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Prym varieties of étale covers of hyperelliptic curves

HERBERT LANGE AND ANGELA ORTEGA

Abstract. It is well known that the Prym variety of an étale cyclic covering of
a hyperelliptic curve is isogenous to the product of two Jacobians. Moreover, if
the degree n of the covering is odd or congruent to 2 mod 4, then the canonical
isogeny is an isomorphism. It is a natural question whether this is true for arbitrary
degrees. We show that this is not the case by computing the degree of the isogeny
for n a power of 2. Furthermore, we compute the degree of a closely related
isogeny for arbitrary n.

Mathematics Subject Classification (2010): 14H40 (primary); 14H30 (sec-
ondary).

1. Introduction

Let H denote a hyperelliptic curve of genus g � 2 and f : X ! H an étale cyclic
covering of degree n � 2. Let � denote the automorphism of X defining f . It is
well known that the hyperelliptic involution of H lifts to an involution ⌧ on X . Then
� and ⌧ generate the dihedral group Dn of order 2n. The Prym variety P( f ) of f
is defined as the connected component containing 0 of the kernel of the norm map
Nm f : J X ! J H of f . For any element ↵ 2 Dn we denote by X↵ the quotient
of X by the subgroup generated by ↵. The Jacobians J X⌧ and J X⌧� are Abelian
subvarieties of the Prym variety P( f ) (the pullbacks defining these inclusions are
omitted along the paper), therefore the addition map

a0 : J X⌧ ⇥ J X⌧� ! P( f )

is well defined. Mumford showed in [3] that for n = 2 that the map a0 is an isomor-
phism. J. Ries proved the same for any odd prime degree n [6]. The second author
generalized this statement to show that a0 is an isomorphism for any odd number
and, more importantly, for any even n ⌘ 2 mod 4 [4]. Of course, this immediately
rises the question: is this map an isomorphism for every positive integer n? We will
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see in this paper that a0 is not an isomorphism for n = 2r with r � 3. However it
is an isogeny whose degree we will determine.

For the remaining positive integers n we compute the degree of a similar map.
Namely, for n = srm with m odd define

a : J X⌧ ⇥ J X⌧�m ! P( f ), (x, y) 7! x + y.

Our main result is the following combination of Theorems 2.3 and 4.1.

Theorem. Let n and f : X ! H be as above with n = 2rm, r � 1 and m
odd. Then J X⌧ and J X⌧�m are Abelian subvarieties of the Prym variety P( f ) and
the addition map

a : J X⌧ ⇥ J X⌧�m ! P( f )

is an isogeny of degree 2[(2r�r�1)m�(r�1)](g�1).

Corollary. The map a is an isomorphism for n ⌘ 2 mod 4 (i.e. r = 1). For
n = 2r , that is m = 1, one has a0 = a, and the degree of a0 is 2(2r�2r)(g�1). In
particular, it is an isomorphism for r = 1, 2 and it is not for r � 3.

The proof proceeds by induction on the exponent r , the beginning of the induction
(r = 1) being Theorem 2.3. For the induction step we consider an intermediate
étale double covering X ! X� n/2 on the top of the tower of curves (see Diagram
(2.4)), which admits the action of the dihedral group Dn/2.

The proof is somehow intricate because in order to apply the induction hypoth-
esis, one has first to relate the Prym varieties of other double coverings which do
not appear in Diagram (2.4). To facilitate the reading, we sketch the steps of the
proof, however using the notation introduced in the proof itself (it would take too
much space to define it also here). In Section 2 we compute the genera of all the
curves appearing in the tower of curves and recall a key result giving the degree of
the addition map into the Prym variety of a double covering Y ! Yr , with Y admit-
ting an action of the Kleinian group (Proposition 2.10). In Section 3 we compute
the degree of the isogeny P(b⌧� n/2) ! P(b⌧m ) (Proposition 3.2) given by the push
forward to J X followed by the norm map between the Prym varieties on both sides
of the tower (2.4). Finally, in Section 4 we put all the ingredients together. First, by
using Proposition 2.10 and the induction hypothesis, we compute the degree of the
isogeny

�̃n : f ⇤ J H ⇥ J XK⌧ ⇥ J XK⌧�m ⇥ P(b⌧ ) ⇥ P(b⌧� n/2) ! J X ,

and then, by means of Proposition 3.2, the degree of

�n : f ⇤ J H ⇥ J XK⌧ ⇥ J XK⌧�m ⇥ P(b⌧ ) ⇥ P(b⌧�m ) ! J X.

