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Abstract. The purpose of this paper is to introduce a new class of singular integral operators
in the Dunkl setting which is associated with finite reflection groups on the Euclidean space.
The group structures induce two nonequivalent metrics: the Euclidean metric and the Dunkl
metric, both of which are involved in the estimates of singular integrals, the heat and Poisson
kernels. The main result is the T1 theorem, the criterion of the L2 boundedness in Dunkl
setting. The key tools used in this paper are the Meyer-type commutation Lemma and almost
orthogonal estimates in the Dunkl setting.

1. Introduction and statement of main results

It is well known that group structures enter in a decisive way in harmonic analysis. The main
purpose of this paper is to develop the theory of singular integrals in the Dunkl setting which
is associated with finite reflection groups on the Euclidean space. This particular group struc-
ture is conducting the analysis. Indeed, in the Dunkl setting, there are corresponding Dunkl
transform, translation and convolution operators. However, both Euclidean metric and Dunkl
metric are involved in the Dunkl setting. For example, the size and smoothness conditions of
kernels of the Dunkl–Riesz transforms involve both Euclidean metric and Dunkl metric. There-
fore, the Dunkl–Riesz transforms do not fall in the scope of the classical Calderón–Zygmund
theory. Motived by these particular examples, we introduce a new class of singular integral
operators in the Dunkl setting. As in the classical case, the T1 theorem, that is, the criterion
for the boundedness on L2, is crucial. To provide the T1 theorem, we develop the Meyer-type
commutation Lemma and almost orthogonal estimates in the Dunkl setting.

We now state the background of the Dunkl setting and main results in more details.

1.1. Background on Dunkl setting. The classical Fourier transform, initially defined on
L1(RN), extends to an isometry of L2(RN) and satisfies certain properties with translation,
dilation and rotation groups. Dunkl also introduced a similar transform (now called the Dunkl
transform), which enjoys properties similar to the classical Fourier transform. See [12]. Corre-
sponding to this new transform, Dunkl also introduced first order differential-difference opera-
tors which play the role similar to the usual partial differentiation associated with the reflection
group.

To be precise, denote the standard inner product in the Euclidean space RN by 〈x, y〉 =
N∑
j=1

xjyj. Let R be a root system in RN normalized so that 〈α, α〉 = 2 for α ∈ R with R+ a

fixed positive subsystem, and G be the finite reflection group generated by the reflections σα
(α ∈ R), where σαx = x− 〈α, x〉α for x ∈ RN .
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The Dunkl operators Tj are defined by

Tjf(x) = ∂jf(x) +
∑
α∈R+

κ(α)

2
〈α, ej〉

f(x)− f(σα(x))

〈α, x〉
,

where e1, . . . , eN are the standard unit vectors of RN .

The Dunkl Laplacian is defined as 4 :=
N∑
j=1

T 2
j , which is equivalent to

4f(x) = 4RNf(x) +
∑
α∈R

κ(α)

(
∂αf(x)

〈α, x〉
− f(x)− f(σα(x))

〈α, x〉2

)
.

It generates the heat semigroup

Htf(x) := et4f(x) :=

�
RN

ht(x, y)f(y)dω(y),

where the heat kernel ht(x, y) is a C
∞ function for all t > 0, x, y ∈ RN and satisfies ht(x, y) =

ht(y, x) > 0 and
�
RN ht(x, y)dω(y) = 1.

The Poisson semigroup is given by

Ptf(x) = π− 1
2

� ∞

0

e−u exp
( t2
4u

4
)
f(x)

du

u
1
2

and u(x, t) = Ptf(x), so-called the Dunkl Poisson integral, solves the boundary value problem{
(∂2t +4x)u(x, t) = 0,

u(x, 0) = f(x)

in the half-space RN
+ , see [7].

All these tools, the Dunkl transform, Laplacian and Poisson integral together with the
Dunkl translation and convolution operators([28]), opened the door for developing the har-
monic analysis related to the Dunkl setting. For example, in [7], the Littlewood–Paley theory
was established and the Hardy space H1(RN) was characterized by the area integrals, maximal
fuction and the Riesz transforms, see also [6]. The atomic decomposition of H1

d(RN) was pro-
vided in [14]. The boundedness of singular integral convolution operators and the Hörmander
multipliers was given by [15] and [16], respectively. See [1, 2, 3, 4, 5, 11, 13, 25] for other topics
related to the Dunkl setting.

1.2. Statement of main results.

Let ‖x‖ :=
{ N∑

j=1

|xj|2
} 1

2 be the standard norm in RN and let B(x, r) := {y ∈ RN : ‖x−y‖ <

r} stands for the Euclidean ball with center x ∈ RN and radius r > 0. Let

d(x, y) := min
σ∈G

‖x− σ(y)‖

be the distance between two G-orbits O(x) and O(y), which is also known as the Dunkl metric.
Obviously, d(x, y) 6 ‖x−y‖, d(x, y) = d(y, x) and d(x, y) 6 d(x, z)+d(z, y) for all x, y, z ∈ RN .

A non-negative multiplicity function κ defined on R (the given root system in RN) is fixed
throughout this paper. Let dω(x) =

∏
α∈R |〈α, x〉|κ(α)dx be the associated measure in RN

(see for example [7]), where, here and subsequently, dx stands for the Lebesgue measure in
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RN . We denote by N = N +
∑
α∈R

κ(α) the homogeneous dimension of the system. Clearly,

ω(B(tx, tr)) = tNω(B(x, r)) and
�
RN f(x)dω(x) =

�
RN

1
tN
f(x

t
)dω(x) for f ∈ L1(RN , ω), t > 0.

Observe that for x ∈ RN and r > 0, ω(B(x, r)) ∼ rN
∏

α∈R
(
|〈α, x〉| + r

)κ(α)
and hence,

inf
x∈RN

ω(B(x, 1)) > c > 0.

Moreover,

(1.1) C−1

(
r2
r1

)N

6 w(B(x, r2))

w(B(x, r1))
6 C

(
r2
r1

)N

for 0 < r1 < r2.

This implies that dω(x) satisfies the doubling and reverse doubling properties, that is, there is
a constant C > 0 such that for all x ∈ RN , r > 0 and λ > 1,

C−1λNω(B(x, r)) 6 ω(B(x, λr)) 6 CλNω(B(x, r)).(1.2)

We can consider the Dunkl setting (RN , ‖ · ‖, ω) as a space of homogeneous type in the sense
of Coifman and Weiss, where the measure ω satisfies the doubling and the reverse doubling
properties. Let Cη

0 (RN), η > 0, denote the space of continuous functions f with compact
support and

‖f‖η := sup
x 6=y

|f(x)− f(y)|
‖x− y‖η

<∞.(1.3)

Also let Cη(RN), η > 0, denote the space of continuous functions f on RN with the same norm
as above.
Inspired by the Dunkl–Riesz transform, we introduce a new class of singular integral opera-

tors in the Dunkl setting (RN , ‖ · ‖, ω) as follows.

Definition 1.1. Let T be an operator defined initially as a mapping from Cη
0 (RN) to (Cη

0 (RN))′

with η > 0. T is said to be a Dunkl–Calderón–Zygmund singular integral operator if K(x, y),
the kernel of T, satisfies the following estimates: for some 0 < ε 6 1,

(1.4) |K(x, y)| . 1

ω(B(x, d(x, y)))

( d(x, y)

‖x− y‖

)ε

for all x 6= y;

(1.5) |K(x, y)−K(x, y′)| .
(‖y − y′‖
‖x− y‖

)ε 1

ω(B(x, d(x, y)))

for ‖y − y′‖ 6 d(x, y)/2;

(1.6) |K(x′, y)−K(x, y)| .
(‖x− x′‖
‖x− y‖

)ε 1

ω(B(x, d(x, y)))

for ‖x− x′‖ 6 d(x, y)/2.
Moreover,

〈T (f), g〉 =
�
RN

�
RN

K(x, y)f(x)g(y)dω(x)dω(y)

for all f, g ∈ Cη
0 (RN) with suppf ∩ supp g = ∅.

A Dunkl–Calderón–Zygmund singular integral operator is said to be the Dunkl–Calderón–
Zygmund operator if it extends to a bounded operator on L2(RN , ω).
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We remark that the size and regularity conditions of the Dunkl-Calderón–Zygmund singular
integral operator are much weaker than the classical Calderón–Zygmund singular integral op-
erators given in space of homogeneous type in the sense of Coifman and Weiss since d(x, y) and
‖x− y‖ are not equivalent. Therefore, this new class contains all classical Calderón–Zygmund
singular integral operators. Moreover, the definition of the Dunkl–Calderón–Zygmund oper-
ators can be extended to bounded functions in Cη(RN). We include the details in Section
2.

The main result of this paper is to establish a criterion of boundedness on L2 for the Dunkl–
Calderón–Zygmund singular integrals, that is, the T1 theorem, in the Dunkl setting.

To begin with, we first introduce the weak boundedness property (WBP) in the Dunkl setting
as follows.

Definition 1.2. The singular integral operator T with the kernel K(x, y) in Definition 1.1
satisfies the weak boundedness property if there exist η > 0 and C <∞ such that

|〈K, f〉| 6 Cmax{ω(B(x0, r)), ω(B(y0, r))}

for all f ∈ Cη
0 (RN × RN) with supp(f) ⊆ B(x0, r) × B(y0, r), x0, y0 ∈ RN , ‖f‖L∞(RN ,ω) 6

1, ‖f(·, y)‖η 6 r−η for all y ∈ RN and ‖f(x, ·)‖η 6 r−η for all x ∈ RN . We denote this by
T ∈ WBP .

We remark that the weak boundedness property defined in Definition 1.2 is different from the
classical version. Indeed, they are eqiuvalent. The reason to use this version is that the Fourier
transform was used in the proof of the Meyer-type commutation Lemma, see [23]. However,
to show this lemma on space of homogeneous type in the sense of Coifman and Weiss, this
version of WBP was first introduced in [21].

Next, we denote BMO(RN , ω) by the standard BMO space on (RN , ‖ · ‖, ω). That is,

BMO(RN , ω) = {b ∈ L1
loc(RN , ω) : ‖b‖∗ <∞},

where

‖b‖∗ = sup
B⊂RN

1

ω(B)

�
B

|b(x)− bB|dω(x) <∞

with the supremum is taken over all Euclidean balls B = B(y, r) = {z ∈ RN : ‖z − y‖ < r}
and

bB =
1

ω(B)

�
B

b(x)dω(x).

Now we can state the T1 theorem for the Dunkl–Calderón–Zygmund singular integral oper-
ator T by the following

Theorem 1.3. Suppose that T is a Dunkl–Calderón–Zygmund singular integral operator. Then
T extends to a bounded operator on L2(RN , ω) if and only if (1) T (1) ∈ BMO(RN , ω); (2)
T ∗(1) ∈ BMO(RN , ω); (3) T ∈ WBP.

The key techniques to prove this main result include the Coifman-type approximation to the
identity, the Meyer-type commutation Lemma, and new almost orthogonal estimates in the
Dunkl setting, which will be provided in Section 2. We would like to point out that the theory
of the Dunkl–Calderón–Zygmund singular integral operator will be a crucial tool to develop
the wevelet-type decomposition and the Hardy space theory in the Dunkl setting, which will
be given by further coming paper.
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2. T1 Theorem in Dunkl setting

In this section we provide the proof of our main result Theorem 1.3. In Subsection 2.1–2.3 we
will first establish several lemmas, particularly, the almost orthogonal estimates in the Dunkl
setting.

