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A complete Riemannian manifold
whose isoperimetric profile is discontinuous

STEFANO NARDULLI AND PIERRE PANSU

Abstract. The first known example of a complete Riemannian manifold whose
isoperimetric profile is discontinuous is given.

Mathematics Subject Classification (2010): 53C20 (primary); 49Q20 (sec-
ondary).

1. Introduction
1.1. The problem

Let M be a Riemannian manifold. Given 0 < v < vol(M), consider all domains,
i.e. smooth compact codimensional O submanifolds in M with volume v. Define
Iy (v) as the greatest lower bound of the boundary areas of such domains. In this
way, one gets a function /7 : (0, vol(M)) — Ry called the isoperimetric profile
of M.

Question 1.1. When is the isoperimetric profile a continuous function?

The answer is affirmative when M is compact [7, Lemma 6.2]. S. Gallot’s
proof uses techniques of metric geometry. In the compact case alternative proofs,
based on the direct method of the calculus of variations, can be found in books
like [1,11,12]. The finite volume case is similar, see [13, Corollary 2.4].

There are positive results for special classes of Riemannian manifolds: homo-
geneous spaces [9, Lemma 3, Theorem 6], complete Riemannian manifolds pos-
sessing a strictly convex Lipschitz continuous exhaustion function, [15] (Hadamard
manifolds and complete non-compact manifolds with strictly positive sectional cur-
vature belong to the latter class), unbounded convex Euclidean domains [10]. For
more informations about the literature on the continuity of the isoperimetric profile,
the reader should consult the introductions of [15] and [10], and references therein.

A general belief is that the answer should again be affirmative under bounded
geometry assumptions. The case of complete manifolds with C>“-locally asymp-
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totic bounded geometry is covered by [6, Theorem 1] and [5, Theorem 2.2]. To
some extent, their argument mimics the compact case.

If one assumes existence of isoperimetric regions of every volume, one can
weaken bounded geometry assumptions. It suffices to assume a lower bound on the
Ricci curvature and on the volumes of balls of radius 1, see [6, Theorem 4.1]. In
our opinion, it remains an open question whether the noncollapsing assumption that
is a lower bound on the volumes of balls can be removed or not (see Question 1.4
below).

An example of a manifold with density with discontinuous isoperimetric pro-
file has been described by Adams, Morgan and Nardulli in [2, Proposition 2]. This
has triggered our interest in this question.

1.2. The result

Theorem 1.2. There exists a complete connected noncompact 3-dimensional Rie-
mannian manifold M such that 1y is a discontinuous function.

The proof is a modification of the treatment of Riemannian manifolds with den-
sity by Adams, Morgan and Nardulli, an account of which can be found in Frank
Morgan’s blog [2].

In our example, the isoperimetric profile fails to be lower semi-continuous.
Here is a typical way of proving lower semi-continuity: given an almost minimiz-
ing sequence of domains €2, i.e., with vol(£2;) decreasing to 1 and area equal to
Iy (vol(£2;)) + v; satisfying the condition v; — 0, modify £2; locally in order to
decrease volume substantially without increasing area too much. This can be done
when €2; intersects parts of the manifold where ambient geometry stays bounded.
In our construction, we arrange so that almost minimizing sequences escape to in-
finity, encountering higher and higher curvatures and lower and lower injectivity
radii.

Start with a disjoint union of compact Riemannian manifolds N = [], M,
such that vol(M,,) = 1 + 1, where 7, > 0 tends to 0. Then In(1 + 7,) = O.
Assume that, for all n, Ip, (1) = Iy, (t,) = 1. Then it is not too hard to show
that /(1) > 1. Connecting each M, to M, with a very thin tube produces a
connected Riemannian manifold M for which I3;(1 + «,) tends to 0, where «,, is
another sequence tending to 0. Again, it is not too hard to show that 7;,(1) > 0.
Therefore I, is discontinuous.

Thus the key input is the sequence of Riemannian manifolds M,, with vol(M,,)
bounded and /s, (t,) bounded below. Adams, Morgan and Nardulli indulged them-
selves in introducing densities. They took for M,, a tiny round sphere with a high
constant density. Since volumes and boundary areas rescale differently, one can
achieve Iy, (¢,) > 1. Instead, we use nilmanifolds equipped with metrics which
converge (up to rescaling) to a single Carnot-Carathéodory metric. The Carnot-
Carathéodory isoperimetric inequality established in [14] gives a uniform lower
bound for the isoperimetric profiles of such metrics.
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Question 1.3. Does there exist a 2-dimensional Riemannian manifold whose
isoperimetric profile is discontinuous?

