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On a class of stochastic transport equations
for L2loc vector fields

ENNIO FEDRIZZI, WLADIMIR NEVES AND CHRISTIAN OLIVERA

Abstract. We study in this article the existence and uniqueness of solutions to
a class of stochastic transport equations with irregular coefficients. Asking only
boundedness of the divergence of the coefficients (a classical condition in both
the deterministic and stochastic setting), we can lower the integrability regularity
required in known results on the coefficients themselves and on the initial condi-
tion, and still prove uniqueness of solutions.

Mathematics Subject Classification (2010): 60H15 (primary); 35R60, 35F10,
60H30 (secondary).

1. Introduction

The linear transport equation, that is

@t u(t, x) + b(t, x) · ru(t, x) = 0 , (1.1)

has several and diverse physical applications, for instance related to fluid dynamics,
as it is well described in Lions’ books [23, 24]. See also Dafermos’ book [11] for
more general applications of the transport equation in the domain of conservation
laws.

In view of applications to multiphase flows through porous media, we are in-
terested studying this equation (and in particular the uniqueness property) without
Sobolev, or even BV, spatial regularity of the drift vector field b(t, x). This type
of problems is addressed in [7–10], and it is one of the motivations to consider the
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vector field b with just L2loc regularity. However, with such a low regularity of the
coefficient, there is no hope to obtain uniqueness results for the above transport
equation, due to the counter example provided by M. Aizeman [1].

Still, hope remains if we consider a stochastic version of the transport equation:
we show that with the introduction of a (n even very small) random perturbation in
the equation, it is possible to obtain uniqueness in a suitable, quite general, class of
solutions. This is the main contribution of this work.

Our results appear to be well-adapted to the study of the so-called stochastic
Muskat problem, and could constitute a first essential step towards the solution of
this important and hard problem. This inaugural type of perturbation of the original
Muskat problem may open new research directions, with applications in particular
to numerical simulations related to the planning and operation of oil industry. In
the last section we will further discuss these motivations and provide some more
details on the stochastic Muskat problem.

Let us now briefly recall some of the main recent results concerning the trans-
port equation. In 1989, R. DiPerna and P. L. Lions [12] proved that W 1,1 spatial
regularity of the vector field b(t, x), together with a condition of boundedness on
the divergence, is enough to ensure uniqueness of weak solutions. In 1998, P. L. Li-
ons introduced in [25] the so-called piecewise W 1,1 class and extended the results
of [12] for this type of regularity. Last but not least, in 2004, L. Ambrosio [3]
proved uniqueness for BVloc vector fields. It is also worth mentioning the works of
M. Hauray [17], and G. Alberti, S. Bianchini, G. Crippa [2], both in 2 dimensions,
where the drift does not have any differentiability regularity, but some additional ge-
ometrical conditions are added. We would also like to mention the generalizations
to transport-diffusion equations and the associated stochastic differential equations
by C. Le Bris and P. L. Lions [21,22], and A. Figalli [14].

Recently, much attention has been devoted to extensions of this theory under
random perturbations of the drift vector field, namely considering the following
stochastic linear transport equation (SLTE):

8
><

>:

@t u(t, x,!) +

✓
b(t, x) +

dBt
dt

(!)

◆
· ru(t, x,!) = 0

u|t=0 = u0 .

(1.2)

Here, (t, x) 2 [0, T ]⇥ Rd , ! 2 � is an element of the probability space (�, P,F),
b : R+ ⇥ Rd ! Rd is a given vector field and Bt = (B1t , ..., Bdt ) is a stan-
dard Brownian motion in Rd . The stochastic integration is to be understood in the
Stratonovich sense.

Most results can be extended to transport equations defined for (t, x)2 [0, T ]⇥
U , where the domain U may be the torus 5d or a bounded open (regular) subset
of Rd , which is the most interesting case for applications. In the latter case it
is assumed that b is tangent to @U (in a suitable trace sense), while in the case
where the full space is considered (U = Rd ), some additional growth conditions
are usually required on b.
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A very interesting situation is when the stochastic problem is better behaved
than the deterministic one. A first result in this direction was given by F. Flan-
doli, M. Gubinelli and E. Priola in [16], where they obtained wellposedness of the
stochastic problem for a Hölder continuous drift term, with some integrability con-
ditions on the divergence. Their driving motivation was the analysis of the gain in
regularity, due to the noisy perturbation, with respect to the deterministic problem.
Their approach is based on a careful analysis of the characteristics. Using a similar
approach, in [13] a well-posedness result is obtained under only some integrability
conditions on the drift, with no assumption on the divergence, but for fairly regular
initial conditions. There, it is only assumed that

b 2 Lq
�
[0, T ]; L p(Rd)

�

for p, q 2 [2,1) ,
d
p

+
2
q

< 1 .
(1.3)

In fact, this condition (with local integrability) was first considered by Krylov and
Röckner in [18], where they proved the existence and uniqueness of strong solutions
for the SDE (the equation of characteristics for the SLTE)

Xs,t (x) = x +
Z t

s
b(r, Xs,r (x)) dr + Bt � Bs , (1.4)

such that

P
✓Z T

0
|b(t, Xt )|2 dt < 1

◆
= 1 .

It is interesting to remark that condition (1.3), with the strict inequality replaced
by a loose one, is known as the Ladyzhenskaya-Prodi-Serrin condition in the fluid
dynamics literature.

This approach based on stochastic characteristics proved to be quite efficient
to prove existence, uniqueness and regularity of solutions of the stochastic trans-
port equation. It has produced interesting results on strong uniqueness [13, 16] of
(regular) solutions, and weak uniqueness of (less regular) solutions [21]. However,
it has some limitations, as one has to be able to solve the equation of characteristics
(1.4). This can be done working with regularized coefficients, as done in Section 3
below to prove existence of solutions, and then passing to the limit. As mentioned
above, the limit equation can be given a meaning when the drift coefficient is in the
Krylov-Röckner class (1.3), but certainly not in L2loc. Therefore, there is little hope
to obtain even weak uniqueness with this approach in the case of L2loc coefficients:
this was already remarked in [21].

The well-posedness of the Cauchy problem (1.2) under condition (1.3) for
measurable and bounded initial data was considered also in [31]. In that paper
the authors are not interested in the regularizing effects on the solution due to the
noise, since they consider (possibly) discontinuous solutions, which are often the
relevant ones for physical applications, see also [32].
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Later, in [5], using a technique based on the regularizing effect observed on
expected values of moments of the solution, well-posedness of (1.2) was also ob-
tained for the limit cases of p, q = 1 or when the inequality in (1.3) becomes an
equality.

