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The Picard group of the universal moduli stack
of principal bundles on pointed smooth curves I1

ROBERTO FRINGUELLI AND FILIPPO VIVIANI

Abstract. In this paper, which is a sequel of [14], we investigate, for any re-
ductive group G over an algebraically closed field k, the Picard group of the
universal moduli stack Bung ¢ , of G-bundles over n-pointed smooth projec-
tive curves of genus g. In particular, we give new functorial presentations of
the Picard group of Bung g ,,, we study the restriction homomorphism onto the
Picard group of the moduli stack of principal G-bundles over a fixed smooth
curve, we determine the Picard group of the rigidification of Bung g , by the
center of G as well as the image of the obstruction homomorphism of the asso-
ciated gerbe. As a consequence, we compute the divisor class group of the mod-
uli space of semistable G-bundles over n-pointed smooth projective curves of
genus g.
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1. Introduction

The aim of this paper, which is a sequel of the paper [14], is to study the Pi-
card group of the universal moduli stack of (principal) G -bundles Bung, g », which
parametrizes G-bundles, where G is a connected and smooth linear algebraic group
over k = k, over families of (connected, smooth and projective) k-curves of genus
g > 0 endowed with n > 0 pairwise disjoint ordered sections. We refer the reader
to [14] for the motivation behind this investigation as well as for its relationship
with previous results in the literature.

Recall (see Theorem 3.1) that the stack Bung, ¢ , is an algebraic stack, locally
of finite type and smooth over the moduli stack M ,, of n-marked curves of genus
g and its connected components (which are integral and smooth over k) are in func-
torial bijection with the fundamental group 71 (G). We will denote the connected
components and the restriction of the forgetful morphism by

®s, Bun‘g,g,n — Mg, foranyd € mi(G).

We proved in [14, Theorem A] that if red : G — G"™ is the reductive quotient of

d
G, i.e., the quotient of G by its unipotent radical, then for any § € 71(G) ﬂ

=

71(G™Y) the pull-back homomorphism
red; : Pic <Bun‘gGred,g’n) = Pic <Bun5G,g,n>

is an isomorphism. Hence, throughout this paper, we will restrict to the case of a
reductive group G. We fix a maximal torus ¢ : Tg <> G and let # be the Weyl
group of G.

Since the Picard group of My , is well-known up to torsion (and completely
known if char(k) # 2 by [13]) and the pull-back morphism

(cb‘é)* : Pic(Mg ) — Pic (Bun‘g;’g’,)

is injective since CIDSG is fpqc and cohomologically flat in degree zero (see Theo-
rem 3.1 for the definition), we can focus our attention on the relative Picard group

RPic (Bung,g,n) = Pic (Bun‘é,g,n) / (cp(ﬁ;)* (Pic(Mg.n)).

Throughout this paper, we will mainly restrict to the case of positive genus; the
case g = 0 is easier, see Remarks 4.7 and 5.10.

The relative Picard group RPic (BunSG’ ¢.n) Was described in [14, Theorem CJ:
it is generated by the image of a functorial transgression homomorphism

8 Sym2(A*(Tg)) "% = Bil**(A(Tg))"é — RPic (Bun‘sG,g,n),
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where Bil***(A(T))"¢ is the lattice of #g-invariant even symmetric bilinear
forms on the lattice A(7g) of cocharacters of a maximal torus T in G, and by the
image of the pull-back homomorphism

aby : RPic (Bun%ys, . ) < RPic (Bunf; ).

where ab : G — G® is the maximal Abelian quotient and §*° := ;(ab)(§) €
71(G™). Moreover, the image of ab} coincides with the subgroup generated by
the tautological line bundles, see [14, Theorem B].

The first result of this paper is a new description of RPic(Bun‘é’ g’n) in terms
of three functorial exact sequences.
Theorem 1.1 (see Corollary 3.4, Theorem 3.6, Theorem 3.12). Assume that
g > 1. Let G be a reductive group and fix § € w1(G). Then the relative Pi-

card group of Bun’SG ¢.n Sits into the following functorial commutative diagram with
exact rows

* ((ab jé : 8 a)‘SGGByg 8
A (G ) ® Hg ,—— RPic (BunG,g’n) NS (BunG’g,n)

NS
[\ ‘ ireSG
i8 8

A*(G™) ® Hy % RPic (Bunf; , ,)——%= Bil*7 " (A(Tg)"e  (L.D)

[ ‘ iresg
08

RPic(Bun‘gfb,g,n)& RPic (Bun; , ,)—2 Bil**" (A (To))| A (Ta+)) "

where the left vertical morphisms are injective and the right vertical morphisms
are surjective.
Moreover, the image Ofa)SG &) )/g is equal to

Im(0f; @ v5)
NS(Bung , ) ifn>1

_ . () =b@®x)] + (g — Db(x ® x)
o {([X]’ b) € NS(BunSG’g’") " is divisible by 2g — 2, forany x € A(Tg)

ifn =0.
In the above diagram:

o A*(G™) is the lattice of characters of G°;
e The groups Hg , and H, , are defined by

ZeI" ifg>2

d
7 ifg=1 "

Hg, =

H. o {m,0))y eZaZ" : Qg—2)m+ ¢ =0} ifg>2
BT ez s g =0} ifg =1
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e Bil>77%(A(T))” is the lattice of #-invariant symmetric bilinear forms on
A(Tg) which are even on A(Ty(G)) ® A(Ty(G)), where Ty () is the maximal
torus of the derived subgroup Z(G) of G, see Corollary 2.6;

e Bil** (A(T. Q(G)HA(TGSS))WG is the lattice of #-invariant even symmetric
bilinear forms on A(7(g)) which are integral on A(Ty(G)) ® A(Tgs), where
Tgss is the maximal torus of the semisimplification G* of G, see Proposi-
tion 2.4;

o NS(Bunf ) C A*(Tg)/A*(Tgu) ® Bil>? ™ (A(T))”%, where G =
G/ % (G) with Z(G) center of G, is introduced in Definition 3.9 and further
studied in Definition/Lemma 3.10 and Proposition 3.11;

e The homomorphisms jg, a)f;, yg, ig and Qg are defined in, respectively, The-
orem 3.12, Definition/Lemma 3.7, Definition/Lemma 3.5, Theorem 3.6 and
Corollary 3.4.

The second result of this paper is a description of the restriction homomorphism
res‘gG (C) : RPic <Bun8G,g,n> — Pic (Bun‘é (C)) (1.2)

for any (C, p1., ..., pn) € Mg n(k), where Bung (C) is the k-stack of G-bundles
on C, i.e., the stack over k whose S-points Bung (C)(S) is the groupoid of G-
bundles on Cs := C xj S for any k-scheme S, and it is canonically identified
with the fiber of @ng over (C,pi,...,pn) € Mgn(k). The Picard group

Plc(BunG (C)) has been described by Biswas-Hoffman in [3], see Theorem 4.1
and Proposition 4.2.

Theorem 1.2 (see Theorem 4.3, Theorem 4.5, Corollary 4.6). Assume that g > 1
and let (C, p1,....pn) € Mg (k) be a geometric point. Let G be a reductive
group and fix § € m1(G).

(1) The restriction homomorphism (1.2) sits into the following functorial commu-
tative diagram with exact rows:

)w‘sG @ )/g

5
A* (G) ® Hg,n¢> RPic (Bun‘gG’g,n “<—< NS (Bung ¢ ,)

‘rcs‘s (Cc)° lres‘é ) ]res‘sG (L (13)

]G( G( )

Hom(r1 (G), Jc (k)29 Pic (BunG (C)) 6 NS(Bun, (C)):;

(2) The composition res‘é (C) = CBG (C)o res‘é (C) sits into the following functo-
rial commutative diagram with exactrows:

abj . 68 . o
RPic (BunGah . n)(—#> RPic (Bun‘sG’g,n) — % Bil* (A(To6)) |A(Tgs)) "¢
l s (©) chs‘sG (©) rG

NS(Bun®’ (€)™ ONS(Bundy(C)) Z—=Bil*~ (A (Tue)) | A (Taw)) 7.
(1.4)
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In particular, if idy. : Z 5 End(J¢) is an isomorphism (which is true
if k is uncountable and (C, pi. ..., pn) € Mg (k) is very general), then

coker(reng (C)) sits into a canonical short exact sequence
8;\b 8ab 8—
0 — coker (wga @ Yga ) = coker (resg (C) ) — coker(rg) — 0,

where

sib 0 if n>0

coker (w8, ® yin ) = N
(—(Zg—Z)Z) if n=0.

The group Bil**'(A(T9(G))|A(Tg=))”C has been defined after Theorem 1.1 while

e Bil>™ ¢ (A (T@(G)) |A (Tgss))WG is the lattice of #/-invariant symmetric bilin-
ear forms on A(Ty(g)) which are integral on A(7T»(G)) ® A(Tgs) and even on
A(Tg) ® A(Tg), where Tg is the maximal torus of the simply-connected cover
G of the semisimplification G of G, see Definition-Lemma 2.11.

It follows that the cokernel of rg is a 2-elementary Abelian group of rank bounded
by the number of the simple factors of the semisimple part g** of the Lie algebra
g of G (see Definition/Lemma 2.11 and Corollary 2.7). In Section 7, we compute
coker(rg) for all reductive groups G such that g* is a simple Lie algebra.

The third result of this paper is the computation of the relative Picard group of
the rigidification

§ . § § A )
vg : Bung ., — Bung , , JZ(G) = Bung

of the stack Bun‘gG, ¢.n DY the center Z(G) of G, which acts functorially on any

G-bundle. This is also closely related to the divisor class group of the adequate

: 8,85 8,58 5 .. .
moduli space Mg g of the locus Bung’ en S Bung, , , parametrizing semistable

. [ 8,88

G-bundles over n-marked curves of genus g, or equivalently of its image %unG, e
in the 27 (G)-rigidification ‘Bun‘é, ¢.n- See Section 6 for a discussion of the prop-
‘és&f . as well as for the state of the art on the

. . 8,58
existence of the adequate moduli space My, .

8,88

and %unG’g’n,

erties of the loci Bun

Theorem 1.3 (see Theorems 5.5 and 6.6). Assume that g > 1. Let G be a reduc-
tive group and fix § € 71(G).

(1) The relative Picard group of the rigidification ‘Bun‘é,g,n = Bun‘é,g,n Vi
Z(G) sits into the exact sequence

8

5 8
0= A*(G™) ® Hyn ~% RPic (Bunb ) %, Ns (Bun ). (15)
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and the image of E is equal to

Im(yg)
NS(Bun . ) o= (1.6)
_ 5. 28-2bE®X) + (g - hxex)| &
=2 ENSBUNG en) * o iny x € A(TG)
ifn =0;

(2) Assume that there exists an adequate moduli space 7 : %uné’i;’n - M gi,sn
(e.g., char(k) = 0andn = 0 orn > 2g + 2). Suppose that g +n > 3 (i.e.,

Mg n is generically a variety) and that one of the following conditions hold:

(1) G is atorus;
(ii) G is not a torus, char(k) > 0, g > 4;
(iii) G is not a torus, char(k) = 0, g > 2, with the exception of the case g = 2
and G having a non-trivial homomorphism into P GL .

Then there are isomorphisms

8,58 = b 8,58 = . 8
Cl (MG,g’n> — Pic (EBunG’g’n) m—_1> Pic (%unG’g’n) ,

where res is the restriction homomorphism and the first isomorphism is ob-
tained by pull-back along .

The group NS(%un‘gG,g,n) is introduced in Definition 5.3 and further studied in
Proposition 5.4. From the above Theorem 1.3, one easily recovers [24, Theo-
rem B(i) and 1.5] (see also [18]) if G = G, n = 0, g > 2 and char(k) = 0; [11,
Theorem B(i) and Theorem A.2] (see also [19]) if G = GL,,n = 0, g > 2 and
char(k) = 0.

The final result of the paper deals with the triviality of the Z(G)-gerbe vg.
From the Leray spectral sequence associated to the Z°(G)-gerbe USG and the mul-
tiplicative group Gy,, we get the exact sequence

piceBund, . ) ) picunt, . )% A2 (G
ic(Bung . ,) <> Pic(Bung , ) —> A*(Z(G))

obsg; 2 § (vg)* 2 §
—> H*(Bung , ,.Gn) —— H"(Bung , ,,, Gm).

1.7)

For a geometric interpretation of the weight homomorphism wt‘sG and of the ob-
struction homomorphism obs%, see Section 5. In particular, Im(obs‘é) ~ coker(wt‘sc)
is an obstruction to the triviality of the Z°(G)-gerbe vg.
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Theorem 1.4 (see Theorem 5.7). Assume that g > 1. Let G be a reductive group
and fix § € 71(G).

(1) Ifn > 0O then
coker <wt8G) = coker (ev‘g@(G)) ;

(2) Ifn = 0 then the cokernel of Wt‘gG sits in an exact sequence

38

8y 6 ab K‘f’ )
0 — coker(yg) —> Hom [ A(G™), — coker(wtg)

(g —2)Z

A%, s
—> coker(evy,g)) — 0.

For a definition of the homomorphism eV(_S@(G)’ see Subsection 2.2. In Section 7,
we compute coker(ev‘;(G)) for all reductive groups G such that g* is a simple Lie

algebra, together with its quotient coker(&‘;(m) (see Definition/Lemma 2.11(ii),
which is an obstruction to the triviality of the Z'(G)-gerbe

v&(C) : Bun&(C) — Bund (C) := Buné,(C) JZ(G),

for any (C, p1...., pn) € Mg n(k), as shown by Biswas-Hoffmann [5], see The-
orem 5.1.

From Theorem 1.4, one easily recovers [24, Theorem 6.4] if G = Gy, n = 0,
g > 3 and char(k) = 0; [11, Corollary 3.3.2(1))] if G = GL,,n = 0, g > 3 and
char(k) = 0; [10, Theorem B(i)] if G = GL,, g > 3 and char(k) = 0.

The computation of the image of the obstruction homomoprhism obs‘gG carried
out in Theorem 1.4 will be a crucial ingredient in our upcoming work [12], where
we will compute the (cohomological) Brauer groups of BunSG, g ‘BunsG’ g.n and

Méz;n, extending the work of Pirisi and the first author [10] from G = GL,
to an arbitrary reductive group G. This is also closely related to the works of
Biswas-Hogadi [4] and Biswas-Holla [6], where the (cohomological) Brauer group
of Bung (C) (and of its good moduli space) has been computed for a fixed curve C

and a complex semisimple group G.

Notation 1.5. We denote by k = k an algebraically closed field of arbitrary char-
acteristic. All the schemes and algebraic stacks that we will appear in this paper
will be locally of finite type over k (hence locally Noetherian).

Notation 1.6. A curve is a connected, smooth and projective scheme of dimension
one over k. The genus of a curve C is g(C) := dim H°(C, wc).

A family of curves w : C — S is a proper and flat morphism of stacks whose
geometric fibers are curves. If all the geometric fibers of 7 have the same genus
g, then we say that w : C — S is a family of curves of genus g (or a family of
curves with relative genus g) and we set g(C/S) := g. We will denote by w, the
relative canonical line bundle of . Note that any family of curves = : C — S with
S connected is a family of genus g curves for some g > 0.
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Notation 1.7. Given two integers g,n > 0, we will denote by M, , the stack
(over k) whose fiber over a scheme S is the groupoid of families (7 : C — S,0 =

{o1,...,04}) of n-pointed curves of genus g over S, i.e., w : C — S is a family of
curves of genus g and {0y, ...,0,} are (ordered) sections of 7 that are fiberwise
disjoint.

It is well known that the stack M, , is an irreducible algebraic stack, smooth
and separated over k, and of dimension 3g —3+n. Moreover, Mg , is a DM(=De-
ligne-Mumford) stack if and only if 3g —3 4+ n > 0.

We will denote by (g, = 7 : Cqn — Mg . 0) the universal n-pointed
curve over M ,.

Notation 1.8. A linear algebraic group over k is a group scheme of finite type over
k that can be realized as a closed algebraic subgroup of GL,,, or equivalently it is
an affine group scheme of finite type over k. We will be dealing almost always with
linear algebraic groups that are smooth (which is always the case if char(k) = 0)
and connected.

Given a linear algebraic group G, a principal G-bundle over an algebraic stack
S is a G-torsor over S, where G acts on the right.

Notation 1.9. In the paper, we introduce several groups and morphisms. To help
the reader, we make a table of the main objects together with a reference to their
definitions.

ACKNOWLEDGEMENTS. We are grateful to Giulio Codogni, Martina Lanini and
Johan Martens for useful conversations. We would like to thank the referee for
carefully reading the paper and for giving us constructive comments which helped
to improve the readability of the paper.
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Symbol Definition

2(G), #(G), G, G®, G, GY (2.1), (2.3)

Weil group #¢, Fundamental group 771 (G), Center Z(G) (2.5), (2.15), (2.16)
Maximal tori Tg, T@(G), TGss, TG R Tgad 2.6)

Cocharacter lattices A (—) and character lattices A*(—) (2.8), (2.11)
AT, AT6)5. A (T6e)R. A*(T6) 2.9), 2.12)

Bil* (—) and Bil**"(—) (2.18)

Bil*® (A(TG))WF [ Bil (A(Tg))7s Section 2.2

Bil™ ) (A (G*)) 2 Bﬂé D (AT)"C

Proposition 2.4

Bil® (EV)(A(TG)) 76 22 Bil- ) (A(To)) | A(Tgs))”°

Proposition 2.4

Bil’ (A(G™)) —> Bil*?~(A(Tg)) "< Corollary 2.6
1311A 7= (A(TG) "0 =2 Bil* (A(To)|A(Tas))”° Corollary 2.6

L BIlN 7TV (A(T6) "6 > A*(Tg)/A* (Tgw)

Definition/Lemma 2.8

Bil"“fev (A(To)|A(T6<)) ™

Definition/Lemma 2.11

Bil (A(To)|A(T6) " <3 Bl (A(To) | A (Te+)) "

Definition/Lemma 2.11(i)

& ) Bl (A(To6)|[A(T6~)) " > A* (To6)/A* (Tgw)

Definition/Lemma 2.11(ii)

&

& Sym> (A" (T6)) "% = Bl (A(T5))”% — RPic(Bund; )

Theorem 3.3

Gg : RPic(Bun%’g_n) — Bil* (A(TQ(G))|A(TGw))W(’ Corollary 3.4
yé : RPic(Bun‘sG o) = Bil* 7™ (A(Tg))”< Definition/Lemma 3.5
Hgin and ié :A*(G®) ® Hg., — RPic(Bung'g‘n) Theorem 3.6

s RPic(BunG 2) > A (TG)/A*(Tgw)

Definition/Lemma 3.7

NS(Bunf, ) € A (To) A (Tgw) ® B 7 (A(Tg) 7@

Definition 3.9

¢*N

Definition/Lemma 3.10

rests : NS(Bun, , ) = Bl 7" (A(T()) 7

Proposition 3.11

Hgpand j& : A*(G™) ® Hg n — RPic(Bun; , )

Theorem 3.12

JEW©) c&(O)
Hom(m1(G), Jc (k)) < Pic(Bun‘E;(C)) —» NS(Bun‘E;(C))

Theorem 4.1

P : NS(Bun?, (C)) — Bi ™ (A (T )) 76

Proposition 4.2

res?; (C), resS (C)?, resS, (CO™, ress (C)

Theorem 4.3, (4.7)

Pic(Bun® )ﬁA*(zX(G))ﬂ% H2(%un5 Gm)
G.g.n G.g.n>m

(5.2)
)
Pic(Bun?, (C)) —— A*(.J’(G)) > HZ(SBunG (C),Gn) G4
wtg(C) A*(TG)
WtG ): Plc(Bun(] <)) ————) NS(BunG ) —— AT o) Theorem 5.1

NS(Bung ) c Blls 7TV (A(TG))"s

Definition 5.3

dNS

NS(Bund, , ) & NS(BunG o) A*(TG)/A*(TGm)

Proposition 5.4

A*(G™) ® Hg py Hy RPic(%unG on) 2, NS(%unG.gA,,)

Theorem 5.5

3‘2; : Coker(g) —> Hom (A(G "), m)

Theorem 5.7(2)

2. Preliminaries

2.1. Reductive groups

In this subsection we will collect some results on the structure of reductive groups,
that will be used in what follows.

A reductive group (over k = k) is a smooth and connected linear algebraic
group (over k) which does not contain non-trivial connected normal unipotent alge-
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braic subgroups. To any reductive group G, we can associate a cross-like diagram
of reductive groups

2(G) @2.1)

where

e 7(G) := |G, G] is the derived subgroup of G;

o G := G/2(G) is called the abelianization of G;

e Z(G) is the radical subgroup of G, which is equal (since G is reductive) to the
connected component Z(G)? of the center Z(G);

e G% := G/Z(G) is called the semisimplification of G.

