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Symmetric tensors: rank, Strassen’s conjecture and e-computability
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Abstract. In this paper we introduce a new method to produce lower bounds
for the Waring rank of symmetric tensors. We also introduce the notion of e-
computability and we use it to prove that Strassen’s conjecture holds in infinitely
many new cases.
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1. Introduction

Let k be a field of characteristic zero and let F' € k[xg, X1, ..., x,] =S =®S; (i >
0 and n > 1) be a homogeneous polynomial (form) of degree d, i.e., F € Sy. Itis
well known that in this case each S; has a basis consisting of i’ powers of linear

forms. Thus we may write
,
FZZOl,'Ll-d Otiek,Li651.
i=1

If k is algebraically closed (which we now assume for the rest of the paper) then
each o; = ,Bid for some B; € k and so we can write

inj(ﬂiu)":ijif. (1.1)

i=1 i=l1

We call a description of F as in (1.1), a Waring decomposition of F. The least
integer r such that F has a Waring decomposition with exactly r summands is
called the Waring Rank (or simply the rank) of F.
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There are several variants on this notion in the literature (see, e.g., [1,7,10]).
In this paper we will only be interested in the notion of rank described above.

It is easy to see that F has rank one if and only if [F] € P(S,) is a point of the
Veronese variety, V. C P(Sy). If F has rank r then [F] € P(Sy) is on o, (V), the
(r — 1) secant variety of V.

Given a Waring decomposition of F

F=L94. . +L{ with L; = ajoxo + ... + GinXn,
we can associate a set of £ points in P to this decomposition, namely

X:{[alo:...:aln],...,[agoz...:agn]}.

The importance of this set will be explained a bit further on.
Let T = k[Xo, ..., Xn] = @&T; (i > 0) be another polynomial ring and let T
act on S by setting
XioF = (0/0x;)(F)

and extending linearly (see [5] or [6]). With respect to this action we write
Fl={geT | goF =0}

If F is a form of degree d, then every form in T of degree > d + 1 is in F* and
so F1 is an Artinian ideal of T'. It is a classical theorem of Macaulay that 7'/ F~ is
also a Gorenstein ring with socle in degree d. Moreover, every Gorenstein Artinian
quotient of T with socle in degree d is of the form 7/ F, with F a form of degree d.
Suppose that F = L where L = agxo + ... + a,x, and g € Ts. Then

go L% =(d/8)g(ap, ..., a,)L70.
It follows that if F' € S; has a Waring decomposition
F=L‘11+...+L;fwhereL,~ < piePtandyY = {p1, ... pe}
then forall g € T such that g(p;) =0,i =1,...,¢,g € F+, that is
Iy C F*

where Iy C T is the ideal of the set Y.

The opposite implication is also true, namely if Iy C F~, with Y a finite set
of ¢ points in P, then F = Lf +...+ L?, where the L; correspond to the points
in Y, as described above.

These containments are referred to as the apolarity lemma and one can find
proofs in [6,9].

Having a particular Waring decomposition of F', or equivalently the ideal of a
set of distinct points in F*, will thus give us upper bounds for the rank of F. We
also need some good lower bounds for the rank of F. The importance of finding
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such lower bounds was underscored in the papers of [8] and in further work [12].
In [8], generalizing a result of Sylvester, a lower bound was found in terms of ranks
of catalecticant matrices and dimensions of the singularity loci in the spaces defined
by varieties coming from catalecticant ideals. In [10] the authors found a new lower
bound on the rank and using it they computed rk((xg - . .. - x,)?), that is the rank of
a monomial with all the exponents equal to each other. In [3] a generalized bound
produced the rank of all monomials. Theorem 3.3 uses different invariants of F to
further generalizes the ranks of [10] and of [3].

Our new approach to the study of the rank is particularly effective in the di-
rection of Strassen’s conjecture. This famous conjecture was stated in the 1973
paper [11] and is still open (for some recent progress see [2]). The symmetric ver-
sion of Strassen’s conjecture can be stated as follows: the rank is additive on the
sum of forms in different sets of variables, that is

tk(Fy + ...+ Fp) =1k(F)) + ... +1k(Fy)

if the forms F; are in distinct sets of variables. In [3] it was proved that the con-
jecture holds if the forms F; are monomials. In Theorem 6.1 we find several other
families of summands for which Strassens’s conjecture is true.

The paper is organized in the following way. In Section 2 we recall some of
the basic ideas we will use. In Section 3 we introduce the notion of e-computability
and use it to establish our new lower bound for the rank of F. In Section 4 we find
several infinite families of forms which are e-computable and thus compute their
rank. In Sections 5 and 6 we show how useful the notion of e-computability is in
dealing with Strassens’s conjecture by giving many new examples of families of
forms for which Strassens’s conjecture is true. In Section 7 we give an example of
an infinite family of forms whose rank is computable by ad hoc methods. We show
that the first member of this family is not 1-computable.

ACKNOWLEDGEMENTS. The first, second, and third authors wish to thank Queens
University, in the person of the fourth author, for their kind hospitality during the
preparation of this work.

2. Basic facts

Let
S =k[xg, ..., x,] and T =k[Xo, ..., Xul,

where k is an algebraically closed field of characteristic zero. We let T act via
differentiation on S as above.
Given a homogeneous ideal / € 7 we denote by

HF(T/I,i) = dim; T; — dimy [;



366 E.CARLINI, M. V. CATALISANO, L. CHIANTINI, A. V. GERAMITA AND Y. WOO

the Hilbert function of T/I in degree i. It is well known that the function H F (T/I, i)
is eventually a polynomial function with rational coefficients, and this polynomial
is called the Hilbert polynomial of T /I. We say that an ideal I C T is one dimen-
sional if the Krull dimension of 7'/I is one, equivalently the Hilbert polynomial of
T /1 is some integer constant, say £. In the case that / € T is one dimensional,
then this eventually constant value of the Hilbert function of 7'/1 is called the mul-
tiplicity of T /1. If, in addition, / is a radical ideal, then [ is the ideal of a set of £
distinct points in P*. We will use the fact that if I is a saturated ideal and T/ is
one dimensional of multiplicity £, then H F (T /I, i) is always at most £.

Our main tool is the apolarity lemma, whose proof can be found in [6, Lemma
1.31].

Lemma 2.1 (Apolarity lemma). Let X = {[L1],...,[L¢]} C P(S)) be a set of £
distinct points, corresponding to the linear forms L1, ..., Ly € S1.If F € Sy, then

F=cL{+...4+cLl,
forcy,...,co €k, ifand only if
Ix C F*.

