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Analytic adjoint ideal sheaves associated
to plurisubharmonic functions
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Abstract. In this article, we will present that the analytic adjoint ideal sheaves
associated to plurisubharmonic functions are not coherent, in general.
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1. Introduction

The adjoint ideal sheaf on a smooth complex algebraic variety X is a variant of the
multiplier ideal sheaf in algebraic geometry (see [1, 3, 4] for more details).

In [1], Guenancia gave an analytic definition of an adjoint ideal sheaf associ-
ated to a quasi-plurisubharmonic function ' along a simple normal crossing (SNC)
divisor D =

P
Di and established the compatibility with the algebraic adjoint ideal

whenever ' has analytic singularities.
Let X be a complex manifold, D =

P
Di an SNC divisor and ' a quasi-

plurisubharmonic function on X . Let Ad j↵D,⇤(') ⇢ OX be the ideal sheaf of germs
of holomorphic functions f 2 OX,x such that

| f |2
pY

k=1

1
|hk |2(� log |hk |)↵

e�'

is integrable with respect to the Lebesgue measure in some local coordinates near
x , where h = h1 · · · h p is the minimal defining function of D near x and ↵ > 1.

In [1] (see also [2]), Guenancia gave the following analytic definition of adjoint
ideal sheaf, which generalized the algebraic adjoint ideal sheaf ([1, Proposition
2.11]; see also [2, Proposition 5.1]).
Definition 1.1 ([1, 2]). The ideal sheaf Ad j↵D(') := [">0Ad j↵D,⇤((1+")') is called
the analytic adjoint ideal sheaf associated to ' along D.
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Note that in [1] Guenancia used ↵ = 2 in the definition, and later Kim in [2]
extended the definition to ↵ > 1 case. When e' is locally Hölder continuous,
Guenancia established the coherence of Ad j↵D for smooth divisor D with '|D 6⌘
�1 (see [1, Corollary 2.19]).

As mentioned by Guenancia and Kim, it is natural to ask the following

Question 1.2 ([1, 2]). For ↵ > 1 and ' a general quasi-plurisubharmonic function
on X , is the analytic adjoint ideal sheaf Ad j↵D(') coherent?

In this article, we will present the following negative answer to Question 1.2.

Theorem 1.3. There exists a plurisubharmonic function ' on a neighborhoodU of
the origin o 2 Cn (n � 3) and a smooth divisor D with '|D 6⌘ �1 such that for
any ↵ > 1, the analytic adjoint ideal sheaf Ad j↵D(') is not coherent.

Specifically, we will construct ' and D with '|D 6⌘ �1 near o such that the
zero set of Ad j↵D(') is not an analytic set near o.

ACKNOWLEDGEMENTS. Both authors would like to sincerely thank the referee for
his/her helpful comments and suggestions.

2. Proof of main result

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. Let D = {z1 = 0} and

'(z) = max

(
1X

k=2
↵k log

 

|z1| +

�
�
�
�z2 �

1
k

�
�
�
�

�k
!

, � log |z3|

)

,

where ↵k = 1
2k! , �k = 3 · 2k! and � > 6. Then D is smooth and '(z) is a plurisub-

harmonic function near o 2 Cn (n � 3). Without loss of generality, we assume
n = 3 and U contained in the unit polydisk 13 is a neighborhood of o such that
log(|z1| + |z2 � 1

k |
�k ) < 0 for any k � 2 on U .

Step 1. Is showing nonintegrability of 1
|z1|2(� log |z1|)↵

e�' near (0, 1k , 0) for any
(0, 1k , 0) 2 U .
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Since

'(z) = max

(
1X

k=2
↵k log

 

|z1| +

�
�
�
�z2 �

1
k

�
�
�
�

�k
!

, � log |z3|

)

 max

(

↵k log

 

|z1| +

�
�
�
�z2 �

1
k

�
�
�
�

�k
!

, � log |z3|

)

 log

  

|z1| +

�
�
�
�z2 �

1
k

�
�
�
�

�k
!↵k

+ |z3|�
!

near o, replacing z2 � 1
k by z2 near (0,

1
k , 0), for sufficiently small polydisk 13

r we
have

Z

13
r

1
|z1|2(� log |z1|)↵

e�'(z1,z2+ 1
k ,z3)dV3

�
Z

13
r

dV3�
(|z1| + |z2|�k )↵k + |z3|�

�
|z1|2(� log |z1|)↵

=
Z

1⇤
r

dV1
|z1|2(� log |z1|)↵

⇥
Z

12
r

|z1|
2
�k

+
2↵k
�

|z1|↵k

⇣p
�1
2

⌘2
d

 
z2

|z1|
1
�k

!

^ d

 
z̄2

|z1|
1
�k

!

