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On parametric extensions over number fields

FRANÇOIS LEGRAND

Abstract. Given a number field F , a finite group G and an indeterminate T , a
G-parametric extension over F is a finite Galois extension E/F(T ) with Galois
group G and E/F regular that has all the Galois extensions of F with Galois
group G among its specializations. We are mainly interested in producing non-
G-parametric extensions, which relates to classical questions in inverse Galois
theory like the Beckmann-Black problem. Building on a strategy developed in
previous papers, we show that there exists at least one non-G-parametric exten-
sion over F for a given non-trivial finite group G and a given number field F
under the sole necessary condition that G occurs as the Galois group of a Galois
extension E/F(T ) with E/F regular.

Mathematics Subject Classification (2010): 12EXX (primary); 12FXX, 11R58,
11R44 (secondary).

1. Introduction

Given a number field F , the inverse Galois problem over F asks whether every
finite group G occurs as the Galois group of a Galois extension of F . A classical
way to obtain such an extension consists in introducing an indeterminate T and in
producing a Galois extension E/F(T ) with the same Galois group and E/F regu-
lar1: from the Hilbert irreducibility theorem, the extension E/F(T ) has infinitely
many linearly disjoint specializations with Galois group G (if G is not trivial). We
refer to Subsection 2.1 for basic terminology.

Following recent works [6, Section 4] [5], in the present paper we are interested
in finite Galois extensions E/F(T ) with E/F regular – from now on, say for short
that the extension E/F(T ) is an “F-regular Galois extension” – that have all the
Galois extensions of F with Galois group G among their specializations. More
precisely, let us recall the following definition.

1 i.e., E \ Q = F .
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Definition 1.1. A finite F-regular Galois extension E/F(T ) with Galois group G
is G-parametric over F if every Galois extension of F with Galois group G occurs
as a specialization of E/F(T ).

Parametric extensions have been introduced with the aim of a better under-
standing of the Beckmann-Black problem which asks whether the specialization
process is optimal to solve the inverse Galois problem. Namely, recall that the
Beckmann-Black problem, for the finite group G over the number field F , asks
whether every Galois extension L/F with Galois group G is a specialization of
some F-regular Galois extension EL/F(T ), possibly depending on L/F , with Ga-
lois groupG. Although no counter-example is known and only a few positive results
have been proved (see e.g. [2, Theorem 2.2] for more details), it may be expected
that the Beckmann-Black problem fails in general over number fields. However, no
line of attack seems to be known and a disproof at the moment is probably out of
reach.

Actually, the answer to the following weaker question on parametric extensions
seems to be unavailable in the literature. Let us say that a finite group G is a regular
Galois group over (the given number field) F if G occurs as the Galois group of an
F-regular Galois extension of F(T ).

Question 1.2. Does there exist a regular Galois group G over F such that no F-
regular Galois extension of F(T ) with Galois group G is G-parametric over F?

The existence of such a finite group G would be a first step towards a counter exam-
ple to the Beckmann-Black problem over the number field F . However, although
we may expect the answer to be negative almost always, deciding whether a given
F-regular Galois extension of F(T ) with Galois group G is G-parametric over F
or not is a difficult problem in general (even in the easiest case G = Z/2Z) and
only a few non-parametric extensions are available in the literature. In particular,
finding a group G as in Question 1.2 seems to be difficult as well.

In [6, Section 4] and [5], we offer a systematic approach to produce F-regular
Galois extensions E/F(T ) with Galois group G which are not G-parametric over
F . It consists in introducing another F-regular Galois extension E 0/F(T ) with
Galois groupG and in giving criteria ensuring that some specializations of E 0/F(T )
with Galois group G are not specializations of E/F(T ). Examples with specific
finite groups G such as abelian groups, symmetric and alternating groups, non-
abelian simple groups, and so on, are then given, under some natural necessary
conditions. For example, an obvious obstruction to the existence of at least one
non-G-parametric extension over F is that G is not a regular Galois group over F .

Building on this strategy, in this paper we show that the latter obstruction is
the only one to the existence of a non-G-parametric extension over F with Galois
group G.