As a corollary we get the degree of the isogeny

 n : J XK⌧ ⇥ J XK⌧�m ⇥ P(b⌧ ) ⇥ P(b⌧�m ) ! P( f ).
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All the isogenies are naturally defined by the addition map. To conclude the proof
of the main theorem one factorizes the isogeny  n through the product of addition
maps and a, and then applies Lemma 2.9.

We thank the referee for pointing out a gap in a previous version of the paper.

2. Preliminaries

Let H be a smooth hyperelliptic curve of genus g with hyperelliptic covering ⇡ :
H ! P1 and f : X ! H be a cyclic étale covering of degree n � 2. So X is
of genus gX = n(g � 1) + 1 and the Prym variety P := P( f ) of f is an Abelian
variety of dimension

dim P = (n � 1)(g � 1). (2.1)

The canonical polarization of J X induces a polarization on P of type

( 1, . . . , 1| {z }
(n�2)(g�1)

, n, . . . , n| {z }
g�1

)

(see [1, Corollary 12.1.5 and Lemma 12.3.1]). The hyperelliptic involution of H
lifts to an involution ⌧ on X which together with the automorphism � defined by
the covering f generates the dihedral group

Dn := h�, ⌧ | � n = ⌧ 2 = (�⌧ )2 = 1i.

The automorphism � induces an automorphism of P of the same order n and com-
patible with the polarization, which we denote by the same letter. Each eigenvalue
⇣ in, for i = 1, . . . , n� 1 (with ⇣n a fixed primitive n-th root of unity) of the induced
map on the tangent space T0P occurs with multiplicity g � 1.

In the whole paper we write n = 2rm with r � 0 and m odd. In any case the
group Dn admits n involutions, namely ⌧� ⌫ for ⌫ = 0, . . . n � 1. For odd n, these
are all the involutions. For even n, there is one more, namely �

n
2 . For odd n all

involutions are conjugate to ⌧ and for even n there are 3 conjugacy classes. They
are represented by

⌧, ⌧�m and � n/2.

For any subgroup G ⇢ Dn and for any element ↵ 2 Dn we denote by

XG := X/G and X↵ := X/h↵i

the corresponding quotients.
Remark 2.1. The Jacobians J X⌧� and J X⌧�m are isomorphic since the involu-
tions ⌧� and ⌧�m are conjugate (for odd m) in the dihedral group Dn , so the cor-
responding coverings are isomorphic. However, this isomorphism is not in general
compatible with the addition maps, so one can not deduce the degree of a0 from the
degree of a.
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Consider the following diagram (for odd n only the left hand side of the dia-
gram, since in this case m = n, so both sides are the same):

X

f n:1
✏✏

2:1

##

G

G

G

G

G

G

G

G

G

2:1

}}z

z

z

z

z

z

z

z

X⌧

n:1
!!

C

C

C

C

C

C

C

C

H

⇡ 2:1
✏✏

X⌧�m

n:1
||x

x

x

x

x

x

x

x

P1 .

Let W denote the set of 2g + 2 branch points of the hyperelliptic covering ⇡ . Then
denote, for arbitrary n,

s0 :=
�
�
�{x 2 W | (⇡ f )�1(x) contains a fixed point of ⌧ }

�
�
�

and
s1 :=

�
�
�{x 2 W | (⇡ f )�1(x) contains a fixed point of ⌧�m}

�
�
� .

According to [4, Proposition 2.4] the Jacobians J X⌧ and J X⌧�m are contained in
the Prym variety P . With this notation the following theorem is proved in [4].

Theorem 2.2.

(a) For odd n the map

a0 : (J X⌧ )2 ! P, (x, y) 7! x + � (y)

is an isomorphism;
(b) For n = 2m ⌘ 2 mod 4 the map

a0 : J X⌧ ⇥ J X⌧� ! P, (x, y) 7! x + y

is an isomorphism. Moreover,

g(X⌧ ) = m(g�1)+1�
s0
2

and g(X⌧� ) = g(X⌧�m ) = m(g�1)+1�
s1
2

.

In particular s0 and s1 are even.

The following theorem shows that a variation of the map in (b) gives also an iso-
morphism.

