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Cusps and a converse to the Ambrosetti-Prodi theorem

MARTA CALANCHI, CARLOS TOMEI AND ANDRÉ ZACCUR

Abstract. By the Ambrosetti-Prodi theorem, the map F(u) = �1u � f (u)
between appropriate functional spaces is a global fold. Among the hypotheses,
the convexity of the function f is required. We show in two different ways that
convexity is indeed necessary. If f is not convex, there is a point with at least four
preimages under F . Even more, F generically admits cusps among its critical
points. We present a larger class of nonlinearities f for which the critical set of
F has cusps. The results are true for Dirichlet, Neumann and periodic boundary
conditions, among others.

Mathematics Subject Classification (2010): 35B32 (primary); 35J91, 65N30
(secondary).

1. Introduction

The celebrated Ambrosetti-Prodi theorem [1], originally a statement about a differ-
ential operator acting between Hölder spaces, has been amplified and reformulated
by various authors. In particular, Manes and Micheletti [14] weakened the orig-
inal hypotheses, while Berger, Church and Podolak [3, 5], provided a geometric
rephrasing on suitable Sobolev spaces. We present a version for each scenario.

For an open bounded domain � ⇢ Rn with piecewise smooth boundary, we
consider the Hölder spaces B2D = C2,↵0 (�), B0 = C0,↵(�), ↵ 2 (0, 1), and the
Sobolev spaces H2D = H10 (�) \ H2(�), H0 = H0(�) = L2(�). The Dirichlet
Laplacian

�1D : H2D ⇢ H0 ! H0 , � (�1D) = { 0 < µ1,D < µ2,D  · · · }

has pure point spectrum � (�1D) made of eigenvalues {µk,D} (of finite multiplic-
ity), with an associated set of orthonormal eigenfunctions { k,D} in B2D which
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is complete in L2. Let f : R ! R be a strictly convex smooth function with
f 0(R) = [m,M] and

m,M /2 � (�1D), (m,M) \ � (�1D) = {µ1,D}, lim
|x |!1

f 00(x) = 0.

Theorem (Ambrosetti-Prodi [1, 14]). The differential operator

F : B2D ! B0 defined by F(u) = �1Du � f (u)

is a smooth map with critical set C ⇢ B2D diffeomorphic to a hyperplane. The com-
plement B0 � F(C) splits in two connected components C0 and C2. Each element
of the sets C0, F(C) and C2 has respectively zero, one and two preimages under F .
The critical set of F consists of the critical points of F , i.e., the functions u 2 B2D
for which DF(u) is not an isomorphism. Berger and Podolak [5] and Berger and
Church [3] introduced additional geometric ingredients. Denote by hui the span of
a vector u.
Theorem (Berger-Church-Podolak [3, 5]). For f as above, F : H 2

D ! H0 is a
global fold. More precisely, with respect to the orthogonal splitting H0 = W 0 �
h 1,Di, there are global homeomorphisms ⇣ : H2D ! W 0 � R and ⇠ : H0 !
W 0 � R for which F̃(z, t) = ⇠ � F � ⇣�1(z, t) = (z,�t2) .

Said differently, the following diagram commutes:

H2D
F

��������! H0

⇣

?
?
y

?
?
y⇠

W 0 � R (z,t)7!(z,�t2)
��������! W 0 � R

Such Ambrosetti-Prodi type results for different boundary conditions have also been
treated extensively in [8, 15, 16, 21]. A beautiful presentation of both approaches
is [20].

Settling a question raised by Dancer [10], we prove a converse result under
mild conditions: for a class of boundary conditions, the Ambrosetti-Prodi theorem
does not hold if f is not a convex function. We associate to a domain of self-
adjointness H2b (�) ⇢ H0(�) of �1b : H2b (�) ! H0(�) a standard boundary
condition, defined in Subsection 2.1, for which � (�1b) = {µ1,b < µ2,b  . . .}.
Dirichlet, Neumann and periodic boundary conditions are standard. For B2b = H2b \
C2,↵(�), take F : B2b ! B0 and let D be a dense subspace of B2b in the L

2 norm.

Theorem 1.1. Consider a standard boundary condition and a smooth function f :
R ! R satisfying non-resonant strict interaction with µ1,b and nonconvexity:

(1) There are m,M 2 R for which f 0(R) = [m,M] and m < µ1,b < M < µ2,b ;
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(2) There is an ✏ > 0 such that

f 0(x) > µ1,b + ✏ for x ! 1 and f 0(x) < µ1,b � ✏ for x ! �1;

(3) For some x⇤, y⇤ 2 R, one has f 00(x⇤) < 0 and f 00(y⇤) > 0.

Then for some y 2 B0, the equation F(u) = y admits (at least) four solutions in
D ⇢ B2b .

The result is proved in Section 2 exploiting ideas of Berger and Podolak which were
extensively used in [17]. More specifically, in Subsection 2.2 we study fibers, that
is, inverses under F of certain straight lines. Under hypotheses (1) and (2), for
appropriate coordinates, the restriction of F to a fiber is a map from R to R which
tends to �1 for |t | ! 1. The existence of a point with four preimages reduces to
the search of a fiber on which such a map admits a local minimum.

Section 3 strengthens the previous theorem by asserting that generically F
admits cusps, in the sense presented below. Cusps in infinite dimensions have been
characterized by a number of authors [4, 13, 23, 24] and we will follow [4]. For the
Jacobian DF(u) : B2b ! B0, let �1(u) be its smallest eigenvalue and �1(u) be the
associated L2-normalized eigenvector. As we shall see in Proposition 3.2, a regular
zero uc of the function

3 : B2b ! R2 , 3(u) =
�
�1(u), �1(u) = D�1(u) �1(u)

�
,

i.e., a point for which 3(uc) = 0 and D3(uc) is surjective, which additionally
satisfies ⌧1(uc) = D�1(uc)�1(uc) 6= 0 is a (local) cusp of F : B2b ! B0.

At a cusp uc, a function F admits a simple local form [9]: that is, for some
Banach space Y , changes of variables near uc and F(uc) convert F into

F̃(w, x, y) =
⇣

w, x, y3 � x y
⌘

for w 2 Y , x, y 2 R .

In particular, points near F(uc) may have one, two or three preimages near uc.

Theorem 1.2. Consider a standard boundary condition and assume hypotheses (1)
and (3) together with the following one:

(4) (genericity) The functions f 0 � µ1,b, f 00 and f 000 have no common zero.

Then either F : B2b ! B0 has a cusp in D or there is a family of disjoint arcs each
of which is taken by F to a single point. In both cases, for some g 2 B0, F(u) = g
has at least three solutions. If F is proper, it has a cusp in D.

An arc is a diffeomorphic image of an open interval. The arcs in the theorem,
consist of whole fibers. When they exist, they are abundant, being parameterized
by an open set of a codimension 3 subspace in B2b . Another simple hypothesis
which guarantees the existence of a cusp will be presented in Proposition 3.5.
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An ancestor of these results is in [17, Theorem 4.3], which states that, for
a strictly convex function f (x) such that lim|x |!1 f (x) = 1, the differential
operator

G : C1([0, 1]) ! C0([0, 1]), u 7! u0 + f (u), u(1) = u(0),

is a global fold. On the other hand, under generic hypotheses which we do not
describe, if f 00 is negative at some point then G has points with four preimages.

Cusps are frequently associated with operators F(u) = �1u� f (u) for cubic
nonlinearities f , as in Ruf’s study [23] of the global geometry of the nonlinearity
f (u) = �u3 + cu. Hypothesis (1) excludes such functions, but the following
alternative hypothesis is more tolerant:

(Hk) The operator �1b : H2b ! H0 is self-adjoint, some eigenvalue µk,b is iso-
lated and simple and there are points x⇤, y⇤ 2 R for which

f 0(x⇤) = f 0(y⇤) = µk,b and f 00(x⇤) < 0 , f 00(y⇤) > 0 .

Theorem 1.3. Consider standard boundary conditions and assume hypotheses (4)
and (Hk). Then either F : B2b ! B0 has a cusp in D or there is a family of
disjoint arcs each of which is taken by F to a single point. For k = 1, a cusp in D
necessarily occurs if F is proper or if f 000(x⇤), f 000(y⇤) � 0.

