N
;P,(x)F(x) 0,

where Py(x), ..., P,(x) € K[x] and Py(0) = 1. Then there is a k-Becker power
series G(x) such that

00 —1
Flx) = <]_[ P (xkl)) Gx).
i=0

8. Conditions on k and ¢

In this section K will denote an arbitrary field. We consider power series in K [[x]]
that are both k- and £-Mahler with respect to two multiplicatively independent nat-
ural numbers k and £. More specifically, we look at the set of natural numbers m
for which such a power series is necessarily m-Mahler.

Proposition 8.1. Let k and £ be two integers > 2 and let F (x) € K[[x]] be a power
series that is both k- and €-Mahler. Let us assume that a and b are integers with the
property that m := k? is an integer and m > 1. Then F (x) is also m-Mahler.

Proof. Let V denote the K (x)-vector space spanned by all the power series that
belong to the set {F (xkueb) |a,be N}. Recall that by Lemma 4.1, we can assume
that the corresponding Mahler equations are both homogeneous. Hence there ex-
ists some natural number N such that for every integer n > N we have F (K" =

fV:?)l P,-,,,(x)F(xkl) and F(x*") = vazf)l Q,-,n(x)F(le) for some rational func-
tions Py ,(x), ..., PN—1,.n(x), Qon(x), ..., OnN—1(x). Thus V is a K (x)-vector
space of dimension at most N2.
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Suppose that a and b are integers such that m := k“¢” is an integer and m > 1.

If @ and b are nonnegative, then F(x™') € V for every integer j > 0 and since the
dimension of V is finite, we see that F'(x) is m-Mabhler. Thus we may assume that
at least one of a or b is negative. Since m > 1, at least one of a or » must also be
positive. Without loss of generality, we may thus assume thata > 0 and b < 0.
We are now going to show that F (x™") e V for every nonnegative integer j.
To see this, we fix a nonnegative integer j. Then we observe that m/¢~b/ = kJ/¢

and thus F(x™ n ) belongs to V for every integer i > —bj. Since —bj > 0, there

exists a smallest nonnegative integer ip such that F (xmje ) € V for every integer
i > ig. If ip is zero, then we are done. We assume that i is positive and look for a

contradiction. By definition of iy, we note that F (xmjeiofl) ¢ V. By assumption,
F(x) satisfies a £-Mahler equation of the form

N .
Y PFGEY) =0,

i=0

with Py(x),..., Py(x) € K[x] and Py(x) # 0. Applying the operator x +—>

o0
x™ 07 we get that

P (xmfe"o—l) F( mi ¢io~ l) ZP ( mi gio— 1) F( mj@io—l-f—i)
l .

i=1

o . . . . . j pig—1
By definition of iy, the right side of this equation is in V', and so F (x’”]? “Hev
since Py(x) is nonzero. This is a contradiction. It follows that F(x™’) € V for
every nonnegative integer j.

Since V is a K(x)-vector space of dimension at most N?, we see that

2
Fx), Fx™),..., F (me ) are linearly dependent over K (x), which implies that
F(x) is m-Mabhler. This ends the proof. O

Remark 8.2. Taking k = ¢ and b = 0 in Proposition 8.1, we see that if a power
series F'(x) is k-Mahler then it is also k“-Mahler for every a > 1. The converse is
obvious. Consequently, if k¥ and ¢ are multiplicatively dependent natural numbers,
then F(x) is k-Mahler if and only if it is £-Mahler.

Corollary 8.3. Let k and £ be two multiplicatively independent natural numbers
and let F(x) € K[[x]] be a power series that is both k- and {-Mahler. Then
there exist two multiplicatively independent positive integers k' and £ such that
the following conditions hold.

(1) There is a prime number p that divides k' and does not divide €',
(ii) There is a prime number q that divides ' and does not divide k';
(iii) F(x) is both k’- and ¢'-Mahler.
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Proof. There exist prime numbers py, ..., p;, and nonnegative integers ap, . . ., dpy.,

by, ..., by such that
m m
k:l_[pl‘.” and E:l_[pf’i.
i=1 i=1

Moreover, we can assume that, for each i, at least one of a; or b; is positive.
Note that if there are i and j such that a; = 0 and b; = 0, then we can take
k' :=k and ¢’ := £ and set p := p; and ¢ := p; to obtain the desired result. Thus

we can assume without loss of generality that b; > 0 fori € {1,...,m}. Then
there is some ig € {1,...,m} such that a;,/b;, < a;j/b; forall j € {1,...,m}.
In particular, ¢; := a;b;, — bja;, is a nonnegative integer for all j € {1, ..., m}.
Hence

m

1 pbiy p—ain Cj

k' = kbiog O—l_llpj eN.
]:

Furthermore, p;, does not divide k" and since k and ¢ are multiplicatively indepen-
dent, the ¢;’s are not all equal to zero.

Now we pick iy € {1, ..., m}suchthatc; /b;, > c;/bjforall j € {1,..., m}.
Note that ¢;; > 0 since the ¢;’s are not all equal to zero. Set

' e N—bi, u bjc,-l—b,-lc/-
=) =11 p; eN.
j=1

Since ¢;, = 0,¢;, > 0 and the b;’s are positive, we get that p;, divides £’. Moreover,
pi, does not divide £’ while p;, divides k’ for ¢;, is positive. In particular, k" and ¢’
are multiplicatively independent. Furthermore, Proposition 8.1 implies that F'(x) is
both k- and ¢’-Mahler. Setting g := p;, and p = p;,, we obtain that k" and £ have
all the desired properties. This concludes the proof. O

9. Asymptotic estimates for some infinite products

In this section, we study the behaviour around the unit circle of infinite products of

the form
o o\l
(1"[ P(x"’)) :
i=0

where P(x) € C[x] and P(0) = 1. We obtain some asymptotic estimates that will
be necessary in Section 11.

We will prove that when « is a root of unity satisfying o* = « that is not a root
of P, then this product is rather well-behaved when approaching « through certain
well-chosen sets of points. Throughout Sections 9, 10, and 11, we make use of
certain subsets of the unit circle having 1 as a limit point. We define these sets now.
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Definition 9.1. Lete € (0, 1) and let & € [—1, 1]. Then we define
Xge = {exp((—1 +i0)s) | s € (0, &)}. 9.1)

We take Xy to be the set {0} U {exp((—1 +i8)s | s > 0}.

We note that each Xy is a compact subset of the closed unit disk. In fact, Xy is
homeomorphic to Rx>o U {4-o0}.

0.8
0.6
0.4
0.2
0
—0.2
—0.4

—0.5 0 0.5

—_

Figure 9.1. This picture of the full set Xy, with & = 5, shows the spiral-like structure
of the curve.

0.8
0.6
0.4
0.2

—0.2
—0.4

—0.5 0 0.5 1

Figure 9.2. This picture shows the set Xy ., where we take 6 = 5 and € = 1.5.

Moreover, if 6 # 6’, two sets of the form Xy, and Xy, are always disjoint.
This can be seen by noting that if exp((—1 + i0)s) = exp((—1 + i0’)s’), with
0,0’ € [0, 1], then they have the same modulus and hence s = s’; next we must
have that exp(ifs) = exp(if’s) and so (§ — 0’)s must be an integer multiple of
27, which can only occur if & = 6" since |§ — 6’| < 2and 0 < s < 1. Finally,
we remark that a set of the form Xy . has the property thatif y € Xy and k is a
positive integer then there is a unique point z € Xy ¢ such that *=y.
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Proposition 9.2. Let k > 2 be a natural number, let o be root of unity that satisfies
ok = «, and let P(x) be a nonzero polynomial with P(0) = 1 and P(«) # 0. Then
for all but countably many 6 € [—1, 1], there exist two positive real numbers A and
¢ € (0, 1), depending upon 9, such that

=1 < (fﬁ[P((roe)""))>_1 < 1—o

j=0
whenevert € Xg .

