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On the structure of affine flat group schemes
over discrete valuation rings, I

NGUYEN DAI DUONG, PHUNG HO HAI AND JOÃO PEDRO P. DOS SANTOS

Abstract. We study affine group schemes over a discrete valuation ring R using
two techniques: Neron blowups and Tannakian categories. We employ the the-
ory developed to define and study differential Galois groups of D-modules on a
scheme over a R. This throws light on how differential Galois groups of families
degenerate.

Mathematics Subject Classification (2010): 14F10 (primary); 14L15 (sec-
ondary).

1. Introduction

The thoughts the reader is about to see in this text come from our will to understand
“models” of group schemes defined over a DVR and their Tannakian interpretation.
In fact, we set out to identify if a more general theory would be able to accom-
modate the following two examples. (For unexplained notation, see the end of this
introduction.)
Example 1.1 ([10, Exp. VIB , 13.3]). Let R be a discrete valuation ring with uni-
formiser ⇡ and quotient field K . Consider the pro-system of affine group schemes

. . . �! Ga,R
⇥⇡
��! Ga,R

⇥⇡
��! Ga,R, (1.1)

which corresponds, on the level of rings, to the inductive system

R[x0] �! R[x1] �! . . . , xi 7�! ⇡xi+1. (1.2)

The limit G of diagram (1.1) is a flat affine group scheme over R whose associated
ring R[G] is the colimit of (1.2): {P 2 K [T ] | P(0) 2 R}. Another meaningful way
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to express G is by writing it as a join of R-schemes:

G = Ga,K q
e,Spec K

Spec R.

Note that the R-module R[G], being isomorphic to R�K�K�· · · is not projective
and that G ⌦ Rn is always the trivial group scheme over Rn = R/(⇡n+1).
Example 1.2 (cf. [2, 3.2.1.5]). Let R be a discrete valuation ring with uniformiser
⇡ and quotient field K . Let Gm,R = Spec R[z, 1/z]. If we set x0 = z � 1 and
y0 = 1/z � 1, so that R[z, 1/z] = R[x0, y0]/(x0 + y0 + x0y0), co-multiplication is
given by

x0 7�! x0 ⌦ 1+ 1⌦ x0 + x0 ⌦ x0
y0 7�! y0 ⌦ 1+ 1⌦ y0 + y0 ⌦ y0.

(1.3)

Now we write
Gn = Spec R[xn, yn]/

�
xn + yn + ⇡nxn yn

�
,

and define co-multiplication by
xn 7�! xn ⌦ 1+ 1⌦ xn + ⇡nxn ⌦ xn,
yn 7�! yn ⌦ 1+ 1⌦ yn + ⇡n yn ⌦ yn.

(1.4)

It is immediately verified that
xn�1 7�! ⇡xn
yn�1 7�! ⇡yn

defines a morphism of R-algebras R[Gn�1] ! R[Gn] which induces an isomor-
phism K [Gn�1]! K [Gn]. This means that R[Gn] is none other than the subring
of K [z, 1/z] generated by ⇡�nx0 and ⇡�n y0. It is also easily verified that the co-
multiplication (1.4) on R[Gn] is obtained from that in (1.3). We then arrive at the
projective system of affine group schemes

. . . �! Gn+1 �! Gn �! Gn�1 �! . . .

whose limit G is considered in [2, 3.2.1.5]. Note that, as in Example 1.1,

R[G] = {P 2 K [z, 1/z] : "P 2 R},

where " is the co-identity z 7! 1. Again G ⌦ Rn = Spec Rn for all n.
Furthermore, in [2], the author shows that the group scheme G is a “differential

Galois group”; a fact which kindred our interest in building a heftier theory.
Our method is to put together the theory of Tannakian categories over a DVR

[9] and the theory of Neron blowups [32]. Once this is done, two basic principles
appear:

P1. Tannakian theory over a DVR meets much more frequently group schemes of
infinite type. More technically, “Galois groups” or “images” can be of infinite
type;
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P2. The theory of Neron blowups serves to render these inconvenients more trac-
table.

We then focus on two main tasks:

T1. Understand to what extent P2 is responsible for the difficulty in P1;
T2. Detect in concrete cases when the difficulty in P1 is avoided.

Our findings concerning T1, respectively T2, is in Section 6, respectively Section 8.
We now summarise the contents of the text in more detail.