The proof of Theorems 1.2 and 1.3 splits into a few steps. We first show in Sub-
section 3.1 that the properties of uc in terms of the function 3 above provide an
appropriate description of a cusp. In Subsection 3.2 we find a zero un f of (an ex-
tension of) 3 taking only two real values, which is mollified in Subsection 3.3 to
obtain zero un f 2 D of 3. We are left to show in Subsection 3.4 that the remain-
ing hypotheses of Theorem 1.2 are satisfied either by un f or by some nearby zero
uc 2 D of 3. For Dirichlet conditions, we may take uc 2 C1

0 (�).
The technique for mollifying functions respecting nonlinear restrictions used

to pass from un f to un f might be of independent interest: a different version was
used in the construction of homotopies in [6].

Under hypotheses (1) and (2), the existence of a cusp uc implies Theorem 1.1.
Indeed, from the local form of F near uc, there is a point g with three preimages, as
for the polynomial p(x) = x3� x near zero. A fourth pre-image arises because, by
hypothesis (2), F is proper of degree zero (or because along a fiber, for large |x |,
the function F looks like x 7! �x2).

Theorems 1.1 and 1.2 replicate the structure of a pair of papers by Ruf. In [25]
he finds points in the image of a semi-linear elliptic boundary value operator with
five preimages. In [26] he shows that the operator acting on functions defined on
intervals or rectangles (with Neumann boundary conditions) admits a butterfly ub,
so that there are points near F(ub) with five preimages. Since we stop at cusps, our
computations are simpler despite of the fact that we handle Laplacians on arbitrary
bounded sets. The mollifying arguments allow us to ignore the boundary conditions
until the last moment.
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2. Proof of Theorem 1.1

We sketch the proof of Theorem 1.1. Let  1,b be the positive (L2-)normalized
eigenvector associated with the free eigenvalue µ1,b. In Subsection 2.2, following
[5], we foliate H2b and B

2
b into fibers, the inverses of lines {z+s  1,b , s 2 R}which

turn out to be connected curves of the form {w(z, t)+t 1,b, t 2R, hw(z, t), 1,bi=
0} (brackets denote the usual L2 inner product).

The restriction Fz of F to each fiber {u(z, t), t 2 R} ⇢ B2b is of the form
Fz(u(z, t)) = z + h(u(z, t)) 1,b for a real valued height h for which, as we shall
see in Proposition 2.7,

lim
|t |!1

h(u(z, t)) = �1.

Thus, in order for F to be a global fold, the restriction Fz should look (topologi-
cally) like t 7! �t2. In Subsection 2.4 however we will present fibers u(z, t) on
which Fz admits a strict local minimum um . The asymptotic behavior of h then
implies the existence of points with four preimages, proving Theorem 1.1. The
interested reader may find a numerical example in [7, Section 5.3].

By Proposition 2.6, critical points of h along a fiber are exactly the critical
points of F . The properties of interest of um , namely

• um is such that v 7! �1b v � f 0(um)v has an eigenvalue equal to 0, and
• The height h at um has positive second derivative along its fiber,

are verified by checking that �1(um) = 0, �1(um) > 0 for appropriate functionals
�1 and �1, introduced in Theorem 1.2, which extend to bounded functions in H0.
We first find such a point u among two valued potentials, a class of very simple
functions defined in Subsection 2.3. Mollification then yields the required um 2 B2b .

2.1. Basic spectral theory and smoothness

We consider boundary conditions associated with domains H2b = H2b (�) ✓ H2(�)

on which �1b : H2b ! H0 is self-adjoint. Set � (�1b) = {µ1,b < µ2,b  . . .}
and let  1,b be the positive (L2-)normalized eigenfunction associated with µ1,b. By
the Kato-Rellich theorem, for q 2 L1(�), self-adjointness holds for

Tq : H2b ⇢ H0 ! H0, v 7! �1b v � q v

Definition 2.1. A boundary condition is standard if the following conditions hold:

• The smallest eigenvalue �q1 of Tq is simple (hence isolated);
• There is a unique L2-normalized eigenfunction �q1 > 0 associated with �q1 ;
• On bounded sets of potentials q, the sup norm of �q1 is uniformly bounded.
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The boundary condition is implicit in the notation �q1 and �
q
1 . We recall some basic

facts from spectral theory and elliptic regularity [11, 19].

Proposition 2.2. Dirichlet, Neumann and periodic boundary conditions are stan-
dard. For standard boundary conditions and q  M < µ2,b, one has that Tq is not
invertible if and only if �q1 = 0.

Set B2b = C2,↵(�) \ H2b . The differentiability of F is also well known [2,9].

Proposition 2.3. For a smooth function f : R ! R the map F : B2b ! B0 is
smooth. If f satisfies hypothesis (1), then F : H2b ! H0 is a C1 map. In both
cases, if f 0(u)  M < µ2,b, the differential DF(u)v = �1bv � f 0(u)v is always
a Fredholm operator of index zero, with kernel of dimension at most one.

In Z = L1(�) consider the L2-inner product hu, vi — notice that Z is not a Ba-
nach space with the induced norm. A sequence {um,m 2 N} ⇢ Z is ub-convergent,
um

ub
�! u1 , if um ! u1 in L2 and {um,m 2 N} is bounded in the sup norm (and

thus u1 satisfies the same L1 bound than the um’s). Given a metric space M, a
function G : X ⇢ Z ! M is ub-continuous if it takes ub-convergent sequences to
convergent sequences inM. In particular, if X is bounded in the sup norm and G is
ub-continuous, then it is continuous in the L2 norm.

For a smooth function f : R ! R we are interested in potentials of the form
q = f 0(u), for u 2 B2b . For a standard boundary condition, denote by �1(u) = �

q
1

the smallest eigenvalue of the Jacobian DF(u) : H2b ! H0 and by �1(u) = �
q
1 the

associated positive L2-normalized eigenvector, which by standard regularity results
is necessarily in B2b .

Proposition 2.4. Assume hypothesis (1). The functions �1 : B2b ! R and �1 :
B2b ! H0 are smooth. The extensions �1 : Z ! R and �1 : Z ! H0 are
ub-continuous.

The proof is given in Subsections 5.1 and 5.2 of the Appendix.
Sobolev spaces are used in Section 2, where we handle folds in a disguised

form. To work with cusps in Section 3, however, additional smoothness of �1 and
�1 is necessary and we consider F acting between Hölder spaces.

2.2. Fibers and asymptotics on fibers

Locally, the construction of fibers is a Lyapunov-Schmidt decomposition associated
with an eigenvector. Hypothesis (1) provides a global decomposition. There are
analogous results which hold locally under hypothesis (Hk), and this fact will be
used in Section 4. The arguments in this section are valid for boundary conditions
for which the smallest eigenvalue of �1b : H2b ! H0 is isolated and simple —
the positivity of the ground state is not needed.
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Split H2b and H
0 orthogonally into horizontal and vertical subspaces,

H2b = W 2 � V , H0 = W 0 � V, V = h 1,bi, k 1,bkH0 = 1 .

For a fixed z 2 W 0, the set {z + s  1,b , s 2 R} is a vertical line in the image —its
inverse under F is a fiber Fz . Clearly, the domain H2b is a disjoint union of fibers.
Versions of the next result may be found in [5, 9, 22, 27].

Proposition 2.5. Assume hypothesis (1). The fibers Fz are indexed by z 2 W 0

and are parameterized by t 2 R, that is, u(z, t) = w(z, t) + t 1,b for a C1 map
(z, t) 7! w(z, t) 2 W 2. The map F : B2b ! B0 admits similar smooth fibers: a
fiber of F : H2b ! H0 with a point in B2b is in B

2
b .

The last statement seems to be new and we sketch a proof. At regular points of
F : B2b ! B0, tangent vectors to the fibers are inverses of  1,b 2 B0 under
DF(u) : B2b ! B0. One can extend and normalize it smoothly to the whole space
B2b —fibers in B

2
b are the orbits of this vector field.