Theorem 2.3. For n = 2m the map

a : J X⌧ ⇥ J X⌧�m ! P, (x, y) 7! x + y

is an isomorphism.
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Proof. The proof is very similar to that one of Theorem 2.1 given in [4]. First note
that the Kleinian groups

K1 = h⌧�, �mi and Km = h⌧�m, �mi

are conjugated. In fact, ⌧�
m+1
2 K1(⌧�

m+1
2 )�1 = Km ; therefore, the curves XK1 are

XKm (and hence their Jacobians) are isomorphic. Let K0 = h⌧, �mi. We will need
the following Lemma due to Kempf [2, Theorem 2.3]:

Lemma 2.4. Let X be an integral algebraic variety with an action of a finite group
G. Let F be a G-bundle over X . The bundle F descends to X/G if and only if for
every point x 2 X , the stabilizer of x in G acts trivially on the fiber Fx .

Consider now the following commutative diagram:

X

2:1q
✏✏

↵m

%%

J

J

J

J

J

J

J

J

J

J

J

J

↵0

zzu

u

u

u

u

u

u

u

u

u

u

u

X⌧

b0
✏✏

X�m

m:1f1
✏✏

c0

zzv

v

v

v

v

v

v

v

v

v

c1

$$

I

I

I

I

I

I

I

I

I

I

I

X⌧�m

b1
✏✏

XK0

$$

H

H

H

H

H

H

H

H

H

H

X� = H

⇡

✏✏

XK1

zzu

u

u

u

u

u

u

u

u

u

u

P1 .

(2.2)

Here the map b1 : X⌧�m ! XK1 is the composition of the quotient map X⌧�m !
XKm with the isomorphism XKm ' XK1 . Since the dimensions on both sides of
a are the same it suffices to show that Ker a = J X⌧ \ JX⌧�m = {0}. Let F 2
J X⌧ \ JX⌧�m . We regard F as a line bundle of degree 0 on X⌧ (respectively on
X⌧�m ). We have J X⌧ = Im(1+ ⌧ ) and J X⌧�m = Im(1+ ⌧�m) as subvarieties of
J X , in particular F 2 Fix(⌧, �m). Hence there exist line bundles M0 2 J X⌧ and
M1 2 J X⌧�m such that

↵⇤
0M0 ' F ' ↵⇤

mM1.

We have
↵⇤
m�

m⇤M1 ' �m⇤↵⇤
mM1 ' �m⇤F ' F ' ↵⇤

mM1,

since the automorphims ⌧ and�m commute. The injectivitity of↵⇤
m implies�m⇤M1'

M1.
Notice that the ramification points of the map b1 : X⌧�m ! XK1 , that is, the

fixed points of �m , lift to to the fixed points of ⌧ in X : if p 2 Fix(�m) ⇢ J X⌧�m
and p̃ 2 X is such that ↵m( p̃) = p, then

↵m(�m p̃) = �m↵m( p̃) = �m p = p,
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so �m p̃ 2 ↵�1
m (p) = { p̃, ⌧�m p̃}; as q is non-ramified, �m p̃ 6= p̃, so �m p̃ =

⌧�m p̃ = �m⌧ ( p̃). It follows that ⌧ p̃ = p̃.
The action of �m on the fibers of M1 over the ramification points is the same as

the action of ⌧ on the fibers of F over the fixed points of ⌧ in X since ↵⇤
mM1 ' F .

Let us set x 2 Fix(⌧ ) ⇢ X . By Lemma 2.4 h⌧ i = Stab(x) acts trivially on the fiber
Fx (x being a ramification point of a0). It follows that �m acts trivially on the fiber
of M1,↵m(x) and again by Lemma 2.4 there exists a line bundle N1 2 J XK1 such
that b⇤

1N1 ' M1. Completely analogous as in [4, Lemma 2.1], one can show that
there exists N0 2 J XK0 such that b⇤

0N0 ' M0.
Now, since q⇤c⇤0N0 ' q⇤c⇤1N1 ' F we have

� := c⇤0N0 ⌦ (c⇤1N1)
�1 2 Ker q⇤ = {OX�m , ⌘}

for some ⌘ 2 J X�m [2] \ {0}, and

� 2 J XK0 ⇥ J XK1 ' P( f1)

by Theorem 2.2 (a). We have

q⇤� ' OX ' � ⇤OX ' � ⇤q⇤� ' q⇤� ⇤�,

so � ⇤� 2 Ker q⇤, and one checks easily that � ⇤� ' �. As P( f1) ⇢ Ker(1 + � +
. . . + �m�1), we have

� 2 J X�m [m] \ J X�m [2] = {0}.

Hence
c⇤0N0 ' c⇤1N1 2 J XK0 \ J XK1 = {0},

where the last equality follows from Lemma [4, Lemma 2.1]. We conclude that
F ' q⇤OX�m ' OX .