In Section 2 we introduce and study some basic properties of the Neron blowup
of a group scheme over a DVR along a closed subscheme of the special fibre. This
is a central technique in studying group schemes over discrete valuation rings. The
text relies heavily on the work of Waterhouse and Weisfeiler [32] and for most of
the time (Subsections 2.1-2.4) we simply present their findings in our perspective
so that further explanations become more effective. In doing so, we explain how
one result from [32] fits comfortably in general mathematical culture (Theorem
2.4), we elaborate on a hint appearing in [32, Proposition 2.7], we give a more
important role to the notion of standard sequence (Definition 2.12) by including
it as part of the structure theorem on generic isomorphisms (Theorem 2.11) and
we derive an expression for an arbitrary affine flat group scheme as a limit of flat
algebraic ones (Theorem 2.17). On the other hand, Subsection 2.5 already starts
the program mentioned in this introduction: we define automatic blowups of group
schemes (Definition 2.18). This is an abstraction of Example 1.1 and Example 1.2,
and fits into the theory of standard sequences. We then go on to nuance some basic
properties of the automatic blowup.

In Section 3, we begin to put emphasis on the Tannakian approach and study
how to produce faithful representations of Neron blowups. This is motivated by our
will to study differential Galois groups. Indeed, differential Galois groups are the
reflex in the Tannakian mirror of certain tensor categories generated by one object.
Performing blowups modifies the group on one side and our task is to understand
how to modify the generating object on the other. We begin by finding faithful
representations of Neron blowups of the identity (Proposition 3.1) and then proceed
to treat the general case (Proposition 3.5). To repeat, the constructions involved in
these last two propositions are tailored to serve a situation where the objects under
the lenses is the category of representations, so that manipulations should take place
in there. Once this principle is abandoned, we can offer the reader some simpler
results (Proposition 3.8 and Proposition 3.9).

Section 4 studies possible candidates for images of group schemes. For a
morphism ⇢ : G ! H between affine group schemes over a field k, it is well-
known that the schematic image Im(⇢) is a closed subgroup scheme of H and
that the natural morphism G ! Im(⇢) is faithfully flat [31, Chapter 14]. (This
is a very pleasant feature of this theory.) Said differently, ⇢ can be written as the
composition ⌧ � � , with � a closed embedding and ⌧ faithfully flat. But, in the
setting of group schemes over a DVR, the situation gets a bit more complicated
since the aforementioned factorization ceases to exist in general. One is then led
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to consider factorizations into three morphisms (Definition 4.1), which gives two
“images”. This is not as simple as the case of affine group schemes over fields,
but is not as complicated as that of affine schemes. In possession of these defi-
nitions, we then move on to study the behavior of these images under reduction
modulo ⇡ . The structure then becomes more sophisticated and a third “image”
appears, see diagram (4.1). While these “images” are of course related to each
other, they need not be identical (Example 4.8). We put in evidence some of
these relations in Corollary 4.6 and Proposition 4.7. The section ends with a di-
rect translation of some of the results found in terms of the accompanying tensor
categories, which are properly defined in Definition 4.9 and recognized in Proposi-
tion 4.10.

In Section 5 we introduce the Neron blowup along a formal closed flat sub-
group scheme (Definition 5.6). This is a generalisation of the notion of automatic
blowup introduced in Subsection 2.5 and is the beginning of the march towards un-
derstanding howNeron blowups help in controlling “Galois groups” of infinite type.
This section works out some fundamental properties of the new concept and special
attention should be paid to Theorem 5.14, which says that the standard sequence of
the blowup along a formal closed flat subgroup is “constant.” This property is then
isolated and studied from an abstract point of view in Section 6. There, the goal is
simple: when is a standard sequence with “constant” centres the standard sequence
of a blowup along a formal flat closed subgroup scheme? (The motivation for this
question should be understood in the light of task T1 mentioned earlier since stan-
dard sequences give rise to affine group schemes.) We give a partial answer, cf.
Corollary 6.10.