The restriction of F to a fiber Fz = {u(z, t)} ⇢ B2b is essentially given by the
height h of its images,

F(u(t)) = z + h(u(t)) 1,b, t 2 R, (2.1)

clearly a smooth real map. We drop the (fixed) parameter z from the notation.
The critical set of F : B2b ! B0 restricts well to the fibers. Moreover, the

critical points of the height are described in terms of spectrum of DF [5, 9].

Proposition 2.6. Let f : R ! R be smooth and suppose (1). The derivative in
t of h(u(t)), the height of a fiber u(t), is zero exactly at critical points u(t0) of
F : B2b ! B0. The eigenfunction �1(u(t0)) of DF(u(t0)) is a positive multiple of
u0(t0), the tangent vector to the fiber at u(t0). Finally, there is a strictly positive
smooth function p : B2b ! R for which

d
dt

h(u(t)) = Dh(u(t)) u0(t)= p(u(t)) �1(u(t)) .

Proof. Differentiate (2.1) to obtain DF(u(t))u0(t) =
�
Dh(u(t)) u0(t)

�
 1,b. Since

u0(t) = w0(t) +  1,b 6= 0, both sides are zero if and only if u0(t) lies in the kernel
of DF(u(t)). Thus, the critical points of h(u(t)) and of F are the same and, at such
point u(t0), ker DF(u(t0)) = hu0(t0)i and u0(t0) = c�1(u(t0)) for some c 2 R.
Now, h�1(u(t)), 1,bi > 0, as both functions are positive, and hu0(t0), 1,bi =
hw0(t0) +  1,b, 1,bi = h 1,b, 1,bi > 0, so that c > 0.

Since �1 and h0 have common roots in each fiber, it suffices to show that p is
well defined in neighborhoods of these roots. Clearly

hDF(u(t))�1(u(t)), u0(t)i = �1(u(t))h�1(u(t)), u0(t)i = h0(u(t))h�1(u(t)), 1,bi.

At a critical point u0 = c �1(u), c > 0 and nearby h�1(u(t)), u0(t)i > 0. Thus p,
being a quotient of smooth nonzero inner products, is smooth.
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For the reader’s convenience, we transcribe the argument in [7] describing the
asymptotic behavior of F along a fiber, already obtained in [5].

Proposition 2.7. Let f satisfy (1) and (2). Then on each fiber u(t) 2 B2b one has

lim
t!±1

h(u(t)) = �1.

Proof. Since F(u(t)) = z + h(u(t)) 1,b, for z 2 W 0 and W 0 ? V , we have
h(u(t)) = hF(u(t)), 1,bi. Since F(u) = �1b u � f (u) and �1b  1,b =
µ1,b 1,b,

h(u(t)) = µ1,b t �
Z

�
f (u(t)) 1,b.

From hypothesis (2), f (x) is bounded below by two lines,

(µ1,b � ✏) x + c� , (µ1,b + ✏) x � c+ < f (x).

We consider t ! 1. Since u(t) = w(t) + t  1,b, for w(t) 2 W 2 ? V ,

h(u(t))  µ1,bt �
Z

�

�
(µ1,b + ✏)(w(t) + t 1,b) � c+

�
 1,b  �✏t + c+

Z

�
 1,b

and we are done (t ! �1 is similar).

2.3. Two-valued potentials

Denote the usual argument from R2 \ {0} to [0, 2⇡) by arg. The sector S(✓) is

S(✓) =
�
x = (x1, x2, . . . , xn) 2 Rn, arg(x1, x2)  ✓ or (x1, x2) = 0

 
.

We abuse notation slightly and define S(0) = ; and S(2⇡) = Rn .
For a fixed p 2 � ⇢ Rn , we consider the translated sector p + S(✓) and split

� =
�
� \ (p + S(✓)) ) [ (� \ (p + S(✓))c

�
= �✓ [�c

✓

in disjoint subsets with characteristic functions �✓ and �c✓ — the point p stays fixed
and is omitted. For ✓ 2 (0, 2⇡), both sets have nonzero measure. For the proof of
Theorem 1.1, a family of parallel hyperplanes would suffice, but in Proposition 4.1
of Section 4 an appropriate choice of p is convenient.

The set of two-valued functions is

V = {q(L , R, ✓) = L �✓ + R �c✓ , L , R 2 R, ✓ 2 [0, 2⇡] } ⇢ L1(�).

We simplify notation: for q = q(L , R, ✓)= L �✓ + R �c✓ 2 V , set

Tq : H2 ! H0, v 7! �1bv � q(L , R, ✓) v ,
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so that the smallest eigenvalue and positive normalized eigenvector restrict to

�
q
1 : R2 ⇥ [0, 2⇡] ! R and �

q
1 : R2 ⇥ [0, 2⇡] ! H0 .

A triple (L , R, ✓) 2 R2 ⇥ [0, 2⇡] is balanced if �q1(L , R, ✓) = 0. The next lemma
shows that balancing is frequently feasible.

Lemma 2.8. There is a continuous function

2 :
�
(�1, µ1,b] ⇥ (µ1,b,1)

�
[
�
(µ1,b,1) ⇥ (�1, µ1,b]

�
! (0, 2⇡)

(L , R) 7! 2(L , R)

such that �q1(L , R,2(L , R)) = 0. Also, 2(µ1,b, R) = 2⇡ and 2(L , µ1,b) = 0.

Proof. Clearly, the map ◆ : (L , R, ✓) 2 R2 ⇥ [0, 2⇡] 7! q(L , R, ✓) 2 Z is contin-
uous, so that �q1 : R2⇥ [0, 2⇡] ! R and �q1 : R2⇥ [0, 2⇡] ! H0 are too: proceed
as in the proof of Proposition 2.4 in the Appendix with 8 � ◆.

Suppose that L  µ1,b < R, the other case is similar. We have

�
q
1(L , R, 0) = µ1,b�R < 0 and �

q
1(L , R, 2⇡) = µ1,b�L > 0 , for L 6=µ1,b ,

�
q
1(µ1,b, R, 2⇡) = 0 and �

q
1(µ1,b, R, ✓)  0 , for ✓ 2 [0, 2⇡) .

Thus, for a given L 2 (�1, µ1,b], a balancing 2 exists by continuity in ✓ of �q1 .
We now show uniqueness and continuity in L .

For L1  L2, R1  R2 and 0 < ✓1  ✓2 < 2⇡ , consider points (L1, R1, ✓1)
and (L2, R2, ✓2) associated with potentials qi , operators Tqi and quadratic forms
Qi (v) = hv, Tqi vi, for i = 1, 2. Clearly, q1  q2 pointwise a.e., �

q1
1 � �

q2
1 ,

�
qi
1 = Qi (�

qi
1 ) and �qi1 > 0 in �. Also, Tq1 = Tq2 + q+, for a potential q+ � 0. If

(L1, R1, ✓1) and (L2, R2, ✓2) are distinct, q+ 6⌘ 0 and

�
q1
1 = Q1

⇣
�
q1
1

⌘
= Q2

⇣
�
q1
1

⌘
+

D
q+ �

q1
1 ,�

q1
1

E
> Q2

⇣
�
q1
1

⌘
� �

q2
1 .

Thus �q1 is strictly monotonic on each coordinate and 2(L , R) is well defined for
(L , R, ✓) 2 (�1, µ1,b)⇥ (µ1,b,1)⇥ (0, 2⇡). Similarly,2 is strict by monotonic
along the segment (µ1,b, R, ✓) , ✓ 2 [0, 2⇡], so that �q1(µ1,b, R, ✓) < 0 , ✓ 2

[0, 2⇡), enforcing 2(µ1,b, R) = 2⇡ . Finally, from the continuity of �q1 , we see
that 2 is continuous.
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2.4. A point with four preimages

As stated in the sketch of proof, we search for a strict local minimum u(t0) of the
height h along a fiber u(t). We use an additional derivative of �1.

Proposition 2.9. Let f satisfy hypothesis (1). The derivative of the smooth function
�1 : B2b ! R along v 2 B2b is

D�1(u) v = hr�1(u), vi = �
Z

�
f 00(u)�21(u) v , r�1(u) = � f 00(u)�21(u) 2 Z .