In contrast, the following result shows that such infinite products behave dif-
ferently when « is a root of P. In the case where k = 2, we point out that a different
proof can be found in [5, Théoreme 3]. Precise asymptotics for the coefficients of
the power series expansion of this infinite product has also been studied by Mahler,
de Bruijn, and Dumas and Flajolet (see [15] and the references therein). We give
the following proof for the sake of completeness.

Lemma 9.3. Let k > 2 be a natural number. Then if {t,} is a sequence of complex
numbers with |t,| < 1 for every n such that t, — 1 as n — oo then

o0

1
Hl—tkj

Jj=0 n

lim |4 =
n—o0

| _tn oo,

for every positive real number A.

Proof. By ignoring some initial terms of our sequence, we may assume that |1 —
1] € (0,1/k%) for every n. Now let t € B(0, 1) be such that |1 — | € (0, 1/k°).
Let N > 2 be the largest natural number such that |1 — 7| € (0, k=& +1)2). Then

-#) "= T1(-)

j=0 j=0

-1

v

= |a - t)f<N+1)‘

(1o )
Jj=0

N
> |1 — t|_(N+1)k_(N+l)2

> 1 =N,

By definition of N, we obtain that |1 — ¢| > k~¥+2” which easily gives that

—1 —
v o [loglt—l
4logk

This ends the proof, for the right-hand side tends to infinity when ¢ tends to 1. [
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We are now going to prove Proposition 9.2. We will need the following two
auxiliary results.

Lemma 94. Let k > 2 be a natural number. Then for t € (0, 1), we have

iti/i > (1 —l/k)itki.
i=1 i=0

Proof. We have

00 . ) ki+l .
Dodji=r4> Y Y]
i=1 i=0 j:ki-l,-l
o0 ki+l
> H_Z Z tk’“/ki-'rl
i=0 j=ki+1
>0 i+1
— th (kH-l _ ki)/ki—i-l
i=0
e i+1
=t+(1-1/k)) "
i=0
S .
> (1= 1/k) Y 1%,
i=0
which ends the proof. O

Lemma 9.5. Let k > 2 be a natural number and let ). # 1 be a complex number.
Then for all but countably many 6 € [—1, 1], there exist two positive real numbers
Aand e € (0, 1), depending upon 0, such that

o0
1 _
SRR v
J:

whenevert € Xg ..

Proof. We first prove the inequality on the right-hand side.

We note that for each j > 0 there are only finitely many complex solutions
to the equation 1 — Atk = 0, and thus there are at most countably many solutions
as j ranges over all nonnegative integers. As already observed, for  # 6 with

0,0" € [—1,1] and for ¢,¢" € (0, 1), one has Xy N Xy = @. It follows that

for all but countably many values of 6 € [—1, 1] the equation 1 — Atk = 0 has no
solution on Xy . whenever ¢ € (0, 1). Moreover, since A # 1,f = 1 and t = 0 are
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never a solution, this equation has no solution in Xy . For the remainder of the proof
we assume that 6 € [—1, 1] has this property.

Observe that Xy is a compact set that is closed under the map # — ¥ and we
have that 1 — Az is nonzero for ¢ € Xy. By compactness, we see that there exist two
positive real numbers &g and cp, cp < 1 and depending upon 6, such that

inf{‘l—mk’):zexg,go,jzo}wo. 9.2)

We fix t € Xg,¢, and we let N = N(¢) to be the largest nonnegative integer such
that || > 1/2. Then for j > 1 we have ‘tkN+] - ‘(;k“')k"" < (/2%
Hence

‘1 " s — e

. . j—1 . .
Since the series ) j>0(l / 2)K converges, we get that the infinite product

1°—°[ 1
J=N()+1 1=k

is uniformly bounded over Xy ¢, by some constant c;. (We note that A # 1 is fixed,
N = N(z) depends upon ¢, t € Xg¢,, and it is necessary to begin the product at
N + 1 in order to achieve uniformity in our bound.) Then

s AN N IR = KN+
H(l—kt ) =1_H1—M H‘l—kt
j=0 j=1

Jj=0

-1

< (1/c)Nte,

—logco/logk
_ (kN—H) cr.

kN+l| < 1/2 and thus kVNt! <

Furthermore, we have by assumption that |t
—log2/log |t|. This implies that

[1(-a)"

Jj=0

< ¢1 (—log2/ log |¢])~logco/logk

Now we let ¢ tend to 1 along Xy g, that is we write ¢ = exp((—1 + i6)s) with
s € (0, g0) and we let s tend to 0. Then we have |¢t| = exp(—s) and so log |¢| = —s.
Then when t — 1 along the arc Xg ¢, we have that |1 — ¢|/log |¢| tends to

1 — exp((—1 +i6
lim LD g V2

s—0 )
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and hence there exists some positive real numbers ¢ < &g and ¢; such that
c1 (= log2/log|e]) 18 W/ 08K < c]1 — gloscor ok,
whenever t € Xp .. Since ¢p < 1, we obtain that there exists a positive real number

A such that
o0 i\ —1
l_[ (1 - M"’)
j=0

<=4

’

forall t € Xp . This gives the right-hand side bound in the statement of the lemma.
To get the left side, note that for all # € Xj,

k-
= 1ot = e ().
j=

j=
By Lemma 9.4, we have

[Jexp (— |Al- |r|"’) > exp <—|x|(1 -1/ |t|"/i> = (1 — e E=D
j=0 i=1

‘We thus obtain that, for all ¢+ € Xy,

o0

1
— >
nl_ktkj (

> (1 — [t])*2,
j=0

where Ay := [|Alk/(k — 1)] + 1. Now we note that, when ¢+ — 1 along the arc
Xg,e0, we have [1 —¢|/(1 — |¢]) tends to | — 1 + i8] € [1, V2], which can be seen
by writing t = exp((—1 + i6)s) and letting s — 0 and taking limits. Since ¢ < 1,
it follows that there is some positive constant A3 > A, for which we have

1°—°[ 1
o L= Ak

> |1 -8,

whenever ¢ € Xg ;.
Taking A to be equal to the maximum of A; and Az, we get the desired re-
sult. O

Proof of Proposition 9.2. Let B, ..., Bs; denote the complex roots of P (consid-
ered with mutliplicities) so that we may factor P(x) as P(x) = (1 -8, Ty =
ﬂs_lx). ‘We thus obtain
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where 8;” o # 1 foreveryi € {1,...,s}. Then by Lemma 9.5, there are cocount-

able® subsets ¥; of [—1, 1] such that for a given i and a given 6 € Y;, there exist a
natural number A and a positive real number €,0 < ¢ < 1, depending upon 8, such

that o
[1(1- ﬁ;lm)_l

j=0

-4 < <=z

whenever t € Xy .. Since the finite intersection of cocountable sets is cocountable,
we see that taking ¥ = Y1 N ... N Y, that whenever 6 € Y we have there exist
natural numbers A; and positive real numbers ¢;, 0 < & < 1, depending upon 6,

such that
0 -1
=% < (] (1 —ﬂ;‘m) <[l —f A
j=0
whenever t € Xg ;. Taking ¢ := min(eq, ..., &) and A = Zle A;, we obtain
the desired result. O

10. Asymptotic estimates for solutions of analytic Mahler-type systems

In this section we fix a non-trivial norm | - || on C¢. We let B(x, r) (respectively
B(x,r)) denote the open (respectively closed) ball of radius r centered at x. Our
results will not depend on the choice of this norm. Throughout this section, we
make use of the sets Xy . and Xy defined in Definition 9.1.