In [10], it is proven that, for unbounded convex Euclidean domains, the (rel-
ative) isoperimetric profile is either identically zero, or positive and continuous,
the latter case arising if and only if the volumes of unit balls are bounded below.
This suggests that non-collapsing might be needed merely to garantee existence of
isoperimetric minimizers, and raises the following question.

Question 1.4. Does a manifold with Ricci curvature bounded below and admitting
isoperimetric regions in every volume, have a continuous isoperimetric profile?

ACKNOWLEDGEMENTS. We thank the referee for numerous helpful suggestions.

2. Isoperimetry in nilmanifolds

2.1. Isoperimetry in the Heisenberg group

The Heisenberg group H is the group of real upper triangular unipotent 3 x 3 ma-
trices,

H=

SO =
O = =

Z
y]:;x,y,zeR
1

Putting integer entries produces the discrete subgroup Hz C H. Let dx, dy, 0 =
dz — xdy be a basis of left-invariant forms. Let

1
ge =dx* +dy* + 6—292.

Our notation differs from [4, page 25], in the sense that our g, coincides with their
gz with L = 1/€2. This is a left-invariant Riemannian metric on H. As ¢ tends to
0, the distance d, associated to g. converges to the Carnot-Carathéodory distance

de(p, q) = inf {length(y) ; y(0) = p, y(1) = ¢, y*6 =0}

The volume element of g is édx A dy A 6. Next we investigate perimeters. Let
(X1 = %, X, = % + xa%, X3 = 8%) denote the basis of left-invariant vector
fields dual to (dx, dy,0). Let F denote the space of pairs of smooth functions
¢ : H - R? having compact support and whose Euclidean norm satisfies |¢| < 1

pointwise. In [4, page 96], the (horizontal) perimeter of a subset E C H is defined
by

Py(E) = sup / (X191 + Xo2)dx Ady N 6.
peF JE
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Assume that E has a smooth boundary. Since X1¢; + X2¢7 is the divergence of
the vector field ¢; X1 + ¢, X5 (independently of the choice of €), an integration by
parts gives

/(X1¢1 + Xopn)dx Ady A6 = 6/ (p1 X1 4+ ¢2 X0, ne)e dareae,
E oE

where n. is the unit outward normal and darea, denotes Riemannian area relative
to the Riemannian metric g.. Therefore

Pu(E) = / €|n| darea,,
oE

where n is the horizontal projection of n, i.e., n” is the orthogonal projection of
ne onto the horizontal distribution span(X, X») generated by the vector fields X1,
X, with respect to the metric g.. Note that [n"|. < 1,s0

Pu(E) <earea(0E). 2.1

As € tends to 0, the vertical component n*" := n, — n” of n. with respect to g,

tends to O, therefore |nf| converges uniformly on d E, and

Pu(E) = linz)e area.(0F), 2.2)

compare with [4, page 99]. It turns out that, for smooth domains, perimeter co-
incides with Hausdorff 3-dimensional measure of boundary. By convention, we
define the Heisenberg volume element as Vg = dx Ady A 6.

The Heisenberg isoperimetric inequality [14] states that for all smooth domains
QCH,

1
_
Pu(@ = (35)* v 23)
(the unsharp numerical constant is irrelevant here).
With inequality (2.1), the Heisenberg isoperimetric inequality (2.3) implies a
lower bound on the isoperimetric profile of (H, g¢) for all ¢ > 0:

[8)

I S ()Y 24
(H,g0) (V) = <E) A 24
This is asymptotically sharp for large volumes, but not for small volumes, where
the correct asymptotics is v>/3. However it is the dependency on € which is most
important here.

We shall not directly use inequality (2.4). Instead, we shall rely on inequality
(2.3) to study the Carnot-Carathéodory isoperimetric profile of a quotient of H.
Only at the very end we shall return to Riemannian geometry, using inequality
(2.1).
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2.2. Nilmanifolds

H possesses group automorphisms & (x, y,z) = (tx,ty, 27). Let I, = 8,(Hz),
and let Ny = I'; \ H be the quotient manifold. It inherits quotient metrics g,
yielding Riemannian nilmanifolds N; . of total volume equal to é. But it also
inherits a Carnot-Carathéodory metric that depends only on #. Our first goal is to
show that the Carnot-Carathéodory isoperimetric profile of N; satisfies an inequality
similar to (2.3). Note that §; induces a homothetic map of N; onto N;, volumes Vg
are multiplied by * and perimeters Py by > (see for instance [4, pages 22 and
96]), so it suffices to work with one single compact space N;. The volume of N is
Va(Ny) = 1.