In the above diagram, the horizontal and vertical lines are short exact sequences
of reductive groups, the morphisms Z(G) — G* and Z(G) — G are central
isogenies of, respectively, semisimple groups and tori with the same kernel which
is equal to the finite multiplicative (algebraic) group

1= 2(G)NRZ(G) C G. 2.2)

Since the two semisimple groups Z(G) and G* are isogenous, they share the same
simply-connected cover, that we will denote by G, and the same adjoint quotient,
that we will denote by G*. Hence we have the following tower of central isogenies
of semisimple groups:

G - 2(G) —» G* — G“. (2.3)
The Lie algebra g of G splits as
g=0"®g", 2.4)

where g is the Abelian Lie algebra of the tori Z(G) and G*®, whose dimension
is called the Abelian rank of G, and g* is the semisimple Lie algebra of each of
the semisimple groups in (2.3), whose rank is called the semisimple rank of G.
The semisimple Lie algebra g* decomposes as a direct sum of simple Lie algebras
of classical type (i.e., type A, By, Cn, Dy, E¢, E7, Eg, Fqg or G). If G is a
semisimple group such that its Lie algebra g = g* is simple, then G is said to be
almost-simple.
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Remark 2.1. It follows from the universal property of the maximal Abelian quo-
tient G and from the universal property of the universal cover G that the mor-
phisms

G - 9(G) S 65 G

are covariantly functorial with respect to homomorphisms of reductive groups.
On the other hand, the morphisms

R(G) S G5 G GY

are not functorial with respect to arbitrary homomorphisms of reductive groups,
e.g., the inclusion of a maximal torus 7 < G does not factor, in general, through
Z(G) or, equivalently, does not map to zero in G** or G,

Recall now that all maximal tori of G are conjugate and let us fix one such
maximal torus, that we call Tg. We will denote by Bg a Borel subgroup of G that
contains Tg and by A" (Tg) the normalizer of T in G, so that

W =N (Te)/Tc (2.5)
is the Weyl group of G.
The maximal torus Tg induces compatible maximal tori of every semisimple

group appearing in (2.3), that we will call, respectively, TG, Ty (G), Tes and Tgad.
These tori fit into the following commutative diagram:
Tc

N

Toyc)
lA \ (2.6)
%(G)( TG TGss
G TG

where the horizontal and vertical lines are short exact sequences of tori, and the
diagonal arrows are (central) isogenies of tori. Using the canonical realization
(2.5) of the Weyl group (and the similar ones for the semisimple groups in (2.3)),
diagram (2.6) induces canonical isomorphisms of Weyl groups

WG = W@(G) = WG = 7/(;55 = WGad. 2.7
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By taking the cocharacter lattices A(—) := Hom(Gy,, —) of the tori in the diagram
(2.6), we get the #-equivariant commutative diagram of lattices

A(TG)\\
ATy
Ay (2.8)

SS

Aqp
A(G™) A(Tgu),

where the horizontal and vertical lines are short exact sequences and the diagonal
arrows are finite index inclusions. The above diagram induces a canonical splitting

AT6)g = MT6)E & AMT6)3, (2.9)
where A(TG)%) and A(Tg)g are the unique subgroups of A(7g)q such that

ANZ(G)=NTe) N A(T6)y  and A(Ty))=ATe) N A(T6)F,
A(G™) = p1(A(Tg)) and A(Tgs)=p2(A(T5)).

where p; and p, are the two projections onto the two factors of (2.9).

In a similar way, by taking the character lattices A*(—) := Hom(—, Gy,)
(which we will interpret as spaces of integral functionals on A(—)), we get the
W -equivariant commutative diagram of lattices

(2.10)

A*(Ts)

T~

A*(TyG))

TA*@\ 2.11)

A* (%(G))«—A (Te) <—>A (Ts)
A* (G“b) A*(Tgw)

where the horizontal and vertical lines are short exact sequences and the diagonal
arrows are finite index inclusions. The above diagram induces a canonical splitting

AN (Te)g = A (Te)y) & A*(T6)3. (2.12)



THE PICARD GROUP OF THE UNIVERSAL MODULI STACK. .. 379

where /\*(TG)?‘Q[J and A*(Tg)g are the unique subgroups of A*(7g)q such that

A*(G™)=A*(Tg) N A*(Tg)y and A*(Tgs)=A*(Tg) N A*(Tg)

@ (2.13)
A (Z(G)) = p1(A*(T)) and A*(Toy(c)) = p2(A*(Tg)).

where p; and p, are the two projections onto the two factors of (2.12).

Remark 2.2. There are natural identifications

A(TG) = Acoroots(gss) and A(TGad) ~ ACOweights(gss),
A(Tg) 2= Avegns(8™)  and A" (Tgw) 2 Avoors (™),

where Ajoos(g%°) (respectively Acoroots (8%°)) is the lattice of roots (respectively
coroots) of the semisimple Lie algebra g%, and Ayeigns(g*) (respectively
A coweights (8%°)) is the lattice of weights (respectively coweights) of g*. The two
diagrams (2.8) and (2.11), together with the root system of the semisimple Lie
algebra g%, are equivalent to the root data of the reductive group G (see [23, Sec-
tion 19]), and hence they determine completely the reductive group G.

Remark 2.3. It follows from Remark 2.1 that the morphism of lattices

A Ay .
A(Tg) = MTo)) SA(Tg) A (G™)

A%, A% (2.14)
(respectively A*(G™) S A (Tg) — A (To)) — N(Ta ))

are covariantly (respectively contravariantly) functorial with respect to homomor-
phisms of reductive groups ¢ : G — H provided that we choose (and this is
always possible) the maximal tori 7 and Ty of, respectively, G and H in such a
way that ¢(Tg) € Tq.

On the other hand, the morphisms of lattices appearing in (2.8) and in (2.11)
and different from the ones in (2.14) are not functorial.

The fundamental group ;(G) of G is canonically isomorphic to
A(Tg)/A(Tg) and it fits into the following (covariantly functorial) short exact
sequence of finitely generated Abelian groups:

A(TyG)) < 711(G) = A(Te) N

m(Z) ="K ATo)

71(G™) = A(G™), (2.15)

where the first term is the torsion subgroup of 771 (G) and the last term is the torsion-
free quotient of 71 (G).

Let us now describe the center 2°(G) of G, which is a multiplicative (al-
gebraic) group. By taking the centers of the algebraic groups appearing in the
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cross-like diagram (2.1), we obtain the (non functorial) cross-like diagram of mul-
tiplicative groups

Z(2(6))

T

Z(GY) = no(Z(G))  (2.16)

R(G) = Z(G)°—> Z(G)

~_|

Gab

where the horizontal and vertical lines are short exact sequences, the upper-right
diagonal morphism is an isogeny of finite multiplicative groups and the lower-
left diagonal arrow is an isogeny of tori. By passing to the character groups
A*(—) = Hom(—, Gy,) of the multiplicative groups appearing in (2.16), we get
the (non functorial) diagram of finitely generated Abelian groups

AN (Z(D(6) = oSy

A*(TGad))
A*((G)) A(Z(G)) = 2 AN(Z(G) = Jr)
\ A;'LJ
A*(Gab), (2.17)

where the horizontal line is the canonical decomposition of A*(Z(G)) into its
torsion subgroup and torsion-free quotient, the vertical line is exact, the lower-left
diagonal arrow is a finite inclusion of lattices, the upper-right diagonal arrow is an
inclusion of finite Abelian groups.

2.2. Integral bilinear (even) symmetric forms on A (T g)

In this subsection we will prove some results on (#g-invariant) integral bilinear
(even) symmetric forms on the lattice A(Tg).

Given a lattice A of rank 7 (i.e., A = Z"), we denote the lattice of integral
bilinear (respectively even) symmetric forms on A by

Bil’(A) :=={b: A® A - Z suchthat b is symmetric},

2.18
Bil®®¥(A) := {b € Bil’(A) : b(x,x) iseven forany x € A}. 2.18)

Given b € Bil*(A), we will denote by b : Ag ® Ag — Q the rational extension
of b to the Q-vector space Ag 1= A ®z Q.
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The above lattices (2.18), which are contravariantly functorial with respect
to morphisms of lattices, can be described in terms of the dual lattice A* :=
Hom(A, Z) in the following way. Consider the following lattices (of rank (rerl))

A* @ A*

(A*® A" CA*®A* and Sym?*(A*):=
(x®pn—pnex)

,  (2.19)

where (A* ® A*)" is the subspace of symmetric tensors of A* ® A*, i.e., tensors
that are invariant under the involution y ® u > 1 ® y. We will denote the elements
of Sym*(A*) by x - p := [x ® pl.

The lattices in (2.18) are isomorphic to those in (2.19) via the following iso-
morphisms:

(A* ® A*)* =5 Bil'(A)
x®pu= (x®u)(x®y):= x(x)u(y), and
Sym2 A* —> Bil**'(A)
X () (x ®y) = x()u(y) + n(x)x(y).

(2.20)

In terms of the isomorphisms (2.20), the inclusion Bil*®(A) C Bil*(A) corre-
sponds to the injective morphism

¥ 1 Sym*(A") = (A" ® A*)°,

(2.21)
XM= YU+ U ).
If we fix a basis {y;}/_, of A*, then
6 ® xidi Ui ® xj + xj ® xiti<j} is abasis of (A* @ A¥)*, 2.22)
{Xi xj}i<j is abasis of Sym?(A*). '
Using the above basis, it follows that
coker(y) = (Z/27Z)". (2.23)

We now come back to the setting of Subsection 2.1. Let G be a reductive group
with maximal torus Tg C G and consider the natural action of the Weyl group #¢
on A(Tg) and on A*(Tg). We now want to describe the lattices

Bil'(A(T5))"¢ = ((A*(T) ® A*(Tg))*)”"¢  and
Bil™® (A(T))”¢ =~ Sym2(A*(Tg))"

of #-invariant integral bilinear (respectively even) symmetric forms on A(Tg).
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Proposition 2.4. With the above notation, we have an exact sequence of lattices

B* res
Bl (A(G™)) =3 Bil® ) (A (T6)) "¢ = Bil®® (A(To)) | A(Tew))"C

b(_ & _) = b(Aab(_) ® Aab(_))
b~ b\A(T@(G))®A(T_@(G))
(2.24)
where Ny, : A(Tg) — A(G™) is the homomorphism defined in (2.8) and

Bil*® (A (To(s)) |A(Tes))©
= {b e Bil*®) (A (TQ(G)))WG : bl%(T@(G))@A(TG») is integral } .

Moreover, the exact sequence (2.24) is contravariant with respect to homomor-
phisms of reductive groups ¢ : H — G such that (Ty) C Tg.

The above notation Bil**®*) means that the result applies by putting Bil® every-
where or by putting Bil*** everywhere.
In the proof of the above proposition, we will use the following

Lemma 2.5. Let G be a reductive group with maximal torus Tg C G and consider
the natural action of the Weyl group #g on A(Tg) and on A*(Tg). Then we have
isomorphisms

A AZ(G) S ANT)"e  and A% : A*(G™) S A*(Tg)"e.

Proof. The second isomorphism is proved in [14, Lemma 2.1.1]. The proof of the
first isomorphism is similar. O

Proof of Proposition 2.4.Clearly, the morphism B} is injective and res o B}, =0.
In order to complete the proof, we will need the following

Claim: If b € Bil*(A(Tg))”¢ then bIA#(G)®A(TyGy) = 0. In particular,

@ =
b ATOROATEY =

Indeed, for any x € A(Z(G)), the restriction b(x ® —) : A(Tg) — Zis #g-
invariant since b is #/-invariant and x is fixed by #¢ (because the action of #¢
is trivial on A(Z(G))). Hence, Lemma 2.5 implies that b(x ® —) is the pull-back
of an integral functional on A (G®), or in other words that b(x ® =) |A(To @) =0
Since this is true for any x € A(Z(G)), we get that b|A(#(G)® A (T, = 0- The
last assertion follows from the fact that A(Z(G))q = A(Tg)g’ and A(TyG))o =
A(Tg)g-

We now go back to proof of the proposition. Let us first prove that the se-
quence (2.24) is exact in the middle, i.e., ker(resy) € Im(B;). Consider a form
b € Bil*®(A(T))”C such that res,(h) = 0. This assumption, together with
the above claim, implies that bjA (1,5, @A(Tg) = 0, which implies that b is the
pull-back of an integral bilinear (respectively even) symmetric form on A(G®).
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Let us now prove that the morphism resy is well-defined, i.e., that resg(b)
is integral on A(TyG)) ® A(Tgs) for every b € Bil*©®(A(Tg))”%. For any
element y € A(Ty(g)), consider the integral functional b(y ® —) : A(Tg) — Z.
By the claim, we have that b(y ® —) (AT, = 0, which implies that b(y ® —)
is the restriction of an integral functional on A(Tgss). Since this is true for any
¥y € A(Ty(c)), we deduce that res4 (D) is integral on A(TyG)) ® A(Tgs).

In order to show that the sequence (2.24) is exact, it remains to prove that resy
is surjective. Let b € Bil>©" (A(T@(G))|A(TGSS))WG. Since b€ is integral on
A(TG)) ® A(Tgs), by composing b? with the surjection A(Tg) — A(Tgs) we
get a #-invariant (respectively even) symmetric integral form

b : ATy ® ATe) + AMTe) ® AToc)) — Z. (2.25)
Now consider the #-equivariant short exact sequence of lattices

Bil* ) (A(G™)) < Bil*®(A(T5)) — Hom* ) (A(To)) ® A(TG) + A(TG) ® A(Toc)), Z)
b = bIA(T96)@AT+ATHOA T
(2.26)
where Hom*©) (A (Ty()) ® A(Tg) + A(T6) ® A(Ty@)),Z) is the lattice of
even symmetric integral forms on A(TyG)) ® A(Tg) + A(Tg) @ A(Tyi)) S
A(Tg) ® A(Tg). Since the action of #4 is trivial, we have that

H' (#.,Bit"® (A (G®) ) = Hom (¥, Bil™® (A (G*) ), @27)

and the last group is zero since # is a finite group and Bil**®¥) (A (G®)) is torsion-
free. By taking the long exact sequence in #g-cohomology associated to the exact
sequence (2.26) and using the vanishing H ' (#g, Bil®©(A(G™)) = 0, we get a
surjection

Bil* ) (A (T)) 7% —Hom™ " (A (To(6)) ® A(T6) + AT6) @ A(Toc)),2)©

Hence, the form b of (2.25) is the restriction of a form b € Bil>®V(A(Tg))”5.
By construction we have that resy(b) = b, which concludes the proof of the sur-
jectivity of resg.

Finally, the (contravariant) functoriality of the exact sequence (2.24) follows
from the fact that Bil®©)(A(Tg))”¢ is functorial by [3, Lemma 4.3.1] (and the
discussion that follows) while Bil**©" (A (G*?)) and the morphism B are functo-
rial by Remark 2.3. 0

By combining the two exact sequences of Proposition 2.4, we get a new exact
sequence:

Corollary 2.6. With the above notation, we have an exact sequence oflattices

*

Bil’ (A (G™)) L2 Bt 7o (A (1)) "0 Bil*'(A(To(6)) | A(T6+)) ", (2.28)
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where
Bil®? (A (T))”¢ := {b € Bil*(A(T))”¢ :r1esy(b) iseven }.

Moreover, the exact sequence (2.28) is contravariant with respect to homomor-
phisms of reductive groups ¢ : H — G such that ¢(Ty) C Tg.

Proof. Consider the commutative diagram of Abelian groups

Bil* (A(G™)— res;,! Bil*™ (A(To)) |A(Tas)) ) ——= Bil** (A(To)) | A(Tes)) " °

B:‘ . resg .
Bil* (A(G*)) ——— = Bil*(A(T()) "6 ———— = Bil* (A(To )| A(T6s)) "¢

where the rows are exact and the columns are the obvious inclusions. The bottom
row is the non-even version the exact sequence (2.24). By definition, we have that

resy, (Bil*® (A(To)) | A (TGSS))“’”G ) = Bil*7™%(A(Tg))”°,
and hence the top row is the required sequence (2.28). 0

Corollary 2.7. The ranks of Bil**®V(A(T¢))”% and of Bil>?~"(A(Tg))"S are
equal to

dim G® + 1
2

) + | {simple factors of g>*} |.

Proof. Since Bil*®(A(Tg))”¢ C Bil>?~(A(Tg))”¢ C Bil*(A(Tg))”< are fi-
nite index inclusions, it is enough to prove the result for Bil***V(A(7g))”¢ . Propo-
sition 2.4 implies that

rtk Bil™*(A(Tg))”¢ =1k Bil™® (A (G™)) + tk Bil**" (A (T (c)) |A (T, ss))%‘

B (dim G® +1

2 ) + rkBils’eV (A (T_@(G)) |A (TG%))WG .

We conclude observing that we have finite index inclusions
. ev V4 . ev W : ev
Bil"® (A (To)) |A (Te=))" ¢ S Bil* (A (Tow))” ¢ S Bil*"(A(Tg)) "

and that the last lattice has rank equal to the number of simple factors of g* (see,
e.g., [14, Lemma 2.2.1]). O]

We now define evaluation homomorphisms from the exact sequence (2.28)
onto the vertical exact sequence in (2.17).
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Definition/Lemma 2.8. Fix the same notation as above. Let § € n1(G) and set
8% = mi(ss)(8) € m1(G®) and §*° := m(ab)(§) € m1(G™). There is a (non
functorial) commutative diagram with exact rows

B*
Bil* (A(G™)) =2 Bil»7 (A (T6)) "0 =2 Bil** (A(To6)) | A (T6w))”©
ev‘sGa:h ev‘é L ev‘éz(G )
* ((1ab\(C A*(Tg) A (T9:))
A (Gd ) A;kb A*(Tcad) A*@ A*(TGad)

where the vertical arrows, called evaluation homomorphisms, are defined as fol-
lows:

(i) evi, (b) = b(8® ® —);
(ii) ev‘é(b) =b(6®—) := [b(d ® )], for some lifting d € A(Tg) of § € m1(G);
(iii) ev‘g@(G)(b) =b($* ®—) = [bUd* ® =) ATy for some lifting d* €
A(Tgss) of 6% € m1(G*).

Note that the notation in the above Definition/Lemma is coherent since if G is a

s _ 8ab . . . . S _ )
torus then evy; = evi,,, and if G is semisimple then evy; = ev 2G)-

In order to prove that the last two evaluation homomorphisms are well-defined,
we will need the following:

Lemma 2.9. Ifb € Bil>*(A(Tg))”¢, then its rational extension b¥ is integral on
A(Tg) ® A(Tgw) + A(Tgw) ® A(Tg) € AMTg)o ® AT6)o-

Proof. See [3, Lemma 4.3.4]. O

Proof of Definition/Lemma 2.8. The fact that the evaluation homomorphism CVBG

(respectively ev‘;(G)) is well-defined follows from the fact that any two lifts of §
(respectively of §%) differ by an element e € A(7Tg), together with Lemma 2.9
which implies that 5@(e ® —) is integral on A (Tgad).