Theorem 1.3. Let G be a non-trivial finite group and F a number field. Assume
that G is a regular Galois group over F . Then there exists at least one non-G-
parametric extension over F with Galois group G.
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Actually, from any F-regular Galois extension E/F(T ) with Galois group G sat-
isfying some mild assumptions on its set of branch points, we derive a sequence
(Ek/F(T ))k of F-regular realizations of G such that infinitely many linearly dis-
joint specializations of E/F(T ) with Galois group G are not specializations of
Ek/F(T ). See Theorem 3.1.

The paper is organized as follows. In Section 2 we recall some material used
in the sequel. In Section 3 we prove Theorem 1.3 under an auxiliary result on prime
divisors of polynomials (Definition 2.1) that has its own interest; see Proposition
3.7. Proposition 3.7 is proved in Section 4. Finally, in Section 5, we make re-
lated previous results from [5] more precise thanks to a group theoretic argument
communicated to us by Reiter.

ACKNOWLEDGEMENTS. This work was motivated by a visit of the author in Uni-
versität Bayreuth. The author is then indebted with Stefan Reiter for Lemma 5.3
and would like to thank the Zahlentheorie team for hospitality and financial sup-
port. The author also wishes to thank Lior Bary-Soroker, Pierre Dèbes, Danny
Neftin and Jack Sonn for helpful discussions, as well as the anonymous referee for
suggesting a simpler proof of Proposition 3.7.

2. Basics

For this section, let F be a number field.
2.1. Specializations of finite Galois extensions of F(T)

Given an indeterminate T , let E/F(T ) be a finite Galois extension with Galois
group G and E/F regular (i.e., E \ Q = F). From now on, say for short that
E/F(T ) is an F-regular Galois extension.

Recall that a point t0 2 P1(Q) is a branch point of E/F(T ) if the prime ideal
(T � t0)Q[T � t0] 2 ramifies in the integral closure ofQ[T � t0] in the compositum
of E and Q(T ) (in a fixed algebraic closure of F(T )). The extension E/F(T ) has
only finitely many branch points.

Given a point t0 2 P1(F) which is not a branch point, the residue extension of
E/F(T ) at a prime ideal P lying over (T � t0)F[T � t0] is denoted by Et0/F and
is called the specialization of E/F(T ) at t0. It does not depend on the choice of the
prime P lying over (T � t0)F[T � t0], as E/F(T ) is Galois. The extension Et0/F
is Galois, with a subgroup of G as Galois group, namely the decomposition group
of E/F(T ) at P .

2.2. Prime divisors of polynomials

Denote the integral closure of Z in F by OF . Let P(T ) 2 OF [T ] be a non-constant
monic polynomial.

2 Replace T � t0 by 1/T if t0 = 1.
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Definition 2.1. Say that a non-zero prime idealP of OF is a prime divisor of P(T )
if the reduction of P(T ) modulo P has a root in the residue field OF/P .

The following lemma will be used on several occasions in the sequel. Denote
the roots of P(T ) by t1, . . . , tr . Given an integer k � 1 and an index j 2 {1, . . . , r},
let kpt j be a k-th root of t j . Finally, let Lk be the splitting field of P(T k) over F
and ⇣k a primitive k-th root of unity.

Lemma 2.2. The following three conditions are equivalent:

(1)
Sr

j=1
Sk�1
l=0 Gal(Lk/F(⇣ lk

kpt j )) 6=
Sr

j=1 Gal(Lk/F(t j ));
(2) There exists a set S of non-zero prime ideals of OF that has positive density

and such that each prime ideal P in S is a prime divisor of P(T ) but not of
P(T k);

(3) There exist infinitely many non-zero prime ideals of OF each of which is a prime
divisor of P(T ) but not of P(T k).

Proof. We may assume that P(T ) is separable. If P(0) = 0, then (1), (2) and (3)
fail. From now on, we assume that P(0) 6= 0. In particular, P(T k) is separable.

