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Hyperbolic polygons of minimal perimeter in punctured discs

JOAN PORTI

Abstract. We prove that, among the polygons in a punctured disc with fixed
angles, the perimeter is minimized by the polygon with an inscribed horocycle
centered at the puncture. We generalize this to a disc with a cone point and to
an annulus with a geodesic boundary component and a complete end. Then we
apply this result to describe the minimum of the spine systole on the moduli space
of punctured surfaces.

Mathematics Subject Classification (2010): 51M16 (primary); 57M20 (sec-
ondary).

1. Introduction

Consider a complete hyperbolic disc with a puncture, i.e.with a cusp,X0=H2/h�0i
where h�0i is the infinite cyclic group generated by a parabolic transformation �0 2
Isom+ H2. Fix n � 1 and 0 < �1, . . . ,�n < ⇡ a family of angles. Define P to
be the space of polygons in X0 with those (counterclockwise ordered) angles, that
separate both ends of X0, and so that the cusp lies in the convex side of each angle.
In Lemma 4.4 below we show that P 6= 0, even for n = 1. We prove:

Theorem 1.1. The unique minimum of the perimeter inP is realized by the polygon
with an inscribed horocycle centered at the cusp.

The case of a disc without any puncture (i.e. the hyperbolic plane H2) was
considered in [7]. The generalization in this paper is motivated by an application
to spines of minimal length of hyperbolic surfaces. A spine of a surface with finite
topological type is a graph so that the surface retracts to it (for a closed surface one
removes a point). Martelli, Novaga, Pluda, and Riolo [4] have shown that for each
closed hyperbolic surface there are finitely many spines of minimal length, and their
proof applies to the non compact case. Those spines are graphs with geodesic edges
and with trivalent vertices, forming angles 2⇡/3.
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LetMg,p denote the moduli space of a surface of genus g with p � 1 punc-
tures, with p � 3 when g = 0. The minimal length of a spine is called the spine
systole of a surface and defines a function

S : Mg,p ! (0,+1).

We see in Corollary 5.2 that S is a proper function.

Corollary 1.2. The minimum of S : Mg,p ! R is realized precisely by subgroups
of the modular group, i.e. by surfaces H2/0 with 0 a subgroup of the congruence
group 0(2).

Here 0(2) denotes the congruence subgroup mod 2 of PSL(2, Z). When p =
1 those surfaces are classically called cycloidal [3, 5, 6]. Surfaces H2/0 with
0 < 0(2) satisfy an extremal property: there is a family of punctured horodiscs
(i.e. punctured discs in X0 bounded by a horocycle), one for each cusp, whose in-
teriors are embedded and pairwise disjoint, and whose complements are regions
bounded by three horocyclic segments with tangent endpoints. In the cycloidal
case (p = 1) there is precisely a unique such disc, which is maximal. See [3] for
extremality properties of embedded discs, punctured or not, as well as [1].

In Corollary 5.1 we prove that min S = 3(2g � 2+ p) log(3).

We shall consider a slightly more general situation, by replacing the cusp by
a cone point of angle ↵ 2 (0, 2⇡) or a geodesic of length r > 0. Denote by X
this space, and denote by c the cone point, the cusp, or the boundary component,
according to the case we are considering. Consider againP the space of polygons in
X with fixed angles 0 < �1, . . . ,�n < ⇡ that separate c from the (infinite volume)
end of X and so that c lies in the convex side of each angle. If c is a cone point of
angle ↵, then we need to assume furthermore that

↵ +
nX

i=1
�i < n⇡ , (1.1)

so that P 6= ; (see Lemma 4.4).
Definition 1.3. An equidistant to c is the following curve in X:

• A horocycle centered at c when it is a cusp;
• A circle centered at c when it is a cone point;
• An equidistant line to c when it is a geodesic.

An equidistant has constant geodesic curvature  , where  = 1,  > 1 or  < 1 in
the respective cases of the definition. The following generalizes Theorem 1.1.