Theorem 2.1. There exists a constant ¢ such that the Carnot-Carathéodory isoperi-
metric profile of Ny satisfies I(n, 4,)(v) > ¢ min{v, 1 — v3/4. In other words, if
Q C Nj is a smooth domain of volume less that 1/2, then

Pu(2) > ¢ Va(Q)*4.

The method, inspired by [3], consists in cutting domains of N; into pieces that lift
to covering spaces. Ultimately, pieces lift to H where one can apply (2.3). This
covers cases where volume is smaller than some universal constant vg. To treat
domains with volume > vg > 0, we apply a compactness result due to [8], which
provides a uniform lower bound on the isoperimetric profile on [vg, Vol(N1) — vo].

2.3. Lifting domains piece by piece

Imitating [3], we shall cut domains in N using families of parallel planes. Again,
the point is to reduce to domains which are null-homotopic and then to lift to the
universal covering, where the isoperimetric inequality is known.

Let us explain Bérard and Meyer’s idea in the flat torus T = Z> \ R3. For
t=(1,t,t3) € T,let

G:={peT; x(p)=tory(p)=tnorz(p) =1t}.

G, is the projection to the torus of three perpendicular planes. As ¢ moves, these
planes stay parallel to themselves. Let €2 be a domain in 7. The coarea formula
shows that

3 - volume(2) = / area(Q2 N Gy) dt.
T
One can pick ¢ such that area(2 N G;) < 3 - volume(2). Then 2\ G; lifts to a
Euclidean domain £’ whose boundary is not too much larger than that of €2,
area(d’) < area(d2) + 6 - volume(R).

Note that when volume(2) is small, it is much smaller than area(d2"), which is
at least volume(£2)%/3, according to Euclidean isoperimetric inequality. Therefore
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Bérard-Meyer’s construction provides an isoperimetric inequality valid in 7', for
domains of small volume.

Due to the anisotropic character of Carnot-Carathéodory geometry, there are
two different kinds of planes:

1. Vertical planes, containing lines parallel to the 7 axis, defined by linear equations
in x and y only;
2. Horizontal planes, i.e. level sets of the z coordinate.

These families satisfy different coarea formulae, therefore we shall proceed in two
steps.
2.4. Reduction to pillars

A first step is to cut domains into pieces called pillars that lift to a Z & Z covering
space Z of Nj.

Definition 2.2. Let ¢ denote the center of Hz and [H, H] the subgroup of com-
mutators of H. Let us call pillar a subset of Z = ¢ \ H whose projection to
[H, H] \ H = R? is contained in a unit square. Denote by P the pillar profile of
Z,ie.

Plz(v) = inf{Pg(P); P isapillar, Vg(P) = v}.

Proposition 2.3 (Reduction to pillars). The pillar profile of Z bounds the profile
of Ny from below, with an error term:

I(vadc)(v) > Plz(v) — 4.

Proof. The coordinate functions x and y on H pass to the quotient Ny — Z \ R.
Foru = (s,s') € (Z \ R)?, let

Gu={peNi;x(p)=sory(p)=s}.

This is the union of two surfaces, each of which is a level set of one of the func-
tions x or y. The complement of G, has a cyclic fundamental group that maps
isomorphically onto ¢ .

Let 2 be a domain in N;. By the coarea formula,

VH(Q)=/ Pa(x"'(s) N Q) ds.
Z\R

This coarea formula follows from the fact that the volume element is a 3-form and
splits as

dVg=dx ANdy N0 =dx Nd Py,

since dy A 6 = d Py along the fibers of x, see Lemma 2.4 below.
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The same inequality holds with x replaced with y. This shows that there exists
u = (s,s") € (Z\ R)? such that

Pu(x'0NR) = V@, Pu(y7'6HNQ) < V()
and thus
Pa(Gu N D) <2 V().

The complement 2\ G,, lifts to the covering space Z. Indeed, it is homotopic to the
circle {(0, 0, z); z € Z \ R}. Pick some lift. Its closure P is a pillar. Indeed, on P,
the real-valued functions x and y take values in intervals of length 1. The boundary
of P consists of a part that isometrically and injectively maps to 92, and of a part
that maps two-to-one to G, N 2. Therefore

Pa(0P) < Pu(9%2) +2 - Pu(G, NQ2) < Pu(9€2) +4 - Vu(2).
If Vig(2) = v, this shows that

Iny d.)(v) = Plz(v) —4v. ]

Lemma 2.4. Let F be the vertical plane {x = 0} in H. Then the perimeter measure
on Fisdy N6.