We mention that other approaches have also been used to study stochastic lin-
ear transport equations. For example, in [28] the Wiener chaos decomposition is
employed to deal with a weakly differentiable drift, or, in [29], Malliavin calculus,
which allows to deal with just a bounded drift term. However, all these meth-
ods seem to have problems in dealing with nonlinear equations, and the interesting
question of the improvement of the theory due to the introduction of noise for non-
linear equations still remains largely open. The situation is quite delicate: very few
results are known, and easy counterexamples can also be constructed. We address
the reader to [15] for a more detailed discussion of this topic, and only report here
the observation that a multiplicative noise as the one used in the SLTE is not enough
to improve the regularity of solutions of the following stochastic Burgers equation:

@t u(t, x,!) + @xu(t, x,!)

✓
u(t, x,!) +

dBt
dt

(!)

◆
= 0 .

Indeed, for this equation one can observe the appearance of shocks in finite time,
just as for the deterministic Burgers equation. For a different approach related to
stochastic scalar conservation laws, we address the reader to [26].

The main issue of this paper it to prove uniqueness of weak solutions for L2loc
vector fields (an intrinsically stochastic result as mentioned before) for measurable
bounded initial data. Since we are not using characteristics to prove uniqueness, the
integrability hypotheses needed on the vector field b are less restrictive than (1.3).
However, we ask that the divergence of b be bounded and some regularity in mean
for the solution of the stochastic transport equation.

Observe that there is no inclusion between the (local, as in the original work
[18]) Krylov-Röckner (KR) class (1.3) and our class of L2loc drifts with bounded
divergence. It can be easily seen that, in any space dimension, the local KR class
is contained in the L2loc class, but the autonomous example b(x) = |x |�↵ for ap-
propriate (depending on the space dimension) values of ↵ > 0 shows that there
are functions in the KR class which do not have bounded divergence. Conversely,
even in space dimension 1, where the condition of bounded divergence becomes
very restrictive, as it implies that, the drift is bounded in space, an L2loc func-
tion does not necessarily belong to the local KR class. An example is given by
b(t) = t�1/2(log(t))�2, which is divergence free and belongs to L2loc([0, 1/2]), but
does not belong to Lq([0, 1/2]) for any q > 2.

For fluid-dynamical applications, where the divergence-freeness is a quite nat-
ural condition, the most interesting cases are those of space dimension d = 2, 3.
Also for d � 2 it is easy to construct examples of L2loc vector functions with
bounded divergence that do not belong to the local KR class. Indeed, in space
dimension 2 we can take b(t, x, y) = [b1(t, x, y), b2(t, x, y)] with b1(t, x, y) =
(t y)�↵ , b2(t, x, y) = (t x)�↵; such field is divergence-free, and for ↵ = 1/3 we get
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b 2 L3�loc
�
[0, T ]⇥R2

�
, and therefore b belongs to L2loc, but it does not belong to the

local KR class. In space dimension d � 3 one can construct similar examples even
for time-independent functions.

We stress that the approach presented here, though inspired by the above men-
tioned works, remains quite different, as our proof of the uniqueness property relies
on properties of the stochastic exponentials. This seems to be the first time where
stochastic exponentials are used to prove uniqueness for a SPDE.

It is well-known that the expected value U = E[u] of any solution u of the
stochastic transport equation (1.2) solves the parabolic equation (sometimes called
viscous transport equation)

@tU(t, x) + b(t, x) · rU(t, x) =
1
2
1U(t, x) , (1.5)

which enjoys very good regularization and uniqueness properties: this is ultimately
due to the passage from the Stratonovich stochastic integral to the Itô formulation,
and was used for example in [5]. It is therefore possible to obtain uniqueness in
law even with irregular coefficients, see for example the result of [21], where weak
uniqueness is obtained in the same setting we will use.

One way to obtain strong uniqueness using this link with a parabolic PDE is
to consider renormalized solutions �(u), as introduced by Di Perna and Lions [12].
This requires however at least BV regularity of the drift coefficient b, plus bounded
divergence and linear growth. See [3] for the deterministic case, [4] for the stochas-
tic case. The interesting result contained in the latter is that in the stochastic setting
one can relax the condition on bounded divergence to allow for a drift with a com-
ponent having bounded divergence and linear growth, plus a bounded component.

Contrary to the above examples, to obtain a stronger form of uniqueness with
our approach we are brought to consider a family of parabolic equations

@t V (t, x) +
�
b(t, x) + h(t)

�
· rV (t, x) =

1
2
1V (t, x) (1.6)

with h(t) 2 L2(0, T ). These equations are similar to the Fokker-Planck equa-
tion (1.5) studied for example in [21, 22]. In particular, their results provide well-
posedness for the family of parabolic equations (1.6) in the space L1([0, T ]; L1 \
L1(Rd)) \ L2([0, T ]; H1(Rd)), see [21, Proposition 5.4]. Here, we will work
with a very similar space, C0(L2) \ L2(H1), see Definition 2.3. We will show (see
Lemma 2.6 ) that for a solution u to the stochastic transport equation (1.2), its ex-
pected value V = E[uF] against any stochastic exponential F solves, as soon as
it is sufficiently regular, a parabolic equation of the family (1.6), and therefore, as
one could then expect, is unique. Using the uniqueness result not only for a single
equation but for the whole family (1.6), and looking at stochastic exponentials as
test functions (they form a family which is large enough), we are able to obtain
almost sure uniqueness.

We also stress that our uniqueness result is established in the class of quasireg-
ular weak solutions (see Definition 2.3); this class encompasses the natural one,
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containing solutions obtained by regularization processes, see Remark 4.4. Unique-
ness in this class could be used to apply a fixed-point argument and show existence
of solutions to the stochastic Muskat problem, see the discussion in Section 5.

This paper is organized as follows. In the next section we present our setting,
introduce some notation and define the class of quasiregular weak solutions. In
Section 3 we prove existence of such solutions. The main result, uniqueness in the
class considered, is contained in Section 4. In Section 5 we present the stochastic
Muskat problem, one of the motivations that drove us to consider this problem.
To ease the presentation, the proofs of some technical results are postponed to the
Appendix.

2. Definition of weak solution

We now present the setting and a suitable definition of weak solution to equation
(1.2), adapted to treat the problem of well-posedness under our very weak assump-
tions on the regularity of the coefficients and the initial condition. On the drift
coefficient b we shall only assume local integrability and a mild growth control
condition. Its divergence is assumed to be bounded in space and integrable in time.
Hypothesis 2.1. We shall always assume that the vector field b satisfies

b 2 L2loc
�
[0, T ] ⇥ Rd� (2.1)

and
div(b(t, x)) 2 L1

�
[0, T ]; L1(Rd)

�
. (2.2)

Moreover, the initial condition is taken to be

u0 2 L2(Rd) \ L1(Rd) .