2.1. Dunkl–Calderón–Zygmund Operators. To begin with, we first point out that the size
and regularity conditions of the Dunkl–Calderón–Zygmund operators are modelled from the
pointwise size and regularity conditions of the Dunkl–Riesz transform obtained in [19], before
which people only got the Hörmander type condition for regularity. The main techniques in [19]
is to use functional calculus and apply the Dunkl heat kernel estimate obtained in [15, Theorem
3.1]. We note that there is some recent improvement on the Dunkl heat kernel estimate in [18].

Next, we note that the Dunkl–Calderón–Zygmund operators satisfies the boundedness prop-
erties analogous to the classical Calderón–Zygmund operators in the Euclidean setting.

Theorem 2.1. Suppose that T is a Dunkl–Calderón–Zygmund operator as in Definition 1.1.
Then T is bounded on Lp(RN , ω), 1 < p < ∞, is of weak type (1,1), from H1

d(RN , ω) to
L1(RN , ω) and from L∞(RN , ω) to BMO(RN , ω).

Here H1
d(RN , ω) is the Dunkl–Hardy space introduced in [7].

The proof of Theorem 2.1 is standard. We can first show that T is of weak type (1, 1) via the
Calderón–Zygmund decomposition, and the boundedness of T from H1

d(RN , ω) to L1(RN , ω)
by atomic decomposition, and from L∞(RN , ω) to BMO(RN , ω) by duality. The only thing we
would like to mention is that in those atoms are defined in Coifman–Weiss sense defined in
terms of ‖x− y‖ metric see [16, 14].

2.2. Meyer-type commutation Lemma in Dunkl setting.

We now establish the Meyer-type commutation Lemma in the Dunkl setting as follows.

Lemma 2.2 (Meyer-type commutation Lemma). Suppose that T is a Dunkl–Calderón–Zygmund
singular integral operator from Cη

0 (RN) to (Cη
0 (RN))′ satisfying T ∈ WBP and T (1) = 0. Then

for any M > 1, there exists a positive constant CM depending on M such that

‖Tϕ‖L∞(B(x0,Mr),ω) 6 CM

whenever there exist x0 ∈ RN and r > 0 such that supp (ϕ) ⊆ B(x0, r) with ‖ϕ‖L∞(RN ,ω) 6 1
and ‖ϕ‖η 6 r−η.

Proof. Fix a function θ ∈ C∞(R) with the following properties: θ(x) = 1 for |x| ≤ 1 and

θ(x) = 0 for |x| > 2. Let χ0(x) = θ(d(x,x0)
2r

) and χ1 = 1 − χ0. Then ϕ = ϕχ0 and for all
ψ ∈ Cη

0 (RN) with suppψ ⊆ B(x0,Mr),

〈Tϕ, ψ〉 = 〈K(x, y), ϕ(y)ψ(x)〉 = 〈K(x, y), χ0(y)ϕ(y)ψ(x)〉
= 〈K(x, y), χ0(y)[ϕ(y)− ϕ(x)]ψ(x)〉+ 〈K(x, y), χ0(y)ϕ(x)ψ(x)〉 =: p+ q,

where K(x, y) is the distribution kernel of T .

To estimate p, let λδ(x, y) = θ(‖x−y‖
δ

). Then

(2.1)
p = 〈K(x, y), (1− λδ(x, y))χ0(y)[ϕ(y)− ϕ(x)]ψ(x)〉

+ 〈K(x, y), λδ(x, y)χ0(y)[ϕ(y)− ϕ(x)]ψ(x)〉 =: p1,δ + p2,δ.

Since K is locally integrable on Ω = {(x, y) ∈ RN × RN : x 6= y}. By the size condition on
K(x, y) and the smoothness condition on ϕ together with the fact that if χ0(y) 6= 0, ψ(x) 6= 0
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and 1 − λδ(x, y) 6= 0, then δ 6 ‖x − y‖ and d(x, y) 6 (M + 4)r. Thus, the first term on the
right side of (2.1) satisfies

|p1,δ| =
∣∣∣∣�

Ω

K(x, y)(1− λδ(x, y))χ0(y)[ϕ(y)− ϕ(x)]ψ(x)dω(y)dω(x)

∣∣∣∣
.
�

d(x,y)6(M+4)r

1

ω(B(x, d(x, y)))

( d(x, y)

‖x− y‖

)η(‖x− y‖
r

)η

|ψ(x)|dω(y)dω(x)

. ‖ψ‖L1(RN ,ω).

It remains to show that lim
δ→0

p2,δ = 0, that is,

(2.2) lim
δ→0

〈K(x, y), λδ(x, y)χ0(y)[ϕ(y)− ϕ(x)]ψ(x)〉 = 0.

The weak boundedness property plays a crucial role. To this end, let {yj}j∈Z ∈ RN be the
maximal collection of points satisfying

(2.3)
1

2
δ < inf

j 6=k
‖yj − yk‖ 6 δ.

By observing that {yj}j∈Z is a maximal collection, we get that for each x ∈ RN there exists a

point yj such that ‖x − yj‖ 6 δ. Let ηj(y) = θ(
‖y−yj‖

δ
) and η̄j(y) = [

∞∑
i=1

ηi(y)]
−1ηj(y). To see

that η̄j is well defined, it suffices to show that for any y ∈ RN , there are only finitely many ηj
with ηj(y) 6= 0. This follows from the following fact: ηj(y) 6= 0 if and only if ‖y − yj‖ 6 2δ
and hence this implies that B(yj, δ) ⊆ B(y, 4δ). Inequality (2.3) shows B(yj,

δ
4
)∩B(yk,

δ
4
) = ∅

for j 6= k and hence there are at most C0 points yj ∈ RN such that B(yj,
δ
4
) ⊆ B(y, 4δ). Now

let Γ = {j : η̄j(y)χ0(y) 6= 0}. Then #Γ 6 CrN/δN since supp (χ0) ⊆
⋃
σ∈G

B(σ(x0), 2r) and

supp(η̄j) ⊆ B(yj, 2δ). We write

λδ(x, y)χ0(y)[ϕ(y)− ϕ(x)]ψ(x) =
∑
j∈Γ

λδ(x, y)η̄j(y)χ0(y)[ϕ(y)− ϕ(x)]ψ(x),

and

〈K(x, y), λδ(x, y)χ0(y)[ϕ(y)− ϕ(x)]ψ(x)〉 =
∑
j∈Γ

〈K(x, y), λδ(x, y)η̄j(y)χ0(y)[ϕ(y)− ϕ(x)]ψ(x)〉.

It is then easy to check that supp(λδ(x, y)η̄j(y)χ0(y)[ϕ(y)−ϕ(x)]ψ(x)) ⊆ B(yj, 4δ)×B(yj, 2δ)
and

‖λδ(x, y)η̄j(y)χ0(y)[ϕ(y)− ϕ(x)]ψ(x)‖L∞(RN ,ω) 6 Cδη,

where C is a constant depending only on θ, ϕ, ψ, x0, and r but not on δ and j.
We claim that

(2.4) ‖λδ(·, y)η̄j(y)χ0(y)[ϕ(y)− ϕ(·)]ψ(·)‖η . 1,

and

(2.5) ‖λδ(x, ·)η̄j(·)χ0(·)[ϕ(·)− ϕ(x)]ψ(x)‖η . 1.

Assuming (2.4) and (2.5) for the moment, since T ∈ WBP , we have

|〈K(x, y), λδ(x, y)χ0(y)[ϕ(y)− ϕ(x)]ψ(x)〉|

6
∑
j∈Γ

|〈K(x, y), λδ(x, y)η̄j(y)χ0(y)[ϕ(y)− ϕ(x)]ψ(x)〉|
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6
∑
j∈Γ

ω(B(yj, 4δ))δ
η . rN

δN
sup
j∈Γ

ω(B(yj, 1))δ
Nδη

. sup
j∈Γ

ω(B(yj, 1))r
Nδη.

Hence, (2.2) holds.
It remains to show (2.4) and (2.5). To check (2.4), it suffices to show that for given x1, x2 ∈

RN with ‖x1 − x2‖ 6 δ,

|η̄j(y)χ0(y)||λδ(x1, y)[ϕ(y)− ϕ(x1)]ψ(x1)− λδ(x2, y)[ϕ(y)− ϕ(x2)]ψ(x2)| . ‖x1 − x2‖η,
since if ‖x1 − x2‖ > δ, then the expansion on the left above is clearly bounded by

|η̄j(y)χ0(y)|{|λδ(x1, y)[ϕ(y)− ϕ(x1)]ψ(x1)|+ |λδ(x2, y)[ϕ(y)− ϕ(x2)]ψ(x2)|}
. δη 6 ‖x1 − x2‖η.

By the construction of η̄j, it follows that |η̄j(y)χ0(y)| . 1 for all y ∈ RN . Thus

|η̄j(y)χ0(y)||λδ(x1, y)[ϕ(y)− ϕ(x1)]ψ(x1)− λδ(x2, y)[ϕ(y)− ϕ(x2)]ψ(x2)|
.

∣∣λδ(x1, y)[ϕ(y)− ϕ(x1)]ψ(x1)− λδ(x2, y)[ϕ(y)− ϕ(x2)]ψ(x2)
∣∣

.
∣∣λδ(x1, y)− λδ(x2, y)|[ϕ(y)− ϕ(x1)]ψ(x1)

∣∣+ ∣∣λδ(x2, y)[ϕ(x1)− ϕ(x2)]ψ(x1)
∣∣

+
∣∣λδ(x2, y)[ϕ(y)− ϕ(x2)]|ψ(x1)− ψ(x2)

∣∣
=: I1 + I2 + I3.

Recall that ‖x1 − x2‖ 6 δ. If ‖x1 − y‖ > 4δ, then λδ(x1, y) = λδ(x2, y) = 0, so I1 = 0. Thus
we may assume that ‖x1 − y‖ 6 4δ,

I1 .
∣∣∣∣∣‖x1 − y‖

δ
− ‖x2 − y‖

δ

∣∣∣∣∣‖x1 − y‖η . δη−1‖x1 − x2‖ . ‖x1 − x2‖η,

since we may assume η ≤ 1. Terms I2 and I3 are easy to estimate:

I2 + I3 . ‖x1 − x2‖η,
since we may assume that δ < 1.

To check (2.5) it suffices to show that for y1, y2 ∈ RN with ‖y1 − y2‖ 6 δ,

|λδ(x, y1)η̄j(y1)χ0(y1)[ϕ(y1)−ϕ(x)]ψ(x)−λδ(x, y2)η̄j(y2)χ0(y2)[ϕ(y2)−ϕ(x)]ψ(x)| . |y1 − y2|η.
Similarly, if ‖y1 − y2‖ > δ, then the expansion on the left-hand side above is bounded by

|λδ(x, y1)η̄j(y1)χ0(y1)[ϕ(y1)− ϕ(x)]ψ(x)|+ |λδ(x, y2)η̄j(y2)χ0(y2)[ϕ(y2)− ϕ(x)]ψ(x)|
. δη 6 ‖y1 − y2‖η.