It is the aim of this paper to study the map a in the remaining cases, n = 2rm
with r � 2. So in the sequel we assume r � 2. We first need some preliminaries.

There are 2 non-conjugate Kleinian subgroups of Dn , namely

K⌧ =
n
1, � n/2, ⌧, ⌧� n/2

o
and K⌧�m =

n
1, � n/2, ⌧�m, ⌧�m+n/2

o
.

Moreover, consider the dihedral subgroups of order 8,

T⌧ =
D
⌧, � n/4

E
and T⌧�m =

D
⌧�m, � n/4

E
.

Note that for r � 3 the groups T⌧ and T⌧�m are non-conjugate, whereas

T⌧ = T⌧�m for r = 2, (2.3)
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since then n
4 = m and h⌧, �mi = h⌧�m, �mi. In any case we have the following

commutative diagram:

X

2:1f1
✏✏

a⌧�m

%%

K

K

K

K

K

K

K

K

K

K

K

K

a
⌧�n/2

yys

s

s

s

s

s

s

s

s

s

s

s

X⌧� n/2

b
⌧�n/2

✏✏

X� n/2

2:1f2
✏✏

c
⌧�n/2

zzt

t

t

t

t

t

t

t

t

t

t

c⌧�m

$$

J

J

J

J

J

J

J

J

J

J

J

X⌧�m

b⌧�m
✏✏

XK⌧

d
⌧�n/2

✏✏

X� n/4
e
⌧�n/2

zzt

t

t

t

t

t

t

t

t

t

t

e⌧�m

$$

J

J

J

J

J

J

J

J

J

J

J

n
4 :1f3

✏✏

XK⌧�m

d⌧�m
✏✏

XT⌧

n
4 :1

��

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

XT⌧�m

n
4 :1

⇤⇤⌃

⌃

⌃

⌃

⌃

⌃

⌃

⌃

⌃

⌃

⌃

⌃

⌃

⌃

⌃

⌃

⌃

⌃

⌃

X� = H

⇡

✏✏

P1 .

(2.4)

In the sequel we use the following notation: if an involution of the group Dn induces
an involution on a curve of the diagram, we denote the induced involution by the
same letter. In order to compute the genera of the curves in the diagram, we need
the following lemma.

Lemma 2.5. Suppose that the dihedral group Dn = h�, ⌧ i of order 2n with n � 3
acts on a finite set S of n elements such that the subgroup h� i acts transitively on S.
Then:

(a) If n is odd, ⌧ admits exactly one fixed point;
(b) For even n, either ⌧ acts fixed-point free or admits exactly 2 fixed points;
(c) For even n, exactly one of the involutions ⌧ and ⌧� admits at least a fixed point.

Proof. Let S = {x1, . . . xn}. We may enumerate the xi in such a way that � (xi ) =
xi+1 for i = 1, . . . , n, where xn+1 = x1. If n is odd, then clearly ⌧ admits a fixed
point. So in any case we may assume that x1 is a fixed point of ⌧ . Then we have
inductively, for i = 1, . . . b n+32 c,

⌧ (xi ) = xn+2�i . (2.5)

In fact, the induction step is ⌧ (xi ) = ⌧� (xi�1) = ��1⌧ (xi�1) = ��1(xn�i+3) =
xn�i+2. Hence for odd n the involution ⌧ admits no further fixed point and for even
n, ⌧ admits exactly one additional fixed point, namely x n+2

2
. This gives (a) and (b).



474 HERBERT LANGE AND ANGELA ORTEGA

Now let us prove (c). Suppose that n is even and that ⌧ admits a fixed point,
say x1. Hence we have (2.5) for all i . This implies

⌧� (xi ) = ⌧ (xi+1) = xn+1�i ,

and so ⌧� acts without fixed points. Conversely, suppose that ⌧ acts without fixed
points and that ⌧ (x1) = xi for some i � 2. Then � 1�i⌧ (x1) = x1. So � 1�i⌧ admits
a fixed point and thus it cannot be conjugated to ⌧ . Hence ⌧� is conjugate to � 1�i⌧
and admits a fixed point.