First, assume that (1) holds, i.e., that there exists some � in

r[

j=1
Gal

�
Lk/F(t j )

�
\

r[

j=1

k�1[

l=0
Gal

⇣
Lk/F

⇣
⇣ lk

k
p
t j

⌘⌘
.

By the Tchebotarev density theorem, there exists a positive density set S of primes
P of OF such that the associated Frobenius element in Lk/F is conjugate to � .
As � fixes no root of P(T k), such a P is not a prime divisor of P(T k) (up to
finitely many). Denote the splitting field of P(T ) over F by L1. Then the Frobenius
element associated withP in L1/F is the restriction to L1 of the one in Lk/F . As �
fixes a root of P(T ), P is a prime divisor of P(T ) (up to finitely many), as needed
for (2).

As implication (2) ) (3) is obvious, it remains to prove implication (3) )
(1). To do this, assume that (1) does not hold. Let P be a non-zero prime ideal
of OF that is a prime divisor of P(T ) and that is unramified in Lk/F . Denote the
associated Frobenius in Lk/F by � . As P is a prime divisor of P(T ) and P does
not ramify in L1/F , the associated Frobenius element in L1/F fixes a root of P(T )
(up to finitely many). Since this Frobenius element is the restriction of � to L1, we
get that � fixes a root of P(T ). As condition (1) fails, � fixes a root of P(T k) as
well. Hence P is a prime divisor of P(T k) (up to finitely many). Then (3) does not
hold either, thus ending the proof.

3. Proof of Theorem 1.3

The aim of this section consists in proving Theorem 3.1 below, of which Theo-
rem 1.3 is a straightforward application.
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3.1. Statement of Theorem 3.1

Let F be a number field, OF the integral closure of Z in F and G a non-trivial finite
group that is a regular Galois group over F (i.e., G occurs as the Galois group of an
F-regular Galois extension of F(T )).

Given an indeterminate T , let E/F(T ) be an F-regular Galois extension with
Galois group G, branch points t1, . . . , tr and such that the following two conditions
hold3:

• (bp-1) {0, 1,1} \ {t1, . . . , tr } = ;;
• (bp-2) t1, . . . , tr all are integral over OF .

Theorem 3.1. There exists a sequence of F-regular Galois extensions Ek/F(T ),
k 2 N \ {0} (depending on E/F(T )), with Galois group G and that satisfies the
following property.

For each finite extension F 0/F , there exist infinitely many positive integers
k (depending on F 0) such that the extension EkF 0/F 0(T ) satisfies the following
condition:
(non-G-parametricity) There exist infinitely many linearly disjoint Galois exten-
sions of F 0 with Galois groupG each of which is not a specialization of EkF 0/F 0(T ).

In particular, the extension EkF 0/F 0(T ) is not G-parametric over F 0. Fur-
thermore, these Galois extensions of F 0 with Galois group G may be produced by
specializing the extension EF 0/F 0(T ).

Remark 3.2. As explained in Subsection 3.2.4 below, we are not able to remove the
dependence on the number field F 0 containing F in the set of all suitable positive
integers k. In particular, the proof provides no integer k such that the extension
EkF 0/F 0(T ) satisfies the (non-G-parametricity condition) for each finite extension
F 0/F . See Proposition 5.1 for a result with such a geometric conclusion.

Corollary 3.3. Let G be a non-trivial finite group. Then there exists some number
field FG that satisfies the following property. For each number field F 0 containing
FG , there exists an F 0-regular Galois extension of F 0(T )with Galois groupG which
satisfies the (non-G-parametricity condition). Moreover, one can take FG equal to
a given number field F if and only if G is a regular Galois group over F .

Remark 3.4. As a classical consequence of the Riemann existence theorem, every
finite group G is a regular Galois group over some number field FG , and then over
every number field F 0 containing FG . Hence Theorem 3.1 provides the following
statement.

3 These two conditions hold up to applying a suitable change of variable.
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3.2. Proof of Theorem 3.1

We break the proof into four parts.