As defined in Section 7, a Becker function F (x) € C[[x]] is an analytic func-
tion on the open unit disk satisfying a functional equation of the form:

F(x) = Xn: Pi(x)F(xki>
i=1

for some polynomials P;(x), ..., P,(x) € C[x]. Of course, such an equation leads
to a k-Mabhler linear system

F(x) F (x5
= A(x) : ,
FX"™h F ("

where A(x) is an n X n matrix with polynomial entries. In what follows, we provide
an asymptotic lower bound around certain points of the unit circle for solutions of
similar systems but associated with more general matrices. Indeed, we consider
matrices whose entries are only assumed to be analytic on B(0, 1) and continuous
on B(0, 1). This result will be used in Section 11.

8 This means, of course, that the complement of ¥; in [—1, 1] is a countable set.
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Proposition 10.1. Ler d and k be two natural numbers, let o be a root of unity such
that o* = a and let A : B(0, 1) — My (C) be a continuous matrix-valued function.
Let us assume that w(x) € C[[x]]¢ satisfies the equation

wx) = A(x)w(xk)
forall x € B(0, 1). Let us also assume that the following properties hold.

(1) The coordinates of w(x) are analytic in B(0, 1) and continuous on B(0, 1);
(i1) The matrix A(w) is not nilpotent;
(iii) There exist two positive real numbers € and M such that | det(A(x))| > (1 —
lxDM for every x with1 — e < |x| < 1;
@iv) TZe set {fw(x) | x € B(0, 1)} is not contained in a proper vector subspace of

If ¢ is a root of unity such that v = 1 for some natural number j and 6 € [—1, 1],
then there exist a positive real number C and a subset S C Xg that has 1 as a limit
point such that

lw(tad)|] > 1 -1

forallt € S.
Before proving Proposition 10.1, we will need two auxiliary results.

Lemma 10.2. Let d and k be two natural numbers, let a be a root of unity such that

o = a,andlet A : B(0, 1) — M;(C) be a continuous matrix-valued function. Let

us assume that w(x) € C[[x]]¢ satisfies the equation

w(x) = A(x)w(xk)
forall x € B(0, 1). Let us also assume that the following properties hold.

(1) The coordinates of w(x) are analytic in B(0, 1) and continuous on B(0, 1);
(i) The matrix A(w) is not nilpotent;
(iii) The set {fw(x) | x € B(0, 1)} is not contained in a proper vector subspace of

ce.
Then if 6 € [—1, 1], then there exist a positive real number C and a subset S C X
that has 1 as a limit point such that
llwe)]] > |1 — 1]

forallt €S.

Proof. Since A(x) is not nilpotent, there is some natural number e such that the
kernel of A(«)¢ and the kernel of A(a)*! are equal to a same proper subspace of
ce, say W. Then there is a nonzero vector subspace V such that A(x)(V) C V
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and V @ W = C?. Moreover, by compactness, there is a positive real number ¢,
co < 1, such that
[[A(e)(w)[| = co (10.1)

whenever w € V is a vector of norm 1.

Since every vector x has a unique decomposition of the form v & w with v in
V and w in W, we see that the map 7 (x) := v gives a continuous linear projection
map 77 : C¢ — V with the property that u — 7 (u) € W for all u € C¢. We infer
from Inequality (10.1) that

|17 (AC) (u)[| = [ A(er) (7w () || = coll ()| (10.2)

for all u € C¢. Since A is continuous on B(0, 1), Inequality (10.2) implies the
existence of a positive constant ¢ > 0 such that

|l (A @] > (co/D)l|m ()]l ,

forall u € C? and all x € B(x, €) N B(0, 1). It follows by a simple induction that
if xi,...,xn € B(a,e) N B(0, 1) then

I (ACxer) - - AQem) ()| = (co/2)™ [l )] - (10.3)

Let & € [—1, 1]. We claim that there exists a complex number #y such that 7y €
Xo N B(1, &) and w(tpa) ¢ W. Otherwise, there would be a nonzero row vector
u such that ¥ - w(ta) = O for all t € Xg N B(1,¢). But u - w(x) is analytic in
B(0, 1) for w(x) is and hence it would be identically zero on B(0, 1) by the identity
theorem since Xy N B(1, ¢) has accumulation points inside the open unit disk. This
would contradict assumption (iii).

From now on, we fix a complex number #y with this property. For every i >
1, we then define #; to be the unique element in Xy such that tik = t;_1. Since
w(to) ¢ W, there exists a positive real number ¢ such that

Il (w(toa))|| = c1 > 0.

Furthermore, by construction, the sequence 1y, t1, 2, . . . belongs to Xg N B(1, ¢).
We thus infer from (10.3) that

177 (w(the)) || = [ (Atpa) Altp—10) - - - A(t100) (w(t02)) ]
> (co/2)" |7 (w(toe) ||
= cico/2)"

for all n > 1. Furthermore, since the projection 7 is continuous, there is some
positive real number ¢; such that ||7 (u)|| < c2||u|| forall u € C4. Thus

Hw(ta)l| > ¢ i (wta) > ¢ er(eo/2)"

foralln > 1.
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On the other hand, we note that we have a map log : Xy \ {0} — C given by
log(exp((—1 4 i0)s) = (—1 + i6)s, and for each positive real number a, we have
an a-th power map Xy — Xy given by ¢ — exp(a log(t)). Since

a
I —

1
lim = log(tp),

a—0t

we have that |¢§ — 1|/alto — 1| — [log(t)|/Ito — 1], as a — 0%. Since tg is fixed,
we let k denote the quantity | log(#p)|/|to — 1].
Then there exists some g € (0, 1) such that

ltg — 1| < 2ak|1 — 1]

for a € (0, &9). Thus if n is large enough, say n > ng, then k" > 1/g9 and we have
Ity — 1] = |(t) /¥ = 1] < 2k|1 — to|/k". Hence k" > 2x|1 — t9|/|1 — t,|. Then
for n > ng we have
lw(t@)]| > ¢ eico/2)"
— CZ_]CIanng(CO/z)

> (&5 e Q1 = pgly e |1 — |~ lors(r2),

Thus if we take C := —2log;(co/2) > 0, the fact that #, tends to 1 as n tends to
infinity implies the existence of a positive integer n; > ng such that
lw(tae)]| > 1= 1],

for all n > n;. Taking S := {#, | n > n1}, we obtain the desired result. O

Lemma 10.3. Let B : B(0,1) — M;(C) be a continuous matrix-valued function
whose entries are analytic inside the unit disk and continuous on the closed unit
disk. Let us assume that there exist two positive real numbers ¢ and M such that
|det(B(x))| > (1 — [x)M for every x such that 1 — ¢ < |x| < 1. Then there exists
a positive real number C such that for every column vector u of norm 1, we have

1Bl = (1~ |x)©
for every x such that 1 — ¢ < |x| < 1.