This first set of hypotheses is sufficient to prove existence of solutions. However, as
in the classical deterministic setting, to obtain uniqueness an additional hypothesis
on the growth of the drift coefficient is needed.
Hypothesis 2.2. Assume that the vector field b satisfies the following:

There exists R > 0, such that
b(t, x)
1+ |x |

2 L1
�
[0, T ]; L1(Rd � BR)

�
, (2.3)

where BR =
�
x 2 Rd : |x |  R

 
.

We shall work on a fixed time interval t 2 [0, T ], and throughout the paper we will
use a given probability space (�, P,F), on which there exists an Rd -valued Brow-
nian motion Bt for t 2 [0, T ]. We will use the natural filtration of the Brownian
motion Ft = FB

t , and restrict ourselves to considering the collection of measurable
sets given by the � -algebra F = FT , augmented by the P-negligible sets. More-
over, for convenience we introduce the following set of random variables, called the
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space of stochastic exponentials:

X :=

⇢
F = exp

✓Z T

0
h(s) · dBs �

1
2

Z T

0
|h(s)|2 ds

◆ �
�
� h 2 L2

�
[0, T ]; Rd�

�
.

Further details on stochastic exponentials and some useful properties are collected
in the Appendix. In particular, the technical assumption that the � -algebra we are
using is the one provided by the Brownian motion is essential to ensure that the
family of stochastic exponentials provides a set of test functions large enough to
obtain almost sure uniqueness.

The next definition tells us in which sense a stochastic process is a weak solu-
tion of (1.2). Hereupon, we will use the summation convention on repeated indices.
Definition 2.3. A stochastic process u 2 L2 \ L1

�
� ⇥ [0, T ] ⇥ Rd� is called a

quasiregular weak solution of the Cauchy problem (1.2) when:

• (Weak solution) For any ' 2 C1
c (Rd), the real-valued process

R
u(t, x)'(x)dx

has a continuous modification which is an Ft -semimartingale, and for all t 2
[0, T ], we have P-almost surely

Z

Rd
u(t, x)'(x)dx =

Z

Rd
u0(x)'(x) dx

+
Z t

0

Z

Rd
u(s, x) bi (s, x)@i'(x) dxds

+
Z t

0

Z

Rd
div(b(s, x))u(s, x)'(x) dx ds

+
Z t

0

Z

Rd
u(s, x) @i'(x) dx �dBis .

(2.4)

• (Regularity in Mean) For each function F 2 X, the deterministic function V :=
E[uF] is a measurable bounded function, which belongs to L2([0,T ];H1(Rd))\
C([0, T ]; L2(Rd)).

If the Stratonovich formulation, in view of theWong-Zakai approximation theorem,
is often considered to be the “natural” one for this kind of problems, it is useful for
computations to present also the Ito formulation of equation (2.4). It reads

Z

Rd
u(t,x)'(x) dx =

Z

Rd
u0(x)'(x) dx

+
Z t

0

Z

Rd
u(s,x)

�
b(s,x) ·r'(x)

+ '(x) div(b(s,x))
�
dxds

+
Z t

0

✓Z

Rd
u(s, x) r'(x) dx

◆
· dBs

+
1
2

Z t

0

Z

Rd
u(s, x) 1'(x) dxds .

(2.5)
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Remark 2.4. Let us stress that the notion of solution in the above definition is
“strong” in probabilistic sense, since the Brownian motion is a priori given. How-
ever, quasiregular solutions are processes which, integrated against smooth test
functions in space, are semimartingales only with respect to the Brownian filtra-
tion, not an arbitrarily chosen filtration.
Remark 2.5. The condition of regularity in mean in the above definition is intro-
duced to replace some stronger regularity assumptions on b, usually necessary to
prove uniqueness with more traditional approaches. Remark however that, as soon
as the drift coefficient is a little bit more regular, regularity in mean is no longer
necessary: if (2.1) is replaced by

b 2 L1loc
�
[0, T ];W 1,1

loc (Rd)
�
,

then by [21] we have weak uniqueness for the stochastic transport equation (1.2).
Moreover, under the same regularity condition, it was recently shown in [6] exis-
tence and strong (in probabilistic sense) uniqueness of L p weak (in the PDE sense)
solutions holds. Observe that the (!, t, x)-a.e. uniqueness obtained in the present
work is implied by strong uniqueness.

Lemma 2.6. If u is a quasiregular weak solution of (1.2), then for each function
F 2 X, the deterministic function V := E[uF] satisfies the parabolic equation
(1.6) in the weak sense, with initial condition given by V0 = u0.

Proof. Take any F 2 X and any quasiregular weak solution u. By definition,
V (t, x) 2 L2

�
[0, T ]; H1(Rd)

�
\C

�
[0, T ]; L2(Rd)

�
. Consider the Itô integral form

of the equation satisfied by u, as given in (2.5). To obtain an equation for V we
multiply this equation by F and take expectations:

Z

Rd
V (t, x)'(x) dx =

Z

Rd
V (0, x)'(x) dx

+
Z t

0

Z

Rd
V (s, x)

�
b(s, x) · r'(x)

+ '(x) div(b(s, x))
�
dxds

+ E
Z t

0

✓Z

Rd
u(s, x) r'(x) dx

◆
· dBs F

�

+
1
2

Z t

0

Z

Rd
V (s, x) 1'(x) dxds .

(2.6)

By definition of quasiregular weak solutions,
R
Rd u(·,x)'(x) dx is an adapted square

integrable process for any ' 2 C1
c (Rd). Therefore,

Ys =
Z

Rd
u(s, x)r'(x) dx
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is also an adapted square integrable process. The expected value of the stochas-
tic integral on the third line of (2.6) can be rewritten as the expected value of a
Lebesgue integral against a certain function h 2 L2

�
[0, T ]

�
due to the following

properties of stochastic exponentials:

E
Z t

0

✓Z

Rd
u(s, x) r'(x) dx

◆
· dBs F

�
=

Z t

0

Z

Rd
V (s, x)h(s) · r'(x) dxds .