Hence, suppose ‖y1 − y2‖ 6 δ and write

|λδ(x, y1)η̄j(y1)χ0(y1)[ϕ(y1)− ϕ(x)]ψ(x)− λδ(x, y2)η̄j(y2)χ0(y2)[ϕ(y2)− ϕ(x)]ψ(x)|
6

∣∣λδ(x, y1)− λδ(x, y2)|η̄j(y1)χ0(y1)[ϕ(y1)− ϕ(x)]ψ(x)
∣∣

+
∣∣λδ(x, y2)[η̄j(y1)− η̄j(y2)]χ0(y1)[ϕ(y1)− ϕ(x)]ψ(x)

∣∣
+
∣∣λδ(x, y2)η̄j(y2)[χ0(y1)− χ0(y2)][ϕ(y1)− ϕ(x)]ψ(x)

∣∣
+
∣∣λδ(x, y2)η̄j(y2)χ0(y2)[ϕ(y1)− ϕ(y2)]ψ(x)

∣∣
=: II1 + II2 + II3 + II4.
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If ‖x − y1‖ > 4δ, then λδ(x, y1) = λδ(x, y2) = 0, so II1 = II2 = II3 = II4 = 0. Thus we may
assume that ‖x− y1‖ 6 4δ,

II1 .
∣∣∣∣∣‖x− y1‖

δ
− ‖x− y2‖

δ

∣∣∣∣∣‖x− y1‖η . δη−1‖y1 − y2‖ . ‖y1 − y2‖η.

And

II2 .
∣∣∣∣∣‖y1 − yj‖

δ
− ‖y2 − yj‖

δ

∣∣∣∣∣‖y1 − x‖η . δη−1‖y1 − y2‖ . ‖y1 − y2‖η.

Similarly,

II3 .
∣∣∣∣∣d(y1, x0)δ

− d(y2, x0)

δ

∣∣∣∣∣‖y1 − x‖η . δη−1d(y1, y2) . δη−1‖y1 − y2‖ . ‖y1 − y2‖η.

It is clear that

II4 . ‖y1 − y2‖η.
This completes the proofs of (2.4) and (2.5), and thus, we obtain |p| . ‖ψ‖L1(RN ,ω).

To finish the proof of Lemma 2.2, we now estimate q. It suffices to show that for x ∈ B(x0, r),

(2.6) |Tχ0(x)| . 1.

To see this, it is easy to check that q = 〈Tχ0, ϕψ〉, and hence (2.6) implies

|q| 6 ‖Tχ0‖L∞(B(x0,r),ω)‖ϕψ‖L1(B(x0,r),ω) . ‖ψ‖L1(RN ,ω).

To show (2.6), let ψ ∈ Cη(RN) with supp(ψ) ⊆ B(x0, r) and
�
RN ψ(x)dω(x) = 0. By the facts

that T (1) = 0 and
�
RN ψ(x)dω(x) = 0, we obtain

|〈Tχ0, ψ〉| =
∣∣∣− 〈Tχ1, ψ〉

∣∣∣ = ∣∣∣ �
RN

�
RN

[K(x, y)−K(x0, y)]χ1(y)ψ(x)dω(y)dω(x)
∣∣∣.

Observe that the supports of χ1 and ψ imply d(y, x0) > 2r and ‖x−x0‖ 6 r, respectively. The
smoothness condition of K yields

|〈Tχ0, ψ〉| .
�

d(y,x0)>2r>2‖x−x0‖

1

ω(B(x, d(y, x0)))

(‖x− x0‖
‖y − x0‖

)ε

dω(y)|ψ(x)|dω(x)

.
�

d(y,x0)>2r>2‖x−x0‖

1

ω(B(x, d(y, x0)))

( r

d(y, x0)

)ε

dω(y)|ψ(x)|dω(x)

.
�
RN

|ψ(x)|dω(x).

This implies that Tχ0(x) = α + γ(x) for x ∈ B(x0, r) with α is a constant depending on χ0

and ‖γ(x)‖L∞(RN ,ω) 6 C0 for some constant C0 independent of χ0. To estimate α, choose φ ∈
Cη

0 (RN) with supp φ ⊆ B(x0, r), 0 6 φ 6 1, ‖φ‖η 6 r−η and
�
RN φ(x)dω(x) = C1ω(B(x0, r)),

for some constant C1 independent of r. We then use T ∈ WBP to get∣∣∣∣C1ω(B(x0, r))α +

�
RN

φ(x)γ(x)dω(x)

∣∣∣∣ = |〈Tχ0, φ〉| 6 Cω(B(x0, r)),

which implies |α| 6 C0 +
C
C1

and hence, the proof of Lemma 2.2 is complete. �
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We remark that the Meyer-type commutation Lemma was first proved in [23]. Then this
lemma was used in [10] for proving the Tb Theorem on spaces of homogeneous type in the
sense of Coifman and Weiss, and in [29] for giving a new proof of the T1 Theorem on non-
homogeneous spaces. Moreover, if the operator T and functions ϕ, χ0 satisfy the conditions as
given in Lemma 2.2, then Tϕ(x) is a locally bounded function rather than a distribution. This
fact will play a crucial role in the proof of Theorem 2.3 below.

2.3. Boundedness of Dunkl–Calderón–Zygmund operators on smooth molecules. It
is well known that in the classical case, the almost orthogonal estimates are fundamental tools
for the proof of the T1 theorem. The following result provides such a tool in the Dunkl setting.

Theorem 2.3. Suppose that T is the singular integral operator as in Definition 1.1. Suppose

further that T (1) = T ∗(1) = 0 and T ∈ WBP. Then T maps M(β, γ, r, x0) to M̃(β, γ′, r, x0)
with 0 < β < ε, 0 < γ′ < γ < ε, where ε is the exponent of the regularity of the kernel of T.
Moreover, there exists a constant C such that

‖T (f)‖M̃(β,γ′,r,x0)
6 C‖f‖M(β,γ,r,x0).

Here M(β, γ, r, x0) and M̃(β, γ, r, x0) are defined by following.

Definition 2.4. A function f(x) is said to be a smooth molecule for 0 < β 6 1, γ > 0, r > 0
and some fixed x0 ∈ RN , if f(x) satisfies the following conditions:

(2.7) |f(x)| 6 C
1

V (x, x0, r + d(x, x0))

( r

r + ‖x− x0‖

)γ

;

(2.8)

|f(x)− f(x′)| 6 C
(‖x− x′‖

r

)β{ 1

V (x, x0, r + d(x, x0))

( r

r + ‖x− x0‖

)γ

+
1

V (x′, x0, r + d(x′, x0))

( r

r + ‖x′ − x0‖

)γ}
;

(2.9)

�
RN

f(x)dω(x) = 0.

If f(x) is a smooth molecule, we denote by f ∈ M(β, γ, r, x0) and define the norm of f by
‖f‖M(β,γ,r,x0) := inf{C : (2.7)− (2.8) hold}.

If the Euclidean metric is replaced by the Dunkl metric in some places, then we have the
following.

Definition 2.5. A function f(x) is said to be a weak smooth molecule for 0 < β 6 1, γ >
0, r > 0 and some fixed x0 ∈ RN , if f(x) satisfies the following conditions:

(2.10) |f(x)| 6 C
1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ

;

(2.11)

|f(x)− f(x′)| 6 C
(‖x− x′‖

r

)β{ 1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ

+
1

V (x′, x0, r + d(x′, x0))

( r

r + d(x′, x0)

)γ}
;

(2.12)

�
RN

f(x)dω(x) = 0.
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If f(x) is a weak smooth molecule, we denote f(x) by f ∈ M̃(β, γ, r, x0) and define the norm
of f by ‖f‖M̃(β,γ,r,x0)

:= inf{C : (2.10)− (2.11) hold}.

It is easy to see that M̃(β, γ, r, x0) ⊂ M(β, γ, r, x0). In the classical case, to provide the
boundedness from Hp(RN) to Hp(RN), the molecule was first introduced in [9]. In [23], to
show the classical Calderón–Zygmund operators form an algebra, Meyer introduced the smooth
atom. Indeed, the smooth atom has no compact support. The smooth molecule defined in 2.4
is the version of Meyer’s smooth atom in the Dunkl setting. In [14] following estimates were
provided:

(2.13) |∂mt ∂αx∂βy pt(x, y)| . t−m−|α|−|β| 1

V (x, y, t+ d(x, y))

t

t+ ‖x− y‖
,

where pt is the Poisson kernel.
These estimates indicade that qt(x, y) = t ∂

∂t
pt(x, y) for all x, y ∈ RN and t > 0, satisfy the

following conditions:

(i) |qt(x, y)| 6
1

V (x, y, t+ d(x, y))

t

t+ ‖x− y‖
,

(ii) |qt(x, y)− qt(x
′, y)|

6 ‖x− x′‖
t

( 1

V (x, y, t+ d(x, y))

t

t+ ‖x− y‖
+

1

V (x′, y, t+ d(x′, y))

t

t+ ‖x′ − y‖

)
,

(iii) |qt(x, y)− qt(x, y
′)|

6 ‖y − y′‖
t

( 1

V (x, y, t+ d(x, y))

t

t+ ‖x− y‖
+

1

V (x, y′, t+ d(x, y′))

t

t+ ‖x− y′‖

)
,

(vi)

�
RN

qt(x, y)dω(y) =

�
RN

qt(x, y)dω(x) = 0.

And ψt(x, y) for all x, y ∈ RN , t > 0 also satisfy the similar conditions as qt(x, y) but ψt(x, y)
is supported in {(x, y) : d(x, y) 6 t}, see [14] for more details. Thus, both qt(x, y) and ψt(x, y)
are smooth molecules in M(1, 1, t, y) for any fixed y and M(1, 1, t, x) for any fixed x.

Proof of Theorem 2.3. Suppose that f(x) is a smooth molecule in M(β, γ, r, x0), we will
show that ‖T (f)‖M̃(β,γ′,r,x0)

6 C‖f‖M(β,γ,r,x0), where 0 < β < ε, 0 < γ < γ′ < ε and ε is the

exponent of the regularity of the kernel of T. We first estimate the size condition for Tf(x).
To this end, we consider two cases: Case (1): d(x, x0) 6 5r and Case (2): d(x, x0) = R > 5r.

For the first case, set 1 = ξ(y) + η(y), where ξ(y) = θ
(

d(y,x0)
10r

)
with θ ∈ C∞

0 (R), θ(x) = 1 for

‖x‖ 6 1 and θ(x) = 0 for ‖x‖ > 2. Applying Lemma 2.2, we write

Tf(x) = 〈K(x, y), (ξ(y) + η(y))f(y)〉

=

�
RN

K(x, y)ξ(y)(f(y)− f(x))dω(y) + f(x)〈K(x, y), ξ(y)〉

+

�
RN

K(x, y)η(y)f(y)dω(y)

=: I1 + I2 + I3.
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Applying the size condition for the kernel K(x, y) in (1.4) and the smoothness condition for
f in (2.8), we have

|I1| .
�
d(x,y)620r

|K(x, y)| · |f(y)− f(x)|dω(y)

.
�
d(x,y)620r

1

ω(B(x, d(x, y)))

( d(x, y)

‖x− y‖

)β(‖x− y‖
r

)β{ 1

V (y, x0, r + d(y, x0))

×
( r

r + ‖y − x0‖

)γ

+
1

V (x, x0, r + d(x, x0))

( r

r + ‖x− x0‖

)γ}
dω(y).

Note that if d(y, x) 6 20r and d(x, x0) 6 5r, then ω(B(y, r+d(x, x0))) ∼ ω(B(x, r+d(x, x0))).
Thus, we obtain

|I1| .
1

rβ
1

V (x, x0, r + d(x, x0))

�
d(x,y)620r

1

ω(B(x, d(x, y)))
d(x, y)βdω(y)

. 1

V (x, x0, r + d(x, x0))
. 1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ

.