^ d
✓

z3
|z1|

↵k
�

◆
^ d

✓
z̄3

|z1|
↵k
�

◆

⇣
1+ |z2|�k

|z1|

⌘↵k
+ |z3|�

|z1|↵k

�
Z

1⇤
r

dV1

|z1|
2+(↵k�

2
�k

�
2↵k
� )

(� log |z1|)↵

Z

1

⇣p
�1
2

⌘2
dw2 ^ dw̄2 ^ dw3 ^ dw̄3

(1+ |w2|�k )↵k + |w3|�

� C ·
Z

1⇤
r

dV1

|z1|
2+(↵k�

2
�k

�
2↵k
� )

(� log |z1|)↵
= +1,

where C > 0 is some constant and the last equality is from ↵k � 2
�k

� 2↵k
� >

0. It follows that 1
|z1|2(� log |z1|)↵

e�' is not locally integrable near (0, 1k , 0) for any
(0, 1k , 0) 2 U .

Step 2. The second step is the integrability of 1
|z1|2(� log |z1|)↵

e�(1+")' near (0,z2,0)2
U with z2 6= 1

k , 0.
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Take 0 < "0 < 1 such that ↵ � "0 > 1 and |z2 � 1
k | > "0 for any k. Then, for

any N � 1 with "
�N+1
0 < |z1|  "

�N
0 , we obtain

'(z) �
1X

k=2
↵k log

 

|z1| +

�
�
�
�z2 �

1
k

�
�
�
�

�k
!

�
1X

k=2
↵k log

⇣
|z1| + "

�k
0

⌘

�
X

kN
↵k log

⇣
|z1| + "

�k
0

⌘
+

X

k�N+1
↵k log

⇣
|z1| + "

�k
0

⌘

�
X

kN
↵k�k log "0 +

X

k�N+1
↵k log |z1| � 3N log "0 +

X

k�N+1
↵k�N+1 log "0

� 3N log "0 + 2↵N+1�N+1 log "0 = 3(N + 2) log "0

and

log(� log |z1|) � log(��N log "0) = N ! log 2+ log 3+ log(� log "0). (2.1)

Set CN := N ! log 2+ log 3+ log(� log "0). Since

0 <
3(N + 2) log "0

�CN
! 0 (N ! 1),

it follows from (2.1) that for large N , we have

3(N + 2) log "0
� log(� log |z1|)


3(N + 2) log "0

�CN


"0
1+ "

.

Hence, for "�N+1
0 < |z1|  "

�N
0 , we obtain

(1+ ")' � 3(1+ ")(N + 2) log "0 � �"0 log(� log |z1|)

for large enough N . Thus, when |z1| is small enough, we have

1
|z1|2(� log |z1|)↵

e�(1+")' 
1

|z1|2(� log |z1|)↵�"0
,

which is locally integrable near (0, z2, 0) 2 U with z2 6= 1
k , 0 by ↵ � "0 > 1.

Step 3. The third and last step at the proof is to show the incoherence of the analytic
adjoint ideal sheaf Ad j↵D(') near o.

Suppose that Ad j↵D(') is a coherent ideal sheaf on U . Then, the zero set

N
�
Ad j↵D(')

�
:=

�
x 2 U

�
� Ad j↵D(')x 6= Ox
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of Ad j↵D(') is an analytic set in U . However, it follows from Step 1 and Step 2 that
on U ,

N
�
Ad j↵D(')

�
=

�
x 2 U

�
� Ad j↵D(')x 6= Ox

 

=

⇢
x 2 U

�
� 1

|z1|2(� log |z1|)↵
e�(1+")' is not integrable near x

�

=

⇢✓
0,
1
k
, 0

◆�
[ {o},

which is not analytic at o, contradicting to the assumption.

Remark 2.1. In Theorem 1.3, if the condition '|D 6⌘ �1 is not required, then
the result also holds for n = 2 by a slight modification. Indeed, we can take D =

{z1 = 0}, and '(z1, z2) =
1P

k=2
↵k log(|z1| + |z2 � 1

k |
�k ) with ↵k = 1

2k! , and �k =

3 · 2k! and U contained in the unit polydisk 12 to be a neighborhood of o such that
log(|z1|+ |z2� 1

k |
�k ) < 0 for any k � 2 onU . Then, by a similar calculation to the

proof of Theorem 1.3, we can establish the nonintegrability of 1
|z1|2(� log |z1|)↵

e�'

near (0, 1k ) for any (0, 1k ) 2 U and the integrability of 1
|z1|2(� log |z1|)↵

e�(1+")' near
(0, z2) 2 U with z2 6= 1

k , 0. Thus, it follows from the third step of the proof that
the analytic adjoint ideal sheaf Ad j↵D(') is not coherent near o.
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