The commutativity of the left square follows from the fact that if b €
Bil*(A(G®)) then

evl, (Ba(b)) = [Bi(b)(d ® )] = [6(5° ® Aw(-))]
=25 (0" @ ) = A%, (V5 ®).

where we have used that any lift d € A(Tg) of § satisfies Ay (d) = §%.
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Next, observe that, by (2.10), any lift d € A(Tg) of § € m1(G) decomposes
as d = §® 4 d*°, where d* := p,(d) € A(Tg~) has the property that its class
in 1 (G*) coincides with §%. Therefore, the commutativity of the right square
follows since for any b € Bil>*? ™% (A(Tg))”S we have that

AL (vE ) = [6(d ® 2)acry o]
= [%d” @ D) iasan] = V() (resa (1)),

where we have used that 5(§** ® —), ATy = 0 by the claim in the proof of
Proposition 2.4. O

Remark 2.10. The last evaluation homomorphism ev‘_;(

the evaluation homomorphisms of the semisimple groups Z(G) and G* in the
following way. First all, note that we have injective restriction homomorphisms

G) can be compared with

Bil* @ (A (TGx)) "¢ < Bl (A(Tow))|A(Tas)) "¢ > Bil™ @ (A(Tosy))
Then we have that:
(1) For any § € 71(G), the following diagram is commutative:

Bﬂs,eV(A(TGSS))WGQ BilSe (A (T@(G)) ’A (TGSS))WG

ss F3
lev%ss leV@(m

A*(TGSS)( A*(T?Z(G))
A*(TGad) A*(TGad)

where §* is the image of § in 711 (G*);

(2) For any § € m1(G) which is the image of a (necessarily unique) element
87 € m1(2(G)) (which happens precisely when § is a torsion element of
71(G), see (2.15)), then we have the following commutative diagram

Bil** (A(To6)) | A(Tew)) "¢ — Bil™ (A (Tgs)) "©

] 2
LCV%G) JCV%(G)
A (TyG)) A (To))
A*(TGad) A* (Tgad) ’

The homomorphism ev‘g@(G) of Definition/Lemma 2.8 can be extended to a
slightly larger lattice, as we now show.
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Definition/Lemma 2.11. Fix the same notation as above. Consider the lattice
Bil ™ (A(To()|A(T6x)) "
= {b € Bil* (A(T_@(G))|A(TGSS))WG CDA(TG)®AT) IS even} )

(1) The natural inclusion

rg . Bil** (A(T@(G))|A(T(;ss))7yc < Bil>~% (A(T@(G)) |A(TGss))WG

has an elementary 2-Abelian cokernel;
(ii) Forany 8 € m1(G), the evaluation homomorphism

A*(TyG))

evs@(G) P Bl (A(T@(G))|A(TGSB))WG - A*(Tga)

of Definition/Lemma 2.8 can be extended to a homomorphism

A (Ty(6))
A*(TGad) ’

b — b(SSS X —) = [bQ(dSS ® _)|A(T@(G))] s

&%) 1 Bil" T (A(T@(G))|A(TGS>))WG —

where d** € N(Tgs) is any lifting of 8 € m1(G*).

Proof. Part (i) follows from the inclusions

Bil*® (A(T@(G)) |A(TGss))WG C’E) Bil>~¢ (A(T@(G)HA(TG,«))WG
€ Bil' (A(T(@)| A (T5+)) "

together with (2.23).

Part (ii): the fact that é‘\?‘z; is well-defined follows from the fact that any two
lifts of §* differ by an element e € A(Tg ), together with Lemma 2.9 which implies
that b%(e®—) is integral on A (7). The fact that é‘\’/‘g2 ©)°TG = ev‘g@(G) is obvious
from the definitions. O]

3. The universal moduli stack Bung ¢ » and its Picard group

Let G be a reductive group over k = k. We denote by Bung ¢ , the universal
moduli stack of G-bundles over n-marked curves of genus g. More precisely, for
any scheme S, Bung 4 ,(S) is the groupoid of triples (C — S, 0, E), where (7 :
C — S,o0 ={01,...,0,})is afamily of n-pointed curves of genus g over S and E
is a G-bundle on C. We will denote by (7 : Cg,¢,n» — Bung g », 0, £) the universal
family of G-bundles.
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By definition, we have a forgetful surjective morphism

OG(= Pg,gn) : Bung g n —> Mg

C—S,0,E)— (C— S,0) G-
onto the moduli stack M , of n-marked curves of genus g. Note that the universal
n-marked curve (Cg,g,n — Bung g ,,0) over Bung g , is the pull-back of the
universal n-marked curve (Cq,, — My ,,0) over My .

Any morphism of reductive groups ¢ : G — H determines a morphism of
stacks over Mg ,

Gu(= Pugn) Bung g n — Bung ¢ »
(> 5.0.E) > (C> S.0.(Ex H)/G) (3.2)
where the (right) action of G on E x H is (p,h).g := (p.g.$(g)"'h).

The fiber of ®¢ 4, over a n-pointed curve (C, py,..., pp) € Mg (k) is
equal to the k-stack Bung(C) of G-bundles on C, i.e., the stack over k whose
S-points Bung (C)(S) is the groupoid of G-bundles on Cg := C x; S for any
k-scheme S. For any morphism of reductive groups ¢ : G — H, the restriction
of the morphism ¢ ¢  to the fiber over (C, p1,..., py) € Mg (k) givesrise to a
morphism

¢+(C) : Bung(C) — Bungy (C).

We collect in the following theorem the geometric properties of Bung ¢, and of
the forgetful morphism ®g g .

Theorem 3.1. Let G be a reductive group.

(1) The morphism ®g ¢ n is locally of finite presentation, smooth, with affine and
finitely presented relative diagonal;
(2) There is a functorial decomposition into connected components

o3
G n
PG en: || Bund,, — Mgn. (3.3)
sem (G)

Similarly, the fiber Bung (C) of ®g,g,n over (C, p1,..., pp) € Mg n(k) ad-
mits a functorial decomposition into connected components

Bung(C) = ]_[ Bun‘é(C);
sem1(G)

(3) For each § € m1(G), the stack BunG is smooth and integral of relative
dimension over My ,, equal to (g — 1) d1m G,

(@) q>5 : BunG,g,n — My, is of finite type (or equivalently quasi-compact) for
any (or equivalently for some) § € w1(G) if and only if G is a torus;
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(5) For any § € m1(G) the morphism CI>8 BunG — My, is fpgc (ie.,
faithfully flat and locally quasi- compact) and Cohomologzcally flat in degree

zero (i.e., the natural morphism (q;G)ﬂ Ong (<I> )« ((’)Bun ) is a
universal isomorphism).
Proof. See [14, Section 3]. L]

3.1. The Picard group of Bun‘z;’g,,,

The aim of this subsection is to recall the results on the Picard group of Bun‘z;, -
obtained in [14]. We will focus on the case g > 1; the case g = 0 is easier to deal
with and is completely described in [14, Theorem D].

Note that the Picard group of M, , is well-known up to torsion (and com-
pletely known if char(k) # 2 by [13]) and the pull-back morphism

(dD‘z;)* : Pic(Mg ) — Pic (Bun‘é’g,n>

is injective since QDSG is fpgqc and cohomologically flat in degree zero by Theo-
rem 3.1(5). Therefore, we can focus our attention onto the relative Picard group

RPic (Bun‘é,g’n) := Pic (Bun‘sG’g,n) / (@‘é)* (Pic(Mg.n)) . (3.4)

A first source of line bundles on Bung ¢ , comes from the determinant of coho-
mology d,(—) and the Deligne pairing (—, —), of line bundles on the universal
curve 7 : Cg,g,n — Bung g, (see [1, Chapter XIII, Sections 4, 5] for the defini-
tion and main properties of d, (—) and (—, —)). To be more precise, any character
x:G —> Gy € A*(G) := Hom(G, G,,) gives rise to a morphism of stacks

X# 1 Bung g, — Bung, ¢.n

and, by pulling back via y the universal G,-bundle (i.e., line bundle) on the uni-
versal curve over Bung,, ¢, we get a line bundle £, on Cg g ». Then, using these
line bundles £ x and the sections 01, . . ., 0, of 7, we define the following two types
of line bundles, that we call tautological line bundles, on Bung ¢ , (and hence, by

.. s .
restriction, also on BunG,g,n)‘

o L(x.0):= dn(ﬁx(gl o1+ ...+ ’Un));
e (8. (X)) =(LyCr 01+ ...+ Cn-0n). Lyl 01+, 4, 0n))xs

for y, ¥’ € Hom(G,Gy) and ¢ = (¢1,....8n). ¢ = (£y,....C,) € Z". From the
standard relations between the Deligne pairing and the determinant of cohomology,
we deduce that

(—, —) is bilinear on Hom(G, G,) x Z", 3.5)
(O N=LQ+ 1+ L)@ L. ) £(0.0).

See [14, Section 3.5] for more details.
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In the case of a torus G = T, the relative Picard group RPic(Bun‘ST, gm) 18
generated by tautological line bundles and the following theorem also clarifies the
dependence relations among the tautological line bundles.

Theorem 3.2 ([14, Theorem B]). Assume that g > 1. Let T be an algebraic torus
and let d € mw1(T). The relative Picard group RPiC(Bun%g’n) is a free Abelian
group of finite rank generated by the tautological line bundles and sitting in the
exact sequences

17d~+0'¥ . d p‘yi,
Symz(A*(T))@(A*(T) ® Z")<—>RP1(:(BunT’g,n> — A*(T) ifg=>2,

(3.6)
‘L’d Od d *
Sym?(A*(T)) & (A*(T) ® Z”)gRPic(Bun‘%,l,n) A 2’[\\—((?) ifg=1,
3.7)

where rf‘f (called transgression map) and 07@ are defined by

2(x- 1) = ((x.0).(x.0)), forany x, x' € A*(T),
od(x®¢) = ((x.0).(0.0)), forany y € A*(T)and ¢ € Z",

and pg{ is the unique homomorphism such that

YeANNT) ifg=2

[y] € A1) irg g forany y € A*(T)and ¢ € 7.
2A%(T) =

P(L (1. 0) =

Furthermore, the exact sequences (3.6) and (3.7) are contravariant with respect to
homomorphisms of tori.

Now consider the case of an arbitrary reductive group G. Note that any character
of G factors through its maximal Abelian quotient ab : G — G, i.e., the quotient
of G by its derived subgroup. Hence, the tautological line bundles on Bung’ g.n AT€
all pull-backs of line bundles via the morphism (induced by ab)

. ) §ab
aby : BunG,g,n — BunGab,g’n

where §2° := m(ab)(§) € m;(G™). Moreover, Theorem 3.2 implies that the
subgroup of RPic(Bun‘gG, g’n) generated by the tautological line bundles coincides
with the pull-back of RPic(Bun‘g:b’g’n) via abg.

The next result says that, for an arbitrary reductive group G, the relative Picard
group of BunSG, ¢.n 18 generated by the image of the pull-back abj together with the
image of a functorial transgression map rg (which coincides with the transgression
map r{‘f in Theorem 3.2 if G = T is a torus).
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Theorem 3.3 ([14, Theorem C]). Assume that g > 1. Let G be a reductive group
and let ab : G — G®™ be its maximal Abelian quotient. Choose a maximal torus
t: Tg < G and let Wg be the Weyl group of G. Fix § € n1(G) and denote by §*°
its image in 71 (G®).

(1) There exists a unique injective homomorphism (called transgression map for
G)!
8 Sym*(A*(Tg))"é < RPic (Bun‘é’g,n), (3.8)

such that, for any lift d € 71(Tg) of § € n1(G), the composition of rg with
t; : RPic (Bun‘é’g’n) — RPic (Bun‘wa ,g,n)

d

is equal to the Wg-invariant part of the transgression homomorphism 8

defined in Theorem 3.2;
(2) There is a push-out diagram of injective homomorphisms of Abelian groups

20k rab Sym? A, e ¥,
Sym*(A*(G*))————= Sym~(A*(Tz))”¢
rg‘fb 5 (3.9

*
aby

- §ab C - 8
RPic <BunGab,g,n) RPic (BunG,g,n)

where Sym? A%, is the homomorphism induced by the morphism of tori Tg N
G L g,
Furthermore, the transgression homomorphism (3.8) and the diagram (3.9) are

contravariant with respect to homomorphisms of reductive groups ¢ : H — G
such that ¢(Ty) C Tg.

Corollary 3.4. With the notation of Theorem 3.3, there is an exact sequence of
lattices

: §ab aby : § 0% 15,ev VG
RPic (BunGab’g’n) < RPic (BunG’g’n) = Bil**" (A(To@))|A(Tas)) "€,

(3.10)

such that Qg o rg is equal to the restriction homomorphism

resy : Sym? A*(Tg)”6 =~ Bil**(A(Tg))”¢ — Bil®* (A(T@(G))M(TGSS))WG.

Furthermore, the above exact sequence (3.10) is contravariant with respect to ho-
momorphisms of reductive groups ¢ : H — G such that ¢(Tg) C Tg.

I This is the algebraic analogue of the topological transgression map H*(BG,Z) —
H2(Bun5G ¢ n,Z), see [27, Section 1].
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Proof. This follows from the push-out diagram (3.9) together with Proposi-
tion 2.4. O

For an analogue of the above exact sequence for g = 0, see (4.16).

3.2. Two alternative presentations of RPic(Bunf;’ en)

The aim of this subsection is to give two alternative presentations of RPic (Bun‘g;’ c. )
for G a reductive group and g > 1. We will freely use the notation from Subsec-
tions 2.1 and 2.2 with respect to a fixed maximal tours ¢ : Tg — G.

The first presentation of RPic(Bun‘é’ g,n) is based on the following homomor-
phism.

Definition/Lemma 3.5. Assume that g > 1. Let G be a reductive group with
maximal torus Tg and Weyl group Wg, and fix § € w1(G). There exists a well-
defined homomorphism

vE; : RPic (Bunf;,, , ) — Bil"7~"(A(T6)) "

uniquely determined by the following properties:

(1) The composition yg o rg is equal to

o : Sym? A*(Tg)”¢ = Bil*(A(Tg))”¢ — Bil>7~(A(Tg))”°,

where the first isomorphism follows from (2.20), and the second injective ho-
momorphism is the obvious inclusion;
(i1) The composition yg o aby is equal to the composition

sab
RPic (Bunl}s ) ~2% (A*(G™) @ A*(G™)’ = Bil* (A(G*))

*

B
—B Bil% 7 (A(Tg)) 7,

ab . .
where VSGub is the unique homorphism such that

Vou(Z (1 0) 1® 1.
Vo (O (XM = 1@ X + 1 ® 1.

the second isomorphism follows from (2.20) and B} is the homomorphism
defined in Corollary 2.6.

Moreover, the homomorphism yé is contravariant with respect to homomorphisms
of reductive groups ¢ : H — G such that ¢(Ty) C Tg.
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Proof. The fact that yéa:b is a well-defined homomorphism has been shown in [14,
Proposition 4.1.2, Equation (4.1.3)].

In order to show that there exists a unique homomorphism satisfying (i) and
(ii), using that RPic(Bun‘Z;’ g.n) 18 the pushout (3.9), it is enough to show that

Bloydmotdy, =aoSym? A% : Sym? A*(G™) — Bil®7™(A(Tg))”¢. (3.11)
Giveny, x’eA*(G*) and x,y € A(Tg),we compute using the isomorphisms (2.20):

(B:b ° ng:b o ng:b> (X : X/) x®y)
= (B ovEn) (0. (1. 0)) (x & )
=Bi(x®x +xX ®x)(x®y)
= (A:b()() ® A:b()(/) + A:b(X,) ® A:b(X)) (x®y)
=ALODEAL(X)D) + Ap(X) )AL

On the other hand,

(3.12)

(@ oSym> A%) (x- X)) (x ® y)
=a (Ap00 - AL(X) (x @ ¥) (3.13)
=ALGDEAL (X)) + A (X)) )AL ().

Hence, we conclude that the equality (3.11) holds and we are done.
Finally, the (contravariant) functoriality of yg follows from the functoriality

of B} (see Corollary 2.6) and of o and yg:’h (which are obvious). [

Using the homomorphism yg, we get the required new presentation of
RPic(Bunf; . ).

Theorem 3.6. Assume that g > 1. Let G be a reductive group with maximal torus
T and Weyl group W, and fix § € w1(G). Consider the following group:

~ Zel' ifg=2
Hen = 1., .
7 ifg=1.

There is an exact sequence

.5 8
0— A*(G™)® Hy %> RPic(Bund; , ) ~o> Bil™7~¢" (A(T5))"e —0, (3.14)
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where the morphism i g is defined as

i& (1 ® (m.£)) = ab} (<£x,w;" (Z zioi)» ifg =2,

i=1

iG(x ® ) = abj (<£x, O (Z z,-o,-)» ifg=1.
i=1

Moreover, the exact sequence (3.14) is contravariant with respect to homomor-
phisms of reductive groups ¢ : H — G such that (Ty) C Tg.

(3.15)

Proof. Consider the following diagram:

* 8
RPic(Bunfy, , ) —~RPic(Bun; , ) 26 B (A (Toey)|A (Tgn)) "

sab s
l/ )’G ab \j G
resgp

Bil¥ (A(G™) 2~ Bil**7 (A (T)) *6— =L Bil"** (A (Tocy) A (Tgw)) .
(3.16)

Claim: The diagram (3.16) is commutative with exact rows.

Indeed, the first row is exact by Corollary 3.4 while the second row is ex-
act by Corollary 2.6. The commutativity of the left square follows from Defini-
tion/Lemma 3.5(ii). In order to prove the commutativity of the right square, using
that RPic(Bun‘é’ ¢.n) 18 the pushout (3.9), it is enough to show that

0% o ab} = resy oyg o ab}, (3.17)
0% o 8 =resg oyl o 8. (3.18)
Equality (3.17) holds since, by what observed above, we have that
0% cab} =0 and  resy oyl oabl =resy 0B o y‘SGa.:)b =0.
Equality (3.18) holds since, by Corollary 3.4, Og o ‘Eg is equal to the restriction
homomorphism
Sym? A*(T)”¢ = Bil*(A(T6))"¢ — Bil*" (A(Toc)) |A(Tew))°,
which, by Corollary 2.6 and Definition/Lemma 3.5(i), is equal to resy oyg o rg.

By the above claim, we can apply the snake lemma to (3.16) and we obtain
the two isomorphisms

abj : ker (yga;,) = ker (yé) ,

N (3.19)
B}, : coker (ygub) — coker (yf;) .

From the definition of yga;, (see Definition/Lemma 3.5(ii)) together with (2.22),
it follows that yga:b is surjective. Therefore, the second isomorphism in (3.19)
implies that also yg is surjective.



THE PICARD GROUP OF THE UNIVERSAL MODULI STACK. . . 395

It remains to prove that the kernel morphism of )/g is equal toi g Using the

first isomorphism in (3.19) and the fact that lG = aby o i8
enough to prove that

qu by definition, it is
the kernel morphism of yg:b isequal to i g:b. (3.20)

With the aim of proving (3.20), let us recall some results from [14]. Fix an iso-
morphism G® =~ G’ which induces an isomorphism A*(G®) =~ A*(G) = Z'.
Denote by {e; }7_ the canonical basis of Z" and by {f;}"_, the canonical basis
of Z". By [14, Theorem 4.0.1(2)], the relative Picard group of BunGah is freely
generated by

((ei,0). (0, /7)) fori=1,...,randj =1,...,n
l<i<k<r ifg=>2

((er. 0). (e 0)) = {Lei- L) for {1 <i<k<r ifg=1

Z(ei,0) = dr(Le;) fori =1,...,r.
Take now an element M € RPlc(Bunqu 2. ,) and write it as
M= 3" ayl(e.0.(e;. 00+ 3 (.00, (0.6))+ D br-Z(er.0),
1<i<j=<r 1<k=<r 1<i<r

for some unique a;;,b; € Z, tk = (k. .. .,{‘,’f) € Z", with the property that
a;; = 0if g = 1. From the definition of yga; (see Definition/Lemma 3.5(i1)), we
compute
ab
yenM) = Y aijei®ej+e;@e)+ Y b Qe
I<i<js<r 1<i<r

Hence, we have that

ajj =0 fori < j
S 9b; = 2a;;

(Cl,‘,‘,é‘l) € Hg,n.
In other words, M belongs to the kernel of yga:b if and only if M has the following
form

M = Z [aii(ﬁei,ﬁe,) —2a;;dy (L) + <£e,-70 (Z é“/icffk) >i|
k

1<i<r
(aii,§')eHg

T fe )

1<i<r
(@;i,¢')eHg n

ajj =0 fori < j

aab
M € ker (yGab) & 2aii 4+ by = 0
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S ab
Gab

is an injective homomorphism whose image is equal to the kernel of yga:b, which
proves (3.20).

where the second equality follows from [14, Remark 3.5.1]. This shows that i

We now want to get a second presentation of RPic(BunSG, g,n). With this aim,
we introduce the following homomorphism.

Definition/Lemma 3.7. Assume that g > 1. Let G be a reductive group with
maximal torus Tg and Weyl group W, and fix § € w1(G). There exists a well-
defined (non functorial) homomorphism

A*(Tg)

5 . i 8
wg : RPic(Bung, g ,) > 75

uniquely determined by the following properties:

(1) The composition a)g o ‘L’g is equal to the composition

Sym? A*(Tg)"@ = Bil™™(A(Tg))”® C Bil®7~(A(Tg))"©
o A*(Tg)
% S —
A (Tg)

where the first isomorphism is induced by (2.20) and ev‘é is the homomor-
phism in Definition/Lemma 2.8;
(i1) The composition a)g o aby is equal to the composition
sab

. a ©gab A A*(TG)
RP (B 8o >—>G AF(G) 2 2 V60
1C ung b o.n ( ) A*(TGud)

L) [x(®)+ 12 +1-¢] 1.
(1.0, (X 8)) = [X (™) + 18] x + [x(6*®) +121] X',

where |{| = ) _; {; € Z and similarly for |{'|, and A_:b is the homomorphism
in (2.17).

bb is well-defined has been proved in [14, Proposi-

Proof. The fact that w‘ga
tion 4.1.2(i)].