The extension �1 : Z ! R admits Gateaux derivatives along v 2 Z given by the
same formulas. The map r�1 : Z ! Z , u 7! r�1(u) is ub-continuous.

For the proof see Subsection 5.2. Define the ub-continuous map

�1 : Z ! R , u 7! D�1(u)�1(u) = �
D
f 00(u) �1(u)2, �1(u)

E
.

Say r ⇠ s if both numbers r and s have the same sign. We obtain in Proposition 2.11
a function u(t0) for which (as in Proposition 2.6),

d
dt

h(u(t))|t=t0 = p(u(t0)) �1(u(t0)) = 0 ,

d2

dt2
h(u(t))|t=t0 = Dp(u(t0))u0(t0) �1(u(t0)) + p(u(t0)) D�1(u(t0))u0(t0)

⇠ D�1(u(t0))u0(t0) ⇠ �1(u(t0)) > 0 .

The sequences {x±
m } in the next lemma play the role of almost critical points. The

simple argument in real analysis proving the lemma is left to the reader.

Lemma 2.10. Suppose that the smooth function g : R ! R has a bounded image
containing an interior point µ. Then there are sequences x+

m , x�
m 2 R such that:

1. lim
m!1

g0(x+
m ) = lim

m!1
g0(x�

m ) = 0 , g0(x+
m ), g0(x�

m ) 6= 0 ;

2. lim
m!1

g(x�
m ) = R� < µ < lim

m!1
g(x+

m ) = R+ .

We will use the lemma for the function g = f 0 and µ = µ1,b.

Proposition 2.11. Assume (1), (2) and (3). Let D ⇢ B2b be a dense subspace of Z .
Then there is u 2 D with �1(u) = 0, and �1(u) > 0.

Proof. We first show that there is u 2 V with �1(u) = 0, and �1(u) > 0. From (3),
take x⇤ with f 00(x⇤) < 0. Suppose also f 0(x⇤) < µ1,b —the other case is similar.

For p 2 �, we consider translated sectors p+ S(✓) defined in Subsection 2.3.
From (2), µ1,b is an interior point of g = f 0. For x+

m obtained from Lemma 2.10,
set

u+
m = u

⇣
x⇤, x+

m , 2m = 2
�
f 0(x⇤), f 0(x+

m )
� ⌘

= x⇤ �2m + x+
m �

c
2m

,
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so that �1(u+
m) = 0 by balancing (Lemma 2.8): notice that f 0(x+

m ) ! R+ >
µ1,b. From the definition of a standard boundary condition, the eigenfunctions
�1(u+

m) of the potentials q( f 0(x⇤), f 0(x+
m ),2m) = f 0(u+

m), are uniformly bounded
and converge to the eigenfunction �1

1 for the potential q ( f 0(x⇤), R+,21 =
2( f 0(x⇤), R+)). By the continuity of �1 (Proposition 2.9),

lim
m!1

�1(u+
m) = �

Z

�✓1

f 00(x⇤)(�
1
1 )3 �

Z

�c✓1

�
lim
m!1

f 00(x+
m )

�
(�1
1 )3 > 0

and thus, for some large K , �1(u+
K ) > 0: take u = u+

K = u(x⇤, x+
K ,2K ) 2 Z .

We now mollify u. For u 2 Z , we have �1(u) = 0, and �1(u) > 0. Let
U ⇢ Z be an open ball centered at u in which �1 is positive. Consider the segment
u(t) = u(x⇤ + t, x+

K ,2K ) 2 H0 for t near zero (notice that 2K stays fixed). Since
f 00(x⇤) < 0, from Proposition 2.9, �1(u(t)) at t = 0 is strictly monotonic. Indeed,

d
dt

�
�
�
�t=0 �1(u(t)) =

⌧
r�1(u(0)),

d
dt

�
�
�
�
t=0

u(t)
�

=
D
� f 00(u)�21(u), u(1, 0,2k)

E
> 0.

Thus, there are u+, u� 2 U with �1(u+) > 0 and �1(u�) < 0. Now take u+, u� 2
U \ D for which �1(u+) > 0 and �1(u�) < 0. By continuity, there is u 2 D in the
segment joining u+ and u� for which �1(u) = 0 and �1(u) > 0.

The proof of Theorem 1.1 is complete.

3. Cusps and Theorem 1.2

The proof of Theorem 1.2 requires a few steps. In Subsection 3.1 we validate the
characterization of a cusp uc as a zero un f of the function 3, together with the
transversality condition ⌧1(un f ) 6= 0. The next step is to obtain a zero un f 2 V
(Subsection 3.2) and then by mollification a smooth zero un f (Subsection 3.3) for
which r�1(un f ) and r�1(un f ) are independent. Finally we show that near un f
either there is a cusp uc or there is a codimension-3 set of points ui for which each
F(ui ) has a full arc of preimages (Subsection 3.4).
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3.1. Folds, nonfolds and cusps

From Section 2, there are fibers on which the height h has local maxima and min-
ima. A coalescence of both extrema would yield a critical point of h for which the
second derivative along a fiber is zero —a nonfold—which we proceed to describe
in detail. Nonfolds which satisfy additional generic properties are cusps.

Nonfolds and cusps are identified with local checks: asymptotic hypotheses
like (2) are irrelevant. For maps between spaces of finite dimensions, folds and
cusps are special cases of Morin singularities [18], generic critical points u for
which the differential DF(u) has kernel of dimension equal to one. The original
characterization extends for functions between Banach spaces [4, 9, 13, 17, 23, 24].
We follow closely [9, page 183], which we transcribe.
Theorem (Church-Timourian). Let X and Y be real Banach spaces, U ⇢ X be
an open set and G : U ! Y be a smooth function. Also, let C ⇢ U be the critical
set of G andN ⇢ C consist of the points u 2 C for whichKer DG(u) ⇢ Tu C. Then
uc 2 U is a cusp of G if and only if:

(a) DG(uc) is a Fredholm map of index 0 and dimKer DG(uc) = 1;
(b) C ⇢ U is a manifold of codimension 1 and uc 2 N , i.e., Ker DG(uc) ⇢ Tuc C;
(c) N ⇢ C is a manifold of codimension 1 of C and Ker DG(uc) 6⇢ Tuc N .

The smoothness of F : B2b ! B0 in Theorem 1.2 is proved in [23]. For u 2 Z , by
hypothesis (1), the eigenpair (�1(u),�1(u)) is well defined. Let V = h�1(u)i, and
consider the orthogonal split Z =W�V , H2b = W 2�V with associated projection
5W : Z ! W . Denote the restriction of an operator T to W by TW .

Proposition 3.1. Assume hypothesis (1). Let f : R ! R be smooth. The function

3 : B2b ! R2 , 3(u) =
�
�1(u) , �1(u)

�

is smooth. The gradient of �1 : B2b ! R is

r�1(u) = � f 000(u)�31(u) � 3w(u) f 00(u)�1(u) 2 Z ,

where w(u) = D�1(u)�1(u) =
�
DF(u) � �1(u)I

��1
W 5W ( f 00(u)�21(u)) 2 W 2 ⇢

H2. The extension 3 : Z ! R2, the gradient r�1 : Z ! Z and the functional

⌧1 : Z ! R , ⌧1(u)= D�1(u)�1(u)= h r�1(u) , �1(u) i

are ub-continuous. For any 2-dimensional affine subspace V⇤ ⇢ Z , the restriction
3 : V⇤ ! R2 is a C1 map.

The proof is given in Subsection 5.3. We now show that the requirements in Theo-
rem 1.2 indeed yield a cusp in the sense of the theorem above.

Proposition 3.2. Assume standard boundary conditions and hypotheses (1) and
(4). A zero uc of 3 : B2b ! R2 for which ⌧1(uc) 6= 0 is a bona fide cusp of F .
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Proof. We check the hypotheses of the theorem above for uc. Given standard
boundary conditions and hypothesis (1), �1 and �1 are globally defined, even for
u 2 H0. In particular, (a) is satisfied. Denote the levels ��1

1 (0) and ��11 (0) by C
and D, so that uc 2 N = C \D ⇢ B2b . Most of the result follows from the linear
independence of the gradients of �1 and �1 at points u 2 N : nearN the sets C and
D are then hypersurfaces and their transversal intersectionN is a manifold.