In Section 7 we apply some of our previous results to differential Galois theory.
(As we understand, the object of this theory is the study ofO-coherentD-modules,
whereD is the ring of all differential operators.) Here we make fundamental use of
Tannakian categories over R. The upshot is that for a D-moduleM on a smooth
scheme X over R, one has two differential Galois groups in sight: the full Gal0(M)
and the restricted Gal(M) (see Definition 7.6 and Definition 7.7). This, of course,
is a manifestation of the theory developed in Section 4 so that, accordingly, Gal(M)
is always of finite type over R, and Gal0(M) can be quite big (see Example 7.11,
where we reinterpret Example 1.2). Over the residue field k, we arrive at three
group schemes: the reductions Gal(M)⌦ k and Gal0(M)⌦ k, and the differential
Galois group of the D-moduleM|Xk , Gal(M ⌦ k). A simple example where all
these groups differ is given (Example 7.9).

In Section 8, we concentrate on the “geometric case” and suppose that R con-
tains a copy of its residue field. We then present a result, Theorem 8.2, which moves
in the direction of Bolibrukh’s theorem on complete integrability and isomono-
dromic deformations [25, Theorem 1.2]. It says that for inflated (also called com-
pletely integrable) D-modules over proper and smooth ambient spaces, the afore-
mentioned differential Galois groups coincide. This is of course an accomplishment
of task T2 introduced above. In this same section, and then again on Section 9, we
also explain a number of technical results concerning the approximation of R by
smooth subalgebras (stemming mainly from [16, IV3, Section 8] and [3]) which



GROUP SCHEMES OVER DVRS 981

come to be necessary in order to circumvent the fact that R is not of finite type over
the ground field.

The proof of Theorem 8.2 makes use of two other elaborate webs of ideas
which were developed in [12, 27] and [33], and the objective of Section 9 is to
review these works. In fact, the examination we offer of [27] and [33] (see Theorem
9.1) only touches upon the main output of these, the exactness of the homotopy
sequence. On the other hand the reading we make of [12] is more incisive and as
a result, we extract deeper consequences from the methods: compare Theorem 9.2
with its inspiration, [12, Theorem 5.10].

Notation, conventions and standard terminology

(1) Throughout the text, R stands for a discrete valuation ring with quotient field
K , residue field k, and uniformizer ⇡ . All the Hom-sets and tensor products,
when not explicitly indicated, are understood to be taken over R. The quotient
ring R/(⇡n+1) is denoted by Rn;

(2) Given an object X over R (a scheme, a module, etc.), we sometimes find useful
to write Xk instead of X ⌦R k, XK instead of X ⌦R K , etc.;

(3) To avoid repetitions, by a group scheme over some ring A, we understand an
affine group scheme over A;

(4) The category of group schemes over a ring A will be denoted by (GSch/A);
the full subcategory whose objects are A-flat will be denoted by (FGSch/A);

(5) If V is a free R-module of finite rank, we write GL(V ) for the general linear
group scheme representing A 7! AutA(V ⌦ A). If V = Rn , then GL(V ) =
GLn;

(6) If G is a group scheme over R, we let RepR(G) stand for the category of
representations of G which are, as modules, of finite type over R. (We adopt
Jantzen’s and Waterhouse’s definition of representation. See [19, Part I, 2.7
and 2.8, 29ff] and [31, 3.1-2, 21ff].);

(7) The full subcategory RepR(G)o of RepR(G) has for objects those V whose
underlying R-module is free. If V 2 RepR(G)o, we abuse notation and make
no graphical distinction between the homomorphism G ! GL(V ) and the
coaction V ! V ⌦ R[G];

(8) An object V of RepR(G)o is said to be a faithful representation if the resulting
morphism G ! GL(V ) is a closed immersion. Similar conventions are in
force for group schemes over k, Rn , etc. We admonish the reader that this is
not the terminology of the authoritative [10], where a faithful action is decreed
to be one having no kernel (see Definition 2.3.6.2 of Exposé I). Since the liter-
ature on the subject is scant and the definition of [10] permits some bizarreries
(see Example 1.2), we allow ourselves to make such a modification;

(9) For an affine scheme X over R, we let R[X] stand for the ring O(X). More
generally, if A is any R-algebra, we write A[X] to denoteO(X ⌦R A);

(10) If G is a group scheme over R, the coidentity or counit is the morphism " :
R[G] ! R associated to the identity Spec R ! G. The augmentation ideal
of R[G] is the kernel of ";
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(11) A vector bundle on an locally noetherian scheme X is a locally free OX -
module of finite rank;

(12) If M ⇢ N is an inclusion of R-modules, we write Msat to stand for the satu-
ration of M in N , i.e. [m(M : ⇡m).