Similar to the proof of (2.6) in Lemma 2.2, we can get |T (ξ)(x)| . 1 and thus

I2 . |f(x)| . 1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ

.

For the last term I3, observing that d(x, x0) 6 5r and the support of η(y) is contained in
{y | d(y, x0) > 10r}, so d(x, y) > 5r and d(x, y) ∼ d(y, x0), and thus,

|I3| .
�

d(y,x0)>10r
d(x,y)>5r

1

ω(B(x, d(x, y)))

1

V (y, x0, r + d(y, x0))

( r

r + ‖y − x0‖

)γ

dω(y)

. 1

ω(B(x, r))

�
d(y,x0)>10r

1

ω(B(x0, d(y, x0)))

( r

d(y, x0)

)γ

dω(y)

. 1

ω(B(x, r))
. 1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ

.

Case 2. d(x, x0) = R > 5r.

Set 1 = I(y) + J(y) + L(y), where I(y) = θ
(16d(y,x)

R

)
, J(y) = θ

(16d(y,x0)
R

)
and f1(y) =

I(y)f(y), f2(y) = J(y)f(y) and f3(y) = L(y)f(y).
Observing that, if y is in the support of f1(y), then d(y, x0) ∼ d(x, x0) = R, and thus,

(i) |f1(y)| . |I(y)| 1

V (y, x0, r + d(y, x0))

( r

r + ‖y − x0‖

)γ

. 1

V (x, x0, R)

( r
R

)γ

.

(ii)

�
RN

|f1(y)|dω(y) .
�
d(y,x0)> 7R

8

1

V (y, x0, d(y, x0))

( r

d(y, x0)

)γ

dω(y) .
( r
R

)γ

.

(iii) |f1(y)− f1(x)| .
(‖y − x‖

r

)β 1

V (x, x0, d(x, x0))

( r
R

)γ

.

(iv)

�
RN

|f3(y)|ω(y)dy .
�
d(y,x0)> R

16

1

V (y, x0, r + d(y, x0))

( r

d(y, x0)

)γ

dω(y) .
( r
R

)γ

.

By the fact
�
RN f(y)dω(y) = 0, we have

(v)
∣∣∣ �

RN

f2(y)dω(y)
∣∣∣ = ∣∣∣− �

RN

f1(y)dω(y)−
�
RN

f3(y)dω(y)
∣∣∣ . ( r

R

)γ

.
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We first estimate Tf1(x) as follows.

Set u(y) = θ
(

2d(y,x)
R

)
. Then f1(y) = u(y)f1(y). By using Lemma 2.2, we have

Tf1(x) = 〈K(x, y)u(y)f1(y)〉 =
�
RN

K(x, y)u(y)[f1(y)− f1(x)]dω(y) + f1(x)〈K(x, ·), u(·)〉

=: I + II.

Similar to the proof of (2.6) in Lemma 2.2, we can get |T (u)(x)| . 1 and thus

|II| . |f(x)| . 1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ

.

For the term I, we write it in two parts.

I =

�
d(x,y)6r

K(x, y)u(y)[f1(y)− f1(x)]dω(y) +

�
r<d(x,y)6R

K(x, y)u(y)[f1(y)− f1(x)]dω(y)

=: I1 + I2.

Applying the size condition on the kernel K(x, y) and the property (iii) above implies that

|I1| .
�
d(x,y)6r

1

ω(B(x, d(x, y)))

( d(x, y)

‖x− y‖

)β(‖x− y‖
r

)β 1

V (x, x0, d(x, x0))

( r
R

)γ

dω(y)

=
1

V (x, x0, d(x, x0))

( r
R

)γ
�
d(x,y)6r

1

ω(B(x, d(x, y)))

(d(x, y)
r

)β

dω(y)

. 1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ

.

Applying the size conditions for the kernel K(x, y) and property (i) above, we obtain that
for δ = γ − γ′,

|I2| .
�
r<d(x,y)6R

4

1

ω(B(x, d(x, y)))

( d(x, y)

‖y − x‖

)δ[
|f1(y)|+ |f1(x)|

]
dω(y)

. 1

V (x, x0, d(x, x0))

( r
R

)γ(1
r

)δ
�
d(x,y)6R

4

1

ω(B(x, d(x, y)))
d(x, y)δdω(y)

.
(R
r

)δ( r
R

)γ 1

V (x, x0, d(x, x0))

. 1

V (x, x0, d(x, x0))

( r

r + d(x, x0)

)γ′

.

To estimate Tf2(x), we decompose it in two parts.

Tf2(x) =

�
RN

[K(x, y)−K(x, x0)]f2(y)dω(y)dy +K(x, x0)

�
RN

f2(y)dω(y) =: II1 + II2.

By the estimate in (v) above,

|II2| . |K(x, x0)|
( r
R

)γ

. 1

ω(B(x, d(x, x0)))

( r
R

)γ

. 1

V (x, x0, d(x, x0))

( r

r + d(x, x0)

)γ

.

For the term II1, we write it by

II1 =

( �
‖y−x0‖6R

4

+

�
d(y,x0)6R

4
6‖y−x0‖

)
[K(x, y)−K(x, x0)]f2(y)dω(y) =: II11 + II12.
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Applying the size condition for f2 and the smoothness condition on the kernel K(x, y) in
(1.5) with ‖y − x0‖ 6 1

2
d(x, x0) for term II11 implies that

|II11| .
�
d(y,x0)6R

8

1

ω(B(x, d(x, x0)))

(‖y − x0‖
‖x− x0‖

)γ′( r

r + ‖y − x0‖

)γ 1

V (y, x0, r + d(y, x0))
dω(y)

. 1

ω(B(x, d(x, x0)))

( r
R

)γ′ �
d(y,x0)6R

8

( r

r + ‖y − x0‖

)γ−γ′ 1

V (y, x0, r + d(y, x0))
dω(y)

. 1

V (x, x0, d(x, x0))

( r

r + d(x, x0)

)γ′

.

For the term II12, since d(y, x0) 6 R
4

implies d(x, y) > d(x, x0) − d(y, x0) > 3
4
d(x, x0).

Applying the size conditions for the kernel K(x, y) and K(x, x0) yields

|II12| .
�
d(y,x0)6R

4
6‖y−x0‖

{ 1

ω(B(x, d(x, y)))
+

1

ω(B(x, d(x, x0)))

}
×

( r

r + ‖y − x0‖

)γ 1

V (y, x0, r + d(y, x0))
dω(y)

. 1

ω(B(x, d(x, x0)))

( r
R

)γ′ �
RN

( r

r + d(y, x0)

)γ−γ′ 1

V (y, x0, r + d(y, x0))
dω(y)

. 1

V (x, x0, d(x, x0))

( r

r + d(x, x0)

)γ′

.

Finally,

|Tf3(y)| .
�

d(y,x)> R
16 ,

d(y,x0)> R
16

1

ω(B(x, d(x, y)))

( r

r + ‖y − x0‖

)γ 1

V (y, x0, d(y, x0))
dω(y)

. 1

ω(B(x, d(x, x0)))

�
d(y,x0)> R

16

( r

d(y, x0)

)γ 1

V (y, x0, d(y, x0))
dω(y)

. 1

ω(B(x, d(x, x0)))

( r
R

)γ

. 1

V (x, x0, d(x, x0))

( r

r + d(x, x0)

)γ

.

It remains to show the regularity of T (f), that is, the following estimate:

|Tf(x)− Tf(x′)| .
(‖x− x′‖

r

)β{ 1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ′

+
1

V (x′, x0, r + d(x′, x0))

( r

r + d(x′, x0)

)γ′}
.

Observing that we only need to consider the case where ‖x−x′‖ 6 1
20
r. Indeed, if ‖x−x′‖ >

1
20
r, by the size estimate of T (f),

|Tf(x)− Tf(x′)| . 1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ′

+
1

V (x′, x0, r + d(x′, x0))

( r

r + d(x′, x0)

)γ′

,

which gives the desired regularity estimate of T (f).
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Set ‖x − x′‖ = δ 6 1
20
r. We will consider it in the following two cases: d(x, x0) = R > 10r

and d(x, x0) < 10r.

Case (1): d(x, x0) = R > 10r. Let I(y) = θ(8d(y,x)
R

), J(y) = 1 − I(y). Denote f1(y) =

I(y)f(y), f2(y) = J(y)f(y). Let u(y) = θ(d(y,x)
2δ

) and v(y) = 1− u(y). Write

Tf1(x) =

�
RN

K(x, y)u(y)[f1(y)− f1(x)]dω(y) +

�
RN

K(x, y)[v(y)f1(y) + u(y)f1(x)]dω(y)

=: p(x) + q(x).

Since u(y) is supported in {y : d(x, y) 6 4δ}, we have

|p(x)| .
�
d(x,y)64δ

1

ω(B(x, d(y, x)))

( d(x, y)

‖x− y‖

)β(‖x− y‖
r

)β

×
{ 1

V (y, x0, r + d(y, x0))

( r

r + d(y, x0)

)γ

+
1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ}
dω(y)

. 1

rβ
1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ
�
d(x,y)64δ

1

ω(B(x, d(y, x)))

(
d(x, y)

)β
dω(y)

.
(δ
r

)β 1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ

,

since d(y, x) 6 1
4
R and d(x, x0) = R, so d(y, x0) ∼ d(x, x0).

If replacing x by x′, we still have

|p(x′)| .
(δ
r

)β( r

r + d(x, x0)

)γ 1

V (x, x0, r + d(x, x0))
.

Therefore,

|p(x)− p(x′)| .
(δ
r

)β( r

r + d(x, x0)

)γ 1

V (x, x0, r + d(x, x0))
.

Observing that by T (1) = 0, we can write

q(x)− q(x′) =

�
d(x,y)>2δ

[K(x, y)−K(x′, y)]v(y)[f1(y)− f1(x)]dω(y)

+ [f1(x)− f1(x
′)]

�
RN

K(x′, y)u(y)dω(y)

=: I + II.

Similar to the proof of (2.6) in Lemma 2.2, we can get |T (u)(x′)| . 1 and thus

II . |f1(x)− f1(x
′)|

.
(δ
r

)β{ 1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ

+
1

V (x′, x0, r + d(x′, x0))

( r

r + d(x′, x0)

)γ}
.

For term I, applying the smoothness condition of K(x, y) with ‖x − x′‖ = δ 6 1
2
d(x, y) and

the smoothness condition for f1 implies that

|I| .
�
d(x,y)>2δ

1

ω(B(x, d(y, x)))

(‖x− x′‖
‖x− y‖

)ε(‖y − x‖
r

)β 1

V (x, x0, d(x, x0))

( r
R

)γ

dω(y)

. δε

rβ

( r

r + d(x, x0)

)γ 1

V (x, x0, r + d(x, x0))

�
d(x,y)>2δ

1

ω(B(x, d(y, x)))

1

(d(x, y))ε−β
dω(y)
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.
(δ
r

)β 1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ

,

since d(y, x0) ∼ d(x, x0). The estimates of I and II gives the desired estimate for Tf1(x) −
Tf1(x

′).
To see the estimate for Tf2(x)−Tf2(x′), note that if f2(y) 6= 0, then d(x, y) > 1

8
R > 2‖x−x′‖.

Therefore,

|Tf2(x)− Tf2(x
′)|

6
�
d(y,x)> 3

4
R>2δ

|K(x, y)−K(x′, y)| · |f2(y)|dω(y)

.
�
d(y,x)> 3

4
R

1

ω(B(x, d(y, x)))

(‖x− x′‖
‖x− y‖

)ε 1

V (y, x0, r + d(y, x0))

( r

r + d(y, x0)

)γ

dω(y)

.
( δ
R

)ε 1

ω(B(x, d(x, x0)))

�
RN

1

V (y, x0, r + d(y, x0))

( r

r + d(y, x0)

)γ

dω(y)

.
(δ
r

)ε( r

r + d(x, x0)

)ε 1

ω(B(x, d(x, x0)))

.
(δ
r

)β 1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ

.