Theorem 1.4. The unique minimum of the perimeter inP is realized by the polygon
with an inscribed equidistant to c.
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In H2 a polygon is determined by the angles and edge lengths. In Lemma 4.5
we prove that this is true also for polygons in P , in particular the position with
respect to c is also determined by the angles and edge lengths.

The proof of Theorem 1.1 uses techniques from [7], that rely on ideas intro-
duced in [9], with some modifications. The proof requires the Lorentz model of
hyperbolic space so that several aspects of the three cases are unified. For instance
c is represented by a point x0 in Lorentz space, which is lightlike for a cusp, timelike
for a cone point, and spacelike for a geodesic.

Section 2 is devoted to the tools of Lorentz spaces we need. In Section 3 we
construct the space of polygons P and we prove that it is a (n � 1)-dimensional
manifold. The main theorem is proved in Section 4 and the corollary on spines is
proved in Section 5.

ACKNOWLEDGEMENTS. I am indebted to Christophe Bavard for pointing me to
the reference [2], and to the referee for useful suggestions.

2. Lorentz space

The Lorentz space R21 is R3 equipped with the symmetric bilinear product with
matrix

J =

0

@
�1 0 0
0 1 0
0 0 1

1

A

so that for x, y 2 R21, x · y = xt J y = �x0y0 + x1y1 + x2y2. The Lorentz model
of the hyperbolic plane is then

H2 =
n
x 2 R21 | x · x = �1, x0 > 0

o
.

From the equation x · x = �1, the tangent space at a point is its orthogonal

TxH2 = x? =
n
y 2 R21 | x · y = 0

o
.

The de Sitter sphere is

S21 =
n
x 2 R21 | x · x = 1

o
.

Every point x 2 S21 can be identified with an oriented line in H2

n
y 2 H2 | x · y = 0

o
.
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The orientation is provided by a normal vector. Indeed, given x 2 S21, for any point
p in the line x , x can be viewed as a vector in TpH2 (since x · p = 0) and x is
orthogonal to the line it represents. We can also associate to x a halfplane bounded
by this line n

y 2 H2 | x · y  0
o

.

Remark 2.1. The vector x 2 S21 is the outwards normal field at the boundary of the
halfplane {y 2 H2 | x · y  0} .

To prove this remark, given a point y 2 H2 such that x · y = 0, we consider
the path t 7! &(t) = y + t x + O(t2), then &(t) · x = t + O(t2). Hence & 0(0) = x
and the derivative of &(t) · x at t = 0 is positive.

The light half-cone is

L =
n
x 2 R21 | x · x = 0, x0 > 0

o
.

Every x 2 L can be identified with the horocycle
n
y 2 H2 | y · x = �1

o
.

This is the boundary of the horodisc
n
y 2 H2 | y · x � �1

o
.

On the other hand, the projective space on L can be identified with the ideal bound-
ary @1H2.

With the previous conventions, the Lorentz product is related to the incidence,
see [8, Section 3.2]:

Proposition 2.2 (Incidence and Lorentz product).

(a) Given two points x, y 2 H2 at distance d � 0, then x · y = � cosh d;
(b) Given a point x 2 H2 and an oriented line y 2 S21 at distance d � 0, then

x · y = ± sinh d, where the sign is negative if and only if y belongs to the
halfplane associated to x;

(c) The horocycle x 2 L is centered at an ideal endpoint of a line y 2 S21 if and
only if x · y = 0;

(d) The horocycle x 2 L is tangent to the line y 2 S21 if and only if x · y = ±1,
with negative sign if the halfplane corresponding to y contains the horodisc
corresponding to y;

(e) If the oriented lines x, y 2 S21 are disjoint at distance d � 0 (d = 0 means that
they are asymptotic), then x · y = ± cosh d, where the sign is positive when the
orientations are compatible (one of the halfplanes is contained in the other);

(f) If the oriented lines x, y 2 S21 meet at one point with angle ↵ (taking care of
the orientations), then x · y = cos↵.
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Following again [8, Section 3.2] the Lorentzian cross product ⇥ inR21 is defined by
the rule

(u ⇥ v) · w = det(u, v,w), 8u, v,w 2 R21,
where det(u, v,w) denotes the determinant of the matrix with entries the compo-
nents of u, v,w. Namely u ⇥ v = J (u ⇥ v), where ⇥ denotes the usual cross
product in R3. In particular (R21,⇥) is a Lie algebra.