3.2.1. Notation

Given a positive integer k and j 2 {1, . . . , r}, let kpt j be a k-th root of t j . Let F 0/F
be a finite extension and OF 0 the integral closure of Z in F 0.

By condition (bp-1), one may consider the polynomial

PE (T ) :=
rY

j=1
(T � t j ).

By condition (bp-2), the monic separable polynomial PE (T ) has coefficients in OF .

3.2.2. Two lemmas

Fix a positive integer k.
First, we derive from the extension E/F(T ) an F-regular Galois extension of

F(T ) with group G and specified set of branch points.

Lemma 3.5. There exists an F-regular Galois extension of F(T )with Galois group
G and whose branch points are exactly the k-th roots of those of E/F(T ).

Proof. The proof below follows part of an argument of Dèbes and Zannier given
in the proof of [3, Proposition 5.2]. Let P(T,Y ) 2 F[T ][Y ] be the irreducible
polynomial over F(T ) of some primitive element of E over F(T ), assumed to be
integral over F[T ]. The polynomial P(T,Y ) is absolutely irreducible, as E/F(T )
is F-regular, and, as 0 is not a branch point (condition (bp-1)), it has a root in
Q((T )). By [1, Lemma 0.1], the polynomial Pk(T,Y ) := P(T k,Y ) is absolutely
irreducible. Denote the field generated by one root of Pk(T,Y ) over F(T ) by Ek .
The extension Ek/F(T ) is F-regular, as Pk(T,Y ) is absolutely irreducible, and
has degree equal to the order of G. Denote the Galois closure of Ek/F(T ) by
cEk/F(T ) and the Galois group of cEk/F(T ) by Hk . By the Hilbert irreducibility
theorem, there are infinitely many t0 2 F such that the specialization (cEk)t0/F of
cEk/F(T ) at t0 has Galois group Hk . For all but finitely many t0 2 F , the field
(cEk)t0 is the splitting field over F of the polynomial Pk(t0,Y ) = P(tk0 ,Y ), which
is in turn the field Etk0 . Hence there is a specialization of E/F(T )with Galois group
Hk . In particular, Hk is a subgroup of G. As the order of G divides the order of
Hk , we get G = Hk . Hence Ek/F(T ) is an F-regular Galois extension with Galois
group G. By construction, the branch points of Ek/F(T ) lying in Q \ {0} are the
k-th roots of those of E/F(T ). As neither 0 nor 1 is a branch point of E/F(T )
(condition (bp-1)), the same is true of Ek/F(T ), thus ending the proof.

Let Ek/F(T ) be an F-regular Galois extension with Galois group G and
whose branch points are exactly the k-th roots of those of E/F(T ).

Next, we apply a previous criterion from [6] for the extension EkF 0/F 0(T ) to
satisfy the (non-G-parametricity condition).
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Lemma 3.6. Assume that there exist infinitely many non-zero prime ideals of OF 0

each of which is a prime divisor of PE (T ) but not of PE (T k) (considered as polyno-
mials with coefficients in F 0). Then the extension EkF 0/F 0(T ) satisfies the (non-G-
parametricity condition). Moreover, the Galois extensions of F 0 with Galois group
G appearing in the (non-G-parametricity condition) may be produced by specializ-
ing the extension EF 0/F 0(T ).

Proof. Given an algebraic number t 6= 0, denote the irreducible polynomial of t
over F 0 by mt (T ). Consider the following four polynomials:

mEF 0(T ) =
rY

j=1
mt j (T ),

m⇤
EF 0(T ) =

rY

j=1
m1/t j (T ),

mEk F 0(T ) =
rY

j=1

k�1Y

l=0
me2i⇡l/k kpt j (T ),

m⇤
Ek F 0(T ) =

rY

j=1

k�1Y

l=0
m1/(e2i⇡l/k kpt j )(T ).