This is shown in detail in Lemma A.4 in the Appendix.
Now, due to the regularity of V , we see that V is a weak solution of the PDE

(1.6), that is to say, for each test function ' 2 C1
c (Rd) we have

Z

Rd
V (t,x)'(x)dx=

Z

Rd
V (0, x)'(x) dx

+
Z t

0

Z

Rd
V (s,x)

�
b(s,x) · r'(x) + '(x) div(b(s,x))

�
dxds

+
Z t

0

Z

Rd
V (s, x)h(s) · r'(x) dxds

�
1
2

Z t

0

Z

Rd
rV (s, x) · r'(x) dxds .

(2.7)
As explained in the Appendix, due to the properties of stochastic exponentials, we
have that F is a martingale with mean 1. Since u0 is deterministic, it immediately
follows that V0 = E

⇥
u0F

⇤
= u0.

Remark 2.7. Let us spend a few words to discuss one of the reasons for the in-
troduction of stochastic exponentials in the above Definition 2.3. Even though we
only use a special class of stochastic exponentials (h is deterministic), their use may
recall the classical Girsanov’s Theorem. Indeed, if h is càdlàg, by Girsanov’s Theo-
rem the expected value V = E[uF] is the same as the expected value of the process
u under a new probability measure Q, which has density Ft (see Definition A.1)
with respect to the reference probability measure P:

dQ
dP

�
�
Ft

= Ft .

This is because
EP⇥u(t, x)F

⇤
= EP⇥u(t, x)Ft

⇤
= EQ[u] .

From this point of view, one could interpret our approach to the uniqueness problem
as follows: we show that the expected value of our solution u is unique under a
family of probability measures, which is large enough to ensure uniqueness of the
solution (almost surely).
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3. Existence of weak solutions

We shall here prove existence of quasiregular solutions, under hypothesis 2.1. The
key hypothesis is (2.2), which allows to obtain a priori estimates. The existence of
weak solutions is then classical (see for example [16] or the discussion in [22]), but
we still have to check the regularity in mean of such solutions.

Theorem 3.1. Under the conditions of Hypothesis 2.1, there exist quasi-regular
weak solutions u of the Cauchy problem (1.2).

Proof. We divide the proof into two steps. First, using an approximation procedure
we shall prove that the problem (1.2) admits weak solutions under our hypothe-
sis. Then, in the second step, we will show that the solutions obtained as limit of
regularized problems in the first step are indeed quasiregular solutions.

Step 1: Weak solution property. Let {⇢"}" be a family of standard symmetric mol-
lifiers. Consider a nonnegative smooth cut-off function ⌘ supported on the ball of
radius 2 and such that ⌘ = 1 on the ball of radius 1. For each " > 0 introduce the
rescaled functions ⌘"(·) = ⌘("·). Using these two families of functions we define
the family of regularized coefficients as b"(t, x) = ⌘"(x)

�
[b(t, ·) ⇤⇢"(·)](x)

�
. Sim-

ilarly, define the family of regular approximations of the initial condition u"0(x) =
⌘"(x)

�
[u0(·) ⇤ ⇢"(·)](x)

�
.

Remark that any element b", u"0, " > 0 of the two families we have defined
is smooth (in space) and compactly supported, therefore with bounded derivatives
of all orders. Then, for any fixed " > 0, the classical theory of Kunita, see [19]
or [20], provides the existence of a unique solution u" to the regularized equation

( du"(t, x,!) + ru"(t, x,!) ·
�
b"(t, x)dt + �dBt (!)

�
= 0

u"
�
�
t=0 = u"0

(3.1)

together with the representation formula

u"(t, x) = u"0
�
(�"t )

�1(x)
�
, (3.2)

in terms of the (regularized) initial condition and the inverse flow (�"t )
�1 associated

to the equation of characteristics of (3.1), which reads

dXt = b"(t, Xt ) dt + dBt , X0 = x .

Moreover, the Jacobian of the flow solves pathwise the deterministic ODE (see [19])

d J�"t (x,!) = div(b")
�
t,�"t (x,!)

�
J�"t (x,!) dt

and thus
log

�
J�"t (x,!)

�
=

Z t

0
div(b")

�
s,�"s (x,!)

�
ds .
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Due to assumption (2.2), the Jacobian of the flow is therefore bounded uniformly
in ", because

R t
0 div(b

")ds is. Then, we can use the random change of variables
(�"t )

�1(x) 7! x to obtain that almost surely
Z

Rd

�
�u"(t, x)

�
�2dx =

Z

Rd

�
�u"0

�
(�"t )

�1(x,!)
���2dx

=
Z

Rd

�
�u"0(x)

�
�2 J�"t (x,!) dx

 C
Z

Rd

�
�u"0(x)

�
�2dx .

(3.3)

If u" is a solution of (3.1), it is also a weak solution, which means that for any test
function ' 2 C1

c (Rd), u" satisfies the following equation (written in Itô form):
Z

Rd
u"(t, x)'(x) dx =

Z

Rd
u"0(x)'(x) dx

+
Z t

0

Z

Rd
u"(s, x) b"(s, x) · r'(x) dxds

+
Z t

0

Z

Rd
u"(s, x) div(b"(s, x))'(x) dxds

+
Z t

0

Z

Rd
u"(s, x) @i'(x) dx dBis

+
1
2

Z t

0

Z

Rd
u"(s, x)1'(x) dxds .

(3.4)

To prove the existence of weak solutions to (1.2) we shall show that the sequence u"
admits a convergent subsequence, and pass to the limit in the above equation along
this subsequence. This is done following the classical argument of [34, Section II,
Chapter 3]; see also [16, Theorem 15].

Let us denote by Y the separable metric space C([0, T ]; L2(Rd)). Since u"0 is
uniformly bounded in L2(Rd), by (3.3) u" is also uniformly bounded in the spaces
L1

�
�;Y

�
and L2

�
� ⇥ [0, T ] ⇥ Rd�. By the representation formula (3.2) itself,

we also get the uniform bound in L1
�
�⇥ [0, T ] ⇥ Rd�. Therefore, there exists a

sequence "n ! 0 such that u"n weak-? converges in L1 and weakly in L2 to some
process u 2 L2

�
�⇥ [0, T ]⇥Rd�\ L1

�
�⇥ [0, T ]⇥Rd�. To ease notation, let us

denote "n by " and for every ' 2 C1
c (Rd),

R
Rd u"(t, x)'(x) dx by u"('), including

the case " = 0.
Clearly, along the convergent subsequence found above, the sequence of

nonanticipative processes u"(') also weakly converges in L2
�
�⇥[0, T ]) to the pro-

cess u('), which is progressively measurable because the space of nonanticipative
processes is a closed subspace of L2

�
�⇥ [0, T ]), hence weakly closed. It follows
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that the Itô integral of the bounded process u(') is well defined. Moreover, the
mapping f 7!