Remark 2.3. There is a natural bijection R21 $ so(2, 1) that is:

• An isomorphism of Lie algebras (R21,⇥) ⇠= (so(2, 1), [, ]);
• An isomorphism of SO0(2, 1)-modules, where the action on R21 is linear and on

so(2, 1) is the adjoint;
• A Lorentz isometry, where so(2, 1) is equipped with a multiple of the Killing
form.

Now fix x0 2 H2, S21, or L. Namely x0 represents either a point in hyperbolic plane,
an oriented line, or an ideal point (viewed projectively). Let e1, . . . , en 2 S21 be a
collection of oriented lines.

Lemma 2.4. The oriented lines e1, . . . , en 2 S21 are tangent to an equidistant to x0
if and only if

|e1 · x0| = · · · = |en · x0| = costant .

In addition, the absolute values can be removed by taking care of orientations.

3. The space of polygons

Let P denote the space of polygons in X as in the introduction. It can be embedded
in T 1X ⇥ Rn by looking at the tangent vector to a given edge at one of its vertices,
and the edge lengths l1, . . . , ln > 0.

By convexity, the closure P is obtained by considering edges of length zero or,
when c is a cone point, by allowing a vertex or the interior of an edge to meet the
cone point. In this case, ↵ > ⇡ when cmeets the interior of an edge, or ↵+�i > 2⇡
when c meets the i-th vertex.

As before, x0 2 H2 when c is a cone point, x0 2 S21 when c is geodesic, and
x0 2 L when c is a cusp.

Fix e0 an oriented line so that e0 · x0 = 0 and fix a point p0 2 e0 in this line.
Let g : (�1,1) ! H2 denote a parametrization of e0 so that g(0) = p0 and
{e0, ġ(0)} is a positive frame in Tp0H2. In addition, assume that:

• When x0 2 H2, then x0 = p0;
• When x0 2 S21, then x0 \ e0 = {p0} and {e0, x0} is a positive frame (i.e. ġ(0) =
x0);

• When x0 2 L, then x0 · p0 = 1 and g(�1) is the projective class of x0.

See Figure 3.1.
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x0 = p0

g

g p0

x0

x0

∂∞H2

g p0

x0 ∈ H2 x0 ∈ S2
1 x0 ∈ L

Figure 3.1. The point p0 and the geodesic g, according to the different possibilities for
x0.

Consider also an orientation preserving isometry � 2 SO0(2, 1) as follows:

• When x0 2 H2, � is a (positively oriented) rotation of angle ↵ 2 (0, 2⇡) around
x0;

• When x0 2 S21, � is a loxodromic isometry with axis x0 of translation length r
(in the direction �e0);

• When x0 2 L, � is a parabolic transformation than fixes x0 (in the direction
�e0).

Chose l1, . . . , ln 2 [0,+1) the lengths of the sides of the polygon. We shall also
consider two parameters l0 2 R and ✓ 2 [0, 2⇡]/{0 ⇠ 2⇡} ⇠= S1.

We define maps v and w from the parameter spaces to the unit tangent bundle
T 1H2 as follows. Start with the vector ġ(l0) 2 Tg(l0)H2 and rotate it by an angle ✓ ,
call this vector v(l0, ✓). This defines a map:

v : R ⇥ S1 ! T 1H2 .

Then consider a polygonal path starting at q0 = g(l0) in the direction of v(l0, ✓)
that is the union of n segments of lengths l1, l2, . . . , ln with ordered angles
�1,�2, . . . ,�n�1, so that at the end of the i-th edge turns left by the exterior an-
gle ⇡ ��i and continue to the (i +1)-th edge. At the end of the n-th edge, consider
the tangent unitary vector defining an angle �n , i.e. turn left by the exterior angle
⇡ � �n . This defines a map

w : R ⇥ S1 ⇥ Rn ! T 1H2.