Cases 2: d(x, x0) < 10r. The proof of this case is easier. Indeed, set 1 = ξ(y) + η(y),

where ξ(y) = θ
(

d(y,x)
5δ

)
and again write Tf(x) = p(x) + q(x), where p(x) =

�
RN K(x, y)[f(y)−

f(x)]ξ(y)dω(y) and

q(x) =

�
RN

K(x, y)f(y)η(y)dω(y) + f(x)

�
RN

K(x, y)ξ(y)dω(y).

Applying the size condition for K(x, y) and the smoothness condition for f implies that

|p(x)| .
�
d(x,y)610δ

1

ω(B(x, d(x, y)))

( d(x, y)

‖x− y‖

)β(‖x− y‖
r

)β

×
{ 1

V (y, x0, r + d(y, x0))

( r

r + ‖y − x0‖

)γ

+
1

V (x, x0, r + d(x, x0)))

( r

r + ‖x− x0‖

)γ}
dω(y)

. 1

rβ
1

(V (x, x0, r))

�
d(x,y)610δ

1

ω(B(x, d(x, y)))

(
d(x, y)

)β
dω(y)

.
(δ
r

)β 1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ

.

Repeating the same proof implies that

|p(x′)| .
(δ
r

)β 1

V (x, x0, r + d(x, x0))

( r

r + d(x, x0)

)γ

.

Similarly, by T (1) = 0, we have q(x)− q(x′) =: I + II with

I =

�
RN

[K(x, y)−K(x′, y)]η(y)[f(y)− f(x)]dω(y),
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II = [f(x)− f(x′)]

�
RN

K(x′, y)ξ(y)dω(y).

Observing that if d(y, x) > 5δ, then

|K(x, y)−K(x′, y)| .
( δ

‖x− y‖

)ε 1

ω(B(x, d(y, x)))

and

|f(y)− f(x)| .
(‖x− y‖

r

)β{ 1

V (y, x0, r + d(y, x0))

( r

r + ‖y − x0‖

)γ

+
1

V (x, x0, r + d(x, x0)))

( r

r + ‖x− x0‖

)γ}
.

Note that r + d(x, x0) . r + d(y, x0), therefore

|I| . δε

rβ
1

V (x, x0, r + d(x, x0)))

�
d(y,x)>5δ

1

d(y, x)ε−β

1

ω(B(x, d(y, x)))
dω(y)

.
(δ
r

)β 1

V (x, x0, r + d(x, x0)))

( r

r + d(x, x0)

)γ

.

Similar to the proof of (2.6) in Lemma 2.2, we can get |T (ξ)(x′)| . 1 and thus

|II| . |f(x)− f(x′)| .
(δ
r

)β{ 1

V (x, x0, r + d(x, x0)))

( r

r + d(x, x0)

)γ

+
1

V (x′, x0, r + d(x′, x0)))

( r

r + d(x′, x0)

)γ}
.

Finally, by the fact T ∗(1) = 0, then
�
RN T (f)(x)dω(x) = 0.

The proof of Theorem 2.3 is complete. �
2.4. Proof of the T1 Theorem.

To show Theorem 1.3, the T1 theorem, observe that the necessary conditions of the T1
theorem follow from Theorem 2.1, namely T (1), T ∗(1) ∈ BMO(RN , ω) and T ∈ WBP by the
definition of the weak boundedness of property.

To show the sufficent conditions of Theorem 1.3, we need to first extend T to a continuous
linear operator from Λs(RN) ∩ L2(RN , ω) into (Cs

0(RN))′, where Λs(RN) denotes the closure
of Cη

0 (RN) with respect to the norm ‖ · ‖s, 0 < s < η, given in (1.3). To be precise, given
g ∈ Cs

0(RN), 0 < s < 1, with the support contained in a ball B(x0, r), and set θ ∈ Cs
0(RN)

with θ(x) = 1 for d(x, x0) 6 2r and θ(x) = 0 for d(x, x0) > 4r. Given f ∈ Λs(RN)∩L2(RN , ω),
we write

〈Tf, g〉 = 〈T (θf), g〉+ 〈T ((1− θ)f), g〉.
The first term on the right side above makes sense since θf ∈ Cs

0(RN). To see that the second
term is also well defined, by the size condition of K(x, y) and the fact f ∈ L2(RN , ω) together
with the doubling and the reverse doubling conditions of the measure ω, we first write

〈T ((1− θ)f), g〉 =
�
RN

g(x)

�
{y:d(x,y)>r}

K(x, y)(1− θ(y))f(y)dω(y) dω(x).

By Hölder’s inequality,∣∣∣∣ �
{y:d(x,y)>r}

K(x, y)(1− θ(y))f(y)dω(y)

∣∣∣∣
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. ‖f‖L2(RN ,ω)

( �
{y:d(x,y)>r}

|K(x, y)|2dω(y)
) 1

2

. ‖f‖L2(RN ,ω)

( ∞∑
j=0

�
{2jr6d(x,y)62j+1r}

1

ω(B(x, d(x, y)))2
dω(y)

) 1
2

. ‖f‖L2(RN ,ω)

( ∞∑
j=0

�
{2jr6d(x,y)62j+1r}

1

ω(B(x, 2jr))2
dω(y)

) 1
2

. ‖f‖L2(RN ,ω)

( ∞∑
j=0

2−jN 1

ω(B(x, r))

) 1
2
<∞,

where the last inequality follows from the fact that inf
x
ω(B(x, r)) > 0.

This implies that 〈T ((1 − θ)f), g〉 is well defined. Moreover, this extension is independent
of the choice of θ.
We now describe the properties of Coifman’s approximation to the identity acting on Λs(RN)∩

L2(RN , ω). Let’s begin with considering (RN , ‖·‖, ω) as space of homogeneous type in the sense
of Coifman and Weiss. Note that the measure ω satisfies the doubling and the reverse doubling
properties. Therefore, in this case, the Littlewood–Paley theory has already established in [20].
We recall main results for (RN , ‖ · ‖, ω) ([20]). Here and throughout, Vk(x) always denotes the
measure ω(B(x, 2−k)) for k ∈ Z and x ∈ RN . We also denote by V (x, y) = ω(B(x, ‖x − y‖))
for x, y ∈ RN . Let θ : R 7→ [0, 1] be a smooth function which is 1 for ‖x‖ 6 1 and vanishes
for ‖x‖ > 2. Applying the construction of Coifman’s approximation to the identity, we define
Tk(f)(x) =

�
RN θ(2

k‖x − y‖)f(y)dω(y), k ∈ Z. Let Mk be the operator of multiplication by

Mk(x) :=
1

Tk(1)(x)
and let Wk be the operator of multiplication by Wk(x) :=

[
Tk

(
1

Tk(1)

)
(x)

]−1
.

Coifman’s approximation to the identity is constructed by Sk = MkTkWkTkMk, where the
kernel of Sk is

Sk(x, y) =

�
Rn

Mk(x)θ(2
k‖x− z‖)Wk(z)θ(2

k‖z − y‖)Mk(y)dω(z).

In [20], it was proved that kernels Sk(x, y) defined on RN ×RN satisfy the following properties.

(i) Sk(x, y) = Sk(y, x);

(ii) Sk(x, y) = 0 if ‖x− y‖ > 24−k and |Sk(x, y)| 6
C

Vk(x) + Vk(y)
;

(iii) |Sk(x, y)− Sk(x
′, y)| 6 C

2k‖x− x′‖
Vk(x) + Vk(y)

for ‖x− x′‖ 6 28−k;

(iv) |Sk(x, y)− Sk(x, y
′)| 6 C

2k‖y − y′‖
Vk(x) + Vk(y)

for ‖y − y′‖ 6 28−k;

(v)
∣∣[Sk(x, y)− Sk(x

′, y)]− [Sk(x, y
′)− Sk(x

′, y′)]
∣∣ 6 C

2k‖x− x′‖2k‖y − y′‖
Vk(x) + Vk(y)

for ‖x− x′‖ 6 28−k and ‖y − y′‖ 6 28−k;

(vi)

�
RN

Sk(x, y)dω(x) = 1 for all y ∈ RN ;

(vii)

�
RN

Sk(x, y)dω(y) = 1 for all x ∈ RN .
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Coifman’s decomposition of the identity on L2(RN , ω) is given as follows. Let Dk := Sk −
Sk−1. The identity operator I on L2(RN , ω) can be written as

I =
∞∑

k=−∞

Dk =
∞∑

k=−∞

∞∑
j=−∞

DkDj = TM +RM ,

where TM =
∑
k∈Z

DkD
M
k with DM

k =
∑

{j∈Z:|j|6M}
Dk+j and RM =

∑
{j,k∈Z: |k−j|>M}

DkDj. It is

known, see [20], that there exists a constant C such that

(2.14) |DjDk(x, y)| 6 C2−|j−k| 1

Vj∧k(x) + Vj∧k(y)
,

where j ∧ k = min{j, k}.
This estimate implies ‖DjDk‖L2(RN ,ω)7→L2(RN ,ω) . 2−|j−k|. By the Cotlar–Stein Lemma we

obtain

‖RM(f)‖L2(RN ,ω) 6 C2−M‖f‖L2(RN ,ω)

and then for a fixed large M,T−1
M , the inverse of TM , is bounded on L2(RN , ω). This yields

that TM converges to the identity in the L2(RN , ω)-norm and moreover,

I = T−1
M TM =

∞∑
k=−∞

T−1
M DM

k Dk = TMT
−1
M =

∞∑
k=−∞

DM
k DkT

−1
M in L2(RN , ω).

The following lemma describes the properties of operators TM acting on Λs.

Lemma 2.6. Suppose 0 < s < 1
2
. Then (i) TM =

∞∑
k=−∞

DkD
M
k converges uniformly and in the

norm of Λs(RN); (ii) TM is bounded on Λs(RN); (iii) ‖TM − I‖s → 0 as M → +∞.

To prove Lemma 2.6, we need the following estimates for Dk and DM
k .

Lemma 2.7. Let 0 < s < 1. Then (i) ‖Dkf‖L∞(RN ,ω) . 2−ks‖f‖s; (ii) ‖Dkf‖s . 2ks‖f‖L∞(RN ,ω);

(iii) ‖Dkf‖β . 2k(β−s)‖f‖s if 0 < s 6 β < 1; (iv) ‖DM
k f‖s .M‖f‖s.

Proof. For (i), the cancellations of Dk gives

Dkf(x) =

�
RN

Dk(x, y)[f(y)− f(x)]dω(y).

Since Dk(x, y) = 0 for ‖x− y‖ > 24−k, the size condition of Dk and the smoothness condition
of f yield

|Dkf(x)| . ‖f‖s
�
‖x−y‖624−k

1

Vk(x) + Vk(y)
‖x− y‖sdω(y) . 2−ks‖f‖s.