R ·
0 f (s) · dBs is linear continuous from the space of nonanticipative

L2(�⇥ [0, T ]; Rd)-processes to L2(�⇥ [0, T ]), hence weakly continuous. There-
fore, the Itô term

R ·
0 u

"(r') · dBs in (3.4) converges weakly in L2(�⇥ [0, T ]) toR ·
0 u(r') · dBs .
Note that the coefficients b" and div(b") are strongly convergent in L2loc([0,T ]⇥

Rd) and L1
�
[0, T ]; L1(Rd)

�
respectively. This implies that b" · r' + ' div(b")

strongly converges in L1([0, T ]; L2(Rd)) to b · r' + ' div(b) because ' is of
compact support. We can therefore pass to the limit also in all the remaining terms
in (3.4), to find that the limit process u is a weak solution of (1.2).

Step 2: Regularity. Consider now a solution u" of the regularized problem (3.1).
For any F 2 X, the function V"(t, x) = E[u"(t, x)F] is regular and we can apply
Lemma 2.6 to get

V"(t, x) = V "0 (x) �
Z t

0
rV"(s, x) ·

�
b"(s, x) + h(s)

�
ds +

1
2

Z t

0
1V"(s, x) ds .

Rewrite this in differential form:

@t V 2" (t, x) = �rV 2" (s, x) ·
�
b"(s, x) + h(s)

�
+ V"1V"(s, x) .

Now, integrating in time and space we get
Z

Rd
V 2" (t, x) dx =

Z

Rd

�
V "0

�2
(x) dx

�
Z t

0

Z

Rd
r
�
V 2"

�
(s, x) ·

�
b"(s, x) + h(s)

�
dxds

�
Z t

0

Z

Rd

�
�rV"(s, x)

�
�2 dxds ,

and rearranging the terms conveniently we finally obtain the bound
Z

Rd
V 2" (t, x)dx +

Z t

0

Z

Rd
|rV"(s, x)|2 dxds

=
Z

Rd

�
V "0

�2
(x) dx +

Z t

0

Z

Rd
V 2" (s, x) div(b"(s, x)) dxds


Z

Rd
(V "0 )2(x) dx +

Z t

0
� (t)

Z

Rd
V 2" (s, x) dxds ,

(3.5)
for some function � 2 L1(0, T ) which can be chosen independently of ", be-
cause div(b") is uniformly bounded in L1

�
[0, T ]; L1(Rd)

�
. We can now apply



ON A CLASS OF STOCHASTIC TRANSPORT EQUATIONSFOR L2loc VECTOR FIELDS 409

Grönwall’s lemma and obtain
Z

Rd
V 2" (t, x) dx  C

Z

Rd
(V "0 )2(x) dx , (3.6)

where the constant C can be chosen uniformly in " due to the integrability of div(b).
Plugging (3.6) into (3.5) we also get

Z t

0

Z

Rd

�
�rV"(s, x)

�
�2 dxds  C

Z

Rd

�
V "0

�2
(x) dx . (3.7)

From (3.6) and (3.7) we deduce the existence of a subsequence "n (which can be
extracted from the subsequence used in the previous step) for which V"n (t, x) con-
verges weakly to the function V (t, x) = E[u(t, x) F] in Y and such that rVn(t, x)
converges weakly to rV (t, x) in L2([0, T ] ⇥ Rd). This allows us to conclude that
V 2 L2([0, T ]; H1(Rd)) \ C([0, T ]; L2(Rd)). Moreover, since u is a bounded
function, this carries over to V .

4. Uniqueness

In this section we shall present a uniqueness theorem for the SPDE (1.2). As in the
by now classical setting, the proof is based on the commutator Lemma 4.1. If ap-
plied in the usual way, this lemma requires to haveW 1,1 regularity either for the drift
coefficient b or for the solution u. This is precisely what we want to avoid: in our
setting we have neither of them, since we want to deal with possibly discontinuous
solutions and drift coefficients. However, the key observation is that, it is enough
to ask such Sobolev regularity for the expected values V (t, x) = E[u(t, x)F] for
F 2 X, not on the solution u itself.

Before stating and proving the main theorem of this section, we shall introduce
some further notation and the key lemma on commutators. We stress that in this
section we will be working under both the sets of Hypothesis 2.1 and 2.2.

Let {⇢"} be a family of standard positive symmetric mollifiers. Given two
functions f : Rd 7! Rd and g : Rd 7! R, the commutator R"( f, g) is defined as

R"( f, g) := ( f · r)(⇢" ⇤ g) � ⇢" ⇤ ( f · rg) . (4.1)

The following lemma is due to Le Bris and Lions [22].

Lemma 4.1. Suppose that f 2 L2loc(Rd) and g 2 H1(Rd). Then, passing to the
limit as " ! 0

R"( f, g) ! 0 in L1loc(Rd) .

We can finally state our uniqueness result.
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Theorem 4.2. Under the conditions of Hypotheses 2.1 and 2.2, uniqueness holds
for quasiregular weak solutions of the Cauchy problem (1.2) in the following sense:
if u, v 2 L2 \ L1

�
� ⇥ [0, T ] ⇥ Rd� are two quasiregular weak solutions with

the same initial data u0 2 L2(Rd) \ L1(Rd), then u = v almost everywhere in
�⇥ [0, T ] ⇥ Rd .

Proof. The proof is essentially based on energy-type estimates on V (see equation
(4.4) below) combined with Grönwall’s lemma. However, to rigorously obtain (4.4)
two preliminary technical steps of regularization and localization are needed, where
the above Lemma 4.1 will be used to deal with the commutators appearing in the
regularization process.

Step 0: Set of solutions. Remark that the set of quasiregular weak solutions is a
linear subspace of L2

�
�⇥ [0, T ] ⇥ Rd�, because the stochastic transport equation

is linear, and the regularity conditions is a linear constraint. Therefore, it is enough
to show that a quasiregular weak solution u with initial condition u0 = 0 vanishes
identically.

Step 1: Smoothing. Let {⇢"(x)}" be a family of standard symmetric mollifiers. For
any " > 0 and x 2 Rd we can use ⇢"(x� ·) as test function in the equation (2.7) for
V . Observe that considering only quasiregular weak solutions starting from u0 = 0
results in V0 = 0. Using the regularity of V , we get

Z

Rd
V (t, y)⇢"(x � y) dy = �

Z t

0

Z

Rd

�
b(s, y) · rV (s, y)

�
⇢"(x � y) dyds

�
Z t

0

Z

Rd

�
h(s) · rV (s, x)

�
⇢"(x � y) dyds

�
1
2

Z t

0

Z

Rd
rV (s, y) · ry ⇢"(x � y) dyds .