Then P is contained in the set

P✓
n
(l0, ✓, l1, . . . , ln)2 I ⇥ S1 ⇥ [0,+1)n | w(l0, ✓, l1, . . . , ln) = � v(l0, ✓)

o

where:

• I = [0,+1) when c is a cone point;
• I = (0,+1) when c is a geodesic;
• I = R when c is a cusp.
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When c is a cone point of angle ↵ < ⇡ or c is a geodesic, then l0 = 0 is not
possible by convexity.

Proposition 3.1. The space P is a (n�1)-dimensional analytic manifold with tan-
gent space at a point p 2 P:

TpP =

(

(l̇0, ✓̇, l̇1, . . . , l̇n) 2 Rn+2 | l̇0(1� � )e0 + ✓̇(1� � )q0 +
nX

i=1
l̇i ei = 0

)

,

where e1, . . . , en 2 S21 denote the oriented lines that contain the oriented edges
of p.

The unit tangent bundle T 1H2 is naturally identified to the isometry group
SO0(2, 1), as the action is simply transitive. Thus the tangent space at a given point
is naturally identified with so(2, 1) ⇠= R21. In the next lemma the Lie algebras
correspond to the tangent space at different points.

Lemma 3.2. The tangent map w⇤ : Rn+2 ! Tw(l0,✓,l1,...,ln)H2 ⇠= so(2, 1) satisfies
w⇤

⇣
@
@li

⌘
= ei for i = 0, . . . , n and w⇤

�
@
@✓

�
= g(l0) = q0.

The tangent map v⇤ : R2 ! Tw(l0,✓)H2 ⇠= so(2, 1) satisfies v⇤

⇣
@
@l0

⌘
= e0 and

v⇤
�

@
@✓

�
= g(l0) = q0.

Proof. Increase one of the l j by keeping the other lk and ✓ constant means compos-
ing the map (either w or v) with an isometry with axis ei 2 R21, and its derivative
corresponds to ei 2 so(2, 1) after the previous identifications of the tangent space
to T 1H2 to so(2, 1) ⇠= R21. The same argument applies to ✓ .

Lemma 3.3. Assuming that l0 > 0 when c is a cone point, we have

h(1� � )e0, (1� � )q0i = x?0 ,

where q0 = g(l0).

Proof. We start checking that, for the different possibilities of x0,

he0, q0, x0i = R21 . (3.1)

Namely, when x0 is a horocycle, we may assume up to isometry that

x0 =

0

@
1
1
0

1

A , e0 =

0

@
0
0
1

1

A , q0 =

0

@
cosh(t)
sinh(t)
0

1

A ,

for some t 2 R. When x0 is a geodesic,

x0 =

0

@
0
1
0

1

A , e0 =

0

@
0
0
1

1

A , q0 =

0

@
cosh(t)
sinh(t)
0

1

A ,
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for some t > 0. When x0 is a point in hyperbolic plane, since we assume l0 > 0,

x0 =

0

@
1
0
0

1

A , e0 =

0

@
0
0
1

1

A , q0 =

0

@
cosh(t)
sinh(t)
0

1

A ,

for some t > 0. This establishes (3.1). Then, since ker(1 � � ) = hx0i and � is an
isometry, the lemma follows.

Proof of Proposition 3.1. Consider M the matrix of size 3⇥ (n + 2) with columns
M1, . . . ,Mn+2, where

M1 = (1� � )e0, M2 = (1� � )q0, M3 = e1, . . . , Mn+2 = en . (3.2)

We aim to show that rank(M) = 3, so that the maps w and � v are transversal.
Assume first that in the elliptic case l0 > 0. By Lemma 3.3, it suffices to have that
ei · x0 6= 0 for some i = 1, . . . , n. By the incidence relations, Proposition 2.2, it is
impossible that ei ·x0 = 0 for all i = 1, . . . , n (e.g., when there is a cusp this would
mean that all edges belong to a geodesic ending at the cusp, and similarly for the
other cases).