First, r�1(uc) = � f 00(uc)(�1(uc))2 6⌘ 0. Indeed, since the zeros of f 00 are
isolated and uc 2 B2b is continuous, if f 00(uc) ⌘ 0 then uc must be constant,
implying �1(uc) = 0 and f 0(uc) = µ1,b, contradicting (4).

Thusr�1 andr�1 are dependent only if cr�1(uc) = r�1(uc) for some c 2 R.
From the expression for r�1 in Proposition 3.1,

c f 00(uc)�21(uc) = � f 000(uc)�31(uc) � 3w f 00(uc)�1(uc),

and hence (c�1 + 3w) f 00 = � f 000�21 . In � we have �1 > 0, and uc 2 N implies

�1(uc) =
Z

�
f 00(uc)�31(uc) = 0 ,

so that f 00(uc) changes sign. Thus f 00(uc) and f 000(uc) have common zeros, again
contradicting (4): the gradients are independent. Since ker DF(u0) = h�1(uc)i, (b)
and the first part of (c) are true. The second part of (c) is exactly ⌧1(uc) 6= 0.

A fold u f is a regular critical point of F for which �1(u f ) /2 Tu f C (i.e. �1(u f ) 6= 0).
A nonfold un f 2 Z is a zero of 3 : Z ! R2 and it is regular if D3(un f ) is
surjective. Thus, a cusp uc 2 B2b is a regular nonfold for which ⌧1(uc) 6= 0.

3.2. A regular nonfold unf

The next result plays the role of balancing for the functional �1.

Proposition 3.3. Assume standard boundary conditions and hypotheses (1), (3)
and (4). Then there is a regular nonfold un f 2 V .

Proof. Given a continuous function h : R ! R, we say that two points x, y 2 R
are opposite if h(x)h(y) < 0. To have �1(un f ) = 0 for un f = ` �✓ + r �c✓ , either `
and r are opposite with respect to f 0 � µ1,b or f 0(`) = f 0(r) = µ1,b. Conversely,
f 0(`) = f 0(r) = µ1,b implies �1(un f ) = 0 for any ✓ 2 [0, 2⇡], or the unique
balancing 2( f 0(`), f 0(r)) provided by Lemma 2.8 yields �1(un f ) = 0.

Similarly, to have �1(un f ) = 0, either ` and r are opposite with respect to f 00

or f 00(`) = f 00(r) = 0. In what follows, we take ` so that f 000(`) = 0, to be used in
the proof that un f is a regular nonfold.

From (3) and (4), the nonempty set X⇤ = {x | f 00(x) = 0} is closed and consists
of isolated points for which f 0 �µ1,b, f 000 6= 0. The complement R� X⇤ = [i Ii is
a union of open sets, and again by (3) and (4), there must be an interval I+ in which
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f 0 increases and f 0(y) = µ1,b for some y 2 I+. Suppose without loss that there
is x⇤ 2 X⇤ with x⇤ < y (the case x⇤ > y is similar): since X⇤ consists of isolated
points, we may take x⇤ such that I+ = (x⇤, x+), where possibly x+ = 1. Consider
also I� = (x�, x⇤), the interval immediately to the left of I+, where again we may
have x� = �1. We now search for ` and r .

Suppose first that f 0 stays below µ1,b on I�. There is a point ` 2 I� for which
f 000(`) = 0. Indeed, if I� is finite, its endpoints are zeros of f 00 and by the mean
value theorem there must be a root of f 000. If I� is infinite, recall that f 0 is strictly
decreasing in I� with a local minimum at the right endpoint x⇤, so that f 000(x⇤) > 0
by (4). The fact that f 0 is bounded above by µ1,b forces a change of curvature, so
that again f 000 must have a root. Take r 2 (y, x+), the part of I+ above µ1,b, so that
` and r are opposite with respect to both f 0 � µ1,b and f 00.

We split again in cases: take x+ < 1, and thus f 00(x+) = 0. We compute �1
for r = y and f = x+. For u = u(`, y,2( f 0(`), f 0(y)), since f 0(y) = µ1,b we
have

2( f 0(`), f 0(y)) = 0 , meas(�0) = 0 , f 00(y) > 0 ,

�1
�
u(`, y, 0)

�
= �

Z

�0

f 00(`)
�
�1(u)

�3
�

Z

�c0

f 00(y)
�
�1(u)

�3
< 0 .

For u = u(`, x+,2( f 0(`), f 0(x+)), since f 00(`) < 0 and f 00(x+) = 0,

�1(u) = �
Z

�2( f 0(`), f 0(x+))

f 00(`)
�
�1(u)

�3
�

Z

�c
2( f 0(`), f 0(x+))

f 00(x+)
�
�1(u)

�3
> 0 .

By the continuity of �1 (Proposition 2.9), we are done: there is r 2 (y, x+) for
which un f =u(`, r,2( f 0(`), f 0(r)) is a common zero of �1 and �1 with f 000(`)= 0.

Suppose now x+ = 1. Take x+
m ! 1, x+

m 2 I+ as in Lemma 2.10 for
g = f 0, so that f 0(x+

m ) > µ1,b and f 00(x+
m ) ! 0, and follow the proof of Proposi-

tion 2.11.
Suppose finally that f 0 crosses µ1,b on I�. Again, there will be ` 2 I� for

which f 000(`) = 0. If f 0(`) < µ1,b we obtain r exactly as before. If instead
f 0(`) > µ1,b (equality is not permitted, by (4)), search for r in the opposite interval
(x⇤, y): the signs of �1 at the endpoints x⇤ and y are opposite, and the existence of
a nonfold un f for which f 000(`) = 0 is proved.

We now show that un f with f 000(`) = 0 is a regular nonfold. From hypothesis
(4), f 00(`) 6= 0 and r�1(un f ) = f 00(un f )�21(un f ) 6= 0. Thus the gradients of �1
and �1 are dependent if and only if c.r�1(un f ) = r�1(un f ), for c 2 R. From the
expression for r�1 in Proposition 3.1,

c f 00(un f )�21(un f ) = � f 000(un f )�31(un f ) � 3w f 00(un f )�1(un f ),

hence (c�1 + 3w) f 00 = � f 000�21 . On �2( f 0(`), f 0(r)), where f 000(`) = 0 (and then
f 00(`) 6= 0),

w(un f ) = c0�1(un f ) for some c0 2 R .
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From the expression for w in Proposition 3.1, taking into account that �1(un f ) = 0
and �1(un f ) = 0, so that5W ( f 00(un f )�21(un f )) = f 00(un f )�21(un f ),

w(un f ) =
�
DF(un f )

��1
W

�
f 00(un f )�21(un f )

�
.

Since DF(un f ) is a local operator, one may apply it on both sides of

w(un f )(x) = c0�(un f )(x) , x 2 �2( f 0(`), f 0(r)) 6= ; ,

and f 00(`)�21(un f )(x) = 0 , x 2 �2( f 0(`), f 0(r)), clearly a contradiction.

3.3. Smoothing: from unf to a regular nonfold unf 2 D

Let D ⇢ B2b be a dense subspace of Z . We obtain a regular nonfold un f 2 D by
mollification of z⇤ = un f from Proposition 3.3. Consider a ball Bz⇤(r) ⇢ Z in the
sup norm. By Proposition 2.9,3 : Bz⇤(r) ⇢ Z ! R2 is continuous (ub-continuous
functions on L1-bounded sets are continuous) and 3(z⇤) = 0.