ACKNOWLEDGEMENTS. We wish to thank the referee of this journal for an intel-
ligent reading of the work. The third named author thanks Mark Spivakovsky for
help with the theory of smoothing of morphisms.

2. Introducing Neron blowups

2.1. Definition and basic properties

Let G 2 (FGSch/R). In what follows we regard R[G] as a subring of K [G].
Let H0 be a closed subgroup of Gk defined by an ideal J . Note that, in this

case, ⇡ 2 J . The Neron blowup G 0 of G at H0 (cf. [32, page 551] and [1, 2.1.2])
is the spectrum of the subring R[G 0] of K [G] generated by R[G] and the elements
of ⇡�1 J . (It is obviously sufficient to adjoin elements ⇡�1 f , where f runs over a
system of generators of J .) The natural morphism R[G] ! R[G 0] is a morphism
of Hopf algebras over R as is readily verified. (See also [32, Proposition 1.1].) By
construction, G 0K ! GK is an isomorphism and G 0k ! Gk factors through H0. In
fact we have:

Lemma 2.1 (Universal property, see [32, page 551]). Let G ! G be a morphism
in FGSch/R such that Gk ! Gk factors through H0 ! Gk . Then there exists a
unique G ! G 0 rendering the diagram

G

  

@

@

@

@

@

@

@

@

// G 0

✏✏

G

commutative.

Remark 2.2. It should be noted that this very elementary definition of blowup in
fact relates to the usual notion as follows. Let (⇡, a1, . . . , ar ) ⇢ R[G] be an ideal
cutting out on Gk a closed subgroup scheme H0. Write G 0 for its Neron blow-up.
Then

R[G][⇠1, . . . , ⇠r ]

(⇡⇠1 � a1, . . .⇡⇠r � ar )sat
�! K [G], ⇠i 7�!

ai
⇡

,

defines an isomorphism onto R[G 0]. As is well-known, in case R[G] is noetherian,
the ring on the left above is the ring of an affine piece of the blowup [20, Lemma
1.2(e), page 318].
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2.2. A result stemming directly from the theory of blowups

We use this section to state a generalization of a result appearing in [32] and which is
more transparently treated by using (nowadays) commonplace algebraic geometry.
We begin by recalling the following important theorem, whose proof the reader can
find in [7, Chapter X, Section 9, number 7].

Theorem 2.3. Let I ⇢ OX be an ideal of the locally noetherian scheme X . Let
 : eX ! X stand for the blowup of I. Let U = Spec A be an affine open of
X where I is generated by a regular A-sequence x1, . . . , xc. Then the U -scheme
 �1(U) is isomorphic to

Proj
A[⇠1, . . . , ⇠c]

(⇠i x j � ⇠ j xi )
.

From this and [32, Theorem 1.5], we arrive at the following generalization of [32,
Theorem 1.7]. (Recall from [16, IV4, 17.12.1, page 85] that a closed immersion of
smooth schemes is always regular.)

Theorem 2.4. Let G 2 (FGSch/R) be of finite type. Let H0 ⇢ Gk be a regularly
immersed closed sub-group scheme. Write c for the codimension of H0 in Gk . If
G 0 ! G stands for the Neron blowup of G at H0, then G 0 ⌦ k ! H0 is a smooth
surjective morphism whose kernel is isomorphic to Gc

a,k .

Example 2.5. Let k be of positive characteristic p. Let G = Ga,R and denote the
Neron blowup of ↵p ⇢ Gk by G 0 ! G. Then G 0k ! ↵p is a smooth morphism
with kernel Ga,k .

2.3. The action of the centre of the Neron blowup on the kernel

Let G 2 (FGSch/R) be of finite type. Let H0 ⇢ Gk be a regularly immersed
closed subgroup scheme. From Theorem 2.4 we know that G 0k ! H0 is a faithfully
flat morphism so that H0 acts by group scheme automorphisms on the right of the
kernel F . This is explained in [8, Chapter III, Section 6, number 1, 431ff], but is
really a triviality: “lift and conjugate.” Since F ' Gc

a,k , then one might ask if this
action is linear and if it can be obtained from something simpler. The answer is
Proposition 2.7 below, which is the theme of this section.