For (ii), the smoothness condition of Dk gives

|Dkf(x)−Dkf(y)| =
∣∣∣∣ �

RN

(Dk(x, z)−Dk(y, z))f(z)dω(z)

∣∣∣∣
6 ‖f‖L∞(RN ,ω)

( �
‖x−z‖624−k

+

�
‖y−z‖624−k

)
(2k‖x− y‖)s

Vk(x) + Vk(z)
dω(z),

which implies ‖Dkf‖s . 2ks‖f‖L∞(RN ,ω).
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To estimate (iii), if ‖x − y‖ 6 26−k, using the the cancellations of Dk and the smoothness
condition of f, we get

|Dkf(x)−Dkf(y)| =
∣∣∣∣ �

RN

[Dk(x, z)−Dk(y, z)][f(z)− f(x)]dω(z)

∣∣∣∣
.

( �
‖x−z‖624−k

+

�
‖y−z‖624−k

)
(2k‖x− y‖)β

Vk(x) + Vk(z)
‖x− z‖s‖f‖sdω(z)

. ‖x− y‖β2k(β−s)‖f‖s.

When ‖x− y‖ > 26−k, (i) gives |Dkf(x)−Dkf(y)| . 2−ks‖f‖s . ‖x− y‖β2k(β−s)‖f‖s.
(iii) follows from these estimates. The estimate of (iv) follows from (iii) with β = s. �

We now show Lemma 2.6.

Proof of Lemma 2.6. We first show that TM(f)(x) =
∞∑

k=−∞
DkD

M
k (f)(x) is well defined on

Λs(RN). To this end, let f ∈ Cη
0 with η > s and set Gkf(x) := DkD

M
k f(x). Observe that

if f ∈ Cη
0 then f ∈ L∞(RN , ω) and hence, ‖DM

k (f)‖L1(RN ,ω) 6 CM‖f‖L∞(RN ,ω). By (iv),

‖DM
k (f)‖η .M‖f‖η. Therefore,

|Gk(f)(x)| =
∣∣∣∣ �

RN

Dk(x, y)D
M
k (f)(y)dω(y)

∣∣∣∣
6 C

1

Vk(x)
‖f‖L∞(RN ,ω) . 2Nk 1

V0(x)
‖f‖L∞(RN ,ω) . 2Nk‖f‖L∞(RN ,ω)

since inf
x
V0(x) > C > 0. And

|Gk(f)(x)| =
∣∣∣ �

RN

Dk(x, y)D
M
K (f)(y)dω(y)

∣∣∣ = ∣∣∣ �
RN

Dk(x, y)[D
M
K (f)(y)−DM

K (f)(x)]dω(y)
∣∣∣

. ‖f‖η
�
RN

|Dk(x, y)|‖x− y‖ηdω(y) . 2−kη‖f‖η.

These two estimates imply that if f ∈ Cη
0 (RN) then the series

∞∑
k=−∞

DkD
M
k (f)(x) converges

uniformly. Moreover, for given x, y ∈ RN , choose k0 ∈ Z such that 2−k0 6 ‖x − y‖ 6 2−k0+1.
Then by using Lemma 2.7 and by splitting the sum over k into the sum over k > k0 and k 6 k0,
we obtain that

(2.15)

∣∣∣∣ ∞∑
k=−∞

[Gkf(x)−Gkf(y)]

∣∣∣∣ . 2−k0s‖f‖s + 2k0(β−s)‖x− y‖β‖f‖s . ‖x− y‖s‖f‖s.

Hence if f ∈ Cη
0 (RN) with η > s, then the series

∑
k

DkD
M
k f converges in Λs(RN) norm.

Observe that Cη
0 (RN) with η > s is dense in Λs(RN). This implies that TM extends to Λs(RN).

Indeed, if f ∈ Λs(RN), then there exists a sequence fn ∈ Cη
0 , η > s, such that ‖fn − f‖s tends

to zero as n tends to ∞. Let TM(f)(x) = lim
n→∞

TM(fn)(x). Then TM is bounded on Λs(RN) and

moreover, ‖TM(f)‖s . ‖f‖s for f ∈ Λs(RN).
To show ‖TM − I‖s → 0 as M → +∞, it is sufficient to prove the operator norm

‖RM‖Λs(RN ) 7→Λs(RN ) → 0
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as M → +∞. To this end, we rewrite

RMf =
∞∑

k=−∞

∑
{j∈Z: |k−j|>M}

DkDj =
∑

{ℓ∈Z: |ℓ|>M}

∞∑
k=−∞

DkDk+ℓf

=
∞∑

k=−∞

Dk(I − Sk+M)f +
∞∑

k=−∞

DkSk−M−1f.

Since
�
RN Sk(x, y)dω(y) = 1 for k ∈ Z, we have

|(I − Sk+M)f(x)| =
∣∣∣∣ �

RN

Sk+M(x, y)[f(x)− f(y)]dω(y)

∣∣∣∣ 6 C2−(M+k)s‖f‖s

and hence ‖(I − Sk+M)f‖L∞(RN ,ω) 6 C2−(M+k)s‖f‖s. This estimate together with Lemma 2.7

and applying the same proof for (2.15) imply that
∥∥ ∞∑

k=−∞
Dk(I−Sk+M)f

∥∥
s
6 2−Ms‖f‖s, which

gives
∥∥ ∞∑

k=−∞
Dk(I − Sk+M)

∥∥
Λs(RN ) 7→Λs(RN )

→ 0 as M → +∞.

To estimate
∞∑

k=−∞
DkSk−M−1f, the second term of RMf, let Hkf = DkSk−M−1f and denote

Hk(x, y) by the kernel of Hk. Then
�
RN Hk(x, y)dω(y) = DkSk−M−1(1) = Dk(1) = 0 and

Hk(x, y) = 0 if ‖x− y‖ > 26−(k−M). By the cancellation of Dk and the smothness of Sk−M−1,

|Hk(x, y)| =
∣∣∣∣ �

RN

Dk(x, z)
[
Sk−M−1(z, y)− Sk−M−1(x, y)

]
dω(z)

∣∣∣∣
6 C

�
|x−z|622−k

(Vk(x))
−12

k−M−1‖x− z‖
Vk−M−1(x)

dω(z)

6 C2−M(Vk−M−1(x))
−1.

Thus, for f ∈ Λs(RN),

|Hkf(x)| =
∣∣∣∣ �

RN

Hk(x, y)[f(y)− f(x)]dω(y)

∣∣∣∣
6 C

�
|x−y|626−(k−M)

2−M(Vk−M−1(x))
−1‖x− y‖s‖f‖sdω(y)

6 C2−M2−(k−M)s‖f‖s.
This implies that

(2.16) ‖Hkf‖L∞(RN ,ω) . 2−M2−(k−M)s‖f‖s.

If ‖x− x′‖ 6 26−(k−M), then

(2.17)

|Hk(x, y)−Hk(x
′, y)|

=

∣∣∣∣ �
RN

[
Dk(x, z)−Dk(x

′, z)
]
Sk−M−1(z, y)dω(z)

∣∣∣∣
6 C

�
{∥x−z∥622−k

∥x′−z∥622−k}

2k‖x− x′‖
Vk(x) + Vk(z)

(Vk−M−1(y))
−1dω(z)

6 C2k‖x− x′‖(Vk−M−1(y))
−1.
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For ‖x− y‖ 6 26−(k−M), applying (2.17) yields

|Hkf(x)−Hkf(y)| =
∣∣∣∣ �

RN

[Hk(x, z)−Hk(y, z)][f(z)− f(x)]dω(z)

∣∣∣∣
.
�
‖x−z‖626−(k−M)

‖y−z‖626−(k−M)

2k‖x− y‖(Vk−M−1(y))
−1‖x− z‖s‖f‖sdω(z)

. 2k2−(k−M)s‖x− y‖‖f‖s.

For ‖x− y‖ > 26−(k−M), the estimate (2.16) implies

|Hkf(x)−Hkf(y)| . 2−M2−(k−M)s‖f‖s . 2k2−(k−M)s‖x− y‖‖f‖s.
These estimates imply that Hk(f)(x) is in Λ1(RN) with the norm bounded by

(2.18) ‖Hkf‖1 . 2k2−(k−M)s‖f‖s.

Using the fact that ‖f‖β 6 ‖f‖1−β
L∞(RN ,ω)

‖f‖β1 , 0 < β < 1, the estimates (2.16) and (2.18) yield

(2.19) ‖Hkf‖β . 2−M(1−2β)2−(k−M)(s−β)‖f‖s.
Given x, y ∈ RN , choose k1 ∈ Z such that 2−k1 6 ‖x − y‖ 6 2−k1+1. The estimates in (2.16)
and (2.19) imply that for s < β,∣∣∣∣ ∞∑

k=−∞

[Hkf(x)−Hkf(y)]

∣∣∣∣
6

∑
{k:k>k1}

|Hkf(x)−Hkf(y)|+
∑

{k:k<k1}

|Hkf(x)−Hkf(y)|

.
∑

{k:k>k1}

2‖Hkf‖L∞(RN ,ω) +
∑

{k:k<k1}

‖x− y‖β‖Hkf‖β

.
∑

{k:k>k1}

2−M2−(k−M)s‖f‖s +
∑

{k:k<k1}

‖x− y‖β2−M(1−2β)2−(k−M)(s−β)‖f‖s

. 2−k1s2−M+Ms‖f‖s + 2−M(1−2β)2M(s−β)2k1(β−s)‖x− y‖β‖f‖s

. 2−M(1−2β)
(
2M(s−2β) + 2M(s−β)

)
‖x− y‖s‖f‖s

. 2−M(1−2β)‖x− y‖s‖f‖s.
Therefore, we have ∥∥∥ ∞∑

k=−∞

Hkf
∥∥∥
s
. 2−M(1−2β)‖f‖s for s < β < 1.

If s < 1
2
, we can choose β so that 2−M(1−2β) → 0 as M → +∞. The proof of Lemma 2.6 is

finished. �
We are ready to give the proof of sufficient conditions of the T1 theorem under the assump-

tions that T (1) = T ∗(1) = 0. Notice that TM converges strongly on L2(RN , ω) since, by the
almost orthogonal estimates and the Cotlar–Stein Lemma,

sup
L1,L2

∥∥∥ L2∑
k=L1

DkD
M
k

∥∥∥
L2(RN ,ω) 7→L2(RN ,ω)

< +∞.
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Thus, by Lemma 2.6, TM converges strongly on Λs(RN) ∩ L2(RN , ω).
It is clear that Λs(RN) ∩ L2(RN , ω) is dense in L2(RN , ω). To prove the sufficient condition

of Theorem 1.3, it suffices to show that∣∣〈g0, T f0〉∣∣ 6 C‖g0‖L2(RN ,ω)‖f0‖L2(RN ,ω)

for any g0, f0 ∈ Λs(RN)∩L2(RN , ω) with compact supports. For given f0 ∈ Λs(RN)∩L2(RN , ω)
with compact support, by Lemma 2.6, set f1 = T−1

M f0 ∈ Λs(RN) ∩ L2(RN , ω) and let

UL1,L2 =

L2∑
k=L1

DkD
M
k .

By Lemma 2.6, lim
L1→−∞
L2→+∞

UL1,L2f1 = f0 in Λs(RN)∩L2(RN , ω). Observe that operator T extends

to a continuous linear operator from Λs(RN) ∩ L2(RN , ω) into (Cs
0(RN))′. Hence, for each

g0 ∈ Λs(RN) ∩ L2(RN , ω) with compact support,

〈g0, T f0〉 = lim
L1→−∞
L2→+∞

〈g0, TUL1,L2f1〉.