Lemma 2.6. Suppose n = 2rm with m odd and r � 2. Then:

(a) s0 + s1 = 2g + 2 with s0, s1 � 2 even;
(b) For r = 2, X� n/4 ! XT⌧ and X� n/4 ! XT⌧�m are ramified exactly at 2g + 2

points;
(c) X ! X⌧� n/2 and X� n/2 ! XK⌧ as well as X� n/4 ! XT⌧ , if r � 3, are

ramified exactly at 2s0 points. X ! X⌧�m and X� n/2 ! XK⌧�m as well as
X� n/4 ! XT⌧�m , if r � 3, are ramified exactly at 2s1 points.

Proof. The fixed points of ⌧ and ⌧�m lie over the 2g + 2 Weierstrass points of H .
Moreover, according to Lemma 2.5, over each Weierstrass point of H exactly one
of ⌧ and ⌧�m admits a fixed point. This gives the first assertion of (i). The evenness
of s0 and s1 follows from the Hurwitz formula. Now s0 = 0 means that ⌧ acts
without fixed-points. Since also � acts without fixed points, so does ⌧�m , which
means s1 = 0. But this contradicts the equation s0+ s1 = 2g+2. Hence s0, s1 � 2.

If x is a Weierstrass point of H and ⌧ admits a fixed point over x , then Dn
acts on the fibre f �1(x). Similarly, the group Dn/2 = h� n/2, ⌧ i acts on the fibre
( f3 � f2)�1(x) and the group Dn/4 = h� n/4, ⌧ i acts of the fibre f �1

3 (x). Hence
Lemma 2.5 implies (ii), since in these cases the order of the fibre is even, and (iii),
since in this case the order of the fibre is odd.

By checking the ramification of the maps in Diagram (2.4) we immediately get
from Lemma 2.6 the following corollaries.

Corollary 2.7. All the vertical left and right hand maps are ramified.

Corollary 2.8. If n = 2rm with m odd and r � 2, then

g(X) = n(g � 1) + 1, g(X� n/2) =
n
2
(g � 1) + 1, g(X� n/4) =

n
4
(g � 1) + 1;

g(X⌧� n/2) =
n
2
(g � 1) + 1�

s0
2

, g(X⌧�m ) =
n
2
(g � 1) + 1�

s1
2

;

g(XK⌧ ) =
n
4
(g � 1) + 1�

s0
2

, g(XK⌧�m ) =
n
4
(g � 1) + 1�

s1
2

;

and for r � 3,

g(XT⌧ ) =
n
8
(g � 1) + 1�

s0
2

g(X⌧�m ) =
n
8
(g � 1) + 1�

s1
2

.
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For r = 2,

g(XT⌧ ) = g(X⌧�m ) =
1
2
(m � 1)(g � 1).

Proof. The assertions follow from the Hurwitz formula. For the first line of asser-
tions we use the fact that f is étale. For the other formulas we use Lemma 2.6 (ii)
and (iii).

The following lemma is well known. In fact, it is an easy consequence of [1,
Proposition 11.4.3] and [1, Corollary 12.1.4].

Lemma 2.9. Let g : Y ! Z be a covering of smooth projective curves of degree
d � 2. The addition map

g⇤ J Z ⇥ P(g) ! JY

is an isogeny of degree

|g⇤ J Z \ P(g)| =
|J Z [d]|

| ker g⇤|2
.

We need a result on curves with an action of the Klein group. Let Y be a curve with
an action of the group

V4 =
D
r, s | r2 = s2 = (rs)2 = 1

E
.

Then we have the following diagram

Y
ar

✏✏

as

~~}

}

}

}

}

}

}

} ars

!!

B

B

B

B

B

B

B

B

Ys

bs
  

A

A

A

A

A

A

A

Yr

✏✏

Yrs

brs
}}|

|

|

|

|

|

|

|

Z

(2.6)

with Yv := Y/hvi for any v 2 V4 and Z = Y/V4. The following theorem is a
special case of [5, Theorem 3.2].

Proposition 2.10. Suppose ar is étale, that as (respectively ars) is ramified at
2↵s > 0 (respectively 2↵rs > 0) points and Z is of genus g(Z). Then P(bs)
and P(brs) are subvarieties of P(ar ) and the addition map

�r : P(bs) ⇥ P(brs) ! P(ar )

is an isogeny of degree 22g(Z).
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3. A degree computation

As above, let n = 2rm with m odd and r � 2. Again we consider a curve X
with action of the dihedral group Dn := h�, ⌧ | � n = ⌧ 2 = (�⌧ )2 = 1i. With
the notation as in Section 2 we have Diagram (2.4) and s0, s1 � 2. Then, apart
from f1, f2 and f3, all the maps in Diagram (2.4) are ramified. So the pullbacks
of the corresponding Jacobians are embeddings [1, Proposition 11.4.3]. Recall that
P = P( f ) denotes the Prym variety of the covering f .