To grasp the meaning of Proposition 2.7, we need the notion of the conormal
representation. Let G be an affine group scheme of finite type over k and letH ⇢ G
be a closed subgroup cut out by the ideal I ⇢ k[G]. We letH act on G on the right
by conjugation: g · h = h�1gh. In this way, we obtain an H-module structure on
k[G]. If a ⇢ k[G] stands for the augmentation ideal, it is easily seen that a, I and
aI are all sub-H-modules of k[G]. Note that I/aI is a finite dimensional k-space.
Definition 2.6. TheH-module I/aI is called the co-normal representation. It will
be denoted in this text by ⌫ : H! GL(I/aI ).

Obviously, I/aI is simply the fibre at e of the conormal sheaf of the immersion
H ⇢ G [16, IV4, page 5]. We invite the reader to explicate the relation between ⌫
and the pertaining adjoint representations.
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Proposition 2.7. Wemaintain the setting of the first paragraph of this section. Then
there exists an isomorphism of group schemes

F ' Gc
a,k ' Spec k[⇠1, . . . , ⇠c]

such that the action of H0 on F is determined by

⇠ j 7�!
cX

i=1
⇠i ⌦ ⌫i j ,

where [⌫i j ] 2 GLc(k[H0]) defines the conormal representation of H0.
Proof. In the argument, we employ some useful notations:
• We write “⇥” for the fibre product over R and note that if X and Y are k-
schemes, then X⇥Y is canonically isomorphic to X⇥Spec k Y [16, I, 3.2.4, page
105];

• If A and B are R-algebras and A is an ideal of A, we write hA⌦ 1i for the ideal
generated by the image of A⌦R B ! A⌦R B;

• If p is a prime ideal of a ring A and I ⇢ p is a sub-ideal, we write Ip for I Ap.

Let � : G ⇥ G ! G stand for the morphism defined by (x, g) 7! g�1xg; it
produces a right action of G on itself. Letting � 0 : G 0 ⇥ G 0 ! G 0 stand for the
analogous action of G 0 on itself, we arrive at a commutative diagram

G 0 ⇥ G 0
� 0

//

✏✏

G 0

✏✏

G ⇥ G �
// G.

Let V ⇢ G be any affine open subset whose intersection with H0 is the source of a
scheme-theoretic section to G 0k ! H0:

� : H0 \ V �! G 0k .

(The existence of V is a consequence of the description of the blowup offered in
Theorem 2.3.) By definition of the right action

↵ : F ⇥ H0 �! F

we have a commutative diagram

G 0k ⇥ G
0
k

� 0k
// G 0k

F ⇥ G 0k
?�

OO

// F
?�

OO

F ⇥ (H0 \ V ).

id⇥�

OO

↵

66

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

(2.1)



GROUP SCHEMES OVER DVRS 985

Let n be a closed point of H0 \ V and complete diagram (2.1) as follows:

G 0k ⇥ G
0
k

� 0k
// G 0k

F ⇥ G 0k
?�

OO

// F
?�

OO

F ⇥ Spec k[H0]n // F ⇥ (H0 \ V ).

id⇥�

OO

↵

66

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

(2.2)

We will show that the obvious composition

F ⇥ Spec k[H0]n �! F ⇥ (H0 \ V )
↵
�! F

coincides with the composition

F ⇥ Spec k[H0]n �! F ⇥ (H0 \ V )
⌫
�! F,

where ⌫ is the conormal representation.
As usual, let " : R[G] ! R be the co-identity and write a for its kernel.

Write m for the ideal (⇡, a) – it corresponds to the identity on the closed fibre
Gk – and note that " extends to R[G]m. It goes without saying that the kernel of
" : R[G]m! R is just aR[G]m.

Lemma 2.8. There exist functions x1,m, . . . , xc,m 2 R[G]m such that

(1) For each j , "(x j,m) = 0;
(2) The sequence ⇡, x1,m, . . . , xc,m is regular and generates the ideal of H0 at

R[G]m.