In order to show that there exists a unique homomorphism a)é satisfying prop-
erties (i) and (ii), using that RPic(Bun‘gG’g,n) is the pushout (3.9), it is enough to
show that

A*(Tg)

. 3.21
A*(TGad) ( )

ab ab
A% o a)gah o rgah = evl; o Sym? A% : Sym? A*(G™) —
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Given y, y' € A*(G™), we compute

(A* Owcdb ° Tcdb) (x-x)= (A Owcab> (((x-0). (x". 0)))
=A% (X1 + 1 (6®)x) (3.22)
= X(E®) ARG + X (8 A% (0

(ev oSym? A% ) (1 X)) = el (A3 (0 - AB()
= AL DAL + A5G AL G B2
= XA (@)A1 + X (A (d) A (X)-
The expressions (3.22) and (3.23) coincide since A (d) = m1(ab)(§) = 82 for

any lift d € A(Tg) of § € m1(G); hence, the equality (3.21) holds and we are
done. O

Remark 3.8. We remark that the homomorphism ng is not equal to the composi-

tion

8 8 *
BN o b A*(Tg)
RPic (BunG’g’n) 2, BilS 7 (A (Tg)) "6 -5 T

where )/g is the homomorphism in Definition/Lemma 3.5 and rg is the homo-
morphism in Definition/Lemma 2.8. More precisely, their compositions with the
pull-back aby are different.

By putting together the homomorphisms of Definition/Lemmas 3.5 and 3.7,
we get the following homomorphism:

A*(Tg)

————= ®Bil"7 T (A(T)) 7.
A (Tgu) @ Bi (A(Tg))

wé @ yg : RPic (Bun‘é’g’n> —

With the aim of describing its image, we give the following:

Definition 3.9. Let G be a reductive group with maximal torus 7 and Weyl group
WG, and fix § € 71(G). Denote by

A*(Te) _ »
b c 18, 9—ev Y Z¢!
NS (Bunc,g’n) S Arry BB AT6)

the subgroup consisting of all the elements ([y], ) such that

[X\A(T@(G))] = A_*@([)d) is equal to (@ o ev‘é) (b)
=b(® ATy = [b(d ® _)\A(T.@(G))]

(3.24)

as elements in # where d € A(Tg) is any lift of §, and A%, and evS, are
the homomorphisms of Definition/Lemma 2.8.
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The group NS (BunG ,,) is contravariant with respect to homomorphisms of
reductive groups ¢ : H — G such that ¢ (Ty) C Tg.

Definition/Lemma 3.10. Let ¢ : H — G be a homomorphism of reductive groups,
and choose maximal tori Tg € G and Ty € H in such a way that $(Tg) C Tg.
Let € € mi(H) and set § = mi(p)(e) € m(G). Pick a lift e € AN(Ty) of
€ € w1 (H). Then there exists a well-defined homomorphism

¢*NS . NS (Bunb’G’g’n) — NS (Buny, ) -
(.6) = ([ A5 (P4 ©@22) ] B b)),

where Ay : A(Tu) — AMTg), Ay : A*(Tg) — A(Th) and By : Bil’ (A(Tg)) —
Bil* (A (T ))are the natural morphisms induced by ¢ - Ty — T, and y?Pe(©)®7) ¢
AN*(Tg) is the unique lift of [x] € AA*(T S such that

( Xb(A¢,(e)®—))

Moreover, if W : L — H is another homomorphism of reductive groups and we
choose a maximal torus Ty, C L in such a way that ¥ (Tr) € Ty, then (poy)* =

Y* o,

Proof. Let us first consider the following two special cases:

(3.25)

— b(A _ .
AT (Ap(e) ® 2)A(To@))

Special case I. ¢ : T’ — T is a morphism of tori.
Choose d’ € A(T') and set d := Ag(d’) € A(T). The definition (3.25)
reduces in this special case to
¢*N : NS(Bunf., ) —> NS(Bun% , ).
(X, 0) = (Ag(x). By(D)).

which is clearly a well-defined homomorphism. Moreover, the association ¢ +>
¢*NS is compatible with the composition of morphisms of tori.

(3.26)

Special case II: ¢ = 1 : Tg — G is the inclusion of a maximal torus inside a
reductive group G.

Choose alift d € A(Tg) of §€ 1(G).Pick an element ([x],b) €NS (Bun‘g;’g,n).
Consider the following commutative diagram with surjective arrows:

AM(Te) =22 AT
(Te) (To6))

L

-
A (Tg) 22 A Tac)
A* (TGad) A* (TGad) :
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The diagram (3.27) is a pull-back diagram since the kernels of the vertical surjec-
tions are both equal to A*(Tga) while the kernels of the horizontal surjections are
both equal to A*(G®) and A*(Tgw) N A*(G*®) = {0}. From this and condition

(3.24), it follows that there exists a unique lift of [y] € Aﬁ}?ﬁj), that we denote by

§P@®7) ¢ A*(Tg), with the property that
b(d®—)) =b(d ® - . 3.8
(X IA(Tor6)) ( )\A(T_@(G)) ( )

Definition (3.25) reduces in this special case to
vNS NS (Bund ., ) — NS (Bung, ).

(. b) > (£427.0).

which is a well-defined and injective homomorphism whose image is equal to

(3.29)

Im(*™) = {(x.b) : XA T5G))

ey . (3.30)
=b(d ® =)Ao, and b € Bil*7™(A(T)) "4 }.

We now go back to the general case. Denote the inclusions of the maximal tori in
G and H by, respectively, i : T¢ — G and g : Ty — H and set ¢7 := @1, :
Ty — Tg. Setalsod := Ag(e) € A(Tg), which is a lift of § € 71(G). Consider
the composition

¢;‘:NS o LE’NS : NS (BUIISG,g,n) — NS (BuneTH ,g,n)

(Il ) = (A5 ("%, B3 )

which is a well-defined homomorphism by the special cases already treated. More-
over, for any ([x],b) € NS(BunSG,g,n) and for every x € A(Tym)), we have that

(3.31)

Ay (17997) () = PO (Mg () = b(d ® Ay ()

= b(Ap(0) ® Mgy () = (B5 (1)) (e ® x),

where in the second equality we have used (3.28). This computation, together

with (3.30), implies that the image of qb;’NS ) LENS is contained in the image of

L;I’NS : NS(Buny; , ,) — NS(Bun7,, , ). Hence, we get a factorization

¢;,NS ° LZ,NS — L;I,NS ° ¢*,NS (332)

for some (unique) homomorphism ¢*NS : NS (Bun‘z;, P NS(Bun; gn)-
From the expression (3.31), we conclude that ¢*NS is given by the formula
(3.25).
Finally, the compatibility of the association ¢ — ¢ with the composition
of morphisms is due to the factorization (3.32) together with the Special Case I. [

*,NS
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The group NS(Bun‘SG, ¢.n) admits a functorial two-step filtration, that we de-
scribe in the following:

Proposition 3.11. Let G be a reductive group with maximal torus Tg and Weyl
group W, and fix § € w1(G). We have the commutative diagram, with exact rows
and columns

Bil' (A (G ™))

By

NS
resg

A (G®)C - NS(Bung; , ,) ——>= Bil" 7~ (A(T)) "o

>
i
D
)

i resp

rc\NS

A*(G™) @ Bil* (A(G™)) = NSBunls, )~ NS(Bund, , ,,) —=> Bil** (A (Taoc))| A (T+))

Bil* (A (G™) (3.33)

.g.n

where the identification NS (Bun‘g:b’ g,n) = A*(G™) @ Bil*(A(G™)) follows from
Definition 3.9, i1 is the inclusion of the first factor and p, is the projection onto the
second factor, the right vertical column is (2.28), reslg;S is the projection onto the
second factor and resgS i=resgy o reslés.

Moreover, the diagram (3.33) is contravariant with respect to homomorphisms

of reductive groups ¢ : H — G such that ¢(Ty) C Tg.

Proof. The commutativity of the right square of the diagram is clear, while the
commutativity of the left square follows from the fact ab*NS = A_;‘b ® B, asitis
easily deduced from Definition/Lemma 3.10.

The exactness of the left and central columns is clear, while the exactness of
the right column follows from Corollary 2.6.

The exactness of the upper row follows from the definition of NS (Bun‘sG, gn)
together with the exactness of the column in (2.17).

It remains to prove the exactness of the lower row. The injectivity of a
Al @ B and the fact that res}® oab*NS = 0 are obvious. The surjectivity of
resgS follows from the surjectivity of ms?‘;S and of resy. Let us now prove that
ker(res®) C Im(A%, @ BJ%). Pick an element ([y],b) € NS(Bun‘gG,g,n) such that
0 = reshy (([x], b)) = resy(b). By Corollary 2.6, there exists b® € Bil*(A(G™))
such that b = B} (b™). Moreover, from (3.24) it follows that [ X A(T@(G))] =0¢

A*(Tq . -
A*((ch(g;)' Hence, by (2.17), there exists x™® € A*(G™) such that A% (x™) = [x].

Therefore, (x*, b™®) € NS(Bun‘g:b’g’n) and A* @ BX((x*,b™)) = ([x],b) and
we are done.

Finally, the functoriality of the diagram (3.33) follows straightforwardly from
the definition of the pull-back morphism (3.25). ]

b*,NS —
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Using the above homomorphisms a)SG and yg, we can now give the following
new presentation of RPic(BunsG, g’n).

Theorem 3.12. Assume that g > 1. Let G be a reductive group with maximal
torus Tg and Weyl group W, and fix § € w1(G). Consider the following group:

(.0 €Z@L" : 2g—2m+[{| =0} ifg=2
fcezn ;¢ =0} ifg = 1.

(1) There is an exact sequence

Hg, =

8 8

.8 @
0> A*(G™) @ Hy,p ~>RPic (Bunf; ., ) ““—5N8 (Bunf ) . (3.34)

where the morphism jg is defined as

Jj& (X ® (m,0)) = ab; (<Ex,w§? (Z éio,-)>) ifg =2,
i=1

JjG(x ® ) = abj <<£Xv0(2§i0i)>) ifg =1
i=1

Moreover, the exact sequence (3.34) is contravariant with respect to homo-
morphisms of reductive groups ¢ : H — G such that $(Tg) < Tg;
(2) The image Ofa)‘sG &) )/g is equal to
Im(w @ y) (3.35)
NS(Bun‘SGJg,n) ifn>1

_ s . () =@ ®x)]+(g — Db(x @ x)
=1 (WD) ENSBung, ¢ ,) - is a multiple of 2g—2, for any x € A(Tg)

ifn =0.

Moreover, if n = 0 then

I

NS(Bun‘gG’g,n) ( 7, )dim Gab
Imw @y  \(2g—-2)Z
Remark 3.13.

(i) For n = 0, the subgroup on the right-hand side of (3.35) is well-defined.
Indeed, by (3.24), [x(x) — b(8 ® x)] is well-defined for any x € A(7g) and
it is equal to [)((xab) -b(l® xab)], where x® is the image of x in A(G®);

(ii) If eithern = O or g = n = 1 then Hy , = 0, which implies that the map
a)g @ )/g is injective.
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Proof. The theorem has been proved for a torus in [14, Proposition 4.3.1], and
we are going to apply this result for G® in order to prove the case of a general
reductive group G.

Let us first prove (1) by dividing the proof in two steps.

Step I: The image of
A*(Tg)

18 G
m @ Bil’(A(Tg))

a)‘gG @ )/g : RPic <Bun‘gG,g’n> —

is contained in NS (Bun‘gG, en)-

In order to prove this, it is enough to show, using that RPic(Bun‘z;, g,n) is the
pushout (3.9), that

((w} @ y§) o ab) (RPic (Bundys, , ) < NS (Bund;,, ).
(@& ®78) o 1) (Sym® A*(T5)"@) < NS (Bun )

The first containment in (3.36) follows since Definition/Lemma 3.7(ii) and Defini-
tion/Lemma 3.5(ii) imply that (wg &) yé) o aby, factorizes as the composition

(3.36)

¥ &V, ALeBL A*(T
" ab ab % ( . a ab ab .
RPic (Bunfl, ) ———> A*(G*) @ Bil' (A(G™) =" ((TGGM)) ® Bil* (A(T6)) ",
(3.37)

and Im(A_:fb ® B}) S NS(BunSG7 ¢.n) as observed in Proposition 3.11.

Take now an element b € Sym? A*(Tg)”6 = Bil**V(A(Tg))”¢. Using
Definition/Lemma 3.7(i) and Definition/Lemma 3.5(i), we compute

(@5 ®v8) 0 8) ) = (v0).5) = (GG @ -).b)

A*(Tg) . » (3.38)
A*(TGad) @ Bil’(A(Tg)) 7.

From Definition 3.9, it follows easily that the element (b(§ ® —), b) belongs to
NS(Bun‘é, ¢.n)> and this proves the second containment in (3.36).

Step II: The kernel of wg @ )/g is equal to
jé : A*(Gab) ® Hgn — RPic (BungG,g’n) .
Consider the diagram

abj 0 .
RPic (Bun), , ) ——————— RPic (Bun}, , ,) —>> Bil"*" (A(T9())|A(Tg)) "

5ab b 5 o8
jw(;ub DY Gab 05 ®vG
* reshS

AL®B],
) = A*(G™) @ Bil* (A(G*)—— NS(Bunf; , ) — s i (A(T@(G)HA(TG“))WG

(3.39)

NS (Bun‘gl:b

.g.n
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whose rows are exact by Corollary 3.4 and Proposition 3.11, and whose commuta-
tivity follows from (3.37) and (3.38). By applying the snake lemma to (3.39), we
get that

al al by
ker (a)g:b ® yg:b) % ker (a)SG ® yé) , (3.40)
; w) AL®B;
coker (a)g:b ® yg:b> %) coker (a)‘é &) yé) . (3.41)

By applying [14, Proposition 4.3.1] to G, we get that the kernel of a)‘g:b &) ygd:b is
equal to

_gab i . ab
]gab : A*(G™) ® Hgn — RPic (Bun‘éﬂb,g,n) .

By combining this with (3.40) and the fact that j& = abj o jg;‘;, Step II follows.

Finally, the functoriality of the morphism a)g @ yé (and hence of the sequence
(3.34)) follows straightforwardly from (3.37) and (3.38).
Let us now prove (2). If n > 0 then wg:b &) yga;j is surjective by [14, Proposi-
tion 4.3.1], which, combined with (3.41), implies that a)g <) yg is also surjective.
Assume now that n = 0 and call / g the subgroup of N S(Bun‘gG, ¢.n) defined on
the right-hand side of (3.35). By [14, Proposition 4.3.1], we know that Im(wg]:b @
(gab

Yeu) = Igajj. Using this and (3.41), in order to prove that Im(a)g &) yé) =I5, it

is enough to prove that
Im(a)SG ® yg) C Ié

(A% ® B '(18) 18

(3.42)

Furthermore, using that RPic(Bun‘sG, g.n) 18 the pushout (3.9), the inclusions (3.42)
are equivalent to the following two conditions:

((w% ®7¢) o Té) (Sym? A*(T6)"%) € 1§, (3.43)
- —1 al
(A:b ©® B:b) (Ié) = Iéﬁ,. (3.44)

Now, inclusions (3.43) follows from (3.38) together with the fact that b is even.
Furthermore, if (y,b) € NS(Bun‘g:b’g’n) = A*(G™) @ Bil*(A(G™)), then we
have for every x € A(Tg)

AL (GD@) = BL,(B)S. %) + (g = DBL(B)(x. x)
— )((Xab) _ b(gab’xab) 4 (g _ l)b(xab’xab)’
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where x2 is the image of x into A(G™®). Since A(T¢) surjects onto A(Tgw), we
deduce that

gub o o) ! 5
(1.b) € I8 & (Aab, Bab) (1.b) e 18,
which shows (3.44) and concludes the first assertion of part (2).

The last assertion follows from (3.41) and the analogous result for G, see
[14, Remark 4.3.2]. O]

4. The restriction homomorphism

The aim of this section is to describe the restriction homomorphism
res‘gG (C) : RPic <Bun8G,g,n> — Pic (Bun‘é (C)) 4.1)

for any (C, p1,..., pn) € Mg (k).
Before doing this, we need to recall the description of Pic (Bun‘gG (C)) obtained
in [3].

Theorem 4.1 ([3, Theorem 5.3.1]). Let C be a (irreducible, projective, smooth)
curve of genus g > 0 over k = k and denote by Jc its Jacobian. Let G be a
reductive group over k and fix 6 € w1(G). Then there exists a (contravariantly)
functorial exact sequence of Abelian groups

& s c&(©0) s
0— Hom(r1(G).Jc (k) ~—> Pic(Bun’, (C)) —=—> NS (BunG(C)) -0, (42)
where the Neron-Severi group NS(Bun‘SG (C)) is the group of all triples (I, b, b)

consisting of

(i) lz € A*(Z(G));

(i) bz € Hom*(A(Z(G)) ® A(#(G)),End(J¢)), ie., by : AZ(G)®
A(Z(G)) — End(J¢) with the property that b (x1 ® x2)T = by(xa ® x1)
where T : End(Jc) — End(J¢) is the Rosati involution associated to the

canonical polarization on Jc;
(iii) b € Bil>*(A(Tg))”¢ =~ Sym? A*(Tg)”¢;

subject to the following compatibility conditions:

(a) For some (equivalently any) lift d*° € A(Tg) of the image §% of § in w1 (G*),
the direct sum

lz®b(d*®@—): AN(Z(G)) ® ANTg) —> Z

is integral on A(Tg);
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(b) The orthogonal direct sum
bz L(idjc ob):(A(Z(G)) ® A(Tg)) ® (AMZ(G)) & A(Tg))—~End(Je),

is integral on A(Tg) ® A(Tg), where idj. : Z — End(J¢) is the canonical
map given by the addition on the Abelian variety Jc.

The (contravariant) functoriality of the exact sequence is described in [3, Theo-
rem 5.3.1(iv)]. Note that if T is a torus, the group in (iii) is trivial and the condi-
tions (a) and (b) are always satisfied. In particular, the projection on the first two
factors give an isomorphism of groups

NS (Bunf;(c:)) ~ A*(T) @ Hom* (A(T) ® A(T), End(Jc)),

and hence the elements (/7,b7,0) of NS (Bun‘gT (C)) canbeen seen as pairs (I7,b7) €
A*(T) & Hom*(A(T) ® A(T),End(J¢)). For the rest of the paper, we adopt the
latter presentation for the Neron-Severi group NS (Bun‘gT (C)) for the torus case.

In general, the Neron-Severi group NS (Buné (C)) can be described as follows.

Proposition 4.2 ([3, Proposition 5.2.11]). With the above notation, there is an
exact sequence

al al *.NS C
0—NS (Bun®™, (€))% Ns (Bun’. (C)) -2 Bil*** (A (Tg))"e.
G G

(I, bz, b)—b 4.3)
(Igw, bgw) > ((gw)12G)- (bgw)|A@G)@A@#G))): 0)

and the image of p is equal to

Im(p)
_ VBT (A(To) | A(Tax)) " if =1
{b € Bil*(A(Tg))”¢ : bUd™ ® —) isintegral on AN(Ty))} if § =0,

where Bil®™ ¢ (A (T@(G))NA(TG&))WG is defined in Definition/Lemma 2.11 and
d* is some (equivalently any) lift to A(Tgs) of 8% € m1(G®).

We now describe the restriction homomorphism (4.1), using the description of

RPiC(El]mSG’ g.n) Of Theorem 3.12 and the description of Pic(Bun‘é (C)) of The-
orem 4.1.

Theorem 4.3. Assume that g > 1 and let (C, p1,..., pn) € Mg (k) be a geo-
metric point. Let G be a reductive group and fix § € w1(G). Then the restriction
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homomorphism (4.1) sits into the functorial commutative diagram with exact rows

A*(G™®) ® Hyn 5 RPic(Bunf, o) BTG NS (Bund, o)

Lres‘S C)° jres‘é ) lres‘S (C)Ns (44)

Hom(1(G), Jc (k))@ Pic(Bun’, (C)) Q) NS(Bun’, (C)),

where

° resSG(C)" sends an element [A(G™) L

A*(G™) ® Hg p into the element

Hg.n] € Hom(A(Gab),Hg,n) =

[m )™ 7, (G®)=A(G™) L He 'S Jc (k)} eHom(rr1(G), Jc (k)),

where
L = UC,p1spn) * Hen = Jc (k)

(m,{) > of (Z z,-pi) ifg =2,

i=1

n
¢~ Oc (Zé’ipi) ifg =1

i=1

o 1es (C)NS([x]. ) = (X|a@(©6))- 1dJc °bIA@G)@A@G): DIATOATE)):
Proof. The theorem has been proved for a torus in [14, Proposition 4.3.3]; and, in
order to prove the case of a general reductive group G, we are going to use this
result for G*® and for a (fixed) maximal torus ¢ : Tg < G.

Observe that the two rows of (4.4) are exact by Theorems 3.12 and 4.1. More-

over, the two outer vertical arrows are well-defined: for resaG (C)?° it is clear; for
ress, (C)NS it follows from:

(i) Given a lift d € A(Tg) of § € m1(G), we can choose a representative

xP@®) e A*(Tg) of [x] such that (x*“®7) a1y = b(d. =) AT @)
by (3.28) and this implies that

XA Gy ® b(d ® —)\aas) : MZ(G)) & AN(Tg) — Z

is integral on A(7T¢ ), namely it is the restriction of the chosen y: A(Tg) — Z;
(i1) The orthogonal direct sum

idse o (ba@@G)eA#©G) L bIaTe)oA(Ts)) © (AMZ(G)) & A(Tg))
® (A(Z£(G)) ® A(Tg)) — End(Je),

is integral on A(Tg) ® A(Tg), since it is the restriction of id;j. ob by the
claim in the proof of Proposition 2.4.

Hence it remains to prove the commutativity of the two squares in (4.4).
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In order to prove the commutativity of the left square in (4.4), consider the
following diagram:

i&

J Gab . ab aby .
A*(G®)Q Hy)y—— RPlc(Bun‘SGah’g’n) —— RPic(Bun, , )

lres‘g:b (C)° lres’g:h ) l/rcs‘sc <)
. gub

ab ) . b*‘NS(C)

resd; (C)° Hom(r1 (G*), Jc (k) ~— Pic(Bun®s, (C)) - Pic(Bun, (C))
Hom(7r| (ab),—)
Jj&wo)
Hom(71(G), Jc (k)).
4.5)

In the above diagram, every simple subdiagram commutes: the curved triangles
commutes by the definition of jé and of res‘YG (C)?; the left square commutes by
[14, Proposition 4.3.3] applied to G; the right square commutes by the obvious
functoriality of the restriction homomorphism; the lower triangle commutes by
the functoriality of the morphism jg (see Theorem 4.1). By using all the above
commutativity results, we deduce that resg (C)o jg = jg (C)o res‘é (C), ie.,
that the left square of (4.4) commutes.

In order to prove the commutativity of the right square in (4.4), choose a lift
d € A(Tg) of § € m1(G) and consider the diagram

5 )8
X wG®vg
RPlc(Bun‘é!g!n) NS(B““%,g,n)
[ %NS
resf; (N
: d w"d‘G @y,"c d
resé; (C) RPic(Bun%,, . ) NS(Bunf,, , )
res?G ) ‘
s
P 5 c(C) s el (CONS
ic(Bung; (C)) NS(Bung; (C)) res . (C)
& ‘ m
: d <t (©) d
Plc(BunTG )) NS(BUHTG <)
4.6)

where (*'NS is the morphism of Definition/Lemma 3.10 and (*N5(C) is the mor-
phism of [3, Definition 5.2.5], and they are given by the formulas:

o *NS([x].b) = (x*®7).b) € NS(Bunf,_ , ). see (3.29);

o UN(C) (U b b) = (e ® b(d™ ® =), by L idye ob) € NS(Bunf, (C)),
where d* is the image of d € A(Tg) in A(Tgs), which is well-defined by
conditions (4.1) and (4.1) of Theorem 4.1.
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We have the following commutativity properties in the above diagram (4.6):

(a) res‘fwG (C)oy = w(C)*o res‘sG (C), which follows from the functoriality of
the restriction homomorphism;
(b) res‘%G (C)NS o (*NS = (*NS(C) o ress, (C)NS. In fact, for any ([x],b) €

NS (Bun‘g;, g.n) We compute

(reS‘%G (CNS 0 ™M) ([x].b) = reS’%G (CNS(xP@®2) b)
= (x*@®7) id;,. ob)
(*NS(C) o rest; (C)NS)([x]. b)
= () (XA @(6)) 1duc obia@(G)@A@(G): DIATG)©ATG))
= (XIA@@G) ® b(d™ ® —)|AT6)-idse
o(bja@(G) @A) L+ bIA(Te)®ATG))):

and the two results coincide by the fact that

b(d ® -)|ag) = b(d” ® =) |ATs)

by the claim in the proof of Proposition 2.4, together with condition (ii);

(©) cg{G (C) ores(%G (C) =res? (C)NSo(wd & )/%G ), which follows from Propo-
sition [14, Proposition 4.3.?] applied to 1

(d) *NS(C) o cg (C) = c?c (C) o 14(C)*, which follows from the functoriality
of the exact sequence (4.2) together with [3, Definition 5.2.5, 5.2.7];

) *NSo (a)‘é @ yé) = (co;in &) )/%G) o 1y, which follows from the functoriality
of the homomorphism a)g &) yg applied to the inclusion ¢ : Tg — G (see
Theorem 3.12(1)).

Using the above commutativity relations together with a diagram chase in (4.6), we
conclude that

FNS(C) o c‘gG(C) o ressG(C) =)o res‘E;(C)NS o (a)g P yg)

Since (*NS(C) is injective (using that id,. is injective since g > 1), we can sim-
plify :*N5(C) from the above expression, and we get

cg(C) ) res‘sG(C) = res‘S’G(C)NS ) (a)g; @ yg)

which is exactly the commutativity of the right square in (4.4), and this concludes
the proof. O

Corollary 4.4. Keep the notation of Theorem 4.3. The kernel of the restriction
homomorphism res‘gG (C) is equal to

ker (resSG(C)) = A*(G™) @ keric € A*(G™) ® Hg p.
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Proof. This follows from the snake lemma applied to the exact sequence (4.4),
using that ressG (C)NS is injective and the explicit description of res‘z; (C)°. O

We now give an alternative description of the restriction homomorphism onto
the Neron-Severi group

resf; (C):RPic(Bunf, ) M)Plc(BunG(C)) RGN (Bunf;(C)). @7

for any (C, pi1,....pn) € Mg pn(k), using the description of RPic(Bun‘sc,g,n) in
Corollary 3.4 and the description of NS(Bun‘gG (C)) in Proposition 4.2.

Theorem 4.5. Assume that g > 1 and let (C, py, ..., pn) € Mg (k) be a geo-
metric point. Let G be a reductive group and fix § € m1(G). The homomorphism
(4.7) sits into the following functorial commutative diagram with exact rows:

Ak S
RPic(Bunty, , )<~ ~RPic(Bunf, . ,) Y Bl (A(Tog))| A (Taw)) "

lres‘g;)b ) lres‘é ) er
*,NS

NS(Bun’, (C) NS (Bun, (€)) —Ls Bil*™* (A (Toa)) |A (Tew)) ©
@.8)

where rg is the injective homomorphism in Definition/Lemma 2.11.

Proof. The rows of (4.8) are exact by Corollary 3.4 and Proposition 4.2. We need
to show the commutativity of the diagram (4.8).

The commutativity of the left square of (4.8) follows from the functoriality of
the restriction homomorphism res‘sG (C) and the functoriality of the homomorphism
CSG (C) (see Theorem 4.1).

Consider now the following diagram:

RPic(Bunf, , ,) —— & Bl (A(Toey)|A (T6+)) ¢ (49)
|t
5(©) | NS(Bunf, , ) T BIE (A (T A (Tor))
lresg(C)NS er

NS(Bun; (C)) —2> Bil* (A(To6))|A(Tes)) "¢ NBIlS (A(T6)”e.

The commutativity of the right square of (4.8) follows from the following commu-
tativity results:

(a) The left triangle commutes because of the definition (4.7) of res‘SG (C) and of
the commutativity of the diagram (4.4);
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(b) The upper square commutes, i.e., QG = res@ o(wG &) )/G)

In order to prove this, it is enough to show, using that RPlc(BunSG, g.n) 18 the
pushout (3.9), that

0% oab} = res o ( Lay )oab;;, (4.10)
08 0 t& = rest o(f; @ 7f) o b @4.11)

Condition (4.10) holds since 05 oaby; = 0 by (3.10) and res o(a)G ® yG) )

ab:; = 0 which follows from the fact that (0% & &) oab; = ab* NS (wglfh ®

yGab) (by the functoriality of the morphism a)G @ )/G, see Theorem 3.12(1))
together with (3.33). Condition (4.11) follows from

(I‘eS O(wG @ )/G) o ‘CG)(b) res@ (b(S ® ) b) b‘A(T@(c))@A(T@(G))
by (3.38)
(Qg o ‘Eg)(b) :bIA(T@(G))®A(T@(G)) by Corollary 3.4;

(c) The lower square commutes because, using the definitions of the maps in-
volved, we have

(r6 0 1esX¥) (1] 5) = biacrgroncre) = (P o resk(©) (4. 0).

Corollary 4.6. Keep the notation of Theorem 4.5 and assume furthermore that

idj. : Z 5 End(J¢) is an isomorphism. Then there exists a canonical short exact
sequence
0 — coker (a)g:b @ yga:b) — coker (res‘sG (& )) — coker(rg) — 0. (4.12)

In particular, if n > 0 then we have the canonical isomorphism

coker (res‘é (C) ) = coker(rg).

Note that if k is uncountable and C is very general in Mg (k), thenidy. : Z =
End(J¢) is an isomorphism, as it follows easily from [17].

Proof. By applying the snake lemma to (4.8) and using that r¢ is injective, we get
the exact sequence

0 — coker (res‘g:b (©)) ) — coker (res‘gG (€) ) — coker(rg) — 0.  (4.13)
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By Theorem 4.3, the morphism res‘g:b (C)) admits the following factorization:
sab sab
a . ab wGab®yGab ab
res‘g:b (C) : RPic (Bun‘éab,g,n> —— > NS (Bun‘éab’g,n)

5ab NS
res L ap )

—— > NS (Bun‘ggb(C)> .

By the assumption that idy. is an isomorphism together with the explicit descrip-

. ab . ab . .
tion of res‘z;.db (C)NS in Theorem 4.3, we deduce that res‘éab (C)NS is an isomor-
phism. Hence, we get a canonical isomorphism

coker (wg:b <) yga:b) = coker (res‘g:b(C )) ) . (4.14)

By combining the short exact sequence (4.13) with the isomorphism (4.14), we
conclude. O

We end this section by describing the restriction homomorphism (4.1) in
genus 0.

Remark 4.7. In genus 0, the only smooth curve is the projective line P!. In this
situation, it follows from the proof of [14, Proposition 5.4.1] that the restriction
homomorphism

res% (IF’I) : RPic (Bun‘SG,O’n) — Pic (Buné (Pl))
is an isomorphism if n > 0 and injective if n = 0, for any (P!, py,....pn) €

MO,n (k)

Using Theorem 4.1, it follows that if n > 0 then we have

RPic (Bun‘g;’oyn>
={(lz,b) € N*(Z(G))xBil**(A(TG)) "¢ :l5 ® b(d™ ®—) e A*(TG)}

(4.15)

for some (equivalently any) lift % € A(Tg) of the image §* of § in 771 (G*°).
Moreover, using Proposition 4.2, we have the following exact sequence for
n>0:

a abF 99 b e Bils,ev AT, G .
RPic (BunSsz 0 n) <% RPic (BunSG 0 n) 3 ( ( .G))
,0, »Us bQ(dss ® —) is integral on A(Ty(g))
(l%,b) — b

lga ((lgab)‘@(G),O) . “16)
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5. The rigidification Bunf; , , /2°(G) and its Picard group

Since the center 2 (G) of a reductive group G acts functorially on any G-bundle,
we have that Z°(G) sits functorially inside the automorphism group of any S-
point (C — S,0,E) of Bun‘é’g,n for any § € m1(G). Hence we can form the
rigidification

e Buné,g,n — Bun‘é’g,n JZ(G) = %un‘é,g’n, (5.1)

which turns out to be a Z°(G)-gerbe, i.e., a gerbe banded by Z°(G). The aim of this

section is to study the Picard group of EBun‘SG’ ¢.n and the class of the 2(G)-gerbe

)
VG-

From the Leray spectral sequence
E2, = H? (Bund . RI(65),Gn)) = HPH (Bun, , . Gy)

and using that (v‘SG)*(Gm) = Gy, and that Rl(vg)*(Gm) is the constant sheaf

A*(Z(G)) = Hom(Z(G), Gy,), we get the exact sequence
w&)* wtd

Pic (Bung, ) <> Pic (Bunf ) —> A*(Z(G)) .

obs‘sG (v‘?; )"

=5 2 (Bunb; , . G ) —— H? (Bung .G ).

The homomorphism wt‘é (called the weight homomorphism) has the following ge-
ometric interpretation: given a line bundle £ on Bunb‘G, ¢.n» the character wt‘é (L) e

Hom(Z(G), Gy,) is such that, for any £ := (C — S,0,E) € Bun‘é’g,n(S), we
have the factorization

Aut(Ls)

Wi5(S) 1 Z(G)(S) = Autgs (5)(E) —— Autog (Ls(€)) = Gu(S),

)
BunG'g

where the first homomorphism is given by the canonical action of Z(G) on every
G-gerbe, and the second homomorphism is induced by the functor of groupoids

Ls: Bun‘g’g,n (S) — {Line bundles on S}

determined by L.
The homomorphism obs‘é (called the obstruction homomorphism) has the fol-
lowing geometric interpretation: given any character A € Hom(Z(G), Gy,), the

element obsSG (A) is the class in Hz(%un‘gG’g,n, Gn) of the G,-gerbe A*(v‘g;) ob-
tained by pushing forward the 2°(G)-gerbe vg along A.

If we take the fiber of (5.1) over a geometric point (C, p1, ..., pp) € Mg n(k),
we get the 2°(G)-gerbe

& (C) : Bunk (C) — Bun (C) := Buné,(C) [JZ(G). (5.3)
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The Leray spectral sequence for Gy, relative to the 2°(G)-gerbe gives the exact
sequence (analogously to (5.2))

Ve ©)*
Pic (SBunSG (C)) ‘<" Pic (Bun‘é (C))
3.(C) 5.(C) 64
wt obs
6T AN (Z(G)) = q? (%ung(C), Gm) .

The weight homomorphism wtaG (C) and its cokernel, which coincides with the

image of obs‘z; (C) by (5.3), have been determined by Biswas-Hoffmann [5, Propo-
sition 7.2], as we now recall (in a form which is slightly different from [5]).

Theorem 5.1 ([S]). Let C be a (irreducible, projective, smooth) curve of genus
g > loverk = k. Let G be a reductive group G and fix 6§ € m1(G).

(1) The weight homomorphism wté (C) factors as

c&.(C) WG () A*(Tg)
§ D 8 G § G G
wtg (C) :Pic (BunG (C)) —>NS (BunG (C)) A (Tga) (5.5)
(L, bz, b) = [l ®© b(d™ ® —)],

where cg (C) is the homomorphism of Theorem 4.1 and d*° € A(Tgss) is any
lift of the image 8% of § in w1(G**);
(2) The homomorphism A%, of (2.17) induces an isomorphism

7\\; : coker (wté (C)) = coker <éTI‘;(G)> , (5.6)
where 5\78@@) is the homomorphism of Definition/Lemma 2.11.

Proof. Part (1): note that thG (C) is well-defined since [ @ b(d* ® —) is in-
tegral on A(Tg) by condition (4.1) of Theorem 4.1 and its class in % is

independent of the choice of the lift d* by Lemma 2.9. The equality wt‘é c) =

ﬁ‘é (C)o CSG (C) is a consequence of the following factorization (see [5, Equa-
tion (5)]):

) (C) %NS
wt,(C) : Pic (Bung (C)) 6TLNS (Bun‘é(C)) O NS (Bun‘%G (C))
D1 * A*(TG)
A (Tg) —» —26) 5.7
— A Te) = 5 G-D

where c‘SG (C) is the homomorphism of Theorem 4.1, d € A(Tg) is any lift of
§ € m1(G), *NS(C) is the homomorphism defined in the second bullet below the
diagram (4.6), p; : NS(Bun‘%G (C)) — A*(Tg) is the projection onto the first
factor.
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Part (2): from part (1) and using that cg (C) is surjective by Theorem 4.1, we

get that coker(wt‘gG () = coker(ﬁsG (C)). From the definition of thG (C), using
Proposition 4.2 and the vertical exact sequence of (2.17), we get the commutative
diagram with exact rows

&b C ab* N (C) ) C P 15— (A G
NS(Bung, . ,(C)) <= "NS(Bung , ,(C))—Bil (A(To))|A(Tas))
Tl (C) i (C) jﬁ?@(m
AL A? *
* ((rab\C ab A*(Tg) 2 A (Ty6))
A (G ) A*(TGad) A*(Tgad) *

(5.8)

___sab
From the definition, it follows that WtSGab (C) is the projection onto the first factor of
NS (Bun‘g:b’g,n (C)), and hence it is surjective. Therefore the snake lemma applied
to (5.8) gives the conclusion. ]

Using the above result, we can now give an explicit expression for the weight
homomorphism wt‘é.

Proposition 5.2. Assume that g > 1. Fix a maximal torus 1 : Tg — G of the
reductive group G and let § € 71(G). The weight homomorphism Wt‘gG is equal to
the following composition:

A*(Tg)

)
w
wts; : Pic (BunsG,g,n> — RPic (Bun‘é’g’n) % AN(Z(6)) = A (Tga)’

where a)‘é is the homomorphism of Definition/Lemma 3.7.

Proof. From the geometric description of the weight homomorphism, it follows
that wtsG can be computed on any fiber of fb‘é over a geometric point (C, p1, ...,

Pn) € Mg n(k),ie., wt‘z; factors as the composition

wts; : Pic (Bun‘é’g,n) — RPic (BunaG,g,n)

5.9)
resd(C) Wi (C) (
—=— Pic (Bun§(C)) ——— A*(Z(G)),

where resSG (C) is the restriction homomorphism (4.1) and wt‘é (C) is the weight
homomorphism of (5.4).

From Theorems 4.3 and 5.1, it follows that the composition WtSG ) ores‘gG ()
is equal to the morphism a)‘SG @ yé : RPic(Bun‘SG, g,n) — NS(Bun‘gG’g’n) followed
the composition

res‘z; (C)NS

NS (Bun‘sG’g,n) —— > NS (Bun‘é(C)

) i (©)  A*(Tg)

, 5.10
A*(TGad) ( )
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which sends an element ([x], b) € NS (Bun‘é, g.n) INLO

A*(Te)

[X12(6) @ b(d ® —)aTe)] = 1] € A (Tgm)’

Therefore, the composition wt‘sc (C)o res‘SG (C) is equal to the morphism a)g, and
we conclude by (5.9). ]

Note that the forgetful morphism CIJ‘SG : Bun‘gG, gn — Mg,n factors as

8 pd
8 . Rund vG 8 G
CDG . BunG’g’n —_—> %unG’g,n — Mg,n,

where the morphism \P‘SG is fpqc (i.e., faithfully flat and locally quasi-compact) and
cohomologically flat in degree zero (i.e., the natural morphism (‘IJSG)‘i :OMgp —

8 . . . . . 8 . .
(V) (O un, ,g,n) is a universal isomorphism) since ®{; satisfies these properties
(see Theorem 3.1(2)) and v5G is smooth, surjective, and cohomologically flat in
degree zero.

Hence, the pull-back morphism \II‘SG in injective on Picard groups and we have
an injective pull-back morphism on the relative Picard groups

Pic(Bun . )

_ Pic(®Bung .,) Pic(Bun‘z;.g.")
T (W) (Pic(Meg.n))

T (@) (Pic(My.0) |
(5.11)

Therefore, combining (5.2) with Proposition 5.2, we get the new exact sequence

(v&)" : RPic (Bund; , ) - < RPic (Bunf; , ) :

(1)5 )* a)ﬁ
RPic (Bunf; , ,) < RPic (Bunﬁ; . ,,) Z6 A (Z(6))
e = (5.12)
obsg; 2 § g)* 2 §
—5 H (SBunG’g,n, Gm) — H (BunG,g’n, Gm) .

We now want to compute the kernel of a)é, which can be identified with the Pi-
card group of ‘Bun’ng ¢.n» and the cokernel of a)g, which is an obstruction to the
vanishing of the obstruction morphism. With this aim, we introduce the following
group.

Definition 5.3. Let G be a reductive group with fixed maximal torus 7 and Weyl
group #g, and fix § € 71(G). Denote by

NS (%un‘é’g,n) C Bil* 7% (A(Tg)) S

the subgroup consisting of those b € Bil**? (A (T))” such that

A (T9))
A*(TGad) ’
(5.13)
where d € A(Tg) is any lift of §, and ev® and resy are the homomorphisms of

2(G)
Definition/Lemma 2.8.

0= (GV%(G) oresgy )(b) =b(® _)|A(T9(G)) = [b(d ® _)|A(T@(G))] €



416 ROBERTO FRINGUELLI AND FILIPPO VIVIANI

The relation between the groups NS (%unaG, g.n) and NS (Buné’ ¢.n) 18 explained
in the following

Proposition 5.4. Let G be a reductive group with maximal torus Tg and Weyl
group W, and fix § € 71(G). We have the following commutative diagram, with
exact rows and columns:

oS
b NS reshS

Bil* (A(G*)) = NS(Bundl, | ) ——> NS(%uno gn) > ker((ev@mﬁ

5% Ns 8.NS
VGab VG

NS
*.NS resgy

o ab’ .
A*(G™) @ Bil* (A(G™)) = NS(Bunl, = NS(Bun; , ,,) —>> Bil***" (A(To)|A(Tos)) "¢

an)

s
“’251»'“’ 0§ "‘”?Z(G)
A A%
A*(G™)C - A" (Tg) 2 A Tgq)
AT ) AT gaa)

coker(a)sGNS) ﬁ' coker(ev@(m)

(5.14)

where the identification NS(‘Bun‘gGafb ,) = Bil’ (A(G®™)) follows from Defini-

tion 5.3, the morphisms ab*™> and resgS are the restrictions of, respectively, the

morphisms ab*™> and res@ (which are defined in Proposition 3.11), the mor-

ab
phisms véab’NS and VS NS are induced by the inclusions onto the second factors, the
morphisms a)gab and a)g’NS are induced by the projections onto the first factors.

Proof. The second row is exact by Proposition 3.11, and the third row is exact
by (2.17). Moreover the second and third rows commute: the equality a)é’NS )
ab* NS Gdb NS follows from the fact that ab™™S = A% GB B} (as it can

be deduced from Definition/Lemma 3.10), while the equality eV@(G) oresl =

Ak
_Aabow

A* o a)‘gG S is exactly the condition (3.24). We now conclude by applying the

snake lemma, and using that the kernel of a)G (respectlvely w?
§,NS §2b NS
Gab

qu ) is equal to

8% NS . O

the image of v; (respectively v ) and that ;" 1s surjective.

We can now give an explicit description of RPic(%unSG,g’n), which, via the

morphism (v‘é)*, can be identified with ker(a)‘sG) c RPic(Bun‘z;, ¢.n)s see (5.12).

Theorem 5.5. Assume that g > 1. Let G be a reductive group with maximal torus
T and Weyl group g, and fix § € m1(G).
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(1) There is an exact sequence
b i 5\ 7% 5
0= A*(G™) ® Hy,n —> RPic (Bunf;, ,) —> NS (Bun, ). (5.15)

where E and E are uniquely determined by

— — 5. —
(vg) 0i§=Jj¢ and vg" oy = (g ®vg)o (V)"
see Theorem 3.12(1) and Proposition 5.4;
(2) The image of yé is equal to

Im(y%) (5.16)
NS (Bunf ., ) ifn>1

_ s b6 ®x)+ (g — Db(x ® x) is a multiple
%b € NS(Bung g,) : of2g — 2, forany x € A(Tg)
ifn =0.

Remark 5.6. For n = 0, the divisibility condition in the right-hand side (5.16)
depends only on the image x® of x € A(Tg) in A(G®). Indeed, h(§ ® x) =
(8 ® x™) by (5.13), while the parity of b(x ® x) depends solely on x* since
DIA(ToG))®A(ToGy) 1S €ven by definition and bS\(T@(G))@)A(Gab) = 0 by the claim
in the proof of Proposition 2.4.

Proof. Consider the commutative diagram (of solid arrows)

8
. Y
RPic(Bunf; . ) — < = NS(Bunf, , )

[P G
- vg)* v
A*(G™) @ Ho r 20 RPic(Bur?, . e ; (5.17)
(G*®) ® Hg RPic(Bung , ,) —— NS(Bung , ,,) .
. P
A*(T,

where the horizontal row is exact by Theorem 3.12(1), the left column is exact by
(5.12) and the right column is exact by Proposition 5.4.

The above diagram implies the existence of the dotted arrows E and g.
Then, the exact sequence (5.15) follows immediately. Moreover, we have

vg’NS(Im()/‘é)) = Im(wé @& )/86).

We now conclude using the description of Im(wg &) y‘SG) in Theorem 3.12(2). O
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We now describe the cokernel of the homomorphism wg, which, via the ob-
struction morphism obs‘é, can be identified with the kernel of the homomorphism

we)*: H? (‘Bun’éjg,n, Gm) ~ H? (Bung’g’n, Gm) ,

see (5.2).

Theorem 5.7. Assume that g > 1. Let G be a reductive group with maximal torus
T and Weyl group g, and fix § € m1(G).

(1) If n > O then the homomorphism A_} of (2.17) induces an isomorphism
7\\; : coker (w%) = coker (ev‘g@(G)) , (5.18)

where evig@(G) is the homomorphism of Definition/Lemma 2.8;
(2) If n = 0 then there exists an exact sequence

—\ 9 Z
0 — coker ( yg ) —> Hom (A(Gab% —)
(2g —2)Z (5.19)

-5 coker (wg) — coker (evg(G)) -0,

NSt )

where coker(g) = is the co-kernel of the homomorphism %

mag)
defined in Theorem 5.5(1), A, and A%, are the homomorphisms induced by,
respectively, A} and A7, of (2.17), and BSG is defined as follows:

— Z
s . 8 ab
d¢ : coker < VG) —> Hom (A(G ), —(2g — Z)Z)

[b] > {x = [bE®F) + (1 - g)b(X®F)] |,

(5.20)

where b € NS(‘Bun‘é’g,n) C Bil*?7™(A(T))”%, and X € A(Tg) is any lift
of x € A(G™).

Proof. Consider the diagram

%3 )
A*(G™) ® Hy > RPic(Bunf; , ,,) —% Bil> 7" (A(T)) "

~._ gab . .gab ] 8
Bi=Wg, 1,0l gy 0 V() 0TS D

AF AG, *
. e x A*(TG) 2 A (ToG))
A (G ) A*(TGad) A*(TGad) (521)
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which has exact rows by (2.17) and (3.14). Furthermore, the diagram is commuta-
tive. Indeed, the left-hand square is commutative by the functoriality of a)g with

respect to the inclusion G®® < G. On the other hand, the morphism a)g @ yé

factors through NS (Bun‘é’ g’n). Then, the commutativity of the right-hand square
follows by (5.14).
Using (3.15), [14, Remark 3.5.1] and Definition/Lemma 3.7(ii), we compute

oz ® m. o) =0l ((Cror (Y Gor))

=0l ((1.0).(0.0)) + m((2.0). (x.0)) = 2m.L(1.0)) (522
=[¢] - x +2my(8®)  —2m(x(8°) + 1 - g)x
=(¢+m@2g-2)x ifg=2.

And similarly we get

o(x®y =1ty ifg=1 (5.23)
Therefore, combining (5.22) and (5.23), we deduce that
if n>1

-z , (5.24)
= Hom (A(G b), W) if n=0.

0
COkel‘(c/(;) = { A*(Gdb)
(2g—2)A*(G™)

Using this, and applying the snake lemma to (5.21), we get that:
e Ifn > 1 then
7\3; : coker ((ué) = coker ((CV;(G)) is an isomorphism,
which proves (1);

e If n = 0 then we have an exact sequence

e a8
. $ YG 8 I ab
RPic (%unG,g,n> — NS (%unG’g’n) — Hom (A(G ), m) (5 25)

I e
% coker (a)g) = coker (ev‘g@(G)) s
where 8% is the boundary homomorphism.

Part (2) follows from the exact sequence (5.25) together with the following claim.

Claim: The boundary homomorphism 8‘% is given by

Z
NS <‘Bun5G,gjn) — Hom (A (Gab), (ZgT)Z)

bis{x i [pE®T) + (1 - b F D],

(5.26)

where X € A(Tg) is any lift of x € A(G™).
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Let us first check that formula (5.26) is a well-defined homomorphism. We
recall NS(%un‘é’g,n) is a subgroup of Bil>*?~(A(T))”¢ (see Definition 5.3).
Then, the class

Z

is independent from the chosen lift X" of x since b(§ ® —)|A(7y,,) = 0by (5.13),
while the parity of b(X ® X) depends solely on x since bjA(7y,G)®A(To@)) 1S

- Q _ ..
even by Definition 5.3 and bl AT ®AGSH) = 0 by the claim in the proof of
Proposition 2.4. Moreover, the map

= b ®X) + (1 -2)b(X ®X)]

is linear since b(§ ® —) is linear and H(X +Y) @ (X + 7)) = b(X X))+ b(Y ®Y)
mod 2. —_

It remains to check that the boundary homomorphism 8‘2; is given by the
above formula (5.26). By the definition of the boundary homomorphism, for any

b e NS(%ung an) = ker(ev‘;(G) oresy) the image 88 (b) is equal to the class
[/L] € coker(®) of any element € A*(G®) such that A L) = a)G (b) where

be RPlc(BunG ) is any lift of b via the surjective homomorphlsm yG Using
Theorem 3.3(2) and Definition/Lemma 3.5, there are the following three possibili-
ties:

(@) If b € Bil**(A(Tg))”¢ N NS(%un‘é,g,n) C Bil®?7¢Y(A(Tg))”<, then we

can choose b = ‘Eg (b). Using Definition/Lemma 3.7(i) and the hypothesis
that b(8 ® —) (AT, = 0, we compute

o (1)) = b ® —) = NG, (6% ® —)ia»)
= %.(b) = [b2S ® —) Ao

This shows that B’SG (b) is given by formula (5.26) applied to b, noticing that
the second term in (5.26) goes away because b is even;

(b) Ifb = B (x ® ¥’ + x' ® y) for some x, x’ € A*(G™), then we can choose
b = aby ((x, x)). Using Definition/Lemma 3.7(ii), we compute

08 (ab3 (. 1) = A% (2(5™) 1 + £ (™))

0% (b) = [x(5™)x + £ (5*)x].



THE PICARD GROUP OF THE UNIVERSAL MODULI STACK. . . 421

This shows that g)tg(b) is given by formula (5.26) applied to b = B} (x ®
1+ x' ® x) since, for any x € A(G™), we have
Bi(x®x + 1@ N6 +(1-g)Br(x® 1 + 1 @ NE®Y)
=@+ 1 @0E @)+ 1 -U® 1 + X ® Nx®x)
=x(8°) X' () + 1/ (8°) x(x) +2(1 = ) x(x) ' (x)
E)((Sab))(/(x) + )(/(Sab))((x) mod (2g — 2);

() If b = BX(x ® y) for some y € A*(G™), then we can choose b =
aby (Z(x)). Using Definition/Lemma 3.7(ii), we compute

g @by (L (1)) = (x(8*)+1-g) A% () = 55;(19) =(x(6*) + 1 - )xl.

This shows that 5§G/(b) is given by formula (5.26) applied to b = B} (x ® x)
since, for any x € A(G™®), we have
Bi(x® N exX) +(1-g)Br(x®x+ NE®Y)
=X ® DE ®x) + (1 - ® N(x ®x)
=x(8°)x(x) + (1 = @) x(x)?
=1(8®)x(x) + (1 = g)x(x) mod (2g —2). m

Remark 5.8. The exact sequence (5.19) (if n = 0) is canonically isomorphic to
the exact sequence

8N
0 — coker ( yé) — > coker (a)‘g; @ yg;)

§.NS
oG
— coker (w‘é) — coker <a)8G’NS) — 0,

(5.27)

which is obtained by quotienting out the exact sequence (see Proposition 5.4)

vS,NS 8.NS A*(TG)

8 G 8 “G 8,NS
0—NS (%unG,g’n) ——>NS (BunG’g’n> —_—> m

— coker (a)G ) —0,

by the exact sub-sequence
OaIm(E)eIm(wg@yé)—)lm((yé)—) 0—0.

Indeed, Proposition 5.4 provides a canonical isomorphism coker(a)gG’NS) =

coker(ev‘g@(G)) which commutes with the two surjections from coker(wg) in (5.19)
and (5.27).
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Moreover, consider the diagram

. sab
g [ " aby . .
A*(G™) ® Hy s RPic(Bunfy;, , ,) —> RPic(Bun; , ,) = RPic(Bunf, , )

Bimalh,oith ng;:beaygz:z ngeyg sz (5.28)
i * NS w&'NS
i ab ab G A* (T,
A*(G®)—— NS(Bunf,, , ) ——= NS(Bunf, , ) ——— 25&%

which is commutative: the left square commutes since Im(i g’.;,) = ker(ygﬁ,) by

Theorem 3.6; the middle square is commutative by the functoriality of a)8G @ yg

(see Theorem 3.12(1)) and the right square commutes by the definition of a)SG’NS.

From the commutativity of (5.28), we get the homomorphisms

Hom (A(Gab), M) = coker(®) lgl) coker <a)‘g:b &) yg:b)
o — (5.29)
*,NS e
abT)coker (a)g @ yé) — > coker (a)%)
where ab*™S is an isomorphism by (3.41) and il is an isomorphism since a)g:b @

ab . . . . Sab . .
ygdab induces an isomorphism between the cokernerls of zg‘;h and of i; which are

both canonically isomorphic to Bil*(A(G?®)) (see Theorem 3.6). Moreover, the
composition of all the homomorphisms of (5.29) coincides with the homomor-

phism A%, since the composition of all the homomorphisms in the bottom row of
(5.28) is equal to A%,.

Therefore, we deduce that there exists an isomorphism ¢ = ab*™ o i1 from

the second term of (5.19) into the second term of (5.27), which commutes with

their homomorphisms A} and a)g’NS onto coker(a)g). This implies that ¢ also

commutes with the kernel homomorphisms of A:b and a)g’NS, which are, respec-

—

tively, 8‘2; and ng’Ns, and this completes the proof.

Remark 5.9. Assume that g > 1. Let G = T be a torus and let d € A(T).
Then clearly coker(ev’fj(T)) = 0, which implies that coker(w%) =0ifn > 0. On
the other hand, if n = 0, then, using the explicit basis of RPic(Bun‘Y{’ g’n) given
in [14, Theorem 4.0.1(2)], it is possible to check that

Z

®(dim(T)—1)
_d 5 Z Z 1m
coker ( YT ) o~ 22=2 7 @ 222
gcd(2g—2,+(d)+1—g) gcd(g—1,+(d))

d\ ~ L Z
coker (“’T) = 0cd2g—2. () +1-9Z° [gcd(g—l, +(d))Z

’

i| ®(dim(7)—1)
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where +(d) is the divisibility of d in the lattice A(T’), with the convention that

coker(yf‘f) = {0} if g = 1 and d = 0 (when the above expression for coker(ﬁ) is
not well-defined).

We end this section by describing the relative Picard group of the rigidifcation
’BunsG, ¢.n and the cokernel of the weight homomorphism wtd., in genus g = 0.
Remark 5.10. Assume that g = 0 and n > 1. Using (4.15), it can be proved that
the weight homomorphism wt‘gG is equal to the composition

) *

5. b 5 ~ 5 ©G A*(Tg)

WtG : Pic (BUHG’O,n> —» RPic (BunG,O,n) —> A*(g(G)) = m (530)
(lz,b) = [lz ® b(d* ® —)].

Therefore, using the exact sequences (4.16) and (2.17) and the fact that w? 5 18 an
isomorphism, it follows that (for some, or equivalently any, lift ** € A(T¢) of the
image 6* of § in 771 (G*)):

(i) The homomorphism Hg induces an isomorphism
RPic(Bunf; ) — {b € Bil*(A(T6))"C : b(d* ® —) € A*(Tgw)}

(i) The cokernel of a)g (and hence of the weight homomorphism wt‘g;) is equal
to the cokernel of the homomorphism

b € Bil*®(A(Tg))”¢ : A*(To6))

- —

hU(d™ ® —) isintegral on A(Ty(g)) A*(Tga)
b+ [b(d> ® —)].

ss

6. The universal moduli space M , ,

and its divisor class group

In this section we will describe the divisor class group of the universal moduli
space M g,sgs ,, of semistable G-bundles (over n-marked smooth curves of genus g)
in terms of the Picard group of Bung ¢ ,. Before presenting the results, we need
some preparation.

Definition 6.1.

(i) Let P — C be a G-bundle over a k-curve C. We say that P is (semi)stable
if for any reduction F to any parabolic subgroup P C G, we have

deg(ad(F)) (<) 0,
where ad(F) := (F x p)/ P is the adjoint bundle of F, i.e., the vector bundle

on C induced by F via the adjoint representation P — GL(p). We say that P
is regularly stable, if either G is a torus or P is stable and Aut(P) = Z(G);
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(i) Denote by Bun%i;’n, respectively Bun%’rgs’n, the locus in Bun‘é, ¢.n CONSIsting

of G-bundles over families of n-marked curves of genus g whose geometric
fibers are semistable, respectively regularly stable, and by ‘Bun‘z;’s; > Tespec-

. S,rs . - : )
tively Bung , . its image in Bung , .

We collect in the following Proposition the properties of the loci Bun‘éf;,n and

8,rs . 8,88 8,rs
Bung , ,, (respectively Bung , , and Bung', ).
Proposition 6.2.

8,88

Gen S %un‘é’g’n are open (smooth)

(i) The loci Bung®, , € Bunf, , , and Bun
substacks of finite type over Mg »;

.. . §,rs 8,88 § s,rs

(i) If G is a torus then BunG’g’n = BunG,g’n = Bung , , and ‘BunG,g’n =
8,88 § i
%unG’g,n = Bung , ,;

8,88

)
G.gn and Bung g, \

(iii) If G is not a torus then the complements Bun‘é’ e \ Bun

‘Bunf}’sg ., have codimension at least g;
(iv) If G is not a torus and one of the following holds

(a) char(k) > O0and g > 4,
(b) char(k) = 0 and g > 2, with the exception of the case g = 2 and G
having a non-trivial homomorphism into PGLj;

8,88 S,rs 8,58 S,rs
ther{ the gomplements Bung, , \ Bung, , and Bung', , \ Bung . have
codimension at least two.
8,88

G,g.n
8,rs

Proof. The properties for Bun have been proved in [14, Proposition 3.2.3,

3.2.5]. The properties for Bun have been proved in [5, Theorem 2.5] for

G,g,n
char(k) > 0 and in [9, Theorem I1.6] for char(k) = 0. The properties for ‘Bun‘éf;,n
and %un‘é’r;’n follow since v}, : Bunf, | — Bunf; . isa 2(G)-gerbe. O
Corollary 6.3.

(1) If either G is a torus or g > 2, the restriction homomorphisms

Pic (Bun‘é’g’n) — Pic (Bun%i;,n) and Pic (%uu‘é,g,n) — Pic (‘Bun‘éi;,n)
are bijective;
(1) If one of the following holds

(a) G isatorus;

(b) G is not a torus, char(k) > 0 and g > 4;

(¢) G is not a torus, char(k) = 0 and g > 2, with the exception of the case
g = 2 and G having a non-trivial homomorphism into PGL»;
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then the restriction homomorphisms

. 8,88 . S,rs . 8,88 . S,rs
Pic (BunG,g,n) — Pic <BunG’g’n) and Pic (‘BunG,g,n) — Pic (SBunG’g’n)

are bijective.

Proof. Under the assumptions in (i), Proposition 6.2 implies that either the com-
8,58
G.g.n

codimension at least two. Then the conclusion follows since Bun‘é aun (and hence

plements Bun‘SG, ¢ \ Bun and %unﬁ;, em \ %un‘é,sgs,n are empty or they have

‘BunsG,g,n) is smooth by Theorem 3.1(3), see, e.g., [14, Lemma 2.3.1]. The same
argument applies to point (ii). O

We now make the following:

Assumption 6.4. There exists an adequate moduli space

Bl MY, (6.1)
in the sense of Alper [2] (which is the same as a good moduli space if char(k) = 0,
see [2, Proposition 5.1.4]).

Although we expect that Assumption 6.4 should always hold true, we do not
know of a reference in the literature where this is proved in full generality. As far
as we know, the cases covered in the literature are the following:

e G = T torus, in which case 7 is a coarse moduli space in the sense of Keel-
Mori;

G = GL,, by [25];

char(k) =0, g > 2andn = 0, by [8];

char(k) = 0 and M , is a variety (which happens if and only if n > 2g + 2),
by [20].

Furthermore, in these cases, the adequate moduli space is a quasi-projective variety.

Remark 6.5. In characteristic zero and g > 2, the remaining cases should follow
by a slight modification of the argument in [8]. In positive characteristic over a
fixed curve, the problem has been solved in [15, 16]. We are not aware, if the same
results hold in the universal setting.

g’j;n) of the alge-

braic space M, g’? , (see [26, Tag OEDQ]) with the Picard group Pic(iBun‘é, an)-
We denote by Mg;,sn the (open) subset n(Bun‘é,rgs,n) C Méf;n Since
’Bun‘YG,g,n is smooth, the algebraic space Mg’:gin is normal, see [2, Proposition

We are now ready to compare the divisor class group CI(M
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5.4.1]. Then, the complement of the smooth locus (M, é’? 2)sm of M, g’? , has codi-
mension at least two. In particular, the restriction homomorphism gives an isomor-

phism

cr(mey,) S (M) ) =rie((ME,) )
By definition, the pull-back along the adequate moduli space 7 gives an injective
homomorphism

. §,rs . -1 §,rs = . §,rs
Pic ((MG’g’n)sm) — Pic (n ((MG’g’n)sm)> — Pic <§BunG,g,n) .

res

The last isomorphism is the inverse of the restriction morphism res, which is an iso-

rs

morphism since %un‘é’ is smooth and that the complement of 71 (M5 )om)

g,n G,g.n
has codimension at least two (since %un‘é’rs ,, has finite inertia and, so, the inverse
image along  preserves the codimension). Putting all together, we get an injective

homomorphism

7ol (Myy,) = Pic (Bung, ). 6.2)

Theorem 6.6. Let g + n > 3 (ie, Mg , is generically a variety). Suppose that
Assumption 6.4 holds true and that one of the followings conditions holds:

(1) G is atorus;
(ii) G is not a torus, char(k) > 0, g > 4;
(iii) G is not a torus, char(k) = 0, g > 2, with the exception of the case g = 2
and G having a non-trivial homomorphism into P GL,.

Then we have the following isomorphisms:

8, = 8, = . 8,
cl (MG; n) =al (MG”;,”) —> Pic (%uncj ;’n)

= . 8,58 = . 8
m—_1> Pic (‘BunG,g,n> res—_1> Pic <%unG,g,n)

where res are the obvious restriction homomorphisms and T* is the homomor-
phism (6.2).

Proof. The last two isomorphisms follow by Corollary 6.3. Observe that

8,88 §,rs 8,88 8,rs
codMg,ss (MG’g’n \ MG’g,n) > COdBun(S,ss <BunG,g’n \BunG,g,n) >2
.g.n G.g.n
where the last inequality follows by Proposition 6.2. In particular, the first homo-
morphism res is bijective.

§,0—rs S,rs
Gagn C BunGyg,n be the

open substack whose k-points are triples (C, g, P) € Bun‘é, ¢.n (k) such that

o Aut(C,o) = {1};
e Aut(P) = Z(G).

In order to prove that 7* is an isomorphism, let Bun
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We denote by M ; 5’0_” the open subset n(Bun{é’og_, YoM g?n and by %un‘é?g_’ e
the open substack vG (Bun‘é"g ) C %un‘ér; 0

We now assume g + n > 3. In this range, the locus of n-marked curves
without non-trivial automorphisms has codimension at least two in M, , (see [1,
Chapter XII, Proposition (2.5)]), and we deduce that

S,rs §,0—rs
, , >
COd‘Bun%!’;n (%uuG’g’n \ %uuG’g’n ) >2

(6.3)

8rs §,0—rs
and COdMg";jn( ng\M Ggn )22.

In particular, the restriction homomorphisms

Pic (Bungys ) — Pic (Bung 1) and C1 (M7, ) - €1 (MEST) ©4)

are bijective. Hence, it is enough to show that the restriction

~% . §,0—rs . §,0—rs
Freusors €1 (M) = Pic (Bung’y )

is an isomorphism. This follows from the fact that the adequate moduli space (6.1)
restricted to those open substacks

. §,0—rs 8,0—rs
nl%un%ﬁ;;‘g . ‘BunG,g,n — MG,g,n (6.5)

is an isomorphism. Indeed, by definition Bun‘éj’_;ls is an algebraic space. In par-
ticular, the adequate moduli space (6.5) is a coarse moduli space in the sense of
Keel-Mori, see [2, Theorem 8.3.2]. Since the coarse moduli space is universal for
maps to algebraic spaces, we must have that 7r|% 8.0 is an isomorphism.

n

It remains the case g + n = 3, i.e., (g,n) (3,0),(2,1). Under these
assumptions, the locus of n-marked curves with non-trivial automorphisms has one
(irreducible) divisor component D (see [1, Chapter XII, Proposition (2.5)]). Since

the morphism <I> %un8 " gn — Mg is smooth with irreducible fibers, we
deduce that the restnctlon homomorphlsms (6.4) are sur]ectlve and their kernels
are freely generated by the irreducible divisors (CD )y~1(D) and n((@ )y~Y(D)),
respectively. With this in mind, the theorem follows by repeating the argument of

the previous case. O
7. Examples
The aim of this section is to make explicit the results of this paper for the reductive

groups G such that the semisimple factor g** of the Lie algebra g of G (see (2.4))
is simple. We will therefore distinguish several cases according to the type of the
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simple Lie algebra g*. For each of these cases, we will first compute the lattices
of Wg-symmetric bilinear forms appearing in Proposition 2.4 and Definition/Lem-
ma 2.11

Bil*™ (A (Ta6))| A (Tow))"C <3 Bil>™ (A(Toe))|A(Tes))©

(7.1)
C Bil**Y(A(Tg))”e,

which have rank one by Corollary 2.7. Then we will compute, for any § € 71(G),
the cokernels of the morphisms

A* (T
eV 6y B (A(To()) | A (Tax)) e — A (Z(2(G))) = A(T@G‘G’))
_ o . A* (T,
W01 BIP (A (To0) A (T6+)) " — A(Z(2(6)) = S 2

appearing in Definition/Lemmas 2.8 and 2.11. Note that, since ev is the re-

8
2(G)
striction of 6\78@((;), there is a surjection
8 ~4
coker (ev@(G)) —» coker (ev@(G)> ,

whose kernel is either trivial or isomorphic to Z/2Z by Definition/Lemma 2.11(i)
and the fact that the lattices (7.1) have rank one.

7.1. Type A;,—; (n > 2)

Let us first recall some properties of the root system A,_;.
Consider the vector space R” endowed with the standard scalar product
(—, —) and with the canonical basis {¢1, ..., €, }. Consider the subvector space

V(An1) = {6 = (1o bn) €R" 1) 5 =00 CR”

We will freely identify V(A4,—;) with its dual vector space by means of the (restric-
tion of the) standard scalar product (—, —). The root (respectively coroot) lattice
Q(An—1) (respectively Q(A,_,)) and the weight (respectively coweight) lattice
P(Ap—1) (respectively P(A,_,)) of A,—; are given by

Q(An—1) = Q (A)_) = V(A1) NZ" C P(Ap—1)

=P (A)_ ) =V(Ap)NZ" + <a)1 =€ — > €i>'
n
It follows that group P(A,—1)/Q(An—1) is cyclic of order n and it is generated
by w;. The Weyl group # (A,,—1) of A,—1 is equal to S, and it acts on the above
lattices by permuting the coordinates of V(A4,—1) C R”.
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A semisimple group H which is almost-simple of type A,—; is isomorphic
to SL, /s, for some (unique) r € N such that r|n. In particular, H = SL, and
H* = PSL,. By choosing the standard maximal tours Ty of H consisting of
diagonal matrices, we get the canonical identifications

ATse,) = Q (451) S ATt /)
= 0 (4y_1) + (F01) € AlTvst,) = P(A;_)).

(7.2)
A*(TSLn) = P(An—l) :—) A*(TSLn /Mr)
= Q(Ap-1) + (ro1) 2 A*(Tps,,) = Q(Ap—1).
It follows that the fundamental group of SL, /u, is equal to
A(Tsi,, juy) n
H) = ==l — (L) > 7/r2, 7.3
71 (H) ATss,) rwl /r (7.3)

while the character group of the center Z°(SLy, /j4;) = tn/[hr = [Ln/r is equal to

A* (TSLn /Mr)

A (Z(SLy [1r)) = A*(Test)

= (rany) = Z/gz. (7.4)

From now on, we will consider the following

Set-up: Let G be a reductive group such that Z(G) = SL, /u, and G* =
SL, /us, with 1 < r|s|n. Equivalently, G is the product of a torus and one of
the reductive groups (see [7, (2.1)])

SL,, /ir if r=s

Cuus/y (SLn Jpuy) = SlbrXCn g y ot

where s/, = ig/r is embedded diagonally in SL,, /11, X Gy,
Lemma 7.1. Let G be a reductive group as in the above set-up. Then we have that:

(i) Bil*(A(Tg))”e = ((—, _))
(i) Bil"™ (A(To)) [ A (Ts)) " = (e (-, )

(i) Bil** (A(T@(G))|A(TGS>))WG _ {gzk’"(ﬁf’")(—:—)) if v2(r) = vals) = 2% >0

lem(rs.n) (_7 _)

m > otherwise;

here vo(N) is the 2-adic valuation of a number N € N, ie., 222M|N pur
202(N)+1 yy
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In particular,

) — va(n)
coker(rg) = Z[2Z if va(r) = va(s) = = >0

0 otherwise.

Part (i1), combined with [22], recovers [7, Section 3] if G = SL,, or PGL,, and [21,
Theorem 5.7]if G = SL,, /i, for some 1 < r | n.

Proof. First of all, the three lattices have dimension one by Corollary 2.7.

Part (i): the symmetric bilinear form (—, —) € Bil*(A(Tg)) is # (An—1) =
Sy-invariant and it is even since A(Tg) = Q(A,_,) is generated by the elements
€ —€j (for1 <i # j <n)and we have that

(€i —€j. € —€;) = 2.

This also shows that (—, —) is a generator of Bil** (A (T ))”¢ since 2 is the small-
est non-zero even integer.

Part (ii): consider an element of Bil**"(A(7))”¢, which, by part (i), is of
the form «(—, —) for « € Z. Using (7.2), we get that the element «(—, —) belongs
to Bil*™ (A (To(q)) |A TGee)) if and only if

2

n n n n—1 n Iem(rs, n

Zaa(—a)l,—a)l) a—(wl,a)l) a——:)a—eZ(=>¥
r S rs n rs n

|,

where in the second equivalence we have used that r and s are coprime with n — 1
since they divide n by assumption.

Part (iii): since Bil®~¢ (A(T@(G))|A(TGS>))WG has rank one, by Defini-
tion/Lemma 2.11(i) we have that the inclusion rg has index at most two. Using
(7.2) and part (ii), we get that rg has index two if and only if

1 , 1 .

lem(rs, n) (ﬁwl,'zwl) Cm(” lem(rs.m) 1) is odd
n

{I’l lS even

v2(lem(rs, n)) < 2vy(r).
The second condition is equivalent to (using that r|s)

max (v (rs), v2(n)) = vo(lem(rs, n)) < 2v,(r)

{ va(r) +v2(s) < 202(1) { v2(s) = va(r)

v2(n) < 2us(r), v2(n) < 2ua(r),

and this concludes the proof. O
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Lemma 7.2. Let G be a reductive group as in the above set-up. Consider an
element § € m(G) and denote by A* € Z/sZ the element corresponding to
8% € m1(G*®*) = m1(SL, /us) under the isomorphism i (SL,, [pus) = Z/sZ of
(7.3). Then we have that

: =6 zZ
1) coker(ev ~ - ;
() ( @(G)) gcd(A‘Slc?;rs,n)’%)Z
Z .
d DASS lem(rs,1) ﬂ)Z l_f 1)2(1’) = UZ(S) > U22(n) >0
(i) coker(ev‘;(G)) ~ )% ( ER .
otherwise.

gcd(ASS lem(rs,n) ,%)Z

rs

In particular,
_ L Jua(r) = va(s) > v® -
coker (ev‘z )‘ +1 if 2
‘coker (ev‘;(c)ﬂ = ‘ 2(6) V2(A%) < va(n) — va(r)

‘coker (é\'/_s@(G)) ‘ otherwise.

Proof. Let us first prove part (7.2). Lemma 7.1(ii) implies that
s—ev 7
Bil* ¢ (A(T@(G))|A(TGss)) G

is freely generated by W(—, —). Therefore part (7.2) follows from the fol-
lowing

Claim: We have that

—~5 lem(rs, n) _ A¥lem(rs, n)
I IR

c Z/’rlz = AX(Z(2(6))),

where the last isomorphism follows from (7.4) together with our assumption that
2(G) = SLu /pir.

Indeed, using that 771(G*) = m;(SL, /i) is generated by Tw; by (7.3) and
AN(Z(2(G))) = A*(Z(SL, /u,)) is generated by rw; by (7.4), the claim fol-
lows from the obvious identity

Iem(rs, n) lem(rs, n)

(4201 —) = A (ron.—) € A" (Tst, ju,) -

n

Part (7.2) is proved in the same way using the description of
. Z
Bil**Y (A (T@(G)) ’A(TGSS)) G

contained in Lemma 7.1({i1).
The last assertion is straightforward. O
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7.2. Types B; and C; (with [ > 2)

Let us first recall some properties of the dual root systems B; and Cj.

Consider the vector space V(B;) = V(C;) = R! endowed with the standard
scalar product (—, —) and with the canonical basis {¢;,...,€;}. We will freely
identify R! with its dual vector space by means of the (restriction of the) standard
scalar product (—, —). The (co)root and (co)weight lattices of B; and C; are given
by

_ VY _ _ v\ _ 7l e Zi €i
QB)=0(C')=Z" CcPB)=P(C)) =1L +<w, = T>

0(C) =0 (B) =tz : (.8 iseven| C P(C) =P (B)) =7

It follows that the group P(B;)/Q(B;) is cyclic of order 2 generated by w;, while
P(C))/Q(Cy) is cyclic of order two generated by, say, €;. The Weyl group of
B; and C; is equal to # (B;) = #(C;) = (Z/27)" % S; and it acts on the
above lattices in such a way that S; permutes the coordinates of R! while (Z/27)"
changes the signs of all the coordinates.

A semisimple group H which is almost-simple of type B; (respectively Cy) is
isomorphic to either the (simply-connected) spin group Spin,; , ; (respectively the
symplectic group Sp,;) or the (adjoint) orthogonal group SO;;4; (respectively the
projective symplectic group PSp,;). By choosing the standard maximal tours Ty
of H consisting of diagonal matrices, we get the canonical identifications

A (TSPin2/+1) = A" (TPszz) = {E ez (5.6) is even} CA (T5021+1)
= A" (Tsp,,) = z,

* 1 Z €j * (75)
A (TSpin2/+1) =A (TPszz) =7 + <a)1 = é > DA (T3021+1)
=A (TSPZI) =7
It follows that the fundamental group of H is equal to
{0} if H = Spiny;y,Spy
A(TSO2]+1) ~ .
T (H) = § Koy 1) — (1) = Z/2Z it H =S03;4; (7.6)
A(Tbsp,,) .
A(ﬂffjf) = (w)) = Z/27 if H = PSp,,,
while the character group of the center 2°(H) is equal to
{0} if H= SOzl+1,Pszl
A*(T in ) . .
AN (H)) = { Tomoo sy = (o) = Z/2L if H = Spiny., (1.7)
A*(TSpZI)

W])szl):(Gl)%Z/ZZ lfHZszl
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From now on, we will consider the following:

Set-up: Let G be a reductive group such that Z(G) (or equivalently G*) is almost-
simple of type B; or C;. Equivalently, G is the product of a torus and one of the
following reductive groups (see [7, Example 2.3]):

Spiny; 41, SO2141, Cpuy (Sping; 4 1) = CSpiny; 4 1, Spay, PSpy;, Cpu,y (Spay) =CSpy s

where CSpin,; , ; is the Clifford group of order 2/ + 1 and CSp,; is the group of
symplectic similitudes of order 2/.

Lemma 7.3. Let G be a reductive group as in the above set-up. Then we have that:

N BN (A(TNY6 — (=) if G = Sping; 44
O BIFATGDTE =00 0 i 6 = spy:

Gi) Bil>™* (A(To)|A(Tes))"©
(=) if 2(G) = Sping; 4y or SOz;44
(2(—,—)) ifeither Z(G) = Spy;
or 9(G) = PSp,; andl is even
(4(—,—)) if 9(G) =PSpy andl isodd,

(i) Bil** (A(Toc))|A(Tow))"©
(=) if 2(G) = Spiny; 44
(2(—.-))  ifeither (G) = SOx41 or 7(G) = Spy
= or 7(G) =PSp,; and 4|1
(4(—=,—)) if 2(G) =PSpy; andl =2 mod 4
(8(—,—)) if Z(G) =PSp,; andl isodd.

In particular,

Z]27 if either 2(G) = SOy;41 or 2(G) = PSp,; and 411

coker(rg) = 0 otherwise

Part (ii), combined with [22], recovers [7, Section 4] if G = Sp,; or PSp,; and [7,
(5.1)]if G = Spiny; ;| or SOy 4.

Proof. First of all, the three lattices have dimension one by Corollary 2.7.

Part (i): the symmetric bilinear form (—, —) € Bil’(A(Tg)) is #(B;) =
W (Cp)-invariant. From (7.5), it follows that if G = Spin,; ,; then (—, —) is even
and it generates Bils’eV(A(Tspin2]+l))W(Bl); while if G = Sp,; then 2(—, —) is
even and it generates Bil*>® (A(TSPZI))W(CI ),
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Part (ii): if Z(G) is almost simple of type By, then from (7.5) it follows that
(—.—) is integral on A(Ts0,,.,) ® A(Ts0,,,,) = Z' ® Z', which implies that
Bil® ™ (A(T@(G)) |A(Tgss))WG = Bils’eV(A(Tg))WG = ((—, —)) by part @).

If, instead, Z(G) is almost simple of type Cj, then from (7.5) it follows that
2(—, —) is always integral on A(Tsp,,) ® A(Tpsp,,) while 2a(—, —) (for o € Z) it
is integral on A (7psp,,) ® A(Tpsp,,) if and only if

D€ D€ !
YAEW) L = 20— 2 -1,
£ oz( 5 5 a4<:> |

from which the conclusion follows.

Part (iii): from (7.5), it follows that (—,—) is even on A(Tspiny, +1) while
a(—,—) is even on A(Ts0,,,,) if and only if « is even, which gives the conclu-
sion if if Z(G) is almost simple of type B;.

Again from (7.5) it follows that 2(—, —) is even on A(Ts,,), while a2(—, —)
is even on A(7psp,,) if and only if

o if 4]
e Y6 I
22920{(%,%):2&1(:}4“)5-1(:) 2« if I =2 mod 4
4la if 211,

from which the conclusion follows in the case when Z(G) is almost simple of type
C. O

Lemma 7.4. Let G be a reductive group as in the above set-up. Consider an
element § € mw1(G) with image §% € w1(G*). Then we have that

coker(&‘g@(G)) = coker(ev‘?@(G))

0 if either 2(G) = SOy;41 or Z(G) = PSpy,
= or 9(G) = Sp,; and 8% # 0and 211
Z/2Z otherwise.

The computation of coker(é‘\“l‘;(c)) for G = Sp,; or PSp,; can be found in [6,
Section 8.2] and for G = Spin,; | or SO, in [6, Section 8.3].

Proof. If 2(G) is of type By, then E(/‘;(G) = 0 since

Bil"™* (A(To)) |A (Te+)) " = (=)

by Lemma 7.3(ii) and (—, —) is integral on A(7s0,,,,) ® A(Ts0,,) by (7.5).
Therefore, the conclusion follows from (7.7).
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Assume now that Z(G) is of type C;. The map éTI‘;(G) (and hence also

ev‘s@(G)) is obviously zero if either §% = 0 (which is always the case if G** = Sp,,
by (7.6)) or Z(G) = PSp,,. In the remaining cases,

Bil* ™ (A(To6)) |A (Tew)) "¢ = BIF™(A(Tog)) = (2(=.-))

by Lemma 7.3 and hence

~8 _ 8 _ _ .
eV@(G)_ev@(G):O<:>Z92( T T, —214:>llseven.

i€ D Ei) !

We conclude using (7.7). O

7.3. Type D; (withl > 3)

Let us first recall some properties of the root system D;.

Consider the vector space R! endowed with the standard scalar product (—, —)
and with the canonical basis {e, ..., ¢;}. We will freely identify R’ with its dual
vector space by means of the (restriction of the) standard scalar product (—, —). The
root (respectively coroot) lattices and the weight (respectively coweight) lattices of
Dy are given by

Q(Dl)=Q(DlV)={E € Zl:(g,é) is even} CP(D,):P(DIV)ZZZ+<Z;E">.

We set

€1+ ...+ ¢ €1+ ...+€_1—€
wj:=———— and (w;_1:= .
2 2

The group P(D;)/ Q(Dy) is equal to

P(D;)/Q(D;) = {2¢1 = 0, €1, 07, 01}

7/A7 = (w;) = {w;—1) if [ isodd
Z/27 x 7] 27 if [ iseven.

~

The Weyl group of D; is equal to

W (D)= (Z/22)""" % 8= §(5=(sl, L E),0)€@)2z) xS [E =15,

and it acts on the above lattices in such a way that S; permutes the coordinates of
R! while (Z/27)'~' < (Z/27Z)" changes the signs of all the coordinates.

A semisimple group H which is almost-simple of type D; is isomorphic to
either the (simply-connected) spin group Spin,;, or the orthogonal group SO,;, or
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the (adjoint) projective orthogonal group PSO,; or, if / is even, to that of the two
semisimple groups

Q;Ell := Spiny,; /<a)l_%i%>.

Note that the two groups inll are (abstractly) isomorphic; the isomorphism is
induced by the automorphism of the Dynkin diagram D; that exchanges the last
two nodes.

By choosing the standard maximal tours 7y of H consisting of diagonal ma-
trices, we get the canonical identifications

A(Tspiny,) = {g eZ! 1 (£8) is even} c A(Tsoy)
=7 c A(Tps()z]) =7 + <%>,

A* (i) =2/ + (5% 5 4" (T 1.8

= 7! 5 A*(Tso,,) = {g eZ! 1 (£8) is even} :
A (T%) — A (ngc) - {g eZ! (58 is even} + <w,_%i%>.

It follows that the fundamental group of H is equal to

{0} it H = Spiny,;
ih0a) = {e1) = Z/2Z if H=S0y
Spmzl)
m(H) = AT, 1) (7.9)

A ~ : _ +
A(Tpi:zll) = <wl—%ﬂ:%> = Z/ZZ if H= QZI

A(Tps0,;) )
A(T:fzjj) ={0.€1, 07, 011} if H = PSOy;,

while the character group of the center Z°(H ) is equal to

{0} if H =PSOy;
A*(Tso,,) - ] B
R (To) = (1) = Z/22 it H =S50,

AN (Z(H)) = | AT, 2
Wsszll)z(a)l_%i%)gZ/2Z if HZQ;:I
A*(TSpinZI) _
A*(Trsoy;) —

(7.10)

{0, €1, w7, w71} if H = Spin,; .

From now on, we will consider the following:

Set-up: Let G be a reductive group such that Z(G) (or equivalently G**) is almost
simple of type D;. Equivalently, G is the product of a torus and one of the reductive
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groups (see [7, Example 2.3])

Spin,;, SOy, PSOy;, C(El)(Spinzl) = CSpin,,,
Cll'z (SOZI) = CSOZI ) Cff(spinzl) (Spin2[)’

Q;El,C(wl_%i%)(Spinﬂ),CM(inl) if [ is even,

where CSpin,; is the Clifford group of order 2/ and CSO,; is the group of special
ortogonal similitudes of order 2/.

Lemma 7.5. Let G be a reductive group as in the above set-up. Then we have that:

(i) Bil*(A(T6)"¢ = {(=-));

Gi) Bil®~ (A(To) |A(Tew))"®
((—,-)) if either Z(G) = Spiny,;
or 2(G) = G* = SOy,
or 2(G)=G*=QF and 4|1
(2(—,-)) ifeither 2(G) = SOy and G* = PSOy
or 2(G) =PS0y; and?2 |l
or 2(G)=G*=QF and | =2 mod 4
or 2(G) = Q% and G* =PSOy
(4(=.=)) i 2(G) =PSOy and211;

(i) Bil™ (A(To))|A(Tes)) @

(=) if 2(G) = Spiny,

(2(—,—-))  ifeither 2(G) = SOy
or 2(G) =PSOy; and 4|1

= orQ(G):QQEI and 4|1

(4(—, =) if 2(G) =PSOy andl =2 mod 4
or 2(G) = Q;El and | =2 mod 4

(8(—,—)) if if 2(G) =PSOy and2tl.

In particular,

7./27  if either 2(G) = G* = SOy
or 2(G) = G* = inl and 4|1
coker(rg) = or 2(G) = Q;El and | =2 mod 4
or (G) =PS0y and 41l
0 otherwise.
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Part (ii), combined with [22], recovers [7, Section 5] if G = Spin,; or SO,; or
PSOy;.

Proof. First of all, the three lattices have dimension one by Corollary 2.7.
Part (i): the symmetric bilinear form (—, —) € Bil*(A(Tspin,,)) is # (D;)-
invariant and, from (7.5), it follows that (—, —) is even and generates

Bil>" (A (TSPiny))W(Dl) :

Part (ii): from (7.5), we get that (for any «):

e (—,—)is integral on A(Tspinﬂ) ® A(Tpso,,) and on A(Ts0,,) @ A(Tso,,);
e a(—,—)isintegral on A(Ts0,,) ® A(Tpso,,) if and only 2 | a;
e a(—,—) isintegral on A(Tpso,,) ® A(Tpso,,) if and only if

Y€\ @ Y€ Y€\ a-l 2| if 2|1
Zaa(el,T —EandZaa T, —T“:= 4)la if 211

e a(—,—)isintegral on A(Tg+) ® A(T,=+ ) if and only if
21 21

. _a-l Lo if 4]l
3“<w’—%i%’w’—%i%)_7‘:} 20 if I=2 mod 4

e a(—,—)isintegral on A(T+) ® A(Tpso,,) if and only if
21

o a-l
Z 9“(Elvwl—%i%):§ and Z > a(")l—%:{:%’wl—%:&%):T 2.
Combining the above equivalences, part (ii) follows.
Part (iii): from (7.5), we get that (for any «):
o (—,—)isevenon A(Tspin,;) ® A(Tpsos,;);
e a(—,—)isevenon A(Tso,,) ® A(Ts0,,) if and only if 2 | a;
e a(—,—)iseven on A(Tpso,,) ® A(Tpso,,) if and only if
27 > a(e1,€1) = a and
2| if 41
€ € .l
ZZaa(Zéél,zéel) :a4 e l4)a ifi=2 mod4
8|la if 241;

a(—,—)isevenonon A(Tg+) ® A(T,z) if and only if
21 21

D€ Y € o-l 2|la if 411
2Z 1 , 1 —
9“( 2 2 5 T )4la ifl=2 mod4

Combining the above equivalences with part (ii), we get (iii). 0
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Lemma 7.6. Let G be a reductive group as in the above set-up. Consider an
element § € 71(G) and denote by % its image in w1(G*). Then we have that:

(1) coker(&‘g@(G)) =

7./AZ
7)27 x 727
7)2Z

0

if 2(G)=Spiny,211,8%=0

if 2(G) = Spiny,2|1,8%=0

if 2(G) = Spiny;, ord(6%°) = 2

or P2(G)=G* =80y, § =0

or D(G) = S0y, G* = PSOy,;
ord(6%) # 4

or 2(G) =G* =QF, § =

or 2(G) = Q%. G* =PSOy

otherwise,

where ord(8%) is the order of §* inside the group w1 (G™);

(ii) coker(ev‘;(G)) ~

In particular,

coker(ev‘g@(G)) ‘ =

7/AZ
7)27 x 727
7)27

| coker(é‘\'/%(G)

‘coker(éT/‘_S@(G))

if 2(G)=Spiny,211,6%=0

if 2(G) =Spin,;,2|1,8% =0

if 2(G) = Spiny;, ord(5%°) = 2

or 2(G) = G* = S0y

or P(G) = S0y, G* = PSOy,;
ord(6%) # 4

or 9(G) =G* = Q;tl

or 2(G) = Q3. G* =PSOy

otherwise.

IW+1if 2(G) = G* =S80y
and 6% # 0
or 2(G) = G* = QF,
and 8% #0
otherwise.

The computation of coker(éTl‘s@(G)) for G = Spin,; or SOy; or PSO,; or Q;El can
be found in [6, Section 8.3].

Proof. We will distinguish several cases according to what Z(G) and G** are. We

will freely use (7.9) and

(7.10).

(a) Z2(G) = PSOy;. In this case, the codomains of 5\78@(6) and of ev‘;(G) are zero,
hence their cokernels are zero.
(b) 2(G) = G* = SO,,. In this case we have that

AN(Z(2(6))) ={0.e1} = Z/2L

and 7,(G%®) ={0,¢1} = Z/27Z.
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Since Bil*™ " (A(To)) |A (Tas))” @ is generated by (—, —) by Lemma 7.5i),
we have that

€1 if §% =¢
0 if6%=0

0 if 8% #£0

~§ _
= coker(eVy,g)) = 7)27 it § =0,

&6 (===

On the other hand, since Bil”*' (A (T9(q)) |A(TGss))W(G) is generated by 2(—, —)
by Lemma 7.5(iii), the map ev‘g@(G) is zero for any &, which implies that
coker(ev‘g@(G)) =7Z/27.

(©)Z(G) = SOy; and G* = PSO,;. In this case we have that
A (Z(2(G))) =1{0,e1} = Z/27Z and

Z/AZ if / is odd

G*) = {0, €1, 01, w11} = oy
m1(G™) =10, €1, 01, w1} 7J27. x ZJ27 if [ iseven.

Since Bi (A(Toq))|A(T6+)) "' = BiF™* (A(To@) A (Te) " is

generated by 2(—, —) by Lemma 7.5, we have that

0 if ord(5®) # 4

() (=) = evyy gy (2=, ) = 26" = {61 if ord(5™) = 4.

Hence we get that

0 if ord(5%) = 4

~3 _ ) _
coker (ev@@)) = coker (ev@@)) ~)Z/2Z  if ord(6%) # 4.

d) 2(G) =G* = Q;El (and [ is even). In this case, we have that

A(Z(2(G))) = {o,w,_%i%} ~7/2Z and

71(G*) = {00,y | = 2/22.

Since Bil*™ " (A(To)) |A (Tas))” @ is generated by (—, —) by Lemma 7.5(i),
we have that
5 Yoy W8 =010
eV@(G)((_’_)) - {0 e if 8% =0 o
0 if 8% #0

~8 _
= coker(evy,g)) = Z)27 it 8 = 0.
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On the other hand, since Bil**" (A (T4 (c)) |A(TGss))W(G) is generated by 2(—, —)
by Lemma 7.5(iii), the map ev‘g@(G) is zero for any &, which implies that
coker(ev‘g@(G)) =Z/27.

() 2(G) = inl and G* = PSOy; (and [ is even). In this case, we have that
A (Z(D(G))) = {o,w,_%i%} ~7/27 and 1 (G%) = {0, €1, w1, w1 ).

Since Bil" ™ (A (Toq))| A (Tas))” @ is generated by 2(—, —) by Lemma 7.5i),
we have that évb’@(G) = 0, which implies that

coker (&7‘;(6)) = coker (ev‘;(G)) >~ 7./27.

() Z(G) = Spiny,;. In this case we have that

A(Z(2(G))) = A*(Z (Spiny)) = {0.€1. 01, 011}

7.]4Z if / isodd
7J27 x 727 if [ is even,

~

where 71(G*) is a subgroup of m1(G*!) = m;(PSO,;), which is canonically
isomorphic to A*(Z(Spin,;)) via the standard scalar product (—,—). Since

ey w(G s—ey # (G
Bl (A(Tu(6) | A(Te+) "7 = Bi"™* (A(Tue) | A(T+) "
ated by (—, —) by Lemma 7.5, we have that

is gener-
a’lg@(a)((—7 -) = CV‘;(G)((—, —-)) = 8% € 11 (G*)
C 1 (PSOy) = A*(Z(Spiny)).

Hence we deduce that

coker(éTf‘;(G)) = coker (ev‘;(G))

7./4Z if 241,6% =0
Z)27 xZJ2Z if 2|1,8% =0
7)2Z if ord(8*) =2

0 if ord(§%) = 4 (which can occur only if 2 t [). O
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7.4. Types Eg, E7 and Eg

Let us first recall some properties of the root systems Eg, E7 and Es.

Consider the vector space R® endowed with the standard scalar product (—, —)
and with the canonical basis {¢1, . .., €;}. Inside R®, we will consider the following
subvector spaces:

V(E7) :={§ = (§1.....6) € R® : &5 = —&7},
V(Ee) :={§ = (51,....&) € R® : 3 = —6, §7 = o).

We will freely identify R®, V(E5) and V(Eg) with its dual vector spaces by means
of the (restriction of the) standard scalar product (—, —). The root (respectively
coroot) lattices and the weight (respectively coweight) lattices of Eg, E7 and Eg
are given by

O(Es) = Q(Ey) = {§ € Z' : (5.) iseven} +<Z;€i>
= P(Eg) = P(Ey).

Q(E7) = Q(E7) = Q(Es) NV(E7) C P(E7)

(E )=Q(E7)+<a)7 - wy (7.11)
Q(Es) = Q(E¢) = Q(Es) N V(Es) C P(Ee)

P(E) = 0(Eq) + {01 = Ses —er = <o)

In particular, the group P(E)/Q(Ex) is equal to

P(Eg)/Q(Es) = {0},
P(E7)/Q(E7) = (w7) = Z/2Z,
P(E¢)/ Q(Es) = (w1) = Z/3Z.

Explicit bases of the lattices Q(Eg), Q(E7) and Q(FE¢) are given by
Q(Eg) = (a1, 00,03, 04, a5, &6, 7, Ag),

O(E7) = (o1, 00,03, 004, @05, 6, A7), (7.12)
O(Es) = (01,02, 003, 004, 05, ),

where the elements ¢; are given by

€] —€) —€3 — €4 —€5—€c — €7+ €3
o] = 2 )

0 = €1 + €2,03 = €3 —€],04 = €3 — €3,

05 = €4 —€3,0g = €5 — €4,07 = € — €5,0(3 = €7 — €¢.
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From (7.11), it follows that the semisimple algebraic groups which are almost-
simple of type E. are the following ones: a simply-connected and adjoint group
Es = Eg = E;d of type Eg, a simply-connected group E, (respectively E) of type
E5 (respectively E¢), an adjoint group E%d (respectively E%d) of type E7 (respec-
tively E¢). The (co)character lattices of the maximal tori of the above semisimple
groups are therefore equal to

A(Teg) = A*(Ts,) = O(Ey).
A(TE7) = A*(T]E%d) = Q(E7) C A(TE%d)

= A'(T,) = PED = Q(En) + [o:= 205225
A(Ts,) = A*(Tya) = Q(Ee) C A(Tgw)

= A*(T]E6) = P(E¢) + <a)1 = %(63 — €7 — 66)>.

It follows that the fundamental group of a semisimple group H as above is equal
to

{0} if H=E3,E7,E6
A(T[E%d) _ <a) . 2epte7—eg > ~ Z/2Z if H=F

m(H)= AT —\Y77 2 = =57 (7.14)
A(T]E%d)

A(Tk) =(w1:=3(es — €7 — €6))=Z/3Z if H=EY,

while the character group of the center 2 (H ) is equal to

AY(Z(H))
{0} it H = Eg, Ei EY
A*(Tw.) _ .
_l s =(on=2tg=s)azz it H=E, (7.15)

A*(Tgy) .
TTE?) =(w1:=2(es — €7 — €6))=Z/3Z if H=E,.
6
From now on, we will consider the following:

Set-up: Let G be a reductive group such that Z(G) (or equivalently G*%) is al-
most-simple of type E«. Equivalently, G is the product of a torus and one of the
following reductive groups (see [7, Example 2.3])

Es, E% ]E%d’ Cuz (E7), Esv E%d7 Cm (E6)'
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Lemma 7.7. Let G be a reductive group as in the above set-up. Then we have that:
(i) Bil**(A(T6)" = (=, -));

(i) Bil*~ (A(To6)) | A(Tav)) "

(=) if 2(G)=Eg or 2(G) =E, or 2(G) =E,

=1@=.-) F2G) =E

(B(=.-) I 2(G) = Eg":

(i) Bil™® (A(To(c))|A(Tes))”®

(=)  if 2(G) =Eg or 2(G) =E, or 2(G) =E,

= {4(=-) if2(G) =Ef

B(=-) 2(G) =Ey.

In particular,

Z/27 if 2(G) =E¥

coker(rg) = 0 otherwise

Proof. First of all, the three lattices have dimension one by Corollary 2.7.

Part (i): the symmetric bilinear form (—, —) € Bil*(A(T%,)) is # (E)-invari-
antand, from (7.12), it follows that (—,—) is even and it generates Bil® (A (Tg, ) (Ex),

Parts (ii) and (iii) for Z(G) = Eg,E,, Eg follow from part (7.7) and Lem-
ma 2.9.

Parts (ii) and (iii) for Z(G) = E%d follows, using (7.13), from

3
a(—,—) is integral on A(de) ® A(T]E%d) — 73 a{w, w7) = 70[ —2]|a,
3

a(—,—) is even on A(T]Egd) ® A(T]E%d) — 75 a{w7, w7) = 705 4| a.

Parts (7.7) and (7.7) for 2(G) = E‘éd follows, using (7.13), from

4
a(—, —) is integral on A(TEgd) ® A(TEgd) — 7535 a{w;,w1) = ?oz <—3]|a,

4
a(—,—) is even on A(TEgd) ® A(TEgd) — 7Z 535 a{w;,w) = ?oe —3|a. U

Lemma 7.8. Let G be a reductive group as in the above set-up. Consider an
element § € m1(G) with image §% € w1(G*). Then we have that

coker (6\78@(@) = coker (ev‘?@(G))
Z/27  if either G* = E,
or 9(G) =E,and G* =E¥ and § =0
=12/32  ifeither G* = E,
or 2(G) =Egand G* =E and §% =0
0 otherwise.
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Proof. If 2(G) is of type Eg, then the conclusion is obvious since Z(G) = G
by (7.13).
Assume that Z(G) is of type E7 or E¢. The map éT/‘;@(G) (and hence also

ev‘;(G)) is obviously zero if either 6*° = 0 (which is always the case if G* = E,

or Eg by (7.14)) or Z(G) is equal to E%d or Ezd. In the remaining cases, i.e.,
(2(G),G%) = (E,,E¥) or (E4, EY) and §% = w7 € 71(E¥) or §% = mw; €
71 (EX) with 1 <m < 2 (by (7.14)), Lemma 7.7 implies that

Bil*™* (A(To))| A (T+)) "¢ = Bil* (A(Tus)) = (- -)

and hence we get that eNV‘;(G) = eV‘;(G) is non-zero (and hence surjective), because

6
YA
4¢

2€6 + €7 — €5 2€6 + €7 — €3
e ) (. ) (@) = (@7, 7) = ( )

2 ' 2
s 2 2
Vo) (= N(@1) = (mwy,w1) =m (5(68 —€71—¢6). g(es —e7 - 66))

4
=m- 7.
m3§z’

We conclude using (7.15). I

7.5. Types G,, F4

For the root systems of type G, and Fy, the (co)root and (co)weight lattices (whose
explicit definition we will not need to recall) satisfy

Q(Fy) = P(Fy) and Q(F)) = P(Fy).
Q(G2) = P(G2) and Q(G) = P(Gy).

This implies that there is a unique semisimple group F4 (respectively G;) which is
almost symple of type Fy4 (respectively G»), and these two groups are both simply-
connected and adjoint. In particular, we have that

A(Tw,) = Q(Fy) = P(F)) and A*(Ty,) = Q(F4) = P(Fy),
A(Tg,) = Q(G5) = P(Gy) and A*(Tg,) = Q(G2) = P(Ga).

(7.16)

(7.17)

From now on, we will consider the following

Set-up: Let G be a reductive group such that Z(G) = F4 or G,, or equivalently G
is the product of a torus and either F4 or G,.

Lemma 7.9. Let G be a reductive group as in the above set-up. Then we have that
@) Bil™ (A(Toe))|A(Tes)) "¢ = Bil*™ (A (Toa)|A(Tes)) "¢ =

Bil**(A(T))”¢ = Z. In particular; coker(rg) = 0;
(ii) coker(é\'/‘;(a)) = coker(ev‘;(G)) = 0 forany § € m1(G).
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Proof. Part (i): the equality of the three lattices follows from (7.17) and Lem-
ma 2.9, while the fact that they are of rank one follows from Corollary 2.7.
Part (ii) follows from the fact that Z(G) = G* by (7.17). [
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