By [6, Theorem 4.2] and since the branch points of the extension Ek/F(T ) are the
k-th roots of those of E/F(T ), it suffices to prove that there exist infinitely many
non-zero prime ideals of OF 0 each of which is a prime divisor ofmEF 0(T )·m⇤

EF 0(T )
but not of mEk F 0(T ) · m⇤

Ek F 0(T ).
As1 is not a branch point of EF 0/F 0(T ) (condition (bp-1)), one may apply [6,

Remark 3.11] to get that mEF 0(T ) · m⇤
EF 0(T ) and mEF 0(T ) have the same prime

divisors (up to finitely many). Since the polynomials mEF 0(T ) and PE (T ) have
the same prime divisors, we get that mEF 0(T ) ·m⇤

EF 0(T ) and PE (T ) have the same
prime divisors (up to finitely many). By the same argument, every prime divisor
of mEk F 0(T ) · m⇤

Ek F 0(T ) is a prime divisor of PE (T k) (up to finitely many). Then,
from the assumption in the statement, there exist infinitely many non-zero prime
ideals of OF 0 each of which is a prime divisor of mEF 0(T ) · m⇤

EF 0(T ) but not of
mEk F 0(T ) · m⇤

Ek F 0(T ), as needed.

3.2.3. A number theoretical result

Now, we need the following number theoretical result to ensure that the assumption
of Lemma 3.6 holds.

Proposition 3.7. Given a monic separable polynomial P(T ) 2 OF [T ] such that
P(0) 6= 0 and P(1) 6= 0, there is an infinite set S of integers k � 1 such that, for
each k 2 S, there are infinitely many prime ideals of OF each of which is a prime
divisor of P(T ) but not of P(T k).
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Remark 3.8. (1) If either 0 or 1 is a root of P(T ), then the conclusion of Proposi-
tion 3.7 clearly fails.
(2) The set S depends on the polynomial P(T ) and this dependence cannot be
removed. Indeed, given an integer k � 1, all non-zero prime ideals of OF are prime
divisors of P(T ) and P(T k) if P(T ) = T � 2k .
(3) Similarly, the set S depends on the number field F and this dependence cannot
be removed. Indeed, given a number field F 0 containing F and an integer k � 1, all
but finitely many prime ideals of OF 0 are prime divisors of P(T ) and P(T k) if F 0

contains a root of P(T k).

Proposition 3.7 is proved in Section 4.

3.2.4. Conclusion

As already said, the monic separable polynomial PE (T ) has coefficients in OF 0 .
Moreover, by condition (bp-1), one has PE (0) 6= 0 and PE (1) 6= 0. Then, by
Proposition 3.7 (applied over F 0), there exists an infinite set S of positive integers k
(depending on F 0: see Remark 3.8) such that, for each k 2 S, there exist infinitely
many non-zero prime ideals of OF 0 , each of which is a prime divisor of PE (T ), but
not of PE (T k). Then it remains to apply Lemma 3.6 to conclude.

4. Proof of Proposition 3.7

This section is organized as follows. In Subsection 4.1, we state Proposition 4.1,
which is Proposition 3.7 for polynomials whose roots are all in the base number
field. Next, we explain in Subsection 4.2 how to deduce Proposition 3.7 from
Proposition 4.1. Finally, Proposition 4.1 is proved in Subsection 4.3.

4.1. Statement of Proposition 4.1

Proposition 4.1. Given a number field F , let P(T ) 2 OF [T ] 4 be a monic sepa-
rable polynomial whose roots are all in F \ {0, 1}. Then there exist infinitely many
positive integers k such that the Galois group of P(T k) over F has an element fixing
no root of P(T k).

4.2. Proof of Proposition 3.7 under Proposition 4.1

Let F be a number field and P(T ) 2 OF [T ] a monic separable polynomial such
that P(0) 6= 0 and P(1) 6= 0. Denote the roots of P(T ) by t1, . . . , tr and the
splitting field of P(T ) over F by L . By Proposition 4.1, there exist infinitely many

4 As before, OF denotes the integral closure of Z in F .
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positive integers k such that

Gal(Lk/L) \
r[

j=1

k�1[

l=0
Gal

⇣
Lk/L

⇣
⇣ lk

k
p
t j

⌘⌘

contains some �k , where Lk is the splitting field over L of P(T k), ⇣k is a primitive
k-th root of unity and kpt j is a given k-th root of t j ( j = 1, . . . , r). For each positive
integer k, the splitting field of P(T k) over F is equal to Lk . Then �k lies in

r[

j=1
Gal(Lk/F(t j )) \

r[

j=1

k�1[

l=0
Gal

⇣
Lk/F

⇣
⇣ lk

k
p
t j

⌘⌘
.