When l0 = 0 in the elliptic case, q0 = x0 hence (1 � � )q0 = 0. In this case,
since x0 = � x0 is the starting and final point on the polygonal path, it is a closed
polygon inH2. In particular the number of edges is� 3 and they are generic enough
so that e1, . . . , en are linearly independent in R21.

Remark 3.4. The proof of Proposition 3.1 yields that P is contained in a smooth
manifold of the same dimension as P , with the tangent space described by Propo-
sition 3.1. We shall use this to integrate tangent vectors into deformations of poly-
gons.

4. Proof of the main theorem

The proof of Theorem 1.4 follows from the following 4 lemmas.

Lemma 4.1. The perimeter P ! [0,+1) is a proper function.

Lemma 4.2. A polygon in P is a critical point of the perimeter if and only if it has
an inscribed equidistant.

Lemma 4.3. A polygon in P � P can be perturbed to P while decreasing the
perimeter.

Lemma 4.4. There exists a unique polygon in P with an inscribed equidistant.
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Proof of Lemma 4.1. Seeking a contradiction, assume that we have a sequence of
parameters inP with l0 ! +1 but l1, . . . , ln � 0 are bounded. This is not possible
because the distance between g(l0) and �g(l0) converges to infinity as l0 ! +1,
but this distance is bounded by the perimeter l1 + · · · + ln . This establishes proper-
ness when c is a cone point or a geodesic. When c is a cusp, there could be a
sequence of polygons with l0 ! �1, while l1, . . . , ln � 0 are bounded. This
implies that the sequence of polygons are contained in horodiscs with area going
to zero, but this contradicts Gauss-Bonnet theorem: the area depends only on the
angles �1, . . . ,�n .

Proof of Lemma 4.2. Being a critical point means that whenever l̇0, ✓̇ , l̇1, . . . , l̇n
satisfy

l̇0(1� � )e0 + ✓̇(1� � )q0 + l̇1e1 + · · · + l̇nen = 0 ,

then l̇1 + · · · + l̇n = 0. Let M be the matrix of size 3⇥ (n+ 2) defined by columns
as in Equation (3.2), in the proof of Proposition 3.1. By the proof of the same
proposition, rank(M) = 3. Let M be the matrix of size 4 ⇥ (n + 2) obtained by
adding the row �

0 0 1 1 · · · 1
�

to the bottom of M . Being a critical point means that kerM = kerM , i.e. that
rank(M) = 3. Set

0

B
B
@

z0
z1
z2
1

1

C
C
A 2 ker

⇣
Mt

⌘
and z =

0

@
�z0
z1
z2

1

A 6= 0 .

By hypothesis �
(1� � )e0

�
· z =

�
(1� � )q0

�
· z = 0.

Thus, by Lemma 3.3 z is a multiple of x0: z = �x0 for some � 2 R \ {0}. Hence

l1 · x0 = · · · = ln · x0 = �1/�.

By Lemma 2.4, and discarding the values of � that contradict convexity, the lemma
is proved.

Proof of Lemma 4.3. We consider first the case where the cone point c meets a sin-
gle vertex, say the first one. By convexity, �n + ↵ > 2⇡ . By the previous con-
struction l0 = 0, and we aim to deform the parameters so that l0 increases but the
perimeter decreases. When l0 = 0, deforming ✓ does not change the resulting poly-
gon. Thus we chose ✓ so that the line that bisects e0 and � e0 is the same that bisects
e1 and en but the corresponding half-lines are opposite, see Figure 4.1.

Since x0 = p0 = q0 belongs to the lines e0, � e0, e1 and en , we view them as
tangent vectors to x0, i.e. they lie in the plane Tx0H2. Now e0�� e0 and e1+ en are
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α

e0 γe0

p0

e0 γe0

e1 en

α + βn − 2π

Figure 4.1. The relative position of the lines e0 and � e0 and the vertex of the polygon.

e0 γe0

e1 en

e0

−γe0

e1

en

Figure 4.2. The oriented lines viewed as vectors in Tp0H2.

both tangent vectors perpendicular to the bisector, and they both point in the same
direction (see Figure 4.2):

(1� � )e0 = �(e1 + en) for some � > 0.