Proof. Our assumption implies that B(x) is invertible for every x such that 1 — ¢ <
|x|] < 1. Let A(x) denote the determinant of B(x). Using the classical adjoint
formula for the inverse of B(x), we see that B(x)~! has entries ci,j(x) that have
the property that they are expressible (up to sign) as the ratio of the determinant
of a submatrix of B(x) and A(x). Since the entries of B(x) are continuous on
B(0, 1), each determinant of a submatrix of B(x) is also continuous on B(0, 1). By
compactness, we see that there is a positive real number « such that

lei j ()] < k/|AX)] < k(1 — |x))™™
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for every (i, j) € {1, ..., d}2 and every x such that 1 — ¢ < |x| < 1. Thus there
exists a positive real number C such that

I1B@)™ =< (1= 1x)h~€

for every x such that 1 — e < |x| < 1. It follows that if u is a vector of norm 1, then
1Bl = (1= [x)€,

for every x such that 1 — ¢ < |x| < 1. The result follows. ]

Proof of Proposition 10.1. Let 6 € [—1, 1]. Since A(x) is not nilpotent, we first
infer from Lemma 10.2 that there exist a positive real number Cy and a sequence
tn € Xp, which tends to 1, such that [|w (#f,a)[| > [1 — 1,]€0 for every integer n > 1.
Let s,, € Xy be such that s,{fj =t,. Then

w(spal) = A(sna;)A(s,’;agk) N .A(s’,;’*‘a;""”)(w(t,,a)).

By assumption there exists a positive real number M such that | det(A(x))| > (1 —
|xDM for every x with 1 — & < |x| < 1. Set

B(x) := A(xag“)A(x"a;k) - A(xkf*'agkfﬂ) .
Then there is a positive real number C; such that if (1 — &)! /R x| < 1 then

det(B() > (1= DM - (1= ) = 1 = e

It follows from Lemma 10.3 that there exists a positive real number Cp such that
for n sufficiently large we have

lw(s,a2)|| = ||B(sn) wtaa))|| > (1 = |5y ) Jw(t,0)]
> (1 =[5, )11 — 1,0

We have that 7, = exp((—1 + i6)u,,) where u, is a sequence of positive numbers
tending to 0. Taking limits, we then see that |1 — £,|/(1 — |sp|) = | — 1 +i6] - k/
and |1 —s,|/(1 —|sy]) = | — 1 4+i6]| as n — oo. Hence there exists a positive real
number C such that

lw(spad)|| = |1 —s,]€

for all n sufficiently large. The result follows. O
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11. Elimination of singularities at certain roots of unity

In this section we look at the singularities of k-Mahler functions at roots of unity
of a certain form. Strictly speaking, we do not necessarily eliminate singularities,
and so the section title is perhaps misleading. We do, however, show that one can
reduce to the case of considering Mahler equations whose singularities at roots of
unity have a restricted form.

Assumption-Notation 11.1. Throughout this section we make the following as-
sumptions and use the following notation.

(a) We assume that k and [ are integers, k,/ > 2, for which: there exists a prime
p such that p|k and p does not divide ¢, and there exists a prime g such that
q|¢ and g does not divide k. In particular, k and ¢ are two multiplicatively
independent integers;

(b) We assume that F'(x) is a k-Mahler complex power series that satisfies an

equation of the form
a .
> AF(x) =0
i=0

with Ay, ..., A, € C[x] and Ag(0) # 0;
(c) We assume that F'(x) is an £-Mahler complex power series that satisfies an
equation of the form

b .
Bi(x)F(x¥) =0
> Bir(x")
with By, ..., B, € C[x] and By(0) # 0.

In this section our aim is to prove the following result. It will be a key result for
proving Theorem 1.3.

Theorem 11.2. Let F(x) € C[[x]] be a power series that satisfies Assumption-
Notation 11.1 and that is not a polynomial. Then F(x) satisfies a non-trivial k-
Mabhler equation of the form

. N
;P,(x)F<x> 0,

with the property that Py(0) = 1 and Po(a) # O if o is a root of unity satisfying

J ., . .
o* = a for some positive integer j.

Though this result is of a purely algebraic nature, our proof relies heavily on
analytic methods. One may ask whether a purely algebraic proof exists.
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Strategy of proof. Using Assumptions (b) and (c), Proposition 7.10 leads to two
different expressions for F:

~ -1 ~ -1
F(x)=(]1:!)A0(xkj>> H(x) and F(x)=<££30(x”)> G,

where H is k-Becker and G is £-Becker. This gives:

-1

(chj) Ao(’“kj)) (J]j) B()(»c“"))_1 G)Hx) ™.

We want to argue by contradiction assuming that Ag has a root « satisfying oX° = «
for some positive integer ip. The main idea is to use the asymptotics of Sections 7,
9, and 10 in order to show that the absolute values of the left-hand side and the right-
hand side of the above Equality behave really differently in some neighbourhood of
o, providing a contradiction. However, there are several technical difficulties and
the proof will be divided into seven steps, as briefly described below.

In Step 1, we will first replace, for technical reasons, F' by some function Fy
and the Equality above will be consequently replaced by

-1

00 o 00 A\ !
<]_[ éo(xklw)) (]_[ Ro(x‘f’)) G)Hx) ™, (11.1)
j=0 j=0

where éo is a polynomial satisfying é() () = 0 and o*° = «. Again for technical
reasons, we will also have to replace the point o by agp, where ¢y is some well-
chosen p"-th root of unity (the choice of ¢y is made in Step 3). Here, p denotes the
prime from Assumption (a).

At this point, one could use the results of Sections 7 and 9 to derive upper

-1
bounds showing that both '(H?io Ro (xe-/)> ‘ and |G(x)| do not grow too fast in

some neighbourhood of the point «&y. In contrast, it follows from Lemma 9.3 and
~ -l
(I3 Oox+*))

chosen points near this point since @0 (@) = 0 and &% = «. This would be enough
to derive a contradiction if we were able to obtain a lower bound for | H (x)| around
ao. Since H is a k-Becker function, it is easy to obtain a general upper bound (as
we will do for G in Step 5), but we cannot obtain a suitable lower bound because the
matrix associated with the underlying linear system of functional equations could
be nilpotent.

In order to overcome this difficulty, we will replace H by the function L(x) :=

Proposition 9.2 that becomes much bigger at certain well-

H(x) (]_[?020(1 - oz_lxkioj)’ ) for some well-chosen rational parameter r. The
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choice of the parameter r will be given at Step 2. Once this last modification is
made, one obtains, instead of Equality (11.1), an equality of the form:

~1
1 _kioJ —b _ - 2 - kioJ —1
(1 o lx ) (g)Ro(x )) G (x) (]_[ So(x )) L,

j=0
where Sy is some polynomial and b is positive. It corresponds to Equality (11.8) in
the proof.
In step 3, we will show that our choice of r allows to derive a suitable lower
bound for |L(x)| around «¢p by applying Proposition 10.1. On the other hand, in
Steps 4,5, and 6, we will use the results of Sections 7 and 9 in order to provide suit-

. —1 ini
<]_[?°:0 RO(XZI)) , |G ()], and |17, So(xK°")| around

—

j=0

able upper bounds for

adp.

In step 7, we will finally gather all the bounds obtained in Steps 3,4, 5, and 6
in order to deduce that, around «¢p, the right-hand side of Equality (11.8) is much
smaller than the left-hand side should be according to Lemma 9.3. This will provide
the desired contradiction.

With the preliminary results of Sections 6, 7, 9, and 10, we are now almost
ready to prove Theorem 11.2. Before doing this, we give the following simple
lemma. We recall that the Kronecker symbol §; ; is defined, as usual, by §; ; = 1 if
i = j and §; ; = O otherwise.