Similarly, let g1 = T−1
M g0. Then g1 ∈ Λs(RN)∩L2(RN , ω) and lim

L′
1→−∞

L′
2→+∞

UL′
1,L

′
2
g1 = g0 in Λs(RN)∩

L2(RN , ω). Thus,
〈g0, T f0〉 = lim

L1→−∞
L2→+∞

lim
L′
1→−∞

L′
2→+∞

〈UL′
1,L

′
2
g1, TUL1,L2f1〉.

Observe that

〈UL′
1,L

′
2
g1, TUL1,L2f1〉 =

L2∑
k=L1

L′
2∑

k′=L′
1

〈
DM

k′ g1, D
∗
k′TDkD

M
k f1

〉
.

The following almost orthogonal estimates in the Dunkl setting are crucial to estimate
〈DM

k′ g1, D
∗
k′TDkD

M
k f1〉.

Lemma 2.8. Let T be a Dunkl–Calderón–Zygmund singular integral satisfying T (1) = T ∗(1) =
0 and T ∈ WBP . Then∣∣∣∣ �

RN

�
RN

Dk(x, u)K(u, v)Dj(v, y)dω(u)dω(v)

∣∣∣∣
. 2−|k−j|ε′ 1

V (x, y, 2(−j)∨(−k) + d(x, y))

( 2(−j)∨(−k)

2(−j)∨(−k) + d(x, y)

)γ

,

where γ, ε′ ∈ (0, ε) and ε is the regularity exponent of the kernel of T and a ∨ b = max{a, b}.

Assuming Lemma 2.8 for the moment, then

‖D∗
kTDk′‖L2(RN ,ω) 7→L2(RN ,ω) . 2−|k−k′|ε′ .

Applying the Cotlar–Stein lemma yields

|〈UL1,L2g1, TUL′
1,L

′
2
f1〉| . ‖f1‖L2(RN ,ω)‖g1‖L2(RN ,ω) . ‖f0‖L2(RN ,ω)‖g0‖L2(RN ,ω)

for all L1, L2, L
′
1 and L′

2. Hence,∣∣〈g0, T f0〉∣∣ 6 C‖g0‖L2(RN ,ω)‖f0‖L2(RN ,ω).

The proof of Theorem 1.3 with the assumptions T (1) = T ∗(1) = 0 is complete.
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To show Lemma 2.8, we need the following almost orthogonal estimates in the Dunkl setting.

Lemma 2.9. Let x, y ∈ RN and ε0, S > s > 0. Suppose that fS(x, ·) is a weak smooth molecule

function in M̃(ε0, ε0, S, x) and gs(·, y) is a smooth molecule function in M(ε0, ε0, s, y). Then
for any 0 < ε1, ε2 < ε0, there exists C > 0 depending on ε0, ε1, ε2, such that for all S > s > 0,

(2.20)

�
RN

fS(x, u)gs(u, y)dω(u) 6 C

(
s

S

)ε1 1

V (x, y, S + d(x, y))

( S

S + d(x, y)

)ε2
.

If ft(x, ·) and gs(·, y) both are smooth molecule functions in M(ε0, ε0, S, x) and M(ε0, ε0, s, y),
respectively, then for any 0 < ε1, ε2 < ε0, there exists C > 0 depending on ε0, ε1, ε2, such that
for all t, s > 0,�

RN

ft(x, u)gs(u, y)dω(u) 6 C

(
s

t
∧ t

s

)ε1 1

V (x, y, (t ∨ s) + d(x, y))
(2.21) ( t ∨ s

(t ∨ s) + ‖x− y‖

)ε2
,

where a ∨ b = max{a, b}.

We first recall a classical estimate and state it in the Dunkl setting as below, whose proof is
standard and can be found, for example, in [21].

Lemma 2.10. For any ε, t > 0, y ∈ RN , there exists a constant C depending on ε such that,�
RN

1

ω(x, t+ d(x, y))

( t

t+ d(x, y)

)ε

dω(x) 6 C.

Before proving Lemma 2.9, we give the following lemma.

Lemma 2.11. For any ε1, ε2, t, s > 0 , Let

T =

�
RN

1

V (x, z, t+ d(x, z))

( t

t+ d(x, z)

)ε1 1

V (z, y, s+ d(z, y))

( s

s+ d(z, y)

)ε2
dω(z),

then there exists a constant C depending on ε1, ε2 such that,

T 6 C

V (x, y, (t ∨ s) + d(x, y))
.

Proof. Without loss of generality, we can assume t > s. We consider
Case 1: d(x, y) 6 t, then

T .
�
RN

1

V (x, z, t)

1

V (z, y, s+ d(z, y))

( s

s+ d(z, y)

)ε2
dω(z)

. 1

ω(B(x, t))

�
RN

1

V (z, y, s+ d(z, y))

( s

s+ d(z, y)

)ε2
dω(z).

By the condition d(x, y) 6 t and Lemma 2.10, we have T . 1
V (x,y,t+d(x,y))

.

Case 2: d(x, y) > t, since d(x, z) + d(y, z) > d(x, y), we have

T 6
�
d(x,z)> 1

2
d(x,y)

1

V (x, z, t+ d(x, z))

( t

t+ d(x, z)

)ε1 1

V (z, y, s+ d(z, y))

( s

s+ d(z, y)

)ε2
dω(z)

+

�
d(y,z)> 1

2
d(x,y)

1

V (x, z, t+ d(x, z))

( t

t+ d(x, z)

)ε1 1

V (z, y, s+ d(z, y))

( s

s+ d(z, y)

)ε2
dω(z)

=: T1 + T2.
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For term T1, we have

T1 .
�
d(x,z)> 1

2
d(x,y)

1

ω(B(x, t+ d(x, y)))

1

V (z, y, s+ d(z, y))

( s

s+ d(z, y)

)ε2
dω(z)

. 1

V (x, y, t+ d(x, y))

�
RN

1

V (z, y, s+ d(z, y))

( s

s+ d(z, y)

)ε2
dω(z).

By Lemma 2.10, we have T1 . 1
V (x,y,t+d(x,y))

.

For term T2,

T2 .
�
d(y,z)> 1

2
d(x,y)

1

V (x, z, t+ d(x, z))

( t

t+ d(x, z)

)ε1 1

ω(B(y, d(x, y)))
dω(z)

=
1

ω(B(y, d(x, y)))

�
RN

1

V (x, z, t+ d(x, z))

( t

t+ d(x, z)

)ε1
dω(z).

By the condition d(x, y) > t and Lemma 2.10, we have T2 . 1
V (x,y,d(x,y))

. 1
V (x,y,t+d(x,y))

.

This complete the proof of Lemma 2.11. �

Now we prove Lemma 2.9.

Proof. We begin with the estimate (2.20). Let ε = max{ε1, ε2}, then we only need to show
that �

RN

fS(x, u)gs(u, y)dω(u) 6 C

(
s

S

)ε
1

V (x, y, S + d(x, y))

( S

S + d(x, y)

)ε

, for S > s.

we write

A =

�
RN

fS(x, u)gs(u, y)dω(u) =

�
RN

(
fS(x, u)− fS(x, y)

)
gs(u, y)dω(u).

Then

|A| 6
�
‖u−y‖6S

|fS(x, u)− fS(x, y)| · |gs(u, y)|dω(u)

+

�
‖u−y‖>S

(
|fS(x, u)|+ |fS(x, y)|

)
· |gs(u, y)|dω(u)

=: I + II,

where

I .
�
‖u−y‖6S

(‖u− y‖
S

)ε0
(

1

V (x, u, S + d(x, u))

( S

S + d(x, u)

)ε0

+
1

V (x, y, S + d(x, y))

( S

S + d(x, y)

)ε0
)
× 1

V (u, y, s+ d(u, y))

( s

s+ ‖u− y‖

)ε0
dω(u)

and

II .
�
‖u−y‖>S

(
1

V (x, u, S + d(x, u))

( S

S + d(x, u)

)ε0
+

1

V (x, y, S + d(x, y))

( S

S + d(x, y)

)ε0
)

× 1

V (u, y, s+ d(u, y))

( s

s+ ‖u− y‖

)ε0
dω(u).
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For term I, since ‖u− y‖ 6 S, we have(‖u− y‖
S

)ε0( s

s+ ‖u− y‖

)ε0
6

(
‖u− y‖

S

)ε(
s

‖u− y‖

)ε(
s

s+ ‖u− y‖

)ε0−ε

=

(
s

S

)ε(
s

s+ ‖u− y‖

)ε0−ε

.

Thus

I .
(
s

S

)ε �
‖u−y‖6S

(
1

V (x, u, S + d(x, u))

( S

S + d(x, u)

)ε0
+

1

V (x, y, S + d(x, y))

( S

S + d(x, y)

)ε0
)

× 1

V (u, y, s+ d(u, y))

(
s

s+ ‖u− y‖

)ε0−ε

dω(u).

Let

I1 =

�
‖u−y‖6S

1

V (x, u, S + d(x, u))

( S

S + d(x, u)

)ε0 1

V (u, y, s+ d(u, y))

(
s

s+ ‖u− y‖

)ε0−ε

dω(u)

and

I2 =

�
‖u−y‖6S

1

V (x, y, S + d(x, y))

( S

S + d(x, y)

)ε0 1

V (u, y, s+ d(u, y))

(
s

s+ ‖u− y‖

)ε0−ε

dω(u),

then I .
(
s
S

)ε · (I1 + I2). Note that

I2 6
1

V (x, y, S + d(x, y))

( S

S + d(x, y)

)ε0
�
RN

1

V (u, y, s+ d(u, y))

(
s

s+ d(u, y)

)ε0−ε

dω(u)

. 1

V (x, y, S + d(x, y))

(
S

S + d(x, y)

)ε

,

where we apply Lemma 2.10 in the last inequality above.
And

I1 6
�
d(u,y)6S

1

V (x, u, S + d(x, u))

( S

S + d(x, u)

)ε0 1

V (u, y, s+ d(u, y))

(
s

s+ d(u, y)

)ε0−ε

dω(u).

We estimate I1 in two cases: d(x, y) 6 2S and d(x, y) > 2S.
Case 1: If d(x, y) 6 2S, applying Lemma 2.11, we have

I1 .
1

V (x, y, S + d(x, y))
. 1

V (x, y, S + d(x, y))

(
S

S + d(x, y)

)ε

.

Case 2: If d(x, y) > 2S, by the conditions d(u, y) 6 S < 1
2
d(x, y) and d(x, u) + d(y, u) >

d(x, y), we get d(x, u) > 1
2
d(x, y). And hence,

I1 6
�
d(u,y)6S

1

V (x, u, S + d(x, u))

(
S

S + d(x, u)

)ε(
S

S + d(x, u)

)ε0−ε

× 1

V (u, y, s+ d(u, y))

(
s

s+ d(u, y)

)ε0−ε

dω(u)

.
�
RN

1

V (x, u, S + d(x, u))

(
S

S + d(x, y)

)ε(
S

S + d(x, u)

)ε0−ε
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× 1

V (u, y, s+ d(u, y))

(
s

s+ d(u, y)

)ε0−ε

dω(u)

. 1

V (x, y, S + d(x, y))

(
S

S + d(x, y)

)ε

,

where the last inequality above follows from Lemma 2.11.
Therefore

I .
( s
S

)ε

· (I1 + I2) .
( s
S

)ε 1

V (x, y, S + d(x, y))

( S

S + d(x, y)

)ε

.