It then remains to use implication (1)) (3) of Lemma 2.2 to conclude.

4.3. Proof of Proposition 4.1

We proceed by induction on the degree of the polynomial P(T ).

4.3.1. The case where P(T ) has degree 1

Let F be a number field and t 2 OF \ {0, 1}. The conclusion of Proposition 4.1 for
the polynomial T k � t easily follows from Lemmas 4.2 and 4.3 below5.

Lemma 4.2. Assume that t is a root of unity. Then for each number field L con-
taining F , there exist infinitely many integers k � 1 such that the Galois group of
T k � t over L is not trivial and each non-trivial element of the Galois group of
T k � t over F fixes no root of this polynomial.

Proof. Assume that t is a primitive N -th root of unity. Let L be a number field
containing F and k a positive integer whose prime factors all are prime factors of
N . As t 6= 1, one has N � 2 and there exist infinitely many such integers k. Assume
that the Galois group of T k � t over L is trivial. Then L contains a primitive k-th
root of unity, which cannot happen if k is sufficiently large (depending on L). One
may then assume that the Galois group of T k � t over L is not trivial. In particular,
the Galois group of T k� t over F is not trivial either. Let � be a non-trivial element
of the latter Galois group. Assume that � fixes at least one root of T k � t . By the
definition of k, each root of T k � t is a primitive (Nk)-th root of unity. This implies
that � fixes each root of T k � t , which cannot happen.

Lemma 4.3. Assume that t is not a root of unity. Then T k � t is irreducible over F
for all but finitely many prime numbers k.

5 In the case where t is not a root of unity, one makes use of the following classical lemma: if a
given finite group G acts transitively on a given finite set X with cardinality at least 2, then there
exists g 2 G such that g.x = x for no x 2 X .
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Proof. By Capelli’s lemma (see e.g. [4, Chapter VI, Section 9, Theorem 9.1]) it
suffices to show that, for all but finitely many prime numbers k, t is not a k-th
power in F . Denote the absolute logarithmic Weil height on Q by h. Assume that
there exist infinitely many integers k � 1 such that there exists xk 2 F satisfying
t = xkk . One then has

h(t) = h(xkk ) = k · h(xk).

As t is not a root of unity and t 6= 0, one has h(t) 6= 0. Hence F contains infinitely
many elements each of which has height bounded by h(t), which cannot happen [7,
Theorem 1].

4.3.2. End of the proof of Proposition 4.1

Let r be a positive integer. Assume that the following condition holds:
(H) For each number field F and each monic separable polynomial P(T )2 OF [T ]
of degree r whose roots are all in F \ {0, 1}, there exist infinitely many positive
integers k such that the Galois group of P(T k) over F has an element fixing no root
of P(T k).
Let F be a number field and let P(T ) 2 OF [T ] be a monic separable polynomial
of degree r + 1 whose roots are all in F \ {0, 1}. Denote the roots of P(T ) by
t1, . . . , tr , tr+1. By condition (H), there exists an integer k0 � 1 such that the
Galois group of (T k0 � t1) · · · (T k0 � tr ) over F has an element ⌧ fixing no root of
this polynomial. Denote the splitting field of (T k0 � t1) · · · (T k0 � tr ) over F by L .

(a) Assume that tr+1 is a root of unity. By Lemma 4.2, there is an integer k1 � 1
such that the Galois group of T k1 � tr+1 over L is not trivial and every non-trivial
element of the Galois group of T k1 � tr+1 over F fixes no root of this polynomial.
Let � be a non-trivial element of the former Galois group. Denote the splitting field
of T k1 � tr+1 over L by M and let ⌧̂ 2 Gal(M/F) be a prolongation of ⌧ to M .