Hence we may consider a deformation tangent to the vector l̇0 = 1, ✓̇ = 0, l̇1 =
l̇n = ��, l̇2 = l̇3 = · · · = l̇n�1 = 0. This is a vector tangent to the manifold in
the equations defined in Proposition 3.1, and we have shown that this is a smooth
point, see Remark 3.4. Hence the tangent vector corresponds to a deformation, and
by construction it pushes the cone point to the interior of the polygon (l̇0 > 0) and
the derivative of the perimeter is

l̇1 + · · · + l̇n = �2� < 0 .

When c meets the interior of an edge, the proof is analogous by viewing an interior
point as a vertex of angle ⇡ . When some of the li vanishes, this is precisely the
content of Lemma 11 in [7]. In general, the tangent vectors to deformations can
be added in order to combine the different deformations, namely pushing the cone
point away from the polygon and increasing the length of edges of length 0 in the
same deformation, using again Remark 3.4.

Proof of Lemma 4.4. The existence and uniqueness is proved by gluing certain
polygons.

Assume first that c is a cusp. For each vertex i , consider an ideal hyperbolic
triangle with angles 0, ⇡/2, and �i/2. Double this triangle by a reflection on the
edge opposite to the right angle, obtaining a quadrilateral with angles 0, ⇡/2, �i ,
and ⇡/2, see Figure 4.3. The angles do not determine this quadrilateral, there are
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quadrilaterals that are non symmetric, but this is the only one whose finite edges are
tangent to an horocycle centered at the ideal point. From those quadrilaterals one
can construct the polygon, and it is unique by the tangency to the horocycle.

0 β

Figure 4.3. The quadrilateral in the proof of Lemma 4.4 when c is a cusp, with the
inscribed horocycle.

When c is a cone point, given ↵i the building block is a triangle with angles ↵i/2,
⇡/2 and �i/2. Double it along the long edge, to get a quadrilateral with angles ↵i ,
⇡/2, �i , and ⇡/2, see Figure 4.4, so that the edges that meet at angle �i are tangent
to the circle centered at the vertex of angle ↵i . Let r(↵i ,�i ) denote the radius of
this circle, which is the length of the two edges adjacent to the vertex with angle ↵i .
For fixed �i the radius r(↵i ,�i ) is strictly decreasing on ↵i , with r(⇡ � �i ,�i ) = 0
and r(0,�i ) = +1. Thus by gluing the blocs one can realize any cone angle
< n⇡ � �1 � · · · � �n , in particular ↵ by Assumption (1.1). Uniqueness also
follows.

βαi

r(αi, β)

r(αi, β)

Figure 4.4. The quadrilateral in the proof of Lemma 4.4 when c is a cone point, with
the inscribed circle.

When c is a geodesic, the building blocks are similar: symmetric pentagons with
four right angles and one angle �i (that is the double of a quadrilateral with three
right angles and one angle �i/2), Figure 4.5. The argument now is similar, as r =
r(di ,�i ) is a strictly decreasing function on the length di of the segment opposite to
�i , r(+1,�i ) = 0 (approaching a triangle with two ideal vertices), and r(0,�i ) =
+1 (approaching a triangle with one ideal vertex).

di

r(di, β)r(di, β)

β

Figure 4.5. The pentagon in the proof of Lemma 4.4 when c is a geodesic, with the
inscribed equidistant.
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This concludes the proof of Theorem 1.1. Notice that Lemma 4.4 also es-
tablishes that P is non empty. The proof of Theorem 1.1 also shows that P has
dimension n � 1. One may still ask whether the edge lengths and angles determine
a polygon in P , as there are two further parameters that determine the position
relative to c.

Lemma 4.5. A polygon in P is determined by its edge lengths l1, . . . , ln > 0 and
angles �1, . . . ,�n 2 (0, 2⇡). In particular its position relative to c is determined
by the lengths and the angles.