The existence of two functions v1, v2 2 D with invertible Jacobian
✓

h r�1(z⇤) , v1 i h r�1(z⇤) , v2 i
h r�1(z⇤) , v1 i h r�1(z⇤) , v2 i

◆

is clear, since z⇤ is a regular nonfold. Let Ṽ⇤ ⇢ D be the span of v1 and v2 and set
V⇤ = z⇤ + Ṽ⇤. Thus z⇤ 2 Z is a regular point of the restriction 3⇤ : V⇤ ! R2,
which is a C1 map from Proposition 3.1. For small balls Bz⇤(✏) ⇢ Bz⇤(r), the
topological degree satisfies deg(3⇤, Bz⇤(✏) \ V⇤, 0) = ±1.

Take zm 2 D \ Bz⇤(✏) with zm
ub

�!z⇤. Define Vm = zm + Ṽ⇤ ⇢ D. For large
m, the restrictions 3⇤ : Bz⇤(✏) \ V⇤ ! R2 and 3m : Bzm (✏) \ Vm ! R2 are
arbitrarily close in the uniform norm after composing with the obvious translation.
For a small ball Bz⇤(✏),

deg(3⇤, Bz⇤(✏) \ V⇤, 0) = deg(3m, Bz⇤(✏) \ Vm, 0) 6= 0 .

Thus 3m has a zero in Bz⇤(✏) \ Vm and we obtain a sequence of nonfolds um 2
Vm ⇢ D convergent to z⇤ = un f in Z .

The restrictions3m : Vm ! R2 are smooth and their Jacobians at um converge
to D3⇤(z⇤), by Proposition 3.1. For large m, D3(um) is then surjective and any
such um is a regular nonfold un f 2 D.

3.4. Regular nonfolds imply cusps or worse

The proof of Theorem 1.2 is almost complete. A regular nonfold un f 2 D ⇢ B2b
which satisfies the condition ⌧1(un f ) = D�1(un f ) �1(un f ) 6= 0 in Proposition 3.2
is a cusp. If instead ⌧1(un f ) = 0, as we shall see, there is an abundance of fibers,
each taken by F to a point.
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Recall the zero levels C,D 2 B2b of �1 and �1. From Section 3.3, the set of
nonfolds N = C \ D is nonempty. From the proof of Proposition 3.2, a point
un f 2 N for which ⌧1(un f ) 6= 0 is automatically a cusp. Thus,

F has no cusps if and only if ⌧1 is identically zero inN .
As in Section 2.2, a fiber is the inverse under F of a line parallel to the free eigen-
function  1,b.

Proposition 3.4. Assume ⌧1 ⌘ 0 in N 6= ; and the hypotheses of Theorem 1.2.
ThenN is foliated by fibers, each being sent to a single point by F .

Proof. As in the proof of Proposition 3.2, N is the transversal intersection of the
sets C and D, which are manifolds nearN , since the gradients r�1(u) and r�1(u)
are linearly independent. The differential equation in B2b

u0 = �̃1(u) =
�1(u)

k�1(u)kB2
, u(0) = u0

has a globally defined solution � = {u(t), t 2 R}. The vector field u 7! �̃1(u)
restricts to a vector field tangent to N , since ⌧1 is identically zero on N . Indeed,
�1(u) = 0 and ⌧1(u) = 0 imply that �1(u) is orthogonal to r�1(u) and r�1(u)
respectively, so that �1(u) 2 TuN . Thus if u(0) 2 N then � ⇢ N and � consists
only of critical points.

From Proposition 2.6, at a critical point u(tc) the kernel vector �1(u(tc)) of
DF(u(tc)) is the tangent vector to the fiber at u(tc). Thus integration of the vector
field above also yields the fibers through points in N : N is foliated by fibers.
Finally, from Proposition 2.6, along fibers u(t) 2 N ,

d
dt

h(u(t))= p(u(t)) �1(u(t))= 0 .

The height h(u(t)) does not change: F takes each fiber to a single point.

The proof of Theorem 1.2 is now complete.
Are there functions as suggested by the alternative in the theorem? At a non-

fold un f , F would take the (local) normal form near the origin:

9(w, x, y, z)= (w, x, y, x↵(w, x, y, z)+y�(w, x, y, z)), w2W, (x, y, z)2R3,

where W is a Banach space. The vertical axes (w, 0, 0, z) are taken to (w, 0, 0, 0):
they all collapse under F . The simplicity of the example is misleading: its rarity
is due to the fact that the collapse happens for an open set of W . What is not clear
is that 9 indeed is a local form of some function F near some un f . There are
nonlinearities for which a few fibers have locally constant height functions [27], but
they are far from being as abundant as in the situation above.

Here are some hypotheses which guarantee the existence of cusps.
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Proposition 3.5. Consider the hypotheses of Theorem 1.2. Each of the next two
possibilities implies the existence of a cusp of F:

1. F : B2b ! B0 is proper;
2. un f = u(`, r,2( f 0(`), f 0(r))) 2 V is a zero of 3 with f 000(`), f 000(r) � 0.

Hypothesis (2) implies properness of F [7] and thus forces cusps.

Proof. From the hypotheses, a fiber u(t) through u(t0) 2 N reaches arbitrary
heights t . If there are no cusps, on the other hand, the fibers in N 6= ; are taken to
a single point, as shown above. This cannot happen if F is proper.

For the second possibility, we have �1(un f ) = 0 and �1(un f ) = 0, so that
5W ( f 00(un f )�21(un f )) = ( f 00(un f )�21(un f )). We show ⌧1(un f ) 6= 0. By Proposi-
tion 3.1, omitting the dependence in un f ,

⌧1 = h r�1 ,�1i = h� f 000�31 � 3w f 00�1 , �1 i for w =
�
DF

��1
W ( f 00�21) .

Now,
�
DF

��1
W : �?

1 ! �?
1 is a positive operator, since from Proposition 2.2 only

the smallest eigenvalue �1 can be zero. Thus h�3w f 00�1 , �1 i < 0. We also have
h� f 000�31 , �1 i  0, since f 000(`), f 000(r) � 0.

A cusp uc is obtained by smoothing of un f once we know the independence of
r�1(un f ) and r�1(un f ). Since r�1(un f ) 6= 0 and �1(un f ) = 0, this follows from

⌧1(un f ) = hr�1(un f ),�1(un f )i 6= 0 .

4. Proof of Theorem 1.3

Most of the argument follows the proof of Theorem 1.2, with simple adaptations.
Again, we consider standard boundary conditions. Hypothesis (Hk) guarantees that
µk,b is simple, so that, from Subsection 5.1 the functional �k , the k-th eigenvalue
of DF(u), and the corresponding normalized eigenfunction �k are well defined and
appropriately smooth in a neighborhood U ⇢ Z of u0 for which f 0(u0) ⌘ µk,b.
The characterization of a cusp uc 2 U is analogous: it is a zero of

3 : U \ B2b ! R2 , 3(u)= (�k(u), �k(u)= D�k(u) �k(u))

for which D3(uc) : B2b ! R2 is surjective and ⌧k(uc) = D�k(uc)�k(uc) 6= 0.
There are small changes to be made in the counterpart to Proposition 3.3.

Proposition 4.1. Assume (Hk). Then there is a regular nonfold un f 2 V .

Proof. For the free eigenfunction  k,b, take p 2 � for which  k,b(p) 6= 0 (this is
automatic for k = 1, since the ground state is positive).

The required un f is of the form u = u(` = x⇤, r = y⇤, ✓) = x⇤�✓ + y⇤�c✓ ,
for some ✓ = ✓0. For any choice of ✓ , f 0(u) ⌘ µk,b, so that �k(u) = 0 and f 00(u)
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is nonzero on �✓ and �c✓ . For ✓ = 0 or 2⇡ , u is constant (either x⇤ or y⇤) and
�k(x⇤)�k(y⇤)  0. If it is zero, take the u for which �k = 0 to be un f (in this case,
�3k integrates to 0 in �). Otherwise, by the ub-continuity of �k in Proposition 3.1,
an intermediate ✓0 yields un f .

We now show regularity. From f 0(un f ) = µk,b, we have

�k(un f ) = 0 , �k(un f ) =  k,b , DF(un f ) = (�1b � µk,b) .