Proof. Let ⇡, x⇤1,m, . . . , x⇤c,m be a regular sequence generating the ideal of H0 at
m. We can always write x⇤j,m = c j + x j,m, with c j 2 R and x j,m 2 aR[G]m.
Moreover, we know that "(x⇤j,m) ⌘ 0 mod ⇡ , since x⇤j,m + (⇡) 2 k[G] belongs
to the ideal of H0. It then follows that c j ⌘ 0 mod ⇡ . Write c⇤j := ⇡�1c j . Then
x j,m = x⇤j,m� ⇡c

⇤
j , which means that we have an equality of ideals

�
⇡, x1,m, . . . , xc,m

�
=
�
⇡, x⇤1,m, . . . , x⇤c,m

�
.

The proof is finished by [16, IV4, 16.9.5, page 47].

The morphism � induces an arrow between local rings

� # : R[G]m �! R[G]m⌦R R[G]n.
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Since H0 is a subgroup of Gk , if J ⇢ R[G] stands for its ideal, it follows that

� #(Jm) ⇢ hJm⌦ 1i+ h1⌦ Jni.

If y1,n, . . . , yc,n denote elements of R[G]n such that ⇡, y1,n, . . . , yc,n forms a reg-
ular sequence generating Jn, we conclude that

� #(x j,m) =
X

i
ai j xi,m⌦ a0i j +

X

i
b0i j ⌦ bi j yi,n + ⇡s j (2.3)

for ai j , b0i j in R[G]m, a0i j , bi j in R[G]n and s j in R[G]m⌦R R[G]n.
Since "(x j,m) = 0 (see Lemma 2.8), equation (2.3) gives

0 =
X

i
"
�
b0i j
�
· bi j yi,n + ⇡ ·

�
" ⌦R idR[G]n

�
(s j ),

which proves that
⇡ ·

�
" ⌦R idR[G]n

�
(s j ) 2 (yn).

Since the ideal (yn) has no ⇡-torsion, because the sequence {y1,n, . . . , yc,n,⇡} is
regular, it follows that �

" ⌦R idR[G]n

�
(s j ) 2 (yn).

Hence, abusing notation and confusing a with aR[G]m,

s j 2 ha⌦R 1i+ h1⌦R (yn)i. (2.4)

Since the sequence {⇡, x1,m, . . . , xc,m} is regular, it follows that we have an iso-
morphism of R[G]m-algebras:

R[G 0]m =
R[G]m[⇠ ]

(⇡⇠ � xm)
. (2.5)

(Here R[G 0]m stands for the ring obtained by inverting the elements of R[G 0] in
the image of R[G] \ m.) Now, using [16, IV1, 15.2.4, page 21], there exists some
affine neighbourhood V of n in G and functions y 2 R[V ] inducing yn such that
{⇡, y1, . . . , yc} is R[V ]-regular. Consequently, if G 0|V stands for the inverse image
of V in G 0, we have

R[G 0|V ] '
R[V ][⌘]

(⇡⌘ � y)
(2.6)

as R[V ]-algebras. In particular, V \ H is the source of a section � : H0 \ V ! G 0k
defined on the level of rings by ⌘ 7! 0.

Now, � 0# fits into a diagram

R[G 0]m
� 0#

// R[G 0]m⌦R R[G 0]n

R[G]m
� #

//

OO

R[G]m⌦R R[G]n.

OO
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Then, from equations (2.3) and (2.5), we have

⇡� 0#(⇠ j ) = ⇡
X

i
ai j⇠i ⌦ a0i j + ⇡

X

i
b0i j ⌦ bi j⌘i + ⇡s j ,

so that
� 0#(⇠ j ) =

X

i
ai j⇠i ⌦ a0i j +

X

i
b0i j ⌦ bi j⌘i + s j . (2.7)

Consequently, equations (2.4) and (2.6) show that

� 0#(⇠ j ) ⌘
X

i
"(ai j )⇠i ⌦ a0i j mod (⇡) + ha⌦R 1i+ h1⌦R (⌘)i. (2.8)

Now we write diagram (2.2) on the level of rings and complete:

k[G 0]m

tt

_

`

a

b

b

c

d

d

e

f

f

g

h

zz

zz

�

✓

�

�

⇥

z

k[G 0]m⌦ k[G 0]n

✏✏

✏✏

�

�

�

k[G 0]⌦ k[G 0]oo

✏✏

✏✏

k[G 0]
� 0#k

oo

✏✏

✏✏

::

u

u

u

u

u

k[F]⌦ k[G 0]n
kill 1⌦ ⌘

✏✏

k[F]⌦ k[G 0]oo

id⌦� #
✏✏

k[F]oo

↵#
uuj

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

k[F]⌦ k[H0]n k[F]⌦ k[H0 \ V ].oo

It then follows from equation (2.8) that the image of ⇠ j via

k[F]
↵#
�! k[F]⌦ k[H0 \ V ] �! k[F]⌦ k[H0]n

is
P

i "(ai j )⇠i ⌦ a
0
i j . By definition, this is the co-normal representation ⌫.