We consider the isogenies

h := Nm a⌧�m � a⇤
⌧� n/2

: P(b⌧� n/2) �! P(b⌧�m )

and
h0 := Nm a⌧� n/2 � a⇤

⌧�m : P(b⌧�m ) �! P(b⌧� n/2).

Let
A := a⇤

⌧� n/2
(P(b⌧� n/2)) and B := a⇤

⌧�m (P(b⌧�m ))

be subvarieties of J X . Now ⌧ (respectively � n/2) induces an involution on J X⌧� n/2
(respectively on J X⌧�m ), which we denote by the same letter. Thus the Prym va-
riety P(b⌧� n/2) is Ker(1 + ⌧ )0 and P(b⌧�m ) = Ker(1 + � n/2)0. In fact, these
kernels consist of one connected component since the maps b⇤

⌧� n/2
and b⇤

⌧�m are
injective [1, Proposition 11.4.3]. Let J XG denote the set of points in J X invariant
under the action of a subgroup G ⇢ Dn . Hence we have (for example by [5, Corol-
lary 2.7]),

A =
�
z 2 J X h⌧� n/2i | z+ ⌧ z = 0

 
, B =

�
w 2 J X h⌧�mi | w +� n/2w = 0

 
.

Moreover, as in [5], there is a commutative diagram:

A

Nm a⌧�m
  

B

B

B

B

B

B

B

B

B

B

B

B

1+⌧�m
// B

Nm a
⌧�n/2

!!

C

C

C

C

C

C

C

C

C

C

C

C

1+⌧� n/2
// A

P(b⌧� n/2)

a⇤
⌧�n/2

==

{

{

{

{

{

{

{

{

{

{

{

{

h
// P(b⌧�m )

a⇤
⌧�m

>>

|

|

|

|

|

|

|

|

|

|

|

|

h0
// P(b⌧� n/2)

a⇤
⌧�n/2

==

{

{

{

{

{

{

{

{

{

{

{

{

(3.1)

Lemma 3.1. For any n = 2rm with m odd and r � 2 we have

|Ker h| = |Ker(1+ ⌧�m)|A |

and
Ker(1+ ⌧�m)A = (J X[2])h⌧,�

mi.
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Proof. The first assertion follows from Diagram (3.1), since a⇤
⌧� n/2

: P(b⌧� n/2) !
A and a⇤

⌧�m : P(b⌧�m ) ! B are isomorphisms. For the last assertion note that
z 2 Ker(1+ ⌧�m)|A if and only if

⌧� n/2z = z, ⌧ z = �z, ⌧�m(z) = �z,

which implies that �mz = z. So

z = ⌧� n/2z = ⌧� 2
r�1mz = ⌧ (�m)2

r�1
(z) = ⌧ z = �z,

then z 2 A[2].
Therefore z 2 Ker(1+ ⌧�m)|A if and only if z 2 J X[2] such that ⌧ z = z and

�mz = z, which was to be shown.

The following proposition is a generalization of a special case of [5, Theorem
4.1, (ii)].

Proposition 3.2. For every n = 2rm with m odd and r � 2, we have

deg h = 2(m�1)(g�1)+s1�2.

Proof. The proof is by induction on the exponent r � 2. Suppose first r = 2, i.e.
n = 4m. Consider the curve X with the action of the dihedral subgroup

D4 := h�m, ⌧ i ⇢ Dn.

It has 2 non-conjugate Kleinian subgroups, namely K⌧ = h� 2m, ⌧ i and K⌧�m =
h� 2m, ⌧�mi Note that, by (2.3), T⌧ = T⌧�m = h�m, ⌧ i. Then according to [5,
Theorem 4.1 (ii)] we have

|Ker h| = 22g(XT⌧ )�2+s1 .

So Corollary 2.8 gives the proposition in this case.
Suppose now that r � 3 and the proposition holds for r � 1. Let X be a curve

with an action of Dn with X/h� i = H , so that we have the Diagram (2.4). Then
the subgroup Dn

2
= h� 2, ⌧ i of index 2 acts on the curve Xn/2, so that we can apply

the inductive hypothesis. This gives that the map

hn/2 := Nm c⌧�m � c⇤
⌧� n/2

: P(d⌧� n/2) �! P(d⌧�m )

is an isogeny of degree 2(m�1)(g�1)�2+s1 .
Hence it suffices to show that

Ker h = b⇤
⌧� n/2

(Ker hn/2).