Since �k(un f ) = 0, h f 00(un f ) 2k,b ,  k,bi = 0 and f 00(un f ) 2k,b 2 W . From (Hk),
r�k(un f ) = f 00(un f ) 2k,b 6= 0 which combined with the linear dependence of the
gradients r�k(un f ) and r�k(un f ) implies collinearity,

r�k(un f ) = d r�k(un f ) for d 2 R ,

which, as we shall see, leads to a contradiction. By Proposition 3.1,

� f 000(un f ) 3k,b � 3w f 00(un f ) k,b = d f 00(un f ) 2k,b,

and
w = (DF(un f ) � �k(un f ))|�1W 5W ( f 00(un f ) 2k,b)

= (�1b � µk,b)|
�1
W ( f 00(un f ) 2k,b) 2 H2b ,

so that (since f 00 6= 0 and  k,b = 0 on a set of measure zero)

�
f 000(un f )
f 00(un f )

 2k,b � 3w = d  k,b .

Now, w and  k,b belong to H2b , and  k,b(p) 6= 0, so the two-valued fraction (at
p, and thus, throughout the jump between �2 and �c

2) is actually a constant, say
a 2 R. Applying DF(un f ) = (�1b � µk,b),

a (�1b � µk,b) 
2
k,b � 3 f 00(un f ) 2k,b = d DF(un f ) k,b = 0 .

The first term on the left hand side is smooth, thus f 00(un f ) is also a constant. But
f 00 has opposite signs at x⇤ and y⇤, a contradiction, so that r�k(un f ) and r�k(un f )
are linearly independent in Z .

Let D ⇢ B2b be a dense subspace of Z . Mimic Subsection 3.3 to obtain un f 2
D from un f and then Proposition 3.4 to prove the dichotomy in Theorem 1.3.

We finally consider the situations in which F necessarily has a cusp. For the
hypothesis k = 1 and f 000(x⇤), f 000(y⇤) � 0, the argument in the proof of the second
case of Proposition 3.5 applies with no change.

Suppose then k = 1 and F is proper. We follow the proof of Proposition 3.4,
but there are new difficulties. First notice that under hypothesis (H1), DF(u) may
cease to be invertible and still �1(u) 6= 0. For the nonfold un f obtained in the proof
of Proposition 4.1, however, �1(un f ) = 0. Also, �1, �1 > 0 and �1 are still globally
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defined and smooth. Let C1 = {u 2 B2b , �1(u) = 0} ⇢ C. Since r�1(u) 6= 0 for
u 2 C1 (as in the proof of the proposition above), C1 is a manifold. It is easy to
see that some smoothing un f obtained from un f belongs to C1. Define D1 to be the
zero level of the functional �1.

Following the proof of Proposition 3.2, every nonfold un f 2 N1 = C1 \D1 is
regular. Again, N1 is the transversal intersection of the two manifolds C1 and D1
near N1 as in Proposition 3.4. If u 2 N1 and ⌧1(u) 6= 0, then u is a cusp of F .
Suppose that ⌧1 ⌘ 0 inN1 —we derive a contradiction.

As in Proposition 3.4, the vector field u 7! �̃1(u) leaves N1 invariant, and
each integral curve � = {u(t), t 2 R} ⇢ N1 of u0 = �̃1(u) is sent by F to a
single point, F(� ). These integral curves may not be periodic. Indeed, the function
t 7! h 1,b, u(t)i is a height function along the curve, since it has positive derivative:
for k = 1, the eigenfunctions  1,b and �1(u(t)) are positive. Take the integral curve
�u0 = {u(t), t 2 R, u(0) = u0} ⇢ N1 with F(�u0) = z0.

The set F�1(z0) \N1 may possibly disconnect but it still locally an interval:
more precisely, for each point y0 2 F�1(z0) \N1 there is an open neighborhood
Uy0 ⇢ B2b of y0 so that F

�1(z0) \ Uy0 is an arc �̃y0 (i.e., �̃y0 is diffeomorphic to
an open interval). This follows from a local form of the construction of fibers. Let
h�1(y0)i be the subspace spanned by �1(y0) and split

B2b = W � h�1(y0)i , B0 = Ran DF(y0) � h�1(y0)i .

For small w 2 W , t 2 R, write

F(y0+w + t�1(y0)) = 5 F(y0+w + t�1(y0))+ (I �5) F(y0+w + t�1(y0)) ,

where 5 : B0 ! Ran DF(y0) is the projection with ker5 = h�1(y0)i. From sim-
ple spectral arguments, the inverse function theorem applies and we learn that, for
each fixed t close to 0, the map w 7! 5F(y0 + w + t�1(y0)) is a local diffeomor-
phism near w = 0 to Ran DF(y0). In particular, the inversion of a small segment
z0 + th�1(y0)i, for t near 0, obtains the small isolated arc �̃y0 2 B2b \Uy0 through
y0 —in a sense, this arc is a piece of a fiber.

Take now y0 = u0 in the construction above and we have, for F(u0) = z0,

�u0 \Uu0 ⇢ �̃u0 = F�1(z0) \Uu0 .

Since F is proper, the closure � u0 ⇢ F�1(z0) is compact. Then, at integer times
t = n, the sequence u(n) accumulates to u⇤ 2 B2b . By continuity, since u(n) 2
N1, we have that u⇤ 2 N1 and F(u⇤) = z0. Consider the solution �u⇤ of u0 =
�̃(u), u(t0) = u⇤. For large n, u(n) 2 �u⇤ ⇢ �̃u⇤ ⇢ F�1(z0) \Uu⇤ .

In particular, the points u(n) lie in the single arc through their accumulation
u⇤ 2 �u⇤ \ Uu⇤ for some neighborhood Uu⇤ . More, since the tangent vector �̃(u)
is of norm one, the points u(n) are far apart along the orbit. Accumulation is not
possible then, since the orbit admits a height function: � is not compact.

Finally, F�1(z0) is also not compact (or the closed subset � would be too),
contradicting the properness of F . The proof of Theorem 1.3 is now complete.



502 MARTA CALANCHI, CARLOS TOMEI AND ANDRÉ ZACCUR

5. Appendix: well-definedness and continuity

We prove that the basic functions in the text satisfy the required continuity and
differentiability. We assume standard boundary conditions.

5.1. The eigenpair (�q,�q) for potentials q 2 L1

The proposition below is a simplified version of [28, Proposition 79.14]. For X ⇢
Y real Banach spaces, let B = B(X,Y ) be the Banach space of bounded linear
transformations from X to Y , with the operator norm.

Proposition 5.1. Let T0 2 B have eigenvalue �0 2 R and eigenvector �0 2 X , so
that (T0 � �0 I )�0 = 0. Assume that T0 � �0 I is a Fredholm operator of index zero
with one-dimensional kernel, and that �0 /2 Ran(T0 � �0 I ). Let ` 2 X⇤ be a linear
functional for which `(�0) = 1 and set V2 = �0 + Ker `. Then there is an open
neighborhoodU ⇢ B of T0 and unique analytic maps � : U ! R and � : U ! V2
for which (T � �(T )I )�(T ) = 0 and �(T0) = �0, �(T0) = �0.

The operators Tq of Proposition 2.2 are smooth functions of q 2 L1(�): the linear
map taking q to ‘multiplication by q’

8q : L1 ! B(H2b , H0) , q 7! Mq

is clearly bounded. For q 2 L1, Propositions 2.2 and 2.3 imply the hypotheses of
the proposition above, and thus �q1 : L1 ! R and �q1 : L1 ! H0 are smooth.

5.2. The eigenpair (�,�) as a function of u 2 Z

Let f : R ! R be smooth, B2b = H2b \ C2,↵(�). The function F : B2b ! B0
is smooth from Proposition 2.3 and we are interested in �(u) and �(u), a simple
eigenvalue and corresponding normalized eigenvector of DF(u) = �1b � f 0(u)
for the potential q = f 0(u). The functions �(u) and �(u) can be either �1 = �

q
1

and �1 or �k = �
q
k and �k , depending on the context. The L

2 inner product hu, vi
makes sense for functions u, v 2 B0. Take `(v) = h�(u), vi, so that `(�(u)) = 1.

Proof of Proposition 2.4. Proposition 5.1 implies the smoothness of � and � for
u 2 B2b : the smoothness of u 2 B2b 7! f 0(u) 2 B0 is (easily) proved.