First assume that ⌧̂ fixes no root of T k1 � tr+1. Then ⌧̂ is an element of the
Galois group of (T k0 � t1) · · · (T k0 � tr ) · (T k1 � tr+1) over F fixing no root of this
polynomial. Given a positive multiple k of k0 and k1, every prolongation of ⌧̂ to the
splitting field Mk over F of P(T k) is an element of Gal(Mk/F) fixing no root of
this polynomial. Hence the desired conclusion holds.

Now, assume that ⌧̂ fixes a root of T k1 � tr+1. By the definition of k1, ⌧̂ fixes
each root of T k1 � tr+1. Consider the element � ⌧̂ of Gal(M/F). If x denotes any
k0-th root of t1, . . . , tr , then ⌧̂ (x) still is a k0-th root of t1, . . . , tr . By the definition
of � , one then has � ⌧̂ (x) = ⌧̂ (x), which is not equal to x by the definition of ⌧̂ . If
x denotes any k1-th root of tr+1, then, by the above, one has � ⌧̂ (x) = � (x), which
is not equal to x by the definition of � . Hence � ⌧̂ is an element of the Galois group
of (T k0 � t1) · · · (T k0 � tr ) · (T k1 � tr+1) over F fixing no root of this polynomial.
As before, the desired conclusion easily follows.

(b) Assume that tr+1 is not a root of unity. By Lemma 4.3, T k1 � tr+1 is irreducible
over L for some prime k1. As before, denote the splitting field of T k1 � tr+1 over L
by M and let ⌧̂ 2 Gal(M/F) be a prolongation of ⌧ to M . Let � be an element of
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Gal(M/L) fixing no root of T k1 � tr+1. If ⌧̂ fixes no root of T k1 � tr+1, then one
gets the desired conclusion as in (a) above. We may then assume that ⌧̂ (↵) = ↵ for
some root ↵ of T k1� tr+1. Let ⇣ be a primitive k1-th root of unity. Up to making the
prime number k1 sufficiently large (depending on L), we may assume that L and
Q(⇣ ) are linearly disjoint overQ. Then L(⇣ )/L has degree k1�1. Hence L(↵) and
L(⇣ ) are linearly disjoint over L (as L(↵)/L has degree k1). As a consequence, the
Galois group Gal(M/L(↵)) is generated by some element b satisfying b(↵) = ↵
and b(⇣ ) = ⇣ e for some e 2 N. Consider the restriction w of ⌧̂ to F(⇣ ). One
has w = cm for some integer m, where c is the generator of Gal(F(⇣ )/F) defined
by c(⇣ ) = ⇣ e. Then ⌧̂b�m is a prolongation of ⌧ to M which fixes each root of
T k1 � tr+1 (as ⌧̂ (↵) = ↵). As in (a) above, one shows that � ⌧̂b�m is an element of
the Galois group over F of (T k0 � t1) · · · (T k0 � tr ) · (T k1 � tr+1) fixing no root of
this polynomial, thus ending the proof.

5. A geometric variant

The aim of this section is Proposition 5.1 below which makes [5, Corollary 5.2]
more precise (this result is recalled as Lemma 5.2 below).

5.1. Statement of Proposition 5.1

Proposition 5.1. Let G be a non-trivial finite group, not a cyclic p-group. Then
there exist a number field FG and an FG-regular Galois extension E/FG(T ) with
Galois group G such that the following holds:
(geometric non-G-parametricity). For every finite extension F 0/FG , there exist in-
finitely many linearly disjoint Galois extensions of F 0 with Galois group G each of
which is not a specialization of EF 0/F 0(T )6.

Unlike Corollary 3.3, it seems unclear whether a number field FG as in Proposition
5.1 may be specified for a given group G7. See [5, Section 7] where this is done in
some specific cases.

5.2. Proof of Proposition 5.1

Let G be a non-trivial finite group.
First, recall the following result which is [5, Corollary 5.2].