For term II, Let

II1 =

�
‖u−y‖>S

1

V (x, u, S + d(x, u))

( S

S + d(x, u)

)ε0 1

V (u, y, s+ d(u, y))

( s

s+ ‖u− y‖

)ε0
dω(u)

and

II2 =

�
‖u−y‖>S

1

V (x, y, S + d(x, y))

( S

S + d(x, y)

)ε0 1

V (u, y, s+ d(u, y))

( s

s+ ‖u− y‖

)ε0
dω(u)

Note that

II2 =
1

V (x, y, S + d(x, y))

( S

S + d(x, y)

)ε0
�
‖u−y‖>S

1

V (u, y, s+ d(u, y))

×
(

s

s+ ‖u− y‖

)ε0−ε(
s

s+ ‖u− y‖

)ε

dω(u)

. 1

V (x, y, S + d(x, y))

(
S

S + d(x, y)

)ε �
RN

1

V (u, y, s+ d(u, y))

×
(

s

s+ d(u, y)

)ε0−ε(
s

S

)ε

dω(u)

.
( s
S

)ε 1

V (x, y, S + d(x, y))

( S

S + d(x, y)

)ε

,

where again the last inequality follows from Lemma 2.10.
For term II1, since d(x, u) + d(y, u) > d(x, y), we have

II1 6
�

d(x,u)> 1
2 d(x,y)

∥u−y∥>S

1

V (x, u, S + d(x, u))

( S

S + d(x, u)

)ε0 1

V (u, y, s+ d(u, y))

( s

s+ ‖u− y‖

)ε0
dω(u)

+

�
d(y,u)> 1

2 d(x,y)

∥u−y∥>S

1

V (x, u, S + d(x, u))

( S

S + d(x, u)

)ε0 1

V (u, y, s+ d(u, y))

( s

s+ ‖u− y‖

)ε0
dω(u)

=: II11 + II12.

Note that

II11 6
�
RN

1

V (x, u, S + d(x, u))

(
S

S + d(x, y)

)ε(
S

S + d(x, u)

)ε0−ε

× 1

V (u, y, s+ d(u, y))

(
s

S

)ε(
s

s+ d(u, y)

)ε0−ε

dω(u)

.
( s
S

)ε 1

V (x, y, S + d(x, y))

(
S

S + d(x, y)

)ε

,
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where the last inequality above follows from Lemma 2.11.
Moreover,

II12 =

�
d(y,u)> 1

2 d(x,y)

∥u−y∥>S

1

V (x, u, S + d(x, u))

( S

S + d(x, u)

)ε0

× 1

V (u, y, s+ d(u, y))

(
s

s+ ‖u− y‖

)ε(
s

s+ ‖u− y‖

)ε0−ε

dω(u).

Since d(y, u) > 1
2
d(x, y) and ‖u−y‖ > S, we have ‖u−y‖ > 1

2
(S+‖u−y‖) > 1

2
(S+d(u, y)) >

1
4
(S + d(x, y)).
Therefore (

s

s+ ‖u− y‖

)ε

.
(

s

S + d(x, y)

)ε

=

(
s

S

)ε(
S

S + d(x, y)

)ε

,

which implies

II12 .
(
s

S

)ε(
S

S + d(x, y)

)ε �
RN

1

V (x, u, S + d(x, u))

( S

S + d(x, u)

)ε0

× 1

V (u, y, s+ d(u, y))

(
s

s+ d(u, y)

)ε0−ε

dω(u)

.
( s
S

)ε 1

V (x, y, S + d(x, y))

(
S

S + d(x, y)

)ε

,

where again the last inequality follows from Lemma 2.11.
This completes the proof of the estimate (2.20). The proof of the estimate (2.21) is almost

the same. To be precise, replacing d(x, u) by ‖x − u‖ for all fractions S
S+d(x,u)

and d(x, y) by

‖x− y‖ for all fractions S
S+d(x,y)

, respectively, yields the proof of the estimate (2.21). We leave

the details to the reader. �

We return to the proof of Lemma 2.8, that is, if T is a Dunkl–Calderón–Zygmund singular
integral satisfying T (1) = T ∗(1) = 0 and T ∈ WBP, then∣∣∣∣ �

RN

�
RN

Dk(x, u)K(u, v)Dj(v, y)dω(u)dω(v)

∣∣∣∣
. 2−|k−j|ε′ 1

V (x, y, 2−j∨−k + d(x, y))

( 2−j∨−k

2−j∨−k + d(x, y)

)γ

,

where γ, ε′ ∈ (0, ε) and ε is the regularity exponent of the kernel of T.
To this end, we may assume k 6 j. Observe thatDk(x, ·) is a smooth molecule inM(1, 1, S, x)

with S = 2−k, x ∈ RN and Dj(·, y) is a smooth molecule in M(1, 1, s, y) with s = 2−j and

y ∈ RN . Set D̃k(x, v) =
�
RN Dk(x, u)K(u, v)dω(u). We hereby recall that

�
D̃k(x, v)dω(v) = 0

thanks to the conditions T ∗(1) = 0.

By Theorem 2.3, for any 0 < ε0 < 1, D̃k(x, ·) is a weak smooth molecule in M̃(ε0, ε0, S, x)
with S = 2−k.
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Note that when k 6 j, then S > s. Applying the estimate (2.20) in Lemma 2.9 yields∣∣∣∣ �
RN

�
RN

Dk(x, u)K(u, v)Dj(v, y)dω(u)dω(v)

∣∣∣∣ = ∣∣∣∣ �
RN

�
RN

D̃k(x, v)Dj(v, y)dω(v)

∣∣∣∣
. 2(k−j)ε′ 1

V (x, y, 2−k + d(x, y))

( 2−k

2−k + d(x, y)

)γ

,

where ε′, γ < ε0.
Similarly, if j 6 k, then

�
RN K(u, v)Dj(v, y)dω(v) is a weak smooth molecule and repeating

the same proof gives the desired estimate.
Finally, to finish the proof of Theorem 1.3, it remains to consider the general case: T (1) ∈

BMO(RN , ω) and T ∗(1) ∈ BMO(RN , ω). To handle this case, we recall the classical para-
product operators on space of homogeneous type. We begin with the following definition of
the test functions in space of homogeneous type (RN , ‖ · ‖, ω) :

Definition 2.12. A function f(x) defined on RN is said to be a test function if there exits a
constant C such that for 0 < β 6 1, γ > 0, r > 0 and x0 ∈ RN ,

(i) |f(x)| 6 C

V (x, r + ‖x− x0‖)

( r

r + ‖x− x0‖

)γ

;

(ii) |f(x)− f(x′)| 6 C
( ‖x− x′‖
r + ‖x− x0‖

)β 1

V (x, r + ‖x− x0‖)

( r

r + ‖x− x0‖

)γ

,

for ‖x− x′‖ 6 1

2
(r + ‖x− x0‖);

(iii)

�
RN

f(x)dω(x) = 0.

We denote such a test function by f ∈ M(β, γ, r, x0) and ‖f‖M(β,γ,r,x0), the norm inM(β, γ, r, x0),
is defined by the smallest C satisfying the above conditions (i) and (ii).

Applying Coifman’s decomposition for the identity operator and the Calderón–Zygmund
operator theory, the discrete Calderón reproducing formula in space of homogeneous type is
given by the following

Theorem 2.13. Let {Sk}k∈Z be a Coifman’s approximations to the identity and set Dk :=

Sk − Sk−1. Then there exists a family of operators {D̃k}k∈Z such that

f(x) =
∞∑

k=−∞

∑
Q∈Qk

ω(Q)D̃k(x, xQ)Dk(f)(xQ),

where Qk is the collection of all dyadic cubes in RN with the side length 2−M−k for some
fixed large M and xQ is the center of Q. The series converges in Lp(RN , ω), 1 < p < ∞,
M(β, γ, r, x0) and in (M(β, γ, r, x0))

′, the dual of in M(β, γ, r, x0). Moreover, the kernels of

the operators D̃k satisfy the the following conditions: for 0 < ε < 1,

(i) |D̃k(x, y)| 6 C
1

Vk(x) + Vk(y) + V (x, y)

( 2−k

2−k + ‖x− y‖

)ε

;

(ii) |D̃k(x, y)−D̃k(x
′, y)| 6 C

( ‖x− x′‖
2−k + ‖x− x′‖

)ε 1

Vk(x) + Vk(y) + V (x, y)

( 2−k

2−k + ‖x− y‖

)ε

,

for ‖x− x′‖ 6 (2−k + ‖x− y‖)/2;
(iii)

�
RN

D̃k(x, y)dω(x) = 0 for all y ∈ RN ;
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(iv)

�
RN

D̃k(x, y)dω(y) = 0 for all x ∈ RN .

Similarly, there exists a family of linear operators { ˜̃Dk}k∈Z such that

f(x) =
∞∑

k=−∞

∑
Q∈Qk

ω(Q)Dk(x, xQ)
˜̃
Dk(f)(xQ),

where the kernels of
˜̃
Dk satisfy the above conditions (i), (iii), (iv) and (ii) with x and y inter-

changed.

The paraproduct operator is defined by

Definition 2.14. Suppose that {Sk}, {Dk} and { ˜̃Dk} are same as defined above. The para-
product operator of f ∈ M(β, γ, r, x0)

′ is defined by

Πb(f)(x) =
∞∑

k=−∞

∑
Q∈Qk

ω(Q)Dk(x, xQ)
˜̃
Dk(b)(xQ)Sk(f)(xQ),

where b ∈ BMO(RN , ω).

We need the following classical result:

Theorem 2.15. The paraproduct operator is the Calderón–Zygmund operator. Moreover,
Πb(1) = b in the topology (H1,BMO), (Πb)

∗(1) = 0 and there exists a constant C such that for
1 < p <∞,

‖Πb(f)‖Lp(RN ,ω) 6 C‖b‖BMO(RN,ω)‖f‖Lp(RN ,ω).

See [20] for all these results and the details of the proofs.
Observe that the classical Calderón–Zygmund operator on (RN , ω) is also the Dunkl–Calderón–

Zygmund operator. Suppose now that both T (1) and T ∗(1) belong to BMO(RN , ω). Set

T̃ = T − ΠT (1) − (ΠT ∗(1))
∗. Then T̃ is a Dunkl–Calderón–Zygmund singular integral opera-

tor. Moreover, T̃ (1) = (T̃ )∗(1) = 0 and T̃ ∈ WBP. Therefore, T̃ is bounded on L2(RN , ω) and
hence, T is also bounded on L2(RN , ω). The proof of Theorem 1.3 is completed.
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[15] J. Dziubański and A. Hejna, Hörmander multiplier theorem for the Dunkl transform, J. Funct.
Anal., 277 (2019), 2133–2159.
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[17] J. Dziubański and A. Hejna, Upper and lower bounds for Littlewood-Paley square functions in the
Dunkl setting, Studia Math. 262 (2022), no. 3, 275–303.
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spaces modeled on Carnot–Carathéodory spaces, Abstr. Appl. Anal., Vol. 2008, Article ID 893409.
250 pages.

[21] Y. Han and E. T. Sawyer, “Littlewood–Paley theory on spaces of homogeneous type and classical
function spaces”, Mem. Amer. Math. Soc., 110 (1994), no. 530, 1–126.

[22] H. Li and M. Zhao, Square function estimates for Dunkl operators, 2020, arXiv:2003.11843.
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