Lemma 11.3. Let d be a natural number and let A be a d x d complex matrix
whose (i, j)-entry is 8; j11ifi > 2. If there is an integer r such that the (1, r)-entry
of of A is nonzero, then A is not nilpotent.

Proof. Let (ay, ..., aq) denote the first row of A. Then by the theory of companion
matrices, A has characteristic polynomial x4 —aqx? ' —axd2 — ... —q,. But
if A is nilpotent, its characteristic polynomial must be x¢ and hence the first row of
A must be zero. O

Proof of Theorem 11.2. Consider the set I of all polynomials P(x) € C[x] for
which there exist positive integers a and b with 0 < a < b such that

b ,
P(X)F(x) € Z(C[x]F<xk") .

Jj=a

We note that 7 is an ideal of C[x]. Let Py(x) be a generator for /. It follows from
assumption (b) that Pp(0) # 0 and we can assume without loss of generality that
Pp(0) = 1. Let us assume that « is a root of Py(x) with the property that ok = o
for some positive integer ip. We will obtain a contradiction from this assumption,

which will prove the theorem.
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Step 1 (preliminaries). Since F(x) is k-Mahler, it is also k’°-Mahler and hence
F(x) satisfies a non-trivial polynomial equation of the form

f Qj(x)F<xki0j> —0
=0

with Qo, ..., Qg4 polynomials and Qo(x)Q4(x) # 0. We pick such a nontrivial
relation with Qg nonzero and the degree of Qo minimal. By assumption Py divides
Qo and so « is a root is of Qp(x). The minimality of the degree of Q¢ also implies
that gcd(Qo(x), ..., Qq(x)) = 1. By Lemma 6.1, there exists some natural number
N such that F(x) can be decomposed as F(x) = T (x) + x Fy(x), where T (x) is
a polynomial of degree N — 1 and Fy(x) is a power series with nonzero constant
term such that Fy(x) satisfies a k’0-Mahler equation of the form

iéj(x)Fo(xki°j> —0 (11.2)
=0

with QO(O) =1, éo(a) = 0 and éjo(oz) # 0 for some integer jo, 0 < jo < e.
Moreover, by picking N sufficiently large, we may assume that Fy(x) satisfies a
nontrivial £-Mahler equation

J

for some polynomials R;(x) with Ry(0) = 1. Now, we infer from Proposition 7.10
that there is some £-Becker power series G (x) such that

00 . —1
Fo(x) = (]_[ Ro(x”)) G ), (11.3)

j=0

and that there is some k-Becker power series H (x) such that

00 o -1
Fo(x) = <]_[ Qo(xk"”)) H(x). (11.4)
=0

Step 2 (Choice of the parameter r). For j =0, ..., e, we let c; denote the order
of vanishing of Q;(x) at «, with the convention that c; = oo if Q;(x) = 0. We
note that by assumption 0 < ¢p < oo and cj, =0 < cp. Let

b:=max{L,cj|j=1,...,e}. (11.5)
j
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Since at least one of c1, ..., cq is strictly less than cp, we have that b is positive.
Moreover, by definition there is some j; € {1, ..., e} such thatc;, + bj; —co =0.
Then, for j € {0, ..., e}, we set

j—1

S;(x) =0, (x) (]_[ (1- a—‘xk"’”)b) (1 —a_1x>7co .16
n=0

Note that (11.5) implies that So(x) is a polynomial in C[x] such that Sp(0) = 1 and

So(a) # 0.
Now, we set

00

L(x) := H(x) (]_[ (1 _ a—lxk"‘"/)“o) . (11.7)

Jj=0

In other words, we choose r := b —cq. Then we infer from Equalities (11.3),(11.4),
(11.6), and (11.7) that

]o_o[ (1 —a_lxk[0j>7b= (]O_o[ Ro(x”>>lc(x) (]O_O[ S()(xkioj)) L)™', (118)
j=0 j=0 j=0

Step 3 (Upper bound for |L(x)|™"). We first infer from (11.2) and (11.7) that the
function L satisfies the following relation:

i: én(x) (lo—o[ SO(xki0j>_l> (lo—o[ (1 _ alxkioj>—b> L(inon) _0.
n=0 i P

which gives by (11.6) that

_ e - - —ln 1 KioJ n—1 1 ko) b) Kion
L(x) Z(Qano(x) [T so(x )E)(l o)) L ()

n=1 j=0

e n—1 o .
--y (S,,(x) IR (xk’O")) L(+").
n=1 j=1

Let A(x) denote the e x e matrix whose (7, j)-entry is §; j41 if i > 2 and whose

(1, j)-entry is
n—1 o

C;(x) = =8, [T So(x**")

j=1

for j =1, ..., e. Then the previous computation gives us the following functional
equation:

[L(x), L(xkio), e L(xkio(eil))]T = A(x) [L(xki0>, e, L(xkioe>]T , (11.9)

where 7 denotes the transpose.
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In order to obtain the desired upper bound (namely, Inequality (11.11) that

will be stated in the sequel), we are going to apply Proposition 10.1. We thus start
by showing that the vector [L(x), L(x¥°), ..., L(x**“"")]T and the matrix A(x)
satisfy the assumptions (i), (ii), (iii), and (iv) of this proposition. We first note
that L(x) is not identically zero since F(x) is not a polynomial. Furthermore, we
assume that L is not a nonzero constant since otherwise the desired upper bound
(11.11) would be immediately satisfied.

®

(i)

(iii)

By definition,

n—1 o
5:) = 0 () (H (1- “_lxklm)b> (1ol

j=0

Moreover, a simple computation gives that

n—l BN bn
1_[ (1 — a_lxkoj) = (1 — a_1x> Pn(x)b,

Jj=0

for some polynomial P, (x) that does not vanish at «. By definition of ¢, , this
shows that

cpt+bn—cy b
) Py ()R, (x), (11.10)

S, (x) = (1 e

where P,(x) and R, (x) are two polynomials that do not vanish at «. By the
definition of b in (11.5), we have ¢;, + bn —co > 0 forn € {0, ..., e}, and thus
S, (x) is analytic in the open unit disk and continuous on the closed unit disk.

Since the finite product ]_[;’;} So(xkioj) is a polynomial, this shows that the

entries of the matrix A(x) are analytic on B(0, 1) and continuous on B(0, 1);

As already observed, there is some integer ji,1 < ji; < e,suchthatcj +bj; —
co = 0. Since Pj (x)Rj, (o) # 0, Equation (11.10) implies that S;, () # 0.
On the other hand, we have that ]_[;':_01 So(x¥*") does not vanish at « since

So(o) # 0 and o = . We thus obtain that the (1, ji)-entry of A(x) is
nonzero. By Lemma 11.3, this implies that A(«) is not nilpotent;
By definition of the matrix A, we get that

e—1 )
det AGx) = (=1)°Ce(®) = (=D 5o [T S0 (")
n=1

By (11.10), we have that S,(x) = (1 — a~'x)%tte=<0 p,(x)?R,(x), where
P.(x) and R,(x) are polynomials. It follows that there exist two positive real
numbers § and M such that

|det A(x)| > (1 — [xM

for every x such that 1 — § < |x| < 1;
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(iv) We claim that

{[L(x), L(ka), e, L(xki°(€71)>]T | x € B(0, 1)}

cannot be contained in a proper subspace of C¢. Indeed, if it were, then there
would exist some nonzero row vector u# such that

i i (e— T
u[L(x),L(xk0>,...,L(xko( 1))] =0

for all x € B(0, 1). But this would give that L(x), ..., L(xkio(#l)) are linearly
dependent over C, and hence by Lemma 7.9, we would obtain that L(x) is a
constant function, a contradiction.