For u 2 Z , we show that8 : Z ! B(H2b , H0), u 7! M f 0(u) is ub-continuous.

Let um
ub

�!u1 with ||um ||1, ||u1||1  C and let || f 00||1  D on [�C,C], so
that �

�( f 0(um) � f 0(u1)) v
�
�
H0  D k(um � u1)vkH0 .

Since H2b embeds continuously on L
2n
n�4 for n � 5 and in every L p for n < 5,

�
�� f 0(um) � f 0(u1)

�
v
�
�
H0  D kum � u1kL2r kvkL2s  D̃ kum � u1kL2r kvkH2b

,
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where r = n/4, s = n/(n � 4) for n � 5 and are conjugate exponents for n < 5.
Take ||v||H2b

 1: the continuity of 8 follows from cm = kum � u1kL2r ! 0. But
this is the case since

cm =

✓Z

�
|um � u1|(2r�2)+2

◆1/2r
 (2C)1�1/r

✓Z

�
|um � u1|2

◆1/r
! 0.

Finally, compose u 7! M f 0(u) with the map from bounded potentials to eigenpairs.
The normalization yielding L2-normal eigenvectors is clearly a smooth map.

The formulas for the derivatives of � and � at a point u along a direction v are
familiar [12]. We confirm their validity for the more unusual scenario u 2 Z .

Proof of Proposition 2.9. For the directional derivatives D�(u)v, subtract

DF(u + tv)�(u + tv) = �(u + tv)�(u + tv) , DF(u)�(u) = �(u)�(u)

to obtain, denoting differences g(u + tv) � g(u) by Sg,
⌦
DF(u + tv)S� , �(u + tv)

↵
+

⌦
SDF �(u), �(u + tv)

↵

=
⌦
�(u + tv)S� , �(u + tv)

↵
+

⌦
S��(u), �(u + tv)

↵
.

From the symmetry of DF(u + tv), the first terms on each side cancel each other.
We now take limits and use the continuity of � : Z ! H 0: for u, v 2 Z ,

lim
t!0

1
t
�
�(u+ tv)��(u)

�⌦
�(u),�(u)

↵
= lim
t!0

⌧
1
t
�
DF(u + tv) �DF(u)

�
�(u),�(u)

�

and setting r�(u) = � f 00(u)�2(u) 2 Z , by the dominated convergence theorem,

D�(u)v = lim
t!0

�

⌧
1
t
�
f 0(u + tv) � f 0(u)

�
�(u) , �(u)

�
= hr�(u), vi .

For the ub-continuity of r�(u) : Z ! Z , take um
ub

�!u1 with kumk1  C: we
show that both terms go to zero in
�
�
� f 00(um)�2(um) � f 00(u1)�2(um)

�
�
� +

�
�
� f 00(u1)�2(um) � f 00(u1)�2(u1)

�
�
� .

The new ingredient is the uniform bound of the sequence {�(um)} from Proposi-
tion 2.2. The first term goes to zero because f 00 is Lipschitz on [�C,C].

Let W 2 ⇢ H2b , and W
0 ⇢ H0 be the subspaces of functions orthogonal to

�(u). Let5W be the orthogonal projection from B0 to W 0.
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Lemma 5.2. � : Z ! R admits Gateaux derivatives along functions v 2 Z ,

D�(u) v =
�
DF(u) � �(u)I

��1
W 5W

�
f 00(u)�(u) v

�
2 H0 .

Also, D� : Z ⇥ Z ! H0 , D�(u, v) = D�(u) v, is ub-continuous.

Proof. Let u, v,2 Z . Start as in the proof above to obtain
�
SDF(u) � S�(u)

�
�(u + tv) +

�
DF(u) � �(u)

�
S�(u) = 0 .

After dividing by t and taking t ! 0, the first term converges to

� f 00(u)�(u) v +
⌦
f 00(u)�2(u), v

↵
�(u) = �5W

�
f 00(u)�(u) v

�
,

since 5W projects orthogonally. The restriction (DF(u)��(u)I )W : W 2!W 0 is
an isomorphism. The derivative of � in the second term exists and satisfies

D�(u) v =
�
DF(u) � �(u)I

��1
W 5W

�
f 00(u)�(u) v

�
2 W 2 .

The spaces W 2 and W 0 depend on u, being orthogonal complements of �(u): an
algebraic argument clarifies continuity. Define T̃ = T̃ (u) : H 2b ! H0 as

T̃ = DF(u) � �(u)I + �(u) ⌦ �(u) where
�
�(u) ⌦ �(u)

�
z = h�(u), zi�(u) .

Notice that T̃ leaves W 2 and h�(u)i invariant. Also, the restrictions T̂ to W 2 of
(DF(u) � �(u)I ) and T̃ coincide and are invertible. Since T̃�(u) = �(u), T̃ is
invertible. As in the proof of the ub-continuity of �, T̃ 2 B(H2b , H0) varies ub-
continuously in u 2 Z . Inversion preserves continuity and thus

D�(u) v = 5W T̂�1 5W
�
f 00(u)�(u) v

�
,

is ub-continuous, as well as

u2H2b 7!5W
�
f 00(u)�2(u)

�
= f 00(u)�2(u) +

⌦
f 00(u)�2(u),�(u)

↵
�(u) 2 H0.

5.3. The functionals �, ⌧ and the function 3

Differentiability properties for 3 : Z ! R2 require equivalent statements for �
(Proposition 2.9) and for � : Z ! R, which we now prove.

Proof of Proposition 3.1. Since �(u) = hr�(u),�(u)i, ub-continuity of � follows
from Propositions 2.4 and 2.9. We now take directional derivatives D�(u)v:

D�(u) v = �
Z

�
f 000(u)�3(u) v �

Z

�
f 00(u) 3�2(u)

�
D�(u) v

�
.
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On the second term, using D�(u) v = 5W T̂�1 5W ( f 00(u)�(u) v), we have

⌦
f 00(u) 3�2(u) , D�(u) v

↵
=

D
5W T̂�15W

⇣
f 00(u) 3�2(u)

⌘
,
�
f 00(u)�(u) v

� E

=
D
5W

�
DF(u) � �(u)I

��1
W 5W ( f 00(u) 3�2(u)),

�
f 00(u)�(u) v

� E

=
⌦
3w(u),

�
f 00(u)�(u) v

�↵

and the computation of D�(u)v is complete: we are left with showing the continuity
of r�(u). For um

ub
�! u1, we show the L2 convergences

� f 000(um)�3(um) ! � f 000(u1)�3(u1) ,

w(um) f 00(um)�(um) ! w(u1) f 00(u1)�(u1) .

For the first term, proceed as in the argument for r�. For the second, we show

�
�w(um)

�
f 00(um)�(um) � f 00(u1)�(u1)

���

+
�
��w(um) � w(u1)

�
f 00(u1)�(u1)

��� ! 0 .

Using Lemma 5.2 one can prove that w(um) ! w(u1) in L2. Therefore since
f 00(u1)�(u1) is bounded, k

�
w(um) � w(u1)

�
f 00(u1)�(u1)

�
k ! 0. For the

first term, split again: we show that

�
��w(um) � w(u1)

��
f 00(um)�(um) � f 00(u1)�(u1)

���

and
�
�w(u1)

�
f 00(um)�(um) � f 00(u1)�(u1)

���

go to 0. As before, w(um) ! w(u1) and f 00(um)�(um) � f 00(u1)�(u1) are
uniformly bounded, and the first term is done. The second one follows by the
dominated convergence theorem.

The fact that 3 is C1 on finite-dimensional subspaces V⇤ follows from the
statement just proved: its partial derivatives are continuous. One might use the sup
norm in the arguments: on V⇤, the L2 and the L1 norms are equivalent.
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Università di Milano
Via Saldini, 50
20133 Milano, Italia
marta.calanchi@unimi.it

Departamento de Matemática
PUC-Rio
R. Mq. de S. Vicente 225
Rio de Janeiro, RJ 22453-900, Brazil
carlos.tomei@gmail.com
zaccur.andre@gmail.com