Proof. The Riemannian normal is n, = X1, it is horizontal and does not depend
on €. Its horizontal projection is né’ = X1, whose norm is 1. Since dy and 6
are orthogonal, |dy|c = 1, and |#|¢ = €, then the Riemannian area element is

darea, = dy/\ée,and the perimeter measure is dPg = e|né’|€darea€ =dyno. U

2.5. Treatment of pillars

Proposition 2.5 (Treatment of pillars). The profile of H bounds the pillar profile
of Z from below, with an error term:

Plz;(v) > Ig(v) — 2v.

Proof. Let P C Z be a pillar. We can assume that its projection to R? is contained
in {0 < x < 1}. Its inverse image P in H is a ¢-invariant subset with small
projection in R%. Again, we cut P into logs of height 1 using level sets of the z
function. This time, we split the volume element as

1

dVa=dx Ady ANdz =dz A (dx ANdy) :dz/\ﬁdPH >dzNd Py.

X
We have used the expression d Pq = |x|dx dy for the measure induced on hori-
zontal planes {z = s}, see Lemma 2.6 below.
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The coarea formula gives

Va(P) = Va(PN{0 <z <1}

1
[ (o iem)
0 P(z=s) |x]

> fol Pu(P N{z =s))ds.
There exists s € [0, 1] such that
Pu(P N {z=s)) < Vu(P).
Set Y = PN{s <z<s+1}. Then
Pu(02) < Pu(dP) +2 - Vu(P).
If P has volume v, this leads to

Plz(v) > Ig(v) — 2v. O

Lemma 2.6. Let H be the horizontal plane {z = 0} in H. Then the perimeter
measure on H is |x|dx N dy.

Proof. Use the parametrization (x, y) — (x, y, 0). The vectors

0 0
—=X; and — =Xp;—xX3
ax ay
are tangent to H . Their cross-product

X1 x (X2 —xX3) = €X3+ - X,
€

is normal. Its norm equals

X
‘ex3 +1x,
€

€

The Riemannian area element is

x2
darea, = /1 + —zdx Ady.
€

The unit normal is
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Its horizontal projection is

Therefore, the perimeter measure is

dPua = e|n£’|edarea€

1 x?2
= |x| ==/ 1 + ydx A dy
€
V1it5

= |x|dx Ady. 0

2.6. Profile of (N1, d.)

Proposition 2.7. (Carnot-Carathéodory isoperimetric inequality for small vol-
umes). Ifv < vg := (12) =37, then

Cc
Inya)(v) = 5113/4,

1
where ¢ = (1”—2)4 is the non-sharp isoperimetric constant for the Carnot-
Carathéodory metric appearing in (2.3).

Proof. Combined with Propositions 2.3 and 2.5, the Heisenberg isoperimetric in-
equality (2.3) yields

~ C
Ivy,a0 (V) = G0 — 4o =20 =@ — 60!/ = 0¥,
since v < vg = 12757, O

2.7. Proof of Theorem 2.1

There is a notion of Carnot-Carathéodory perimeter, an appropriate topology, name-
ly the LlloC convergence of the characteristic functions for which Vy is continu-
ous and the perimeter (which coincides with Py for smooth domains) lower semi-
continuous, and a compactness theorem for sets of bounded perimeter in a compact
Carnot manifold, due to Garofalo and Nhieu in [8, Theorem 1.28]. This implies
that the Carnot-Carathéodory isoperimetric profile I(y, 4, is positive on (0, 1) and
lower semi-continuous. Therefore, there exists n > 0 such that Iy, 4) > n on

[vo, 1 — vg]. Set ¢ = min {% 23/477, %} Then Iy, q.)(v) = n = c(%)3/4 > cvi/4
for every v € [vo, %] On the other hand, Proposition 2.7 shows that I(y, 4.)(v) >

cv3/* forall v € [0, vo]. ]
Note that the proof does not provide an effective constant c.
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2.8. Riemannian profile

Corollary 2.8. Let N; . denote the quotient §;(Hgz) \ H equipped with the Rieman-
nian metric induced by gc. The isoperimetric profile of Ny ¢ satisfies

4 3/4
c . t
IN,,G(U)mem{U,:—v} .