It follows from (i), (ii), (iii) and (iv) that we can apply Proposition 10.1 to the vector
[L(x), L(xklo), e, L(xklo(e_l))]T. From now on, we fix a positive integer Ny that
will be assume to be large enough in step 4. Let u be a primitive p”-th root of unity
withn > No+ig(e—1)v, (k). Here, v, (k) denotes the p-adic valuation of k and p is
the prime number from assumption (a). By Proposition 10.1, for every 8 € [—1, 1],
there exist a positive integer My and an infinite sequence (#g(n)),>0 € Xp \ {1}
(denoted by (f(n)),>0 for short) which tends to 1 such that

H [L(t (naw), L(z (n)kioozuk’o), - L(t(n)ki()(e*l)(xﬂkio(k]))]T

>[1—t(n)|M,

for every nonnegative integer n. By the pigeonhole principle, we can find an integer
no > Np, a primitive p"°-th root of unity &g, such that for every 6 € [—1, 1] there
exist a sequence (sg(1)),>0 in Xp \ {1} which tends to 1, and a positive integer A;
(depending upon 6) satisfying

ILsa(mago)| ™" < |1 —sp(m)] ™ (11.1D)
for every positive integer 7.
Remark 11.4. We fix the p"°-th root of unity ¢y once for all.

Step 4 (Upper bound for Knjzo Ro ()czj))_1 [). From assumption (a), we get that
if Np is large enough, then Ro((ag‘o)ej) # 0 for every j > 0. Let n; and n»,
n1 < ny, be two positive integers such that

@) = (ag0)t™ . (11.12)
Then for every 6 € [—1, 1] and t € Xj \ {0, 1} we have

I Ro((rarz)”)

n

1—1 o m—1 oo .\ J(ny—ny)
H Ro((la§0)2]> 1_[ l_[Ro (((foté“o)gl) ) .
=0

J i=ny j=0
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Note that ]_[;”:61 Ry (x[j) is a polynomial that does not vanish at any point of the

finite set {(oz;o)ﬁj) | j > O}. It follows that, for every 8 € [—1, 1], there exist two
positive real numbers C and & such that

ni—1 y )‘1
(Jl:!) Ro(tot;“o) > <Cy,

for all ¥ € Xp,. Furthermore, Equality (11.12) implies that for every integer i,
ny <i <np—1,wehave

((ot{o)gi)mnrnl) = ((oté“o)ei) )

Thus, for every integer i, ny < i < np — 1, we can apply Proposition 9.2 to the

infinite product
, -1
o0 ; ZJ("Z*"l)
(1_[ Ro (((wlé“o)Z ) ))
Jj=0

This implies the existence of a cocountable subset Y1 of [—1, 1] such that for each
6 € Y1, there is a positive real number &, and a positive integer A, both of which
depend upon €, such that

00 ) -1
(]_[ Ro ((tozéo)’”)) < |l -t (11.13)
j=0

foreveryt € Xog¢,.

Step 5 (Upper bound for |G(x)|). Note first that, since G(x) is a £-Becker power
series, Theorem 7.6 implies that G (x) is £-regular. By Proposition 7.5, there exist
two positive real numbers C and m such that

G <CA —|xD)™™,

for every complex number x in the open unit disk. This implies that there exist two
positive real numbers €3 and A3 such that

G| < (1= xh™™ (11.14)

for every complex number x with 1 —e3 <1 — |x| < 1.
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Step 6 (Upper bound for | H/>0 So (xklo'/)|). First note that since ¥ =, So 0)=
1 and « is not a root of Sp, we can apply Proposition 9.2. We thus obtain the
existence of a cocountable subset Y C [—1, 1] such that for each 6 € Y, there is
some positive real numbers &g and a positive integer My such that

(o)
=0

for every t € X s,. Henceforth, we assume that we have selected 6 € Y1 N Y>
and we assume that Equations (11.13) and (11.15) hold — this holds precisely when
t € Xg.e, N Xo.5y = X0, min(er.8) -

< |1 —¢|Mo (11.15)

We also note that (ag“o)kioj = « for all j > ng. This implies that

I1 So((tozgo)"lw) =r0[] SO((ta)k 0’) : (11.16)
j=0 j=0
where
ny—1 O\ /o=l A\ !
inJ 10J
R(t) = (1_[ So((tot{o)ko )) (H So((toc)k0 )) .
j=0 j=0
Since a¥”’ = « and So(a) # 0, then, for every 6 € Y», there are two positive real

numbers §; and C; such that
IR(t)| < C» (11.17)

forevery t € Xp s,
We thus infer from (11.15), (11.16), and (11.17) that for every 8 € Y; there
exist a positive real number &4 and a positive integer A4, both of which depend upon

6, such that
00 .
I1 So((zago)@’) <1 —1 A (11.18)
=0

fort € Xg¢,.

Step 7 (Conclusion). Set

o0 1 o0
M(x) := (E) Ro(x”)> G (x) (g)so(xkiO‘f)) L)~

Let us fix a real number 8 € Y1 N Y>. Collecting all the upper bounds obtained in
(11.14),(11.13),(11.18), and (11.11), we obtain that

ITL(sg(n))ago)| < |1 — sp(n))|~(ArtAztAstas)
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for every integer n large enough. We thus infer from Equality (11.8) that

[1(- (Se(n)é“o)kioj>b‘ = (s n)ato)| < 1= sp(n)|~ArtAztAseA0
j=0

for every integer n large enough. But this contradicts Lemma 9.3, since ;é‘j =1 for
all sufficiently large j. This concludes the proof.

12. Existence of good prime ideals

In this section we prove the following result.

Theorem 12.1. Let R be a ring of the form Ok [1/ M), where K denotes a number
field and M denotes a positive integer. Let P(x), Q(x) € R[x] be two polynomials
with P(0) = Q(0) = 1 and such that none of the zeros of P(x)Q(x) are roots of
unity. Let k and | be two integers, k,1 > 2, for which: there exists a prime p such
that plk and p does not divide £, and there exists a prime q such that q|{ and q
does not divide k. Then there are infinitely many prime ideals 3 in R such that

-1

(1)) moas ana ([To()) mos

i=0
are respectively k- and £-automatic power series in (R/P)[[x]].

We do not know whether the conclusion to the statement of Theorem 12.1 holds
if we allow P or Q to vanish at roots of unity, but we suspect that the statement is
false in this setting.

Our proof is based on Chebotarev’s density theorem for which we refer the
reader for example to [22] and to the informative survey [23]. We first prove three
auxiliary results.

Lemma 12.2. Let K be a number field and let o be a nonzero element in K that is
not a root of unity. Then for all sufficiently large natural numbers n the equation
B" = « has no solution € K.