This implies the proposition, since the map b⇤
⌧� n/2

is injective.
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By applying Lemma 3.1 to h n
2
one obtains

�
�
�Ker h n

2

�
�
� =

�
�
�(J X⌧� n/2[2])

h⌧,�mi
�
�
� =

�
�
�a⇤
⌧� n/2

(J X⌧� n/2[2])
h⌧,�mi

�
�
� .

But

a⇤
⌧� n/2

(J X⌧� n/2[2])
h⌧,�mi =

n
z 2 J X[2] | ⌧� n/2z = z, ⌧ z = z, �mz = z

o

=
�
z 2 J X[2] | ⌧ z = z, �mz = z

 
,

since the equation ⌧� n/2z = z is a consequence of the last 2 equations. This gives

|Ker h| = |Ker h n
2
|

which completes the proof of Proposition 3.2.

4. Decomposition for n = 2rm, r � 2 with m odd

Now let the notation be as in Section 1 with n = 2rm, r � 2 and m odd. Let
f : X ! H be a cyclic étale covering of degree n of a hyperelliptic curve H . The
main result of the paper is the following theorem.

Theorem 4.1. Let n and f : X ! H be as above. Then J X⌧ and J X⌧�m are
Abelian subvarieties of the Prym variety P( f ) and the addition map

a : J X⌧ ⇥ J X⌧�m ! P( f )

is an isogeny of degree 2[(2r�r�1)m�(r�1)](g�1).

The proof is by induction on r . Since the proofs for r = 2 and for the inductive step
in case r � 3 are almost the same, we present them simultaneously. The difference
is only that for r = 2 we use Theorem 2.3 instead of the induction hypothesis. So
in this section we assume that for r � 3, Theorem 4.1 is true for r � 1, i.e. for
coverings of degree 2r�1m for all m. Let r � 2 and f : X ! H be an étale
covering of degree n = 2rm with odd m � 1. We use the notation of Diagram
(2.4). In addition let b⌧ : X⌧ ! XK⌧ denote the canonical projection.

Proposition 4.2. The varieties J XK⌧ , J XK⌧�m , P(b⌧ ) and P(b⌧� n/2) are Abelian
subvarieties of J X and the addition map

e�n : f ⇤ J H ⇥ J XK⌧ ⇥ J XK⌧�m ⇥ P(b⌧ ) ⇥ P(b⌧� n/2) ! J X

is an isogeny of degree

dege�n = m2g�2 · 2[(2r+1�r)m+r](g�1)+2�s0 .
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Proof. All the maps in Diagram (2.4) are ramified apart from f1, f2 and f3, which
gives the first assertion. The dihedral group Dn/2 = h� 2, ⌧ i acts on the curve X� n/2 .

If r = 2, we can apply Theorem 2.3 to get that the canonical map

↵ : J XK⌧ ⇥ J XK⌧�m ! P( f3 � f2)

is an isomorphism. For r � 3 we can apply the induction hypothesis, which gives
that ↵ is an isogeny of degree 2[(2r�1�r)m�(r�2)](g�1). Since this number is equal to
1 for r = 2, this is valid for all r � 2.

Now the addition map ↵1 : ( f3 � f2)⇤ J H ⇥ J XK⌧ ⇥ J XK⌧�m ! J X� n/2
factorizes as

( f3 � f2)⇤ J H⇥ JXK⌧ ⇥ J XK⌧�m
↵1

//

id⇥↵
++

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

J X� n/2

( f3 � f2)⇤ J H ⇥ P( f3 � f2)

 

55

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

where  is the addition map. Thus Lemma 2.9 implies that

deg↵1 = deg↵ · deg = 2[(2r�1�r)m�(r�2)](g�1) · (2r�1m)2g�2

= m2g�2 · 2[(2r�1�r)m+r)](g�1).

Clearly ↵1 and its pullback via f ⇤
1 are of the same degree. Moreover, considering

X with the action of the Klein group h� n/2, ⌧ i, we have the diagram:

X

f1
✏✏

a⌧

||x

x

x

x

x

x

x

x

x a
⌧�n/2

$$

I

I

I

I

I

I

I

I

I

I

X⌧

b⌧
""

E

E

E

E

E

E

E

E

X� n/2
c
⌧�n/2

✏✏

X⌧� n/2

b
⌧�n/2

zzv

v

v

v

v

v

v

v

v

XK⌧ .