Proof. We unfold the polygon in H2: namely we consider a piecewise geodesic
path consisting of n segments of lengths l1, . . . , ln > 0 and angles �1, . . . ,�n�1 2
(0, 2⇡). When c is a cusp, the lemma follows because there exists a unique oriented
parabolic isometry that joins the endpoints of this path. In fact, without taking into
account the orientation there are two of them, but if we want the cusp to be in the
convex side there is only one choice (two different points in H2 can be joined by
precisely two curves of constant geodesic curvature 1). This establishes the lemma
when c is a cusp. Notice that joining the endpoints by a parabolic isometry is
a necessary condition, but not sufficient. The proof when c is a cone point or a
geodesic is analogous, instead of parabolic isometries one must consider rotations
of given angle, or loxodromic elements of given translation length, respectively.

5. Spines of minimal length

Let F be a non compact, complete, and orientable hyperbolic surface with finite
topology. As said in the introduction, a spine is a graph in F so that F retracts to it,
and the proof of Martelli, Novaga, Pluda, and Riolo [4] in the compact case yields
the existence of spines of minimal length. Those are piecewise geodesic graphs
with trivalent vertices, so that the angles are 2⇡/3.

Proof of Corollary 1.2. The endpoints of surfaces inMg,p are cusps, recall that
p � 1. If we cut open a surface inMg,p along a spine of minimal length, then
we obtain polygons with angles 2⇡/3 in punctured discs, one for each end of the
surface. Since the perimeter is minimized by the polygon with an inscribed horo-
cycle, this length is minimized precisely by surfaces obtained from these polygonal
domains (that in particular are regular). Thus surfaces minimizing the spine systole
are an orbifold covering of the 2-sphere with a puncture and two cone points of
order 2 and 3 respectively, namely the modular orbifold H2/PSL(2, Z). Therefore
the surfaces that minimize the spine systole areH2/0 for some 0 < PSL(2, Z). In
fact 0 < 0(2), see for instance the proof of [2, Proposition A.4].

On the other hand, since the modular orbifold H2/PSL(2, Z) has a horodisc
centered at the cusp whose interior is properly embedded and its closure has self-
intersection precisely at the cone point of order 2, every modular surface is obtained
from punctured polygonal domains with an inscribed horocycle as above.
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The edge length of the polygon of angles � in a punctured disc with an in-
scribed horocycle is

2 log
1+ cos�/2
sin(�/2)

= 2 sinh�1 �
cot(�/2)

�
(5.1)

independently of the number of edges. For spines of minimal length, we are inter-
ested in � = 2⇡/3. This yields

2 log
1+ 1/2
p
3/2

= log(3). (5.2)

Thus we have:

Corollary 5.1. Let F be an orientable hyperbolic surface with finite topology, of
genus g and with p � 1 ends. Then the length l of a spine in F satisfies

l � 3(2g + p � 2) log(3),

with equality if and only if F = H2/0 for some 0 < 0(2) < PSL(2, Z) and the
spine has minimal length.

Proof. For a general surface, as its retraction to its convex core is distance decreas-
ing, we may assume that F is a surface with boundary components and cusps. Using
the constructions of Lemma 4.4, e.g., Figures 4.3 and 4.5, the length of a regular
polygon with angles 2⇡/3 is bounded below by the cusped case, and the minimum
is realized by surfacesH2/0 for some 0 < 0(2) < PSL(2, Z). As a minimal spine
is a trivalent graph, the number of edges is �3�(F) = 3(2g + p � 2). Hence the
corollary follows from (5.2).

Finally, a spine of minimal length may be nonunique, but from Lemma 4.5 we
have that a shortest spine determines the surface, once we know how it embeeds.
This topological information is encodded by a ribbon structure on the spine, namely
a cyclic ordering on the half edges incident to each vertex.

Corollary 5.2. A surface is uniquely determined by the spine of minimal length
equipped with a ribbon structure. In particular S : Mg,p ! (0,+1) is proper.
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