Proof. Let Ok be the ring of integers of K. Each nonzero prime ideal 7 of Ok
gives rise to a rank one discrete valuation v, of the field K. Notice that if 8" = «
then v; (@) = nvy (B). In particular, if there exists some prime 7 for which v, (@) is
nonzero then we see that, in the equation 8" = «, n must divide v; (@) and we get
the result. We may write « = a/b with a, b € Ok, nonzero. Notice that since Ok
is a Dedekind domain, the ideals (a) and (b) must factor into prime ideals. Now if
(a) or (b) are different ideals, then there must be some nonzero prime ideal 7 of R
for which the induced valuation of « = a/b is nonzero. The previous remark thus
shows that we must have (@) = aOg = Ok . We thus may assume without loss of
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generality that ¢ is a unit in R. But if 8" = « then, since Ok is integrally closed,
we must have 8 € Ok and 8 must be a unit. By Dirichlet’s unit theorem, the group
of units of Ok is a finitely generated abelian group. Hence if 8" = « for infinitely
many n, then o must be a torsion element of the units group. That is, « must be a
root of unity, which ends the proof. O

Lemma 12.3. Let m be a natural number and let dy, . . ., d,, be positive integers.
Suppose that H is a subgroup of [[/L, (Z/d;Z) with the property that there exist
natural numbers vy, ..., 1y, with

I/yrn+---+1/r <1

such that for eachi € {1, ..., m}, there is an element h; € H whose i-th coordinate
has order r;. Then there is an element h € H such that no coordinate of h is equal
to zero.

Proof. Foreachi € {1,...,m}, we let

m [ [ @/dizy) — Z/diZ

i=1

denote the projection onto the i-th coordinate. Given (xp, ..., x,;) € Z™ we have
that x;h1 + - - - + xh;, € H. Observe that the density of integers y for which

T <Zx]'hj +yh,~> =0

J#
is equal to 1/r;. Since this holds for all (xq, x2, ..., Xi—1, Xi+1, ..., Xm) € zm-1
we see that the density of (x1, ..., x;;) € Z™ for which
m
TT; (Z)thj> =0
j=1
is equal to 1/r;. Thus the density of (x1, ..., x;;) € Z™ for which
m
TT; (ij'hj> =0
j=1
holds for some i € {1, ..., m} is at most

/yri+--4+1/r, <1.

In particular, we see that there is some (xy, ..., x;;) € Z™ such that the element
h:=x1hy + -+ xnhy € H has no coordinate equal to zero. ]
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Lemma 12.4. Let k > 2 be an integer, let R be a ring of the form Og[1/M], where
K denotes a number field and M denotes a positive integer, let 3 be a nonzero
prime ideal of R, and let a be an element of R. Suppose that for some natural
number n, the polynomial 1 — ax*" mod B has no roots in R/B3. Then the infinite

product .
(10_0[ (1 — axkj)> mod B

j=0

is a k-automatic power series in (R /P)[[x]].

Proof. Set F(x) := ]_[?020(1 - axkj)*1 mod 3. Without loss of generality we can

2
assume that a does not belong to 3. Let us first note that the sequence «, ak, ak ...

is necessarily eventually periodic modulo 3. However, it cannot be periodic, as
otherwise the polynomial 1 — ax*" would have a root for every natural number 7.
Thus there exists a positive integer N such that

a# o =g mod P.
Setb = akN and let us consider the polynomial
O(x) := (1 = bx)(1 —bx*) - - (1 _ bka—'> '

Now arguing exactly as in the proof of Proposition 7.8, we see that there exists a
polynomial S(x) € R[x] such that G(x) := O(x)~1F(x) satisfies the equation

Gx) = S(x)G(xk) mod ‘.

Thus Theorem 7.6 implies that G(x) mod ‘P is a k-regular power series in
(R/P)[[x]1]. By Proposition 7.4, we see that F(x) mod ‘B is a k-regular power
series since it is a product of a polynomial (which is k-regular) and a k-regular
power series. Since the base field is finite, Proposition 7.4 gives that F (x) mod T3
is actually a k-automatic power series. This ends the proof. O

Proof of Theorem 12.1. By assumption R is of the form Og[1/M], where K de-
notes a number field and M denotes a positive integer. Let L be the Galois ex-
tension of K generated by all complex roots of the polynomial P(x)Q(x). Thus
there are 1, ..., aq, B1, ..., Be € L suchthat P(x) = (1 —ayx)--- (1 —agx) and
Ox) =1 — B1x)--- (1 — Bex). By assumption there is a prime p that divides k
but does not divide £ and a prime ¢ that divides £ but does not divide k. Let s be a
natural number such that p® and ¢° are both larger than d + e. Since by assump-
tion none of the roots of P(x)Q(x) is a root of unity, Lemma 12.2 implies that, for
I <i <dand1 < j < e, there are largest nonnegative integers n; and m ; with

the property that we can write o; = yl.p "u; and Bj = 83 Jv vj for some elements
Vi, 0j € L(eZ/(P’4)y and u;, v; roots of unity in L(e¥i/(P°a%)y,
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Next let n denote a natural number that is strictly larger than the maximum
of the n; and the m; for i and j suchthat 1 < i < dand1 < j < e. Set

E = L(e¥/(P"4")) and let F denote the Galois extension of E generated by all
complex roots of the polynomial

e

[T =) (e =)

i=1j=1

Foreachi,1 <i < d, we pick aroot y; o of xP" — yi,and foreach j,1 < j <e,
we pick aroot 89 of x7' — §;.
Claim. We claim that for every integer i, 1 < i < d, there is an automorphism o;
in Gal(F/E) such that

0i(Yi,0) = vYiou,
with u a primitive p”-th root of unity for some r greater than or equal to s. Similarly,

for every integer j, 1 < j < e, there is an automorphism 7; in Gal(F/E) that such
that

7j(8j.0) =801,
for some primitive g” '-th root of unity u’ with r” greater than or equal to s.

Proof of the claim. Note that

{U(Vi,O)

| o e Gal(F/E)}
Yi,0

forms a subgroup of the p”-th roots of unity. To prove the claim we just have to
prove that this group cannot be contained in the group of p*~!-th roots of unity.
Let us assume that this is the case. Then the product of the Galois conjugates
11

of y; 0 must be y; = yl.p ov for some r < s and some pU~D_th root of unity v.
Moreover, y; lies in L(e?71/(P"4"))  Note that the Galois group of L(e2i/(r"q"))
over L(e2™!/(P°4")) has order dividing ¢ (p"q¢")/d(p°q®) = p"*q"~°. Since all
conjugates of y; are equal to y; times some root of unity, we see that the relative
norm of 7 with respect to the subfield L (e27/(P°4")) is of the form fidv’ for some
divisor d of p"~%¢"~* and some root of unity v’. Moreover,

7y € L(é,zm/(psqw)'

Note that the ged of d and p"~ is equal to p" % for some integer so > s. Since
n n—t

~ ph—t _ : . _ .
Vipo = 77 vP" e L(¥/(P°9)), we see by expressing p" %0 as an integer

linear combination of d and p"~' that

~ plt—50 n—so+r . s s
vl o=yl = L(ez’”/(p a ))
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for some roots of unity w and @’ and some sop > s. But so — ¢ > 1 and so we see
that «; is equal to a root of unity times

so—t+n;

pnfsoth P P
(Vi,o w )

contradicting the maximality of »;. This confirms the claim. O

For an integer m, we let U,, denote the subgroup of C* consisting of all m-th
roots of unity. Note that we can define a group homomorhpism ® from Gal(F'/E)
to (Upn)? x (Ugn)¢ by

Do) ;== (0 (V1,00/1,05 - - 0 (Va,0)/ Vd,0, (81,00 /81,05 - - -, 0(8¢,0)/Be,0) -

We see that @ is a group homomorphism since each o € Gal(F/E) fixes the p”-
th and ¢"-th roots of unity. Set H := ®(Gal(F/E)). The claim implies that the
i-th coordinate in (U pn)d of ®(o;) has order at least equal to p®. Similarly, it also
implies that the j-th coordinate in (Uy»)¢ of ®(z;) has order at least equal to g*.
Since p® and ¢° are both greater than d + e, we have

d/p’+e/qg® <1.