For each t 2 [0, T ], we set V"(t, x) = V (t, x)⇤⇢"(x), and using the definition (4.1)
of the commutator

�
R"( f, g)

�
(s) with f = b(s, ·) and g = V (s, ·), we have

V"(t, x) +
Z t

0

�
b(s, x) + h(s)

�
· rV"(s, x) ds �

1
2

Z t

0
1V"(s, x) ds

=
Z t

0

�
R"(b, V )

�
(s) ds .

By the regularity of b and V , provided by (2.1) and the Definition of solution 2.3,
one easily obtains thatR"(b, V ) 2 L1

�
[0, T ]; L1loc(Rd)

�
. Therefore, V" is differen-

tiable in time. To obtain an equation for V 2" we can differentiate the above equation
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in time, multiply by 2V" and integrate again. We end up with

V 2" (t, x) +
Z t

0

�
b(s, x) + h(s)

�
· r

�
V 2" (s, x)

�
ds �

Z t

0
V"(s, x)1V"(s, x) ds

= 2
Z t

0
V"(s, x)R"(b, V ) ds .

(4.2)

Remark that, by definition of solution, V is bounded. Therefore, V" is uniformly
bounded. It follows that all the terms above have the right integrability properties,
and the equation is well-defined.

Step 2: Localization. We now have to use again the family of smooth cut-off func-
tions ⌘" introduced in the first step of the proof of Theorem 3.1, but this time with
a different scaling parameter. We therefore set R = "�1 and denote the family as
⌘R(·) = ⌘( .

R ). Multiplying (4.2) by ⌘R and integrating over Rd we have
Z

Rd
V 2" (t, x)⌘R(x) dx +

Z t

0

Z

Rd

�
b(s, x) + h(s)

�
· r

�
V 2" (s, x)

�
⌘R(x) dxds

+
Z t

0

Z

Rd
|rV"(s, x)|2⌘R(x) dxds +

Z t

0

Z

Rd
V"(t, x)

�
rV"(t, x) · r⌘R(x)

�
dxds

= 2
Z t

0

Z

Rd
V"(s, x)R"(b, V )⌘R(x) dxds ,

which we rewrite as
Z

Rd
V 2" (t, x)⌘R(x) dx

�
Z t

0

Z

Rd
V 2" (s, x)

h�
b(s, x) + h(s)

�
· r⌘R(x) + ⌘R(x) div(b(s, x))

i
dxds

+
Z t

0

Z

Rd
|rV"(s, x)|2⌘R(x) dxds

+
Z t

0

Z

Rd
V"(t, x)

�
rV"(t, x) · r⌘R(x)

�
dxds

= 2
Z t

0

Z

Rd
V"(s, x)R"(b, V )⌘R(x) dxds .

(4.3)

Step 3: Passage to the limit. Finally, in this step we shall pass to the limit in " and
R to obtain uniqueness.

Recall that u is bounded, so that V and V" are (uniformly) bounded too. We
first take the limit " ! 0 in the above equation (4.3). By standard properties of
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mollifiers V" ! V strongly in L2
�
[0, T ]; H1(Rd)

�
\ C([0, T ]; L2(Rd)), and we

can use Lemma 4.1 and the uniform boundedness of V" to deal with the term on the
right-hand side. We get

Z

Rd
V 2(t, x)⌘R(x) dx +

Z t

0

Z

Rd
|rV (s, x)|2⌘R(x) dxds

+
Z t

0

Z

Rd
V (t, x)

�
rV (t, x) · r⌘R(x)

�
dxds

=
Z t

0

Z

Rd
V 2(s, x)

�
b(s, x) + h(s)

�
· r⌘R(x) dxds

+
Z t

0

Z

Rd
div(b(s, x))V 2(s, x)⌘R(x) ds .

(4.4)

Using (2.3) and the definition of ⌘R we can now get rid of the first term on the
right-hand side by taking the limit R ! 1. Indeed, for R � 1 we have that

(b + h) · r⌘R 
�
|b| + |h|

�kr⌘k1

R
11[R,2R]

 3kr⌘k1

✓
|b|

1+ |x |
+

|h|
3R

◆
11[R,2R]

is bounded in L1
�
[0, T ]; L1(Rd)

�
. Moreover, by definition of quasiregular weak

solution we have that V 2 L1
�
[0, T ]; L2(Rd)

�
, and since the domain of integration

(the support of r⌘R) leaves any compact as R ! 1, we even have that V 11[R,2R]

goes to zero in L1
�
[0, T ]; L2(Rd)

�
. Therefore,

lim
R!1

Z t

0

Z

Rd
V 2(s, x)

�
b(s, x) + h(s)

�
· r⌘R(x) dxds = 0 .

Likewise, since rV · r⌘R goes to zero in L1
�
[0, T ]; L2(Rd)

�
, also the last term

of the left-hand side of (4.4) goes to zero. We are left with
Z

Rd
V 2(t, x) dx +

Z t

0

Z

Rd
|rV (s, x)|2 dxds=

Z t

0

Z

Rd
div(b(s, x))V 2(s, x) dxds.

By condition (2.2), we may write
Z

Rd
V 2(t, x) dx 

Z t

0
� (s)

Z

Rd
V 2(s, x) dxds

for some function � 2 L1(0, T ). Applying Grönwall’s lemma we conclude that for
every t 2 [0, T ], V (t, x) = E[u(t, x)F] = 0 for almost every x 2 Rd and every
F 2 X.
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Step 4: Conclusion. From the result of the previous step we get that
Z

[0,T ]⇥Rd
E[u(t, x)F] f (t, x) dxdt = 0

for all F 2 X and f 2 C1
c ([0, T ] ⇥ Rd). By linearity of the integral and the

expected value we also have that
Z

[0,T ]⇥Rd
E
⇥
u(t, x)Y

⇤
f (t, x) dxdt = 0 (4.5)

for every random variable Y which can be written as a linear combination of a finite
number of F 2 X. Since by Lemma A.3 the span generated byX is dense in L2(�),
(4.5) holds for any Y 2 L2(�). Linear combinations of products of functions
Y f (t, x) are dense in the space of test functions  (!, x, t) 2 L2(�⇥ [0, T ]⇥Rd),
so that Z

[0,T ]⇥Rd
E
⇥
u(t, x) (!, t, x)

⇤
dxdt = 0 ,

and u = 0 almost everywhere on �⇥ [0, T ] ⇥ Rd .