Note that the coefficients ¢; are necessary even if k is algebraically closed since
some of them could be zero; this is not a minimal decomposition. With the apolarity
lemma in mind, we make the following definition.

Definition 2.2.

a) If F is a form in § and X C P" is a set of reduced points for which Ix C F*,
then we say that X is apolar to F;

b) If X is apolar to F and |X| < |Y| for any other Y apolar to F', then we say that
X minimally decomposes F .

We conclude with the following trivial, but useful, remark (see [3, Remark 2.3]).

Remark 2.3. The computation of the rank of F is independent of the polynomial
ring in which we consider F'.

More precisely, consider a rank r form F € k[xo, ..., x,]. Then F has rank r
also if we consider F as a form in k[xo, ..., Xp, Xn41, - - - » Xntt].-

3. Lower bound for rank

It is useful to recall the following well known results.

Remark 3.1. Let / C T be the ideal of a zero-dimensional scheme and r € T,
a homogeneous differentiation of degree e. If ¢ is not a zero divisor in 7'/J, then
from the exact sequence

0 —> (T/D)ie —> (T/D)i —> (T/(J + ©)))i — 0, (3.1
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we get, for s > 0,

e HF(T/J.s) =Y HF(T/(J+).0). (3.2)
i=0
Lemma 3.2. Let F(xg, ..., x;) € Sq, then

Fr: X, =(X;oF)t.
Proof. Let g € T and suppose that we have g € F* : X;. Now
geEFT  X;i < (gXi)oF=0<=go(XjoF)=0<= g e (X;oF)*,
and the conclusion follows. O

We are now ready to state and prove our first theorem.

Theorem 3.3. Let F € Sy and let X C P(S}) be apolar to F (so Ix C FL). Let
I C T be any ideal generated in degree e > 0 and lett € 1,. If t is not a zero
divisor in T /(Ix : I), then for s > 0 we have

e |X| > Zs: HF(T/(Ix : [ + (), i) > Xs: HF (T/ (FL ya (t)) , i) .
i=0

i=0

Proof. Note that Ix : [ is the saturated ideal of Y C X consisting of all points of X
not lying on the zero set of /. Thus, by Remark 3.1, we have

1 S
~ ZHF(T/(IX T+ @), i) =Y
—
for s > 0. Moreover for any s,

Z HF(T/(Ix : 1+ (1)),i) > Z HF(T/(FL: 1+ @), ),
i=0 i=0

since Ix is contained in F-, and so we are done. O
The following corollary gives a useful lower bound for the rank of F'.

Corollary 34. Let F € Sy. Let I C T be any ideal generated in degree e > 0 and
let t be a general form in I,. For s > 0 we have

k(F) > G) Z(;HF (T/ (FL I+ (z)) : i) .
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Proof. Let X minimally decompose F, so |X| = tk(F). If I C Ix the statement is
trivially true. So assume / ¢ Ix. Since ¢ € I, is a general form, then ¢ is not a zero
divisorin T/Ix : I. So by Theorem 3.3 we are done. O

Notice that the summation on the right side cannot decrease as s increases
and, indeed, the summands are all zero for s big enough. Hence we often use the
corollary above with s = oo.

Definition 3.5. Let F' € S; and e > 0 be an integer. We say that F is e-computable
if there exists an ideal / C T generated in degree e such that for general t € I, we

have -
rk(F) = (é) S HF (T/ (FL I+ (t)) : i) .
i=0

In this case we say that the rank of F is computed by I and t. In case I = (t), we
simply say that the rank of F is computed by t.

Proposition 3.6. Let F € Sy and assume that tk(F) is computed by I and t. If X
minimally decomposes F and if we let Iy = Ix : I, then X = X' and Ix + (t) =
FL+ ).

Proof. Since tk(F) > 0, then Ix : I # T and, since t is general, we may assume
that ¢ is a non-zero divisor in 7'/Ix : I. By (3.2) we get

/ 1 . 1
|X|_<—€> IEOHI (2/(1X]+(t)),l)
Hence we have

1 (o.¢]
k(F) = X| > [X'| = (;) S HF(T/(x: 1+ @), 1)
i=0

> (%) 2 HF (T/(FX 14 ®).1) =tk(F).

It follows that X = X’ and Ix : I + (1) = FL : I + (). Hence
FreWCFr I+ =Ik: 1+ =Ix+ @) Clx+¢) < F-+@),

and the conclusion follows. O

4. Forms which are e-computable

In this section we give several examples of forms which are e-computable for vari-
ous values of e.



SYMMETRIC TENSORS: RANK, STRASSEN’S CONJECTURE AND ¢-COMPUTABILITY 369

We start by considering forms in two variables, that is F € § = k[xg, x1], and
we recall Sylvester’s algorithm to compute the rank of F, see [4]. Since F is a
Gorenstein Artinian ideal and F- ¢ T = k[X(, X1], we have that

Ft = (h, h)

where degh| = d; < deghy = d> and dy + d» = deg F + 2 with h and ki, having
no common factor. If /| is square free then rk(F') = dy, otherwise rk(F) = d5.

Proposition 4.1. If F € S = k[xo, x1] and F+ = (hy, hy) as above, then

(i) if hy is not square free and h; = z%, then F is e-computable, where e =
degt;
oy . . dy—di+1 .
(11) zf hy is square free and d| < d, tl.zen F ls.e-computable forany e < ==
(iii) if dy = dp we can assume we are in case (i).

Proof.

(i) hy is not square free, so tk(F) = db; N
Since in this case, hy = t2hy, it is easy to see that FL @) = (thy, h).
It follows that F- : () + (1) = (¢, h2). Noting that (¢, i) is a complete
intersection of degree e - d», we have Z?io HF(T/(F* : (t) + (1)),i) =
e -dr = e -1k(F), and this completes the proof of (i);

(ii) hy is square free and d| < dp, so rk(F) = d;.

Let t be a form of degree e < % such that 7|h,. We claim that

F:@)+ @) =, hy).

It is easy to show that F+: @ = (h1, hy/t), hence FL: o+ @0 =
(t,hy, hp/t). But (¢, k1) contains all forms of degree at least e + d; — 1,
anddeghy/t =dy—e > e+dy— 1. Thus (¢, hy, ha/t) = (¢, h1), and we have
proved the claim. Hence,

S CHF(T/(F*: (t)+ (). i) =e-di =e-tk(F);
i=0

(iii) If di = d; then, using the discriminant of a general combination of /| and &,
we can assume that 4 is not square free. O

We now consider monomials in § = k[xg, ..., x,]. It is shown in [3] that any
monomial is 1-computable. In the next proposition we generalize this fact.
Proposition 4.2. Let F = x°x{" -+ x," where 0 < ag < aj; <... < a,. Then F

is e-computable for
ap + 1
1<e< .
- T 2
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Proof. We know that rk(F) = T17_, (a; + 1) (see [3]). Now

1
U (XG) + (xE) = (o) o+ (x)
_ (Xgo—e—i-l’ X?IH» L Xz”ﬂ, XS)

_ ar+1 a,+1 e
= (x{ X xg).