Proof. The homothetic map N; — N, induced by the automorphism §; transports
the inequality of Theorem 2.1 to N; without any change but the fact that Vg(N;) =
* replaces 1. The Riemannian volume element of N; . is éVH, the Riemannian
area induced on surfaces satisfies € area > Py by Equation (2.1). This leads to the
indicated dependence on € in the isoperimetric profile of N, ¢. O

3. Proof of Theorem 1.2

In this section, complete manifolds are constructed by piecing together compact
nilmanifolds like beads. As a warm up, we start with a disjoint union, where the
mechanism is more visible. A slight modification will provide a connected example.

3.1. The case of a disjoint union of nilmanifolds

Proposition 3.1. Let t,, = % € = r,? and t, = 13/4(1 + )4 Let N =

N; ¢,. Then, for all v € [i, 11, In(v) > &, where c is the constant of Theo-
n N Vi7 n 16 8
rem2.1.

Proof. By construction, vol(N;, ¢,) = 1 4+ 7,. Let Q2 be a domain in N with
vol(Q2) = v. Write @ = [ [, Q, where 2, C N,, ¢, has volume v,, ZZO:l vy, = 0.
If some v,, satisfies v, > %(1 + 1,), then

Cc

g (1 + 70 = v/
€n

area(0$2,) >

¢ 34 _

> — =
- 1/47:}1 C,
€n

the last inequality coming from the fact that v,, < v €]0, 1], so that
area(df2) > c, 3.1

in this case.
Otherwise, for alln > 1,
3/4 3/4

c
area(0$2,) > 74 Vn > cu,
€n
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We use the concavity inequality
a® +b% > (a +b)*,
valid forall 0 <« < 1,a > 0 and b > 0. This gives

(e8]
area(02) = area(0$2,)

n=1

= 3/4
>l
n=1

0 3/4 (1 3/4 c
C . Up = E Cc = g [
n=1

v

v

3.2. Connecting manifolds

Proof of Theorem 1.2. We construct a noncompact manifold that has the shape of
an infinite pearl necklace, adjusting suitable parameters carefully. Let0 < 7, < 1
be the sequence of positive real numbers chosen in the proof of Proposition 3.1.
Pick another sequence of volumes w, < 1, such that

1
— 32
Xn:wn<2s ( )

and a sequence of areas a, > 0 such that

C
P 33
anan< T (3.3)

where c is the constant of Theorem 2.1.

The manifolds N;, , we want to connect to obtain our counterexample M,
are like in Proposition 3.1, in particular we retain here that V(N;, ¢,) = 1 + 1,
where V is the Riemannian measure associated to g. Take two small disjoint balls
By 1, B, inside Ny, ., whose boundaries have total area < a,, except that for
n =1, By,1 := §. Arrange that B, » and B,41,1 be nearly isometric with the same
volume v, = V(By2) = V(Bn+1,1). Put N, = N,men\(Bn,lLoJBn,g), AUB denotes
set theoretical disjoint union for any pair of sets A, B such that AN B = .

Consider tubes or cylinders T, of the form T}, := (S%(1) x [0, 1], g»), where
the metrics g, are chosen in such a way that V(g,) < w, and they glue together
into a smooth metric on the connected sum M,, := Nn#Tn where the gluing is done
along in(S%(1) x {0}) = 9By, 2. Now consider

(M, g) := My#Mo# - - #MH#EMys i # - - (3.4)
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~

where M,, and M, are glued together along the boundaries in(S2(1) x {1}
0B(u+1),1, where i, : T, — M is the isometric embedding associated to our con-
struction. _

Consider domains D, := N,,we get V(D,) =1+ 1, — 17;[_1 -7, =1+
on, witha, — 0, ¢, := AWD,) = Ag(aB,,,ZOaB,,H,l) — 0, where A is the
2-dimensional Hausdorff measure with respect to the metric induced by g. This
implies readily

0< lim Iy(1+ae,) < lim A®@D,) =0. (3.5)
n——+400 n—+00

We show that Ip;(1) > 0. Let Q2 be a domain in M such that V(2) = 1. Write
Q= Uﬁn, where Q, := QN N,,. Then

[um—

V(Q)zl—anZE.
n

According to Proposition 3.1,
A(DQ) >

ool o

We have, for all n,

98, = ((asz) N 1\7,,) v (Q n aﬁ,,) :

A (asz,,) —A ((aQ) N 1\7,,) < Ag (9B1200B, 1) < an,
thus
- C C C
AOQ) = AOD) =Y an = ¢ — =
(952) = AQL) =87 16 16

This shows that Iy (1) > {¢.
This last inequality combined with (3.5) concludes the proof of Theorem 1.2.
O
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