Remark 4.3. Since our solutions to the SPDE (1.2) are only integrable, we cannot
expect to obtain an uniqueness result stronger than “almost everywhere”. However,
as soon as the solution u is integrated against a test function in space (u(') with the
notation of Section 3) or in ! (V ), we obtain a function which is continuous in time.
Therefore, one can obtain that for any ' 2 C1

c (Rd), u(') = 0 almost surely for all
t 2 [0, T ], or that for any F 2 X, V = E[uF] = 0 for almost every x 2 Rd , for all
t 2 [0, T ].
Remark 4.4. From the proof of Theorem 3.1 it is possible to see that, under our
weak hypothesis, any weak solution u of the Cauchy problem (1.2) which is the
L1

�
�;Y

�
-limit of weak solutions to regularized problems has the regularity of a

quasiregular weak solution, and is therefore unique by Theorem 4.2. In other words,
we have also proved uniqueness in the sense of Theorem 4.2 in the class of solutions
which are limit of regularized problems.

5. Application to the stochastic Muskat problem

In this section we give an important motivation for the theory developed in the
previous sections, where the uniqueness result in the class of quasiregular solutions
can be used to establish existence of solutions to the stochastic Muskat problem.
The model considered here is a stochastic generalization of the original Muskat
problem, which was proposed in 1934 by Muskat [30] to study from Darcy’s law
the encroachment of water into an oil sand. In fact, the model follows the main
ideas in [8], with a (small) Brownian noise perturbation of the continuity equation.
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Note that with our choice of random perturbation we do not change the hyperbolic
type condition of the original continuity equation, and further maintain the original
structure of the Darcy’s law for the velocity vector field.

We introduce the stochastic Muskat problem (SMP): LetU ⇢ Rd (d = 2 or 3)
be an open and bounded domain having smooth boundary. For each (t, x) 2 UT =
[0, T ] ⇥U , (T > 0 be any real fixed number), find (⇢(t, x,!), ⌫(t, x,!), v(t, x)),
respectively the density, viscosity and velocity vector field, which are solution of

8
>>>><

>>>>:

@t⇢ +
⇣
v+ �

dBt
dt

⌘
· r ⇢ = 0 @t⌫ +

⇣
v+ �

dBt
dt

⌘
· r ⌫ = 0

H v = �r p +G div (v) = 0

⇢|t=0 = ⇢0 ⌫|t=0 = ⌫0 (v · n)
�
�
0T

= 0 ,

(5.1)

where ⇢0, ⌫0 are given initial data, � > 0 is a small fixed parameter, and n is
the unitary normal field to 0T = [0, T ] ⇥ @U . Moreover, G(t, x) = E[⇢ g],
where g is a square integrable field in UT , and H(t, x) = E[h(t, x, ⇢, ⌫)], where
h 2 L1(UT ;C(R2)) is a strictly positive scalar function which takes into account
the properties of the medium. Finally, p(t, x) is a scalar function called pressure.

One recalls that, by Theorem 1.2 of [35] for any vector field v 2 L2, satisfying
div(v) = 0 in the distribution sense, the normal component of v i.e. vn := v · n,
exists and belongs to H�1/2.

The next definition tells us in which sense a triple (⇢, ⌫, v) is a weak solution
of (5.1).
Definition 5.1. Given ⇢0, ⌫0 2 L1(U), a triple (⇢, ⌫, v) is called a weak so-
lution to SMP, if ⇢, ⌫ 2 L1

�
� ⇥ [0, T ] ⇥ U

�
are stochastic processes, and

v 2 L2((0, T ) ⇥U) satisfy:

• For any ' 2 C1
c (Rd), the real valued processes

R
⇢(t)'dx ,

R
⌫(t)'dx , have

continuous modification which are Ft -semimartingale, and for all t 2 [0, T ],
we have P-almost surely

Z

U
⇢(t)' dx =

Z

U
⇢0' dx +

Z t

0

Z

U
⇢(s) vi (s)@i' dxds

+
Z t

0

Z

U
�⇢(s) @i' dx �dBis ,

(5.2)

Z

U
⌫(t)' dx =

Z

U
⌫0' dx +

Z t

0

Z

U
⌫(s) vi (s)@i' dxds

+
Z t

0

Z

U
�⌫(s) @i' dx �dBis .

(5.3)
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• For each test function  2 V(U) we have
Z

U
H(t)v(t) ·  dx =

Z

U
G(t) ·  dx, (5.4)

where V(U) := { 2 L2(U) : div = 0 in D0(U), · n = 0 on @U}.

The solution of this problem is still open, and we leave this labor for future re-
search. But we believe that our contribution, providing a well-posedness result for
the stochastic transport equations under very weak hypothesis on the drift term, is
a first essential step towards the solution of the SMP. Indeed, one way to solve is to
try to apply a Schauder’s fixed point argument. Let us give the main idea:

First, we consider M = min{k⇢0k1, k⌫0k1}, M = max{k⇢0k1, k⌫0k1}, and
define the closed convex subset

Z := {(⇢, ⌫) 2 L2(�⇥ [0, T ] ⇥U)2 : ⇢, ⌫ 2 [M,M] a.e.} (5.5)

of the Banach space L2(�⇥ [0, T ] ⇥U)2, with the norm

||(⇢, ⌫)||L2:= ||⇢||L2+ ||⌫||L2 .

Now, let (⇢, ⌫) be an arbitrary fixed element of Z , and consider for � > 0 the
coupled systems

(
E[h(t, x, ⇢ ⌫)]v = �r p + E[⇢g] div(v) = 0 in U
v · n = 0 on @U,

(5.6)

and
(
@t⇢ + div

⇣⇣
v+ � dBt

dt

⌘
⇢
⌘

= 0
⇢|t=0 = ⇢0

(
@t⌫ + div

⇣⇣
v+ � dBt

dt

⌘
⌫
⌘

= 0
⌫|t=0 = ⌫0.

(5.7)

Due to the ⇢ and ⌫ regularities, we can only expect to have a solution of (5.6) given
by v 2 L2

�
[0, T ] ⇥ U

�
. Albeit, since the domain U is bounded and taking into

account the incompressibility condition div(v) = 0, we see that v satisfies both
Hypothesis 2.1 and 2.2. Recall that we are dealing with the boundary condition v ·
n = 0 on 0T , thus the Cauchy problem is well adapted for bounded domains in this
case. Therefore, applying the well-posedness theory established in the preceding
sections for stochastic transport equations, it is not difficult to show the solvability
result for this system as presented in the following

Lemma 5.2. For each (⇢, ⌫) 2 Z there exists a unique solution (⇢, ⌫, v) of system
(5.6)–(5.7) such that

(⇢, ⌫) 2 Z, kvkL2((0,T )⇥U) 6 C, (5.8)

where C � 0 is a positive constant depending only on the data.
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One observes that, solving (5.6)–(5.7), we have constructed the operator

P : Z ! Z, (⇢, ⌫) = P(⇢,⌫), 8 (⇢, ⌫) 2 Z.