Lemma 5.2. There exist a number field FG and an FG-regular Galois extension
of FG(T ) with Galois group G which satisfies the (geometric non-G-parametricity
condition) if the following group theoretic condition holds.

6 As in the (non-G-parametricity condition), the realizations of G whose existence is claimed
may be produced by specialization.
7 i.e., being a regular Galois group over a given number field F might not be sufficient to take
FG = F .
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(H2) There exists a set {C,C1, . . . ,Cr } of non-trivial conjugacy classes of G such
that the elements of C1, . . . ,Cr generate G and the remaining conjugacy class C
is not in the set {Ca

1 , . . . ,C
a
r / a 2 N}.

Now, combine Lemmas 5.2 and 5.3 below to get Proposition 5.1.
Lemma 5.3. Condition (H2) fails if and only if G is a cyclic p-group.
Proof of Lemma 5.3. It is not hard to see that condition (H2) fails if G is a cyclic
p-group. For the converse, we use the following argument due to Reiter. Assume
that condition (H2) fails. Let H be a maximal subgroup of G. If H is not a normal
subgroup of G, one has

G =
D [

g2G
gHg�1

E
. (5.1)

As condition (H2) fails, (5.1) provides G =
S

g2G gHg�1, which cannot happen.
Then each maximal subgroup of G is a normal one. Hence G is nilpotent, i.e., G is
the product of its Sylow subgroups. Set

G = P1 ⇥ · · · ⇥ Ps, (5.2)

with P1, . . . , Ps the Sylow subgroups of G. By the Sylow theorems, and as condi-
tion (H2) has been assumed to fail, (5.2) provides

G = P1 [ · · · [ Ps . (5.3)

If s � 2, then, by taking cardinalities in (5.2) and (5.3), we get
sY

i=1
|Pi | <

sX

i=1
|Pi |,

which cannot happen. Hence s = 1 and G is a p-group.
Let H1 and H2 be two distinct maximal subgroups of G. Then

G = hH1 [ H2i. (5.4)

As H1 and H2 are normal subgroups of G and as condition (H2) fails, (5.4) provides
G =

S
g2G g(H1 [ H2)g�1. Hence G = H1 [ H2. In particular, one has H1 ✓ H2

or H2 ✓ H1, which cannot happen. Hence G has only one maximal subgroup and
is then cyclic, as needed.

5.3. A conjectural version of Proposition 5.1

Recall that [5] also offers a conjectural version of [5, Corollary 5.2]; see [5, Corol-
lary 5.3]. Below we provide a similar conjectural version of Proposition 5.1, which
then makes [5, Corollary 5.3] more precise.

Namely, let G be a non-trivial finite group. Assume that the following conjec-
ture of Fried is satisfied8.

8 See Section III.1 of http://www.math.uci.edu/ mfried/deflist-cov/RIGP.html or [5, Section 5] for
more details.
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Conjecture (Fried). Each set {C1, . . . ,Cr } of non-trivial conjugacy classes of G
that is rational and such that the elements of C1, . . . ,Cr generate G occurs as the
inertia canonical conjugacy class set of some Q-regular Galois extension of Q(T )
with Galois group G.
Then, by combining Lemma 5.3 and [5, Corollary 5.3], Proposition 5.1 holds with
FG = Q, i.e., the following holds.
Proposition 5.4. Assume that G is not a cyclic p-group. Then there exists a Q-
regular Galois extension of Q(T ) with Galois group G that satisfies the geometric
(non-G-parametricity condition).

5.4. Other base fields

We conclude this paper by noticing that similar statements can be given for other
base fields. For example, by conjoining Lemma 5.3 and [5, Subsection 5.2], we
obtain the following counterpart of Proposition 5.1 for rational function fields.
Proposition 5.5. Let G be a non-trivial finite group, not a cyclic p-group,  an al-
gebraically closed field of characteristic zero and X an indeterminate such that T is
transcendental over (X). Then, for some Galois extension E/Q(T ) with group G,
the extension E(X)/(X)(T ) satisfies the (geometric non-G-parametricity condi-
tion).
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