Question 2.9. Is a regularly immersed closed affine algebraic subgroup scheme cut
out by a regular sequence?
Remark 2.10. Proposition 2.7 is mentioned on [32, page 554].

2.4. The standard blowup sequence

As remarked in [32], Neron blowups allow us to decompose anymorphism of group
schemes which is an isomorphism on generic fibres.

Theorem 2.11 (cf. [32, Theorem 1.4]). Let ⇢ : G! G be an arrow of FGSch/R
which is an isomorphism on generic fibres. Write ⇢0 = ⇢ and G0 = G. Let
⇢n : G ! Gn be constructed and define Gn+1, respectively ⇢n+1, as the blowup of
Im(⇢n ⌦ k), respectively the natural morphism G ! Gn+1. Then lim �n ⇢n : G !
lim
 �

Gn is an isomorphism.



988 NGUYEN DAI DUONG, PHUNG HO HAI AND JOÃO PEDRO P. DOS SANTOS

Proof. For the convenience of the reader and to avoid the hypothesis of finite gen-
eration present in [32], we summarize the proof.

We prove by induction that ⇡�n R[G0]\R[G] ⇢ R[Gn]. As the ideal of R[G0]
cutting out Im(⇢0⌦k) is R[G0]\⇡R[G], the case n = 1 is readily proved. We now
assume that ⇡�n R[G0] \ R[G] ⇢ R[Gn]. Let f0 2 R[G0] be such that ⇡�n�1 f0
lies in R[G]. Then ⇡�n f0 belongs to ⇡R[G]. On the other hand, the inclusion
⇡�n R[G0] \ R[G] ⇢ R[Gn] forces ⇡�n f0 to be in R[Gn], so that ⇡�n f0 belongs
to R[Gn] \ ⇡R[G]. The latter ideal cuts out Im(⇢n ⌦ k), and therefore ⇡�1⇡�n f0
lies in R[Gn+1].

Using the above inclusion, we arrive at R[G] ⇢ [R[Gn]. Since each R[Gn] is
contained in R[G], the proof of finished.

Definition 2.12. The sequence of morphism described in the statement of Theorem
2.11 is called the standard blowup sequence associated to G!G. If context pre-
vents any misunderstanding, we simply speak of the standard sequence of G!G.

The concept of standard sequence also allows the following point of view [32,
page 552, Remarks].
Definition 2.13. A diagram

· · · �! Gn+1
⇢n
�! · · ·

⇢0�! G0

in FGSch/R is a standard sequence if

(1) Each arrow ⇢n is a blowup of some closed subgroup Bn ⇢ Gn ⌦ k;
(2) The induced morphism Bn+1! Bn is faithfully flat.

The overburdening of the term “standard sequence” caused by Definitions 2.12 and
Definition 2.13 is ephemeral in view of:

Lemma 2.14. Let
· · · �! Gn+1

⇢n
�! · · ·

⇢0�! G0
be a standard sequence as in Definition 2.13. Then lim

 �n
Gn ! G0 is an isomor-

phism on generic fibres and its standard blowup sequence is the above diagram.

We shall apply Theorem 2.11 to give a description of affine group schemes
over R, see Theorem 2.17 below. First we give a definition.
Definition 2.15. Let H 0 be a flat Hopf algebra over R. A Hopf subalgebra H of H 0
is an R-submodule equipped with a Hopf algebra structure such that the inclusion
H ! H 0 is a homomorphism of Hopf algebras. We say that H is saturated in H 0
if H 0/H is flat as an R-module.
Remarks 2.16.

(1) The image of a Hopf algebra homomorphism is a Hopf subalgebra (of the
target);
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(2) One can always saturate a Hopf subalgebra. Adopting the notations explained
at the end of Section 1 and Definition 2.15, we put

1H sat(h) := ⇡�m1H (⇡mh), if ⇡mh 2 H .