One then could use Schauder’s theorem to find a fixed point of P , which will be
a weak solution of the system SMP. To do so one has to show that P(Z) is a
relatively compact subset of the Banach space L2(�⇥ [0, T ] ⇥U)2, and also that
he operator P is continuous with respect to the norm k(·, ·)kL2 . Consequently, these
are the two main steps to be done.

A. Appendix

Definition A.1. Given a filtered probability space with an Rd -valued Brownian
motion defined on it, (�,F, P,Ft , Bt ), for any h 2 L2([0, T ]; Rd), we can de-
fine the random process

Ft = exp
✓Z t

0
h(s) · dBs �

1
2

Z t

0
|h(s)|2 ds

◆
,

for t 2 [0, T ]. Such random processes are called stochastic exponentials.
We recall that stochastic exponentials satisfy the following SDE (see [33, proof

of Theorem 4.3.3]):

Ft = 1+
Z t

0
h(s)Fs dBs . (A.1)

This can be obtained by applying the Itô formula to Ft . By Novikov’s condition it
also follows that any stochastic exponential Ft is an Ft -martingale, and E[Ft ] = 1.

When t = T , we shall use the short notation F = FT and, with a slight abuse
of notation, still call the random variable F a stochastic exponential. Let us recall
the definition of the following space of random variables, which we call the space
of stochastic exponentials:

X :=

⇢
F = exp

✓Z T

0
h(s) · dBs �

1
2

Z T

0
|h(s)|2 ds

◆ �
�
� h 2 L2

�
[0, T ]; Rd�

�
.

Remark A.2. Even though it is not really essential for our proof, we point out that
for every F 2 X there exists a unique h 2 L2(0, T ) such that F is the stochastic
exponential of h. This can be easily shown using Itô isometry.

The following result, see [33, Lemma 4.3.2] or [27, Lemma 2.3], is a key fact
for our analysis. Recall that F = FT .

Lemma A.3. The span generated by X is a dense subset of L2(�).

We also have the following result.
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Lemma A.4. Let F be a stochastic exponential and Ys 2 L2
�
� ⇥ [0, T ]

�
be an

Rd -valued, square-integrable adapted process. Then

E
Z t

0
Ys · dBs F

�
=

Z t

0
h(s) · E

⇥
Ys F

⇤
ds . (A.2)

Proof. Using the representation formula (A.1) we have

E
Z t

0
Ys · dBs F

�
= E

Z t

0
Ys · dBs

�
+ E

Z t

0
Ys · dBs

Z T

0
h(s)Fs · dBs

�

= E
Z t

0
Ys · h(s)Fs ds

�
.

Since that Ys is Fs-adapted, we obtain

E
⇥
Ys Fs

⇤
= E

⇥
Ys F

⇤
,

and (A.2) follows.

References

[1] M. AIZENMAN, On vector fields as generators of flows: a counterexample to Nelson’s
conjecture Ann. of Math. 107 (1978), 287–296.

[2] G. ALBERTI, S. BIANCHINI and G. CRIPPA, Divergence-free vector fields in R2, J.
Math. Sci. 170 (2010), 283–293.

[3] L. AMBROSIO, Transport equation and Cauchy problem for BV vector fields, Invent.
Math. 158 (2004), 227–260.

[4] S. ATTANASIO and F. FLANDOLI, Renormalized solutions for stochastic transport equa-
tions and the regularization by bilinear multiplicative noise, Comm. Partial Differential
Equations 36 (2011), 1455–1474.

[5] L. BECK, F. FLANDOLI, M. GUBINELLI and M. MAURELLI, stochastic ODEs and
stochastic linear PDEs with critical drift: regularity, duality and uniqueness , preprint
available on Arxiv: 1401.1530, 2014.

[6] P. CATUOGNO and C. OLIVERA, L p-solutions of the stochastic transport equation, Ran-
dom Oper. Stoch. Equ. 21 (2013), 125–134.

[7] N. CHEMETOV and W. NEVES, The generalized Buckley Leverett system: solvability,
Arch. Ration. Mech. Anal. 208 (2013), 1–24.

[8] N. CHEMETOV and W. NEVES, On a generalized Muskat-Brinkman type problem, Inter-
faces Free Bound. 16 (2014), 339–357.

[9] P. CONSTANTIN, D. CORDOBA, F. GANCEDO and R. M. STRAIN, On the global exis-
tence for the Muskat problem, J. Eur. Math. Soc. (JEMS) 15 (2013), 201–227.

[10] P. CONSTANTIN, D. CORDOBA, F. GANCEDO, L. RODRIGUEZ-PIAZZA and M.
STRAIN, On the Muskat problem: global in time results in 2D and 3D, Amer. J. Math.
138 (2016), 1455–1494.

[11] C. M. DAFERMOS, “Hyperbolic Conservation Laws in Continuum Physics”, Third edi-
tion, Grundlehren der MathematischenWissenschaften [Fundamental Principles of Math-
ematical Sciences], Vol. 325, Springer-Verlag, 2010.



418 ENNIO FEDRIZZI, WLADIMIR NEVES AND CHRISTIAN OLIVERA

[12] R. DIPERNA and P. L. LIONS, Ordinary differential equations, transport theory and
Sobolev spaces, Invent. Math. 98 (1989), 511–547.

[13] E. FEDRIZZI and F. FLANDOLI, Noise prevents singularities in linear transport equa-
tions, J. Funct. Anal. 264 (2013), 1329–1354.

[14] A. FIGALLI, Existence and uniqueness of martingale solutions for SDEs with rough or
degenerate coefficients, J. Funct. Anal. 254 (2008), 109–153.

[15] F. FLANDOLI, “Random Perturbation of PDEs and Fluid Dynamic Models”, Lectures
from the 40th Probability Summer School held in Saint-Flour, 2010. Lecture Notes in
Mathematics, Vol. 2015, Springer, Heidelberg, 2011.

[16] F. FLANDOLI, M. GUBINELLI and E. PRIOLA,Well-posedness of the transport equation
by stochastic perturbation, Invent. Math. 180 (2010), 1–53.

[17] M. HAURAY, On two-dimensional Hamiltonian transport equations with L ploc coeffi-
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