Hence
i HF (T/ <FL L (XE) + (Xg)) , i) —e M (@ +1)=e tk(F). O
i=0

Remark 4.3. It would be interesting to know if the forms of Propositions 4.1 and
4.2 are e-computable for e’s different from those described in the two propositions.

In the following propositions we exhibit several other families of e-computable
forms.
Consider

F=xg<x{’+...+x};>.

Since, both for n = 1 and, by a change of coordinates, for b = 1, F is a monomial,
we skip those known cases (see [3]).

Proposition 4.4. Let b > 2, n > 2 and let
F = x¢ (xlb+...+x,§) €S =klxo..., %

Ifa+1 > b, then F is 1-computable, the rank of F is computed by [ = (X1, ..., Xy)
and a general linear formt € I, and we have

tk(F) = (a + 1)n.
Proof. Consider the ideal I = (X, ..., X;;) C T. We first calculate F' LT,
Fltir= (FL : (Xl,...,Xn)> - (FL : (Xl)) n---n (FL : (Xn)).

Thus, by Lemma 3.2,

1 1
Ft:.1= (x(‘)‘xf_l> N---N (xgxf,_])
= (gt XD X Xa) e (XETL X X, XD)

= (XgH XD XD X Xa e X X )
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Now consider I = FL : I + (¢),wheret = o1 X1 + ... + o, X,, € I is a general
form. We have

T=Fr I+ (X1 + ...+ auXy)
_ (Xg+1, X2, .. X2 X1 Xos o, Xpet Xy @1 X1 —I—...—}—aan).

We want to apply Corollary 3.4, so we compute Y ;_o, HF(T/ T, i) for s large
enough.
Fora+1=2and b =2, we have F =x0(x12+...—|—x,%) and

T= (X3 X3 X2 X0 X0, X1 Xa oo, Xt Xy o Xy 4 Xy )

So we can easily see that the following table holds true:
i 01 2 3

HF(T/I,){1nn—10.

From this we get Y 5_y HF (T/1,i) = 2n.
Fora 4+ 1 > 2 we have

T=(Xg" X3 XL X0 Xa X Xa o Xamt X X X )

A simple computation shows that:
i 012...aa+1a+2

HFE(T/I,i){lnn...nn—1 0.
From this we get Y 5_o HF(T/I,i) = (a + 1)n.
Hence, we get rk(F) > (a + 1)n in both cases using Corollary 3.4.
Now consider F-. Since

FE2 (XEH XD = X8, XD = XD X1 Xa, XX Xt X )

then the ideal
(g + (x4 xa ) (- DXt - = X)),
X1X2, X1 X3, oo Xam1 Xa)
is contained in F. This last is the ideal of (a + 1)n distinct points lying on the

lines whose defining ideal is (X1 X7, X1 X3, ..., Xn—1Xy).
By the apolarity lemma, it follows that rk(F) < (a+1)n, and we are done. [
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Remark 4.5. For some special F in Proposition 4.4 the rank of F can be computed
by ¢, instead of by I and ¢. For instance, if F = x(y2 + z%) we have rk(F) = 4.
Note that in the proof of Proposition 4.4 we showed that the rank was computed by
I =(Y,Z)andt = 1Y + oy Z. However, the rank is also computed by ¢t = X, in
other words:

3 L. N
;HF(T/(F ~(X)+(X)),z)_4,

We do not know if the rank of F can always be computed by 7. For instance, if
F = xz(y2 + 722 +w?) we have tk(F) = 9 (see Proposition 4.9 below). In the proof
of Proposition 4.4 we showed that the rank was computed by I = (Y, Z, W) and
t =a1Y +ayZ + azW. Note that

o0
1. )
Z(;HF(T/<F .(Y+Z+W)+(Y+Z+W)),z>_3,
and that

— 1. )
gHF (T/ (F .(X)+(X)),l) _s,

that is, neither t = Y + Z + W, nor t = X compute the rank. We do not know if
there is a ¢+ which computes the rank of this F.

Remark 4.6. Let M; = xgxf’ , so the polynomial F of the previous proposition,
becomes
F=xg (st 4. txb) =M+ + M,

In case a + 1 = b we have (see [3] for the rank of the M;)
tk(F) = (a+ 1)n < k(M) + - - - +1k(M,) = (a + 2)n.

Thus, an analogue of Strassen’s conjecture is certainly not true if a form is the sum
of forms which have a common factor. On the other hand, when a +1 > b, we have

(a+ Dn=rk(F) <rtk(M;) +...+1k(M,) = (a + Dn.

Thus, in some cases, the rank is additive over summands, even when the summands
have a common factor.

Proposition 4.7. Letb > 2,a > 1, and let
F =x§ (xi’ +x§>.
(1) If a+ 1 = b, then the rank of F is computed by I = (X1, X3) and t and

k(F) =2(a + 1),
(i1) Ifa + 1 < b, then the rank of F is computed by t = Xo and tk(F) = 2b.
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Proof.

(i) Follows from Proposition 4.4.

(ii) In this case let I = (Xo) C T. Obviously 7 is a general form in /1. Hence we
consider the ideal I = FL : (X() + (Xo), and we have

Since
i |012...b—1b

HF(T/T,l122... 2 1

b ~
we have Y HF(T/I,i)=2b. Hence from Corollary 3.4, we get rk(F) > 2b.
i=0
Since
(12, X3 + X} - X5)
is the ideal of 2b points apolar to F', by the apolarity lemma we are done. [

Remark 4.8. Note that fora +1 < b and F = x; (xi’ + xé’ ) we have
tk(F) = 2b < tk (xgxf) +rk (xgxg) —2b+2.

Now we study the rank of the forms G = F + xg +b where F is as in Proposi-
tions 4.4 and 4.7, that is,

G =xg (xf+.. +ab) + x5

We will show that F' and G have the same rank.

Proposition 4.9. Let b > 2, n > 2 and let
G=x6‘<xf+...+x5)+xg+b=xg (xé’—i—xf—i—...—i—xi’) €S.
Ifa+ 1> b, then the rank of G is computed by I = (X1, ..., X,) and t and

k(G) = (a + D)n.
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Proof. As in the proof of Proposition 4.4, we consider the idegl I=(X1,...,X,)C
T and the linear general form r = a1 X1 + ... + o, X,. Let [ = Gt : 1+ (r). We
have

T=GLt:(Xy,....,X) + (@1 X1+ ...+, Xy)
- (GL : (xl)) NN (Gl : (X,,))+(a1x1 ot anXy).

Hence, by Lemma 3.2,
T a. b—1 L a. b—1 L
1=(x0x1 ) ﬂ--~ﬂ(x0xn ) F@@Xi+ .. +anX,).

Note that this is exactly the ideal T that we constructed in the proof of Proposi-
tion 4 4, thus we may proceed in the same way and we get tk(G) > (a + 1)n.
Now consider G It is easy to show that G contains the ideal

41 [(a+d b b\ vatl—b b+l b1
<nxg —( . )<X1+...+Xn>Xg XD XD

X1X2, X1X3,. .-,Xn—1Xn>-

If a + 1 = b, then the ideal

a+b _
(nxg+1—( , )(X{’+...+Xﬁ)xg+1 b,X]X2,X]X3,...,Xn_1X,,>,

is contained in G and defines (a + 1)n points apolar to G lying on the n lines
whose defining ideal is (XX, X1X3, ..., Xn—1Xy). Hence, we conclude using
the apolarity lemma.

If a + 1 > b, then consider the ideal

b
A= <a <nxg+‘ - (“ Z >Xg+‘—b (xt+..+ X2)>+,3X‘1’+1 Fo o+ pXOH

X1X27 X1X3v MR ] Xﬂan>9

where «, B € k. It is easy to see that 4 is contained in G. Moreover, for generic
values of o and 8, A is the ideal of (a4 1)n distinct points lying on the n lines whose
defining ideal is (X1 X2, X1 X3, ..., X;,—1Xy). In fact, consider the line whose ideal
is (X2, ..., X,) (and analogously for the other n — 1 lines). We have

a+b

A—I—(Xz,...,Xn):(a <nXg+l—< b

)Xg+1"’xi’)+ BX{T X, ., X) :
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hence, in order to find the a + 1 points, we have to solve the equation

1 (aFD\ ari-byp +1
a<nXS —( b )Xg X1>+ﬂX? =0,

or, in other words, we have to consider the linear series cut out on P! by the linear

system
_ +1 a+b\ ati—byb +1
z _<nxg —< . )Xg xb, x4 >

whose general element is reduced by Bertini’s theorem.
Thus, using the apolarity lemma, it follows that rk(G) > (a + 1)n, and we are
done. O

Remark 4.10. The lower bound in [8, Proposition 4.7] can only prove the case
a =1 and b = 2 of our Proposition 4.9.

Proposition 4.11. Let b > 2 and
G =x; (x{’—f—xg) + x4t = x8 (xg—i—x{’ —}—xé’) €.
() Ifa+ 1 = b, then the rank of G is computed by 1 = (X1, X2) and a general

t € I1,and 1k(G) = 2(a + 1);
(1) Ifa + 1 < b, then the rank of G is computed by t = (Xo) and 1k(G) = 2b.

Proof.
(i) This is a particular case of Proposition 4.9;

(i1) As in Proposition 4.7,1et I = (Xg) and t = X¢. Consider the ideal T=GL:
(Xo) + (Xp). We have

T= (oo 6 + X0 = (5 () +23)) + xo)

= (Xo. X1, X7 - Xé’),

which is the same ideal we found in the proof of Proposition 4.7. So rk(G) >
2b follows in the same way.

Now notice that
axg - () (xt+x8). x1x;

is the ideal of 2b points which are apolar to G. Thus, by the apolarity lemma,
rk(G) < 2b, and we are done. ]
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Remark 4.12. With a bit more effort one can show the following:

a) In Propositions 4.4, 4.7 (i), 4.9 and 4.11 (i) the forms are e-computable if
2e < b. The rank is computed by I = (X{,..., X) and a general form
tel,;

b) In Propositions 4.7 (ii) and 4.11 (ii) the forms are e-computable if 2¢ < a + 1
and the rank of F' is computed by I = (X§) and t = X¢.

Now we study forms F € § = k[xo, ..., x,] for which
Fr=(¢“ g, ....gn) CT
is a complete intersection such that
a>2 and ae<d; <...<d,,

where e = degq, d| =deggy,...,d, = degg,.
We need the following lemma:

Lemma 4.13. Let J = (g%, g1, - - ., &) be a complete intersection as above. Then
there exist f1, ..., fn such that

J:(qa7f1,"-7fﬂ)a

where deg f; = degg; and, for all j, 1 < j < n the ideal (f;, fjy+1,..., fa)
defines a smooth complete intersection in P" of codimension n — j + 1 and having
degree Hl‘-’: i

Proof. Consider the linear system of forms of degree d, in J. This system has
no base points and so by Bertini’s theorem, the general element is smooth. Since
the general element is a linear combination of g, and other forms of degree d, in
J, there is no loss of generality in choosing a generator for J of the type f, =
gn + (other forms of degree d,,). We call this new generator f,,. Now consider
the linear system of codimension two varieties cut out on V (f;;) by all the other
hypersurfaces in J of degree d,,—1. This linear system is clearly base point free in
V (f,) and so the general element of this system cuts out a smooth variety on V (f;,)
of codimension 2 in P". We can then replace g,_; by a general element of this
system. Continuing in this same way we arrive at hypersurfaces fi, ..., f, where
deg f; = degg; and (f1,..., fu) describes a set of I1}'_,d; points. O

We have the following result.
Theorem 4.14. Let F € S be a homogeneous polynomial. If
Fr=(" g &)
is a complete intersection such that

a>?2 andboth e =degq > 0andae <dy =degg) <...<d, =degg,,
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then F is e-computable, the rank of F is computed by q and we have
o0
tk(F) = M_yd; = (1/e) Y HF (T/ (F*: @+ @) 1)
i=0

Proof. Using Lemma 4.13 we know that rk(F) < IT}"_, d;.

Since {¢%, g1, ..., gn} is a regular sequence, F* : (¢) = (¢* ', g1, ..., gn).
Hence

L@+ @) =(q.81.... 8.
So by Corollary 3.4 we have

1 o0
tk(F) > <;> Z(;HF(T/(CLgl, oo gn)y 1) =TI d;,

and the conclusion follows. O

We now give an example of a form which is 2-computable but not 1-computa-
ble.

Example 4.15. If
F =x! 22x9y +33x7y* — 22x%7% + 396x7 %22 — 462x7y* 72
+33x7z% — 462x7 y? % 4 385x3 y4ZH,

then F is 2-computable and rk(F) = 25. In fact, using the software CoCoA! we
get

2
Fl= <<X2 +Y2+ zz) G\ Gz) ,

where G| = Y + Z(X2 4+ Y2+ Z%)%and Go = Z° + X (X% + Y2 + Z%)2.
Hence

k(F) > (1/2) Z HF (T/ (FL <X2 LY 4 22) + (x2 1Y 4 22>) , i)
i=0

= 25,

and the ideal (G1, G;) C F is the ideal of 25 distinct points.
We will see, in Example 4.23, that this form is not 1-computable.

Proposition 4.16. Let F = x{G € S for some a and some form G € k[xy, ..., xn].
The following hold:

1 coCoA TEaMm, A system for doing Computations, In: “Commutative Algebra”, available at
http://cocoa.dima.unige.it, 2004.
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(i) F+ = (X“Jrl G1), where G is considered in k[ X1, ..., Xn;

(ii) If Gt is a complete intersection and all generators of G have degree at least
a+ 1, then F is 1-computable.

~

Proof. Firstof all, let g € F-. We can write g = ho+ Xoh; + - - + Xgha —}—Xg‘Hg
where hg, ..., h, € k[X1, ..., X,] and g € k[Xo, ... X,]. By assumption,

O0=g¢g-F
= (o + Xohy ++ -+ Xgha + X§*') - x§Gx, o xw)
= x%(hy - G) + axt ™ (hy - G) + -+ + (@) (ha - G).

Since hg- G, hy -G, ...,hy-G € C[xy,...,x,],wehave hg- G =h;-G=...=
he - G = 0 and hence hy, . .., h, € GL. This proves that Ft= (X‘H'1 Gh).
(ii) Obvious from Theorem 4.14. O

Let V, = H1§i<j§n(xi — xj) € k[xi,...,x,] be the Vandermonde deter-
minant. Since V;, is the fundamental skew-symmetric invariant of the symmetric
group, it is known that the perp ideal an = (01,02,...,0,) C k[Xq,..., Xl
where o; is the i-th elementary symmetric polynomial in Xi,..., X, fori =
1,...,n (see [13] and its bibliography). For later use, let o] be the i-th elemen-
tary symmetric polynomial on the variables X»,..., X, fori = 1,...,(n — 1).
One can see that

or=X1+o0];
02=X1crl’+aé;

Op— I—XIO' 2+0' 15
Gn_Xla -

Proposition 4.17 ([13]). rk(V,) = (n — ).

Proof. We give a different proof from the one in [13] in order to illustrate the use of
e-computable forms. We have rk(V,) > (n — 1)! by the Ranested-Schreyer bound
(see [10]). For the upper bound, take I = (o1, ...,0,-1) C V,f. By the apolarity
lemma, it remains to show that 7 is the homogenous ideal of a set of (n — 1)! distinct
points. To this end, we will show that on the affine piece X| # 0, the zero locus of
the ideal 7 consists of exactly (n — 1)! distinct points. This is enough because I is

a complete intersection of forms of degrees 1, 2, ..., (n — 1). Now letting X; =1,

we have

(X2, X)lo1 (1, X2, ., Xp) = - =01 (1, X2, ..., Xp) = 0}
={(X2,.... XDl +0{(X2, ..., Xp) =+ = ,;z(xz,.. . Xn) +o,_; =0}
={Xo,.... Xplo{ =—1,....0/ = (=D, ...,00_ = (=)'}

= {(Xz, X))l Xo, ..., X, are the distinct (n — 1) solutions of the equation

"+ t+1 =0}
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This proves that the ideal I defines a set of (n — 1)! distinct points. U

Proposition 4.18. The rank of the Vandermonde determinant V,, is computed by
the linear form X.

Proof. Due to Proposition 4.17 it will be enough to show that the length of 7'/ (V,f- :
(X1) + (X1)) is (n — 1)!. We first observe that since o1, ..., 0, form a regular
sequence and o, = X0, we have that both o1, ...,0,—1,X; and o1, ..., 0,4—1, 0,
form regular sequences. It is also clear that

Vii+ (X)) = (X1, 01, ..., 001, 00) = (X1,0(,...,0,_)).

Obviously X1, 0{,...,0,_, is a regular sequence and so

0
SHF(T/ (Vi +(X0).i) = (=D
i=0
Thus from the exact sequence
0— T/ (vnL : (X1)> S T/VE T/ (v,,l n (Xl)) 50

we obtain

o0

> HF (T/ (VnL : (X1)>,i) —nl—(n—Dl=@m—1D- (-1

i=0

Now notice that
Vi (X)) 2 01, 001, 0)_ ).

But the length of T/(VnL 2 (X1))is (n — 1)(n — 1)! and this is exactly the length of
T/(o1,...,0n1,0,_,). It follows that

VnJ‘ (X)) = (01,...,0,1_1,0,;_1).

Hence VnJ- (X)) + X)) = Xq,01,..., a,,_l,o,;_l) and this is easily seen to
be V.- + (X1). But we have already shown that }"5°) HF (T /(V,;t + (X1)), i) =
(n — 1)! and thus we are done. O

Note that the Vandermonde determinant is 1-computable and in V' there is a
form of degree one. A natural question arises: does there exist a change of coordi-
nates such that, after this change, we may consider V,, in a smaller polynomial ring,
in which V,, is still I-computable and (V,f)l =07

In Proposition 4.21 we give a positive answer to this question, but first we
observe the following:
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Remark 4.19. Recall that T = k[ Xy, ..., X, ] and suppose that Yy, ..., Y, is an-
other basis for 7, where
n
Y, = ZO[,',‘/XJ‘.
—

We can write 7’ as a polynomial ring in the new variables Yy, ..., ¥,. To avoid con-
fusion we set T = k[Yp, ..., Y,], even though T = T. The change of coordinates
transformation on 7 can be considered as

v:T — T
where
Xi=vi(Yo,...,Yn).
It follows that, for a form G(Xgp, ..., X,) € T,

Y(G)=GCWo(Yo, ..., Yu), ..., ¥n(Yo,...,Yy)) € T.

Now let yg, ..., y» € S1 be the dual basis to Yy, ..., Y,,. As with the discussion
above we can consider

(p:S:k[xo,...,xn]—>E:k[yo,...,yn]

the isomorphism which extends the isomorphism induced by ¥ from S1 — Si.
Since X; oxj=46; jand Y;oy; =4 j,wehave,forGe T and F € §,

@(G o F) = ¢(G) o p(F).

Lemma 4.20. Let Yy, ..., Y, be a basis for Ty and let yy, ..., y, € Si be the dual
basis. Let T = k[Yo,...,Y,), and S = k[yo, ..., yul, and lety : T — T and
@ : § = § be the changes of coordinates.

If F(xg,...,xn) € S then

v (FH) = et

Proof. Let F-=(G1, ..., Gy),s0 Y (FY) = (W(Gy), ..., ¥(Gy)). Since Y (G;) o
9(F) = ¢(Gi o F) = 0, we get ¥(G;) € (p(F)J-. For the opposite inclusion, let
G € ¢(F)t,and G = ¥~ 1(G). We have that ¥/(G) o ¢(F)_= 0. But ¥(G) o
@(F) = ¢(G o F),hence G o F =0, thatis, G € F-,and so G € ¥ (F71). O

Proposition 4.21. Let F € S = k[xo, ..., x,] and assume that
(FJ_)I = (Y}’l—S-‘rls ey Yn) C Tl7

where the Y; are linearly independent linear forms in the X;.

Let Yo, ..., Y5, Yn_s+1,..., Yy be a basis of T\ and let yo,...,y, € S
be its dual basis. There exists a change of coordinates ¢ such that ¢(F) involves
only the variables yy, . .., yn—s, and considering ¢ (F) in k[yo, ..., Yn—s], we have
((p(F)J-)l = 0. Moreover, if F is 1-computable, then ¢(F) also is 1-computable.
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Proof. Let ¢ and ¥ be as in Lemma 4.20, then we get

(v (7)), = (o),

Since (Y (F1))1 = (Yp_st1, ..., Yy) C Ti, we have that ¥; o ¢(F) = 0 for n —
s+ 1 <i < n. It follows that ¢(F) € k[yo, ..., Yn—s]. Now assume that F' is
1-computable, and that the rank of F' is computed by / and ¢, that is,

Tk (F) = i HF (T/ (FL v (r))) .
i=0

Since Y(FL : I+ (1)) = v(F) : v(I) + ¥ () = o(F)* : ¥(I) + ¥ () and
T/(F+: 1+ @) ~T/(W(F*+: 1+ (1)) =rke(F),then ¢(F) is 1-computable,
and we are done. O

Remark 4.22. By a change of coordinates ¢ as in Proposition 4.21, we may assume
that the form ¢(V,,), where V,, is the Vandermonde determinant, is 1-computable
and (¢(Vs)")1 = 0.

We close this section by exhibiting a family of forms which are e-computable
(e > 1) but are not 1-computable.

Example 4.23. Let T be a polynomial ring in three variables. Let O € T be an
irreducible quadratic form and let G1, G € T be two general forms of degree d,
d > 4. By Macaulay duality, there exists a form F in the dual ring S whose apolar
ideal is

Ft= <Q2,G1,G2>.

By Theorem 4.14 we know that F is 2-computable and rk(F) = d°.

We claim that F is not 1-computable.

Note that (G, G2) C F1 is the ideal of a set of d? distinct points, say X. By
Proposition 3.6, if F were 1-computable by I and 7 (¢ general in I), then

Ix+ @) = Ft+ ).

Thus, we would have then (G, Go,t) = (Q2 G1, Go, t), which is impossible
since ¢ does not divide Q. Hence F is not 1-computable.

Remark 4.24. Following example 4.23, Proposition 3.6 allows us to construct ex-
amples of forms which are e-computable but which are not 1-computable. It is
enough to take a general form Q of degree e and to increase the degrees of G, G2
accordingly.

Example 4.25. In Section 7 we exhibit a form F whose rank we can compute using
ad hoc methods. We show it is not 1-computable and wonder if it is e-computable
for some e > 1.
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5. Strassen’s conjecture for e-computable forms

Fix the following notation:

Szk[xl,Oa~-"x1,n|7~-,xm,0,-u:xm,nm]a
T=k[X100- s Xings oo Xm0s oo Xy ] -
Fori =1,...,m, welet

S[l] = k[x,-,o, ey xi,n[]v
T[l] = k[Xi,O, ey Xi,ni]’
F; e S[i],

and
F=F+ ---+F, €S,.

If we consider F; € S, then we write
1 _ _
F-={geT|goF;=0}.
On the other hand, if we consider F; € Sl'], then we also write
Fﬁ:{geTU] |goF,-=o}.
Given this notation, it is important to know precisely in which ring we are consid-

ering F;.
So, for instance, if we consider F; € S then

FIJ‘: {ge T[I] |gOF1 =0}U(X2,O,,X2,n2’,xm,01va,nm)s

while if we consider F; € SU then
Fﬁ:{geT“] |goF1=0}.

Remark 5.1. We assume that each F; essentially involves n; variables, thus FiL
does not have linear forms involving the variables of Tl and in F there are no
linear forms.

Moreover, we let 711 ¢ T be ideals with 7; € V7] (i=1,---,m)all of the
same degree and we set

Ji = (F,-L : I[”) +@) CT;

where we consider each F; as a form in S.
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Lemma 5.2. With the notation above and a; € k we have
(P (1M 1)) @+ t) S DO 0

Proof. Since F; e Sll (although we are considering it in S) we always have that
X0,y Xjn; areinFl.J- forall j #i.Hencet; € Fl.J- forj#i.Soty,....tym €
JiN---NJ, and it is enough to prove that

(FL:(1“1+.--+1["”)) CHN-0

that is,
(FL : 1“]>m---n(FL : 1[’"]) CHN- Ny

Letg € FL.qril (1< <m),sogloF =0,forany!/ € Tl Since for j # i,
loF;=0,then gl o F; =0, thatis, gl € FiL,by considering F; € S. It follows
thatgeFil:Il”g]i,fori=1,...,m,thatis,geJlﬂ-~-ﬂJm. O

Lemma5.3. Let 1; € | i1 be a general form and assume that the rank of Fj is
computed by I and t;. Set J; = (Fl.J- TV 4+ (1) C T.If s > 0, then

Q) Z HF(T/JiN...0Jp, i):Z HF(T/J1,i)+.. .+Z HF(T/Jp,i)—m+1,
i=0 i=0 i=0

and
(i) ZHF(T/Jl N...NJy, i) =elk(F) +---+1k(Fp)) —m+ 1.
i =0

Proof. To prove (i) we proceed by induction on m. If m = 1 the equality is obvious.
Let m > 1 and consider the following short exact sequence:

0—T/(JiN...0Jp) —> T/ ®T/(J2N...0 J)
— T/ + (N...0Jy) —> 0.

Since J1 + J2 N ... N Jy, is the irrelevant ideal of T we get the conclusion by the
inductive hypothesis.

Part (ii) follows from (i) since 7/J; ~ T(i)/FiJ- : I 4 (1;), where now F; is
considered as a form in SU! (so Fl.J- = {g e Tl |goF; = O}). Hence, for s > 0,
we have

(=S i (FL 114 1), /).
¢ 1k(F)) jXZ:OHF(T /(Fl I —I—(l‘)),]) 0
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Remark 5.4. Recall that in [2, Proposition 3.1], it was shown that Strassen’s con-
jecture holds for forms of the type

F(.XO, . -axﬂ) +yda
where F is a form of degree d. In other terms, adding the power of a new variable
increases the rank by exactly one.
Because of this remark, in the following theorem we may assume that the poly-

nomial rings all have at least two variables.

Theorem 5.5. Let F = F| + --- + F,, € S, where F; € SU withn; > 1. If all the
forms F; are e-computable and (FiJ-)e =0 then

tk(F) = rtk(F1) + - - - + tk(Fn),
that is the Strassen conjecture is true for F .

Proof. Let I [f] c Tl and 4 (degt; = e) compute the rank of F; and let V; be the
zero set of 111! Tt is enough to prove that

tk(F) = 1k(F1) + - - - + tk(Fp),
since the opposite inequality is obvious.
If X minimally decomposes F, then the ideal Ix : (I + ... + IU"]) is the
homogeneous ideal of the subset X’ of X not lying on Vi N --- N V.

For a general choice of a; € k, the form a;t; + - - - + a1y, is a non zero divisor
for T/ Ix . Now consider Iy + (a1t) + - - - + amty,). We have

I+ (ait) + - +apty) = (IX . (1[1] 4+ .+ [[m]>) +(aity + -+ amty)
 (FH: (1 -+ 1))+ @t -+ ant).
Hence, by Lemma 5.2,
Iy + a1ty + - - +aptyy) ST NN Ty,

where J; = (Fl.L Iy 4+ 1) ¢ T, considering F; € S.
We say that a degree e form h € Iy is uniform if

h=h1+---+hm,

and h; (i =1, ..., m)is zero or a degree ¢ form in Tl thatis h; € Te[i].
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Claim 1: If h € (Ix/), is uniform, then h = 0.
Assume that & € (Ix/), is uniform. Since Ixr = Ix : (I 4 ... 4 10m1y and
Ix C FL1 thenhl; € FL,forany I; e 11, Hence, foreveryi =1, ..., m,

hl; e Fr=hl; o F=0=hl; o F; =0 = h;l; o F; = 0.

Now, considering F; € SU!, the last equality implies &; € Fl.J- 2 lj,so that h; €
(F: 1) and h; € (Fi-: 10 + (1) c TV,
Hence, by Proposition 3.6, h; € Ix; + (#;), where X; minimally decomposes
F;. By hypothesis (Fl.J-)e = 0, hence there are no degree e forms in Ix,. Thus we
have h; = u;t;, and
h=uwut+...4+ tmtn.
Recall that & € Iy and hence it vanishes on all the points of X', that is the points

of X notlyingon ViN---NV,. Since t; € 1 71 we have that & vanishes also on
ViN---N V. Itfollows that h € Ix C F+. Thus h o F = 0. Now

hoF =ho(Fi+---+ Fy) = (uit1 + ...+ tmtm) o (F1 + -+ + Fy)
=uit1o Fi+... 4+ umty o Fyy.

Since n; > 1foralli =1, ..., m, the hypothesis (F,-)j- = 0 implies that deg F; >
e, and hence degt; o F; > 0. It follows that p;t; o F; = O foralli = 1,...,m,
that is u;t; € Fl.l (considering F; € Slily. Since (F,~)el = 0, we get that ; = 0 for
every i, and hence & = 0. This completes the proof of Claim 1.

Claim 2: If B is a basis of (Ix’)e, then BU{t1, ..., ty} is a set of linearly indepen-
dent forms.

For e = 1 Claim 2 follows immediately from Claim 1, so assume e¢ > 1.

Let

B ={o+ay,...,a +a},

where the «; are uniform and the @; are not uniform. Now if #; (and analogously
for 1o, ..., t,) satisfies:

o= pi(ar +on) + -+ il + o) + v+ -+ Vi,
we get ey + - -+ + wa; = 0. Hence
pilen +an) + -+ ey + o) = piar + -+ oy € (Ix)e-
Claim 1 yields poe1 + - - - + oy = 0. It follows that #; is a linear combination of
t2, ..., Ly, thus a contradiction. This finishes the proof of Claim 2.

Recall that, by Lemma 5.2, we have

Iy + (ait1 +-- -+ amty) C 1NN Ty
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Since B U {ajt; + - - - + amty} is a basis of (Ixy + (a1t1 + -+ - + amtm)). and, by
Claim 2, BU{t,...,t,} € J1 N ---N Jy, is a set of linearly independent forms,
then we have

HF(T/ T + (aity + - + amty), €) — HE(T/Jy 0 -0 Ty €) = m — 1,

Since ajt; + - - - 4+ apty, is a non zero divisor for T/ I/, for s > 0 we have
tk(F) = [X| = [X'|= HF (T /I, s)

= (1) Y CHF(T/Ux + (a1t + -+ + amt)), 1)
i=0

e

e

e—1
> (1)(ZHF(T/J10---ﬂJm,i)—l—(HF(T/Jlﬂ--~ﬂJm,e)+m—1)
i=0

+ Z HF(T/Ji m---me,i)).

i=e+1

Hence, for s > 0, by Lemma 5.3, we get

k(F)> <1) (ZHF(T/Jm N i)+m—1> —tk(F))+ - - - + 1k(F,,). O
¢/ \i2o

6. Forms for which the Strassen conjecture holds

Theorem 6.1. Let F = F+---+ F,, € S4, where F; € Sz[f]. If,fori=1,...,m,
F; is of one of the following types:

e F; is a monomial;
i is a form in one or two variables;
; :x(‘)’(x{’ —|—~--—|—x,’1’) witha +1 > b,

F;
F;
Fi = xg(xi’ + xé’);
F;
F;

; :xg(xg + x{ —l—-~-—|—x,ll’) witha +1 > b,

;= xg(xg —l—x{’ —l—xé’);
F;, = ng(xl, ..., Xp) where G+ = (g1, ---,8&n) is a complete intersection and
a < deg(gi) fori=1,...,n;
o F; is a Vandermonde determinant;

then the Strassen conjecture holds for F .

Proof. All the forms above are 1-computable, hence the conclusion follows from
Proposition 4.21, Remark 5.4, Theorem 5.5 with ¢ = 1, and in the case of Vander-
monde determinant, Remark 4.22. O

Remark 6.2. If F is a form which is e-computable, but not 1-computable, we can
only combine it with other e-computable forms to get a form satisfying Strassen’s
conjecture.
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For example, if F is the form of Example 4.15, then we know that F is 2-
computable and rk(F) = 25, but we know F' is not 1-computable by Example 4.23.

If G; = xox}x5 then we showed that G is I-computable and rk(G) = 30.
But we do not know if G is 2-computable.

Thus we cannot use the theorem to find the rank of '+ G, although Strassen’s

conjecture says that the rank should be 25 + 30.

However, if G, = xg xi‘xg , by Proposition 4.2, we know that G is 2-computa-

ble and rk(G,) = 30. Hence
rk(F 4+ G) =25+ 30 = 55.

Remark 6.3. It would be interesting to have a characterization of those F' €
k[xo, x1] for which FL = (g%, hp) with @ > 2. If we had that, we would have
examples which were deg g-computable. This would give us more forms for which
Strassen’s conjecture is true.

7. Some examples
Lemma 7.1. Let F = xg(xf + ... +x2) witha +1 < b,n > 3. If X is apolar to
F,then | X\{X; =0} =bforalli=1,...,n.

Proof. Since Ix : (X;) € F*: (X;) = (xgxf’_l)J- and rk(x(‘)’x;’_l) = b (see [3]),
the apolarity lemma, yields that the ideal I : (X;) is the homogeneous ideal of a
set of at least b points. That is, |X \ {X; =0}| > bforalli =1, ...,n. ]

Proposition 7.2. If F = xg(x{’ + .. —I—xﬁ) with2 <a+1<bandn > 3, then
bn—n+3 <rk(F) < bn.
In particular, we have rk(x( (x{’ + xlz’ + xé’ )) = 3b.

Proof. Note that F= (X3, X1 X2, X1 X3, ..., Xue1 Xn, X0 = X5, ..., X0 —X5).
We split the proof into four steps.
Step 1: tk(F) < bn.
It is easy to see that
I =(X1X2, X1 X3, .o, Xyt Xy (n — DX0 — X5 — .. —x0 — xby c FL
is the homogenous ideal of a set of bn distinct points. By the apolarity lemma
rk(F) < bn.

Step 2: bn —n + 2 < rk(F).
Let I=F1: (Xo)+(Xo) = (X0, X1 X2, X1 X3, .. .. Xn—1 Xn, Xo—X5, ..., Xb—
X?). Thus we have

i |01--b—1bb+1

HF(T/I,i){in--- n 1 0.
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Hence, by Corollary 3.4, we get tk(F) > > HF(T/I,i)=bn—n+2.

i>0
Step 3: Let X be apolar to F anda = 1. If X; X + cin(Z) elxforall <i <
J <n,thencij =0foralli, j.

Suppose that ¢;; # 0 for some i < j. Say, c12 # 0, then we have XX, +
cnX? X X3+ C13X(2) € Ix. Thus X1(c13X2 — c12X3) € Ix. Thus we have

X1 € (Ix : (c13X2 — c12X3))

and hence
012X(2) € (Ix : (c13X2 — c12X3)).

Since the ideal is radical we get
Xo € (Ix : (c13X2 — c12X3))

and thus

Xo(c13X2 — c12X3) € Ix
and this yields the contradiction ¢12 = 0 and ¢13 = 0.
Step 4: bn — n 4+ 2 < tk(F).

Suppose that tk(F') = bn — n + 2 = |X]|, where X minimally decomposes F.

By the proof of Step 2, the rank of F is computed by X, hence by Proposition
3.6 we get Ix + (Xo) = F+ + (Xo). In particular we have X; X; € Ix + (Xo) for
alll <i < j <n,andso X;X; + L;jXo € Ix for some linear form L;;. Since
Ix C Frand X;X; € FL, then L;; Xo € F*.

Ifa > 1,then L,'j =0.

Leta = 1. We get L;; = ¢;j Xo and hence X; X ; + cin(% € Ix. By Step 3, we
have ¢;; = 0.

Consequently, X; X ; € Ix foralll <i < j <nandforanya > 1. Now, since
the ideal (X1X»2, X1X3, ..., X;,—1,) is the homogeneous ideal of n lines /1, ..., [,
where; = { X1 =X, =--- = )?,- = ... = X, = 0}, it follows that all the points
of X lie on the union of the lines /;. Since X\ {X; =0} =XnNn{ \ (1,0,...,0)),
by Lemma 7.1 we have that

n
bn—n+2=[X|z Y IX\{X; =0}| = bn,
i=1
a contradiction. O

Remark 7.3. The form F = w(x3 + y3 + z3) € k[x, y, z, w] is not 1-computable.
If F is 1-computable, then there exists anideal I C T = k[X, Y, Z, W] of a
linear space L such that

k(F) = i HF (T/ (FL 1+ (r)) : i) :
i=0

where t = aX + bY 4+ cZ + dW € I is a general linear form.
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If ¢ has at least two of the coefficients a, b, ¢, d different from zero, since
FL= (Wz, YZ,XZ, XY, Y3 — 73, X3 — Z3> ,
we get that
HF(T/(F++(1)),0) =1
HF(T/(Ft + @), 1) =3
HF(T/(F* +(1)),2) <3
HF(T/(F++(1)),3) <1
HF(T/(Ft + (1)),4) =0.

By Proposition 7.2 we know that rk(F) = 9 and since
Fre@WCF 1+

we get

8> i HF (T/ (Fi+(z)) , i) zi HF (T/ (FL g (t)) , i) —tk(F) =9,
i=0 [

and this is a contradiction.

Now if L is a point or a line, and {t = 0} is a general plane through L, then
t has at least two of the coefficients a, b, c, d different from zero. If L is a plane,
then (¢) = I, and the only planes with three coefficients zero between a, b, c, d are
the coordinate planes. Hence the only possibility for F' to be 1-computable, is with
L={X=0},{Y =0}{Z =0},{W =0}, but

o0
Y HF (T/ (FL L (X) + (X)) , i) —2,
i=0
(analogously for Y and Z) and
o0
Y HF (T/ (FL S (W) + (W)) , i) —3.
i=0
Hence, F is not 1-computable.
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