Now, since (Upn)d x (Ugn)¢ = (Z) p"Z)* x (Z)q"7)¢, we infer from Lemma 12.3
that there exists an element /4 in H such that every coordinate of 4 is different from
the identity element. In other words, this means that there exists some element t of
Gal(F/E) that fixes no element in the set

(violl1<i<diU{djoll=<j=<e}.

Since by definition 7 fixes all p"-th and ¢"-th roots of unity, we see more generally
that no root of the polynomial

716 =) -2)

is fixed by t. Since 7 belongs to Gal(F/E), we can see T as an element of
Gal(F/K) that fixes all elements of £. We have thus produce an element 7 of
Gal(F/K) that fixes all roots of P(x)(Q(x) but that that does not fix any of the

roots of the polynomial
<xpn — y,'>(x"" - 6j> .

It follows from Chebotarev’s density theorem (see for instance the discussion in
[23]) that there is an infinite set of nonzero prime ideals S € Spec(R) such that if

d e

l

1j=1
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P € S then P(x)Q(x) mod P factors into linear terms while the minimal polyno-
mial of
d e
116 e -2

i=l1 j=1

over K has no root modulo ‘3. In particular, there is a natural number N larger than
n such that for all such prime ideals 93, the polynomial P (x)Q(x) mod P splits

into linear factors, while the polynomial P (x? N)Q(qu) mod ‘3 does not have
any roots in R /3.

For such a prime ideal ®13, there thus exist ay, ..., aq, b1, ..., be in the finite
field R /%3 such that

P(x)=({—ayx)--- (1 —agx) mod P

and
Ox)=0—=bix)---(1 —bgx) mod P.

(Jljf(xkj))_ Eﬁ(ﬁ( —aix ")>_1 mod % .

By Lemma 12 .4 the right side is a product of k-automatic power series and hence,
by Proposition 7.4, is k-automatic. Thus the infinite product

(]O_O[ P(xkj>>l mod P

is a k-automatic power series in R/B[[x]]. Similarly, we get that

et " ff-se) oo

which implies that the infinite product

-1

(o) s

is a £ automatic power series in R /B[[x]]. This concludes the proof. ]
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13. Proof of Theorem 1.3

We are now ready to prove our main result.

Proof of Theorem 1.3. Let K be a field of characteristic zero and let £ and / be two
multiplicatively independent positive integers.

We first note that if F'(x) € K[[x]] is a rational function, then for every integer
m > 2, it obviously satisfies a functional equation as in (1.3) with n = 0. Hence,
F (x) is m-Mahler, which gives a first implication.

To prove the converse implication, we fix F(x) € K[[x]] that is both k- and
£-Mahler and we aim at proving that F'(x) is a rational function. Of course, if F'(x)
is a polynomial, there is nothing to prove. From now on, we thus assume that F'(x)
is not a polynomial. By Corollary 8.3, we can assume that there are primes p and
q such that p divides k while p does not divide ¢ and such that ¢ divides £ while
q does not divide k. By Theorem 5.1, we can assume that there is a ring R of the
form Og[1/M] (where K is a number field and M is a positive integer), such that
F(x) € R[[x]] and satisfies the equations

ZP,-(x)F(xki) =0

i=0

with Py, ..., P; € R[x] and

i Qi(x)F(le) )
i=0

with Qg, ..., Q. € R[x]. Without loss of generality, we can assume that all com-
plex roots of Py(x) and Qo(x) belong to R (otherwise we could just enlarge R by
adjoining these numbers). Furthermore, we can assume that Py(x) Qo(x) # 0. By
Corollary 6.2, we can also assume that Py(0) = 1 and that Q¢(0) = 1, for otherwise
we could just replace F (x) by the power series Fp(x) given there. We choose a ring
embedding of R in C and for the moment we regard F(x) as a complex power se-

ries. By Theorem 11.2, we can assume that if « is a root of unity such that ok =«
for some positive integer j, then Po(e) # 0. Similarly, we can assume that if g is a

root of unity such that 8¢’ = g for some positive integer j, then Qo(f8) # 0.
By Proposition 7.10, we can write

~ ~1
Flx) = (]—[ P()(xkj)) G(x),

j=0

for some k-regular power series G(x) € R[[x]]. Furthermore, we can decompose
Po(x) as Py(x) = So(x)S1(x), where Sp(x) and Si(x) are two polynomials, the
zeros of Sp(x) are all roots of unity, none of the zeros of S;(x) is a root of unity,
and Sp(0) = §1(0) = 1. Since by assumption all roots of Py(x) lie in R, we get that
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both So(x) and S;(x) belong to R[x]. By assumption if « is a root of So(x) then
for every positive integer j, one has oX" # «. Then, it follows from Proposition 7.8

that »
(]‘[ SO(x“)) & RIx]]

j=0

S\l
is a k-regular power series. Set H(x) := (]_[_710 So (xk])> G (x). We infer from
part (iii) of Proposition 7.4 that H(x) is a k-regular power series. Moreover, one

has .
Fx) = (]_[ S (x"")) H(x). (13.1)

Jj=0
Similarly, by Proposition 7.10, we can write

00 . -1
Fx) = (1"[ Qo(x"’)) 1(x),
j=0

for some k-regular power series I (x) € R[[x]]. As previously, we can decompose
Qo(x) as Qo(x) = To(x)T1(x), where Tp(x) and T7(x) belong to R[x], the zeros
of To(x) are all roots of unity, none of the zeros of 71(x) are roots of unity, and
To(0) = T1(0) = 1. By assumption if § is a root of Ty(x) then for every positive
integer j, one has ,BW # B. Then it follows from Proposition 7.8 that

[ee) ) -1
(H Ty (x“")) € RIlx]]
j=0

is a £-regular power series. Set J := ]_[310 To(xkj)_ll(x). Again, we see by
Proposition 7.4 that J (x) is £-regular. Moreover, one has

~ !
F(x)=(]_[T1(xk’)> T(x). (132)

j=0

By Theorem 12.1, there is an infinite set of nonzero prime ideals S of R such that,
for every prime ideal 53 in S,

o !
(1_[ S (xkj>> mod B
j=0
is a k-automatic power series in (R /B)[[x]] and

(]o_o[ T (x”))_l mod P

j=0
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is a £-automatic power series in (R/B)[[x]]. Then we infer from Equalities (13.1)
and (13.2) that, for 5 € S, F(x) mod P is k-regular for it is the product of two
k-regular power series. Similarly, F (x) mod ‘P is a £-regular power series.

We recall that since R is of the form Ok [1/M], it is a Dedekind domain; that is,
it is a Noetherian normal domain of Krull dimension one. In particular, all nonzero
prime ideals are maximal. Now since R is a finitely generated Z-algebra and 3 is a
maximal ideal, the quotient ring R /3 is a finite field (see [18, Theorem 4.19, page
132]). By Proposition 7.4, this implies that F(x) mod 3 is actually both k- and
£-automatic. By Cobham’s theorem, we obtain that the sequence of coefficients of
F(x) mod ‘P is eventually periodic and hence F(x) mod ‘B is a rational function.

Note that since S is infinite, the intersection of all ideals in S is the zero ideal
(see [18, Lemma 4.16, page 130]). Moreover, F(x) mod ‘I3 is rational for every
prime ideal ¢ € S. Applying Lemma 5.4, we obtain that F(x) is a rational func-
tion. This ends the proof. 0
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