Then by Proposition 2.10 the addition map

↵2 : P(b⌧ ) ⇥ P(b⌧� n/2) ! P( f1)

is an isogeny of degree 22g(XK⌧ ) = 22r�1m(g�1)+2�s0 .
Now note that the map e�n factorizes as

⇥
f ⇤ J H⇥ J XK⌧ ⇥ J XK⌧�m

⇤
⇥
⇥
P(b⌧ )⇥ P(b⌧� n/2)

⇤ e�n
//

f ⇤
1 ↵1⇥↵2

✏✏

J X

f ⇤
1 J X� n/2 ⇥ P( f1) .

↵3
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j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j
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By Lemma 2.9 the addition map ↵3 is an isogeny of degree 22g(X�n/2 )�2=22
rm(g�1),

therefore the map e�n is an isogeny of degree

dege�n = deg f ⇤
1 ↵1 · deg↵2 · deg↵3

= m2g�2 · 2[(2r�1�r)m+r)](g�1) · 22
r�1m(g�1)+2�s0 · 22

rm(g�1)

= m2g�2 · 2[(2r+1�r)m+r](g�1)+2�s0 .

Corollary 4.3. The canonical map

�n : f ⇤ J H ⇥ J XK⌧ ⇥ J XK⌧�m ⇥ P(b⌧ ) ⇥ P(b⌧�m ) ! J X

is an isogeny of degree

deg�n = m2g�22[(2r+1�r�1)m+r�1](g�1).

Proof. According to Proposition 3.2 the canonical map

h : P(b⌧� n/2) ! P(b⌧�m )

is an isogeny of degree 2(m�1)(g�1)�2+s1 .
Now with the definition of the map h one checks that the following diagram

commutes

⇥
f ⇤ J H ⇥ J XK⌧ ⇥ J XK⌧�m ⇥ P(b⌧ )

⇤
⇥ P(b⌧� n/2)

e�n
//

id⇥h
✏✏

J X

⇥
f ⇤ J H ⇥ J XK⌧ ⇥ J XK⌧�m ⇥ P(b⌧ )

⇤
⇥ P(b⌧�m ) .

�n

33

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

So Propositions 4.2 and 3.2 imply that �n is an isogeny of degree

deg�n =
dege�n
deg h

=
m2g�2 · 2[(2r+1�r)m+r](g�1)+2�s0

2(m�1)(g�1)�2+s1
= m2g�2 · 2[(2r+1�r�1)m+r�1](g�1),

where we used again that s0 + s1 = 2g + 2.

Corollary 4.4. The canonical map

 n : J XK⌧ ⇥ J XK⌧�m ⇥ P(b⌧ ) ⇥ P(b⌧�m ) ! P( f )

is an isogeny of degree 2[(2r+1�r�1)m�(r+1)](g�1).
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Proof. Clearly the addition maps the source of  n into P( f ) and the following
diagram is commutative

f ⇤ J H ⇥
⇥
J XK⌧ ⇥ J XK⌧�m ⇥ P(b⌧ ) ⇥ P(b⌧�m )

⇤ �n
//

id⇥ n
✏✏

J X

f ⇤ J H ⇥ P( f )
'

33

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

where ' denotes the addition map. According to Lemma 2.9, ' is an isogeny of
degree (16m)2g�2. Hence  n is an isogeny of degree

deg n =
deg�n
deg'

=
m2g�2 · 2[(2r+1�r�1)m+r�1](g�1)

(2rm)2g�2

= 2[(2r+1�r�1)m�(r+1)](g�1).

Proof of Theorem 4.1. The following diagram is commutative

J XK⌧ ⇥ J XK⌧�m ⇥ P(b⌧ ) ⇥ P(b⌧�m )

 n

**

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

'
✏✏⇥

J XK⌧ ⇥ P(b⌧ )
⇤
⇥

⇥
J XK⌧�m ⇥ P(b⌧�m )

⇤

'1⇥'2
✏✏

P( f )

J X⌧ ⇥ J X⌧�m
a

44

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

where '1 and '2 denote the addition maps. According to Lemma 2.9, '1 and '2 are
isogenies of degrees 28m(g�1)+2�s0 and 28m(g�1)+2�s1 respectively. This implies
that a is an isogeny of degree

deg a =
deg n

deg'1 · deg'2
=
2[(2r+1�r�1)m�(r+1)](g�1)

2(2rm�2)(g�1) = 2[(2r�r�1)m�(r�1)](g�1).

which completes the proof of the theorem.
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