It can be extracted from the proof of [9, Lemma 3.1.2] that this is a coproduct
for H sat;

(3) Some authors define Hopf subalgebras as our saturated Hopf subalgebras. But
Neron blowups justify our definition, see also Theorem 2.17.

Theorem 2.17. Let G be a flat group scheme over R. Then we can present it as the
the limit of a pro-system of flat group schemes

G := lim
 �
i
Gi ,

in which all morphisms are faithfully flat and the generic fiber of each Gi is of finite
type over K . Further, each Gi can be obtained from a flat group scheme of finite
type by a standard sequence.

Proof. Consider R[G] as a (right) regular representation of G (i.e., as comodule
on itself by means of the coproduct). According to Serre [30], R[G] is the union
of its sub-representations, which are finite as R-modules. Let V be such a sub-
representation (note that V is free over R). Then V induces a Hopf algebra ho-
momorphism R[GL(V )] ! R[G], the image of which is a Hopf subalgebra of
R[G], denoted by R[G(V )]. Notice that V is a subset of R[G(V )]. Thus R[G] is
a union of its Hopf subalgebras R[G(V )]. One can take the Gi in Theorem to be
the saturation of the R[G(V )] as V runs in the set of finite sub-representations of
R[G].

Now by means of Theorem 2.11, the saturation R[G(V )]sat is obtained from
R[G(V )] by iterated Neron blowups.

2.5. Study of a particular case

Examples 1.1 and 1.2 are a particular case of the following process. Let G be a flat
group scheme over R.
Definition 2.18. The automatic blowup

N �! G,

of the identity is the limit of the diagram

· · · �! Gn �! · · · �! G0,

where G0 = G and Gn+1! Gn is the Neron blowup of {e} ⇢ Gn ⌦ k.
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Remark 2.19. The construction put forth in the above definition will be general-
ized in Section 5 below.

Proposition 2.20. Write a for the augmentation ideal of R[G]. Then, the alge-
bra R[N ] of the automatic blowup of the identity is the R[G]-subalgebra of K [G]
generated by [n⇡�na. The latter union also generates the augmentation ideal of
R[N ].

Proof. We let Gn be as in Definition 2.18 and write an for the augmentation ideal
of R[Gn]. It is easily proved that (⇡�1an) = an+1. Let us now show by induction
that R[G0][⇡�na0] = R[Gn] and an = (⇡�na0). As there is nothing to be checked
for n = 0, we assume that R[G0][⇡�na0] = R[Gn] and an = (⇡�na0). Now,
if A ⇢ K [G] is any R-algebra and S is any subset of A generating an ideal S,
it is clear that A[⇡�1S] = A[⇡�1S]. Hence, R[Gn+1] = R[Gn][⇡�1an] is just
R[Gn][⇡�n�1a0], which equals R[G0][⇡�n�1a0]. This proves the first claim. As
an+1 = (⇡�1an) and an = (⇡�na0), we conclude that an+1 = (⇡�n�1a0), and the
second claim follows as well.

Some noteworthy properties present in the examples remain valid. Others eas-
ily come forward. The next statement employs the notion of fibre product of rings,
cf. [14, Section 1].

Corollary 2.21. If "K : K [G]! K stands for the co-identity, then the first projec-
tion

K [G]⇥"K ,K R �! K [G]

induces an isomorphism onto R[N ]. Geometrically, we have an isomorphism of
R-schemes

N ' GK
a

e,Spec K
Spec R.

Proof. It is clear that the first projection is an isomorphism onto the subalgebra
A := { f 2 K [G] : "K ( f ) 2 R}. Equally clear is the inclusion R[N ] ⇢ A, so that
we are left with the verification of A ⇢ R[N ]. If f 2 A, then f = c + f 0 with
c 2 R and "K ( f 0) = 0; this means that f 0 = ⇡�m f 00 with f 00 in the augmentation
ideal of R[G]. By Proposition 2.20, f 0 2 R[N ] and A ⇢ R[N ] is verified.

The proof of the final statement follows directly from the first and from the fact
that the functor Spec sends the cartesian diagram of rings in sight into a co-cartesian
diagrams of schemes [14, Theorem 5.1, page 568].

Corollary 2.22. Let G ! G be a morphism of flat group schemes over R which
induces an isomorphism on generic fibres. Then there exists a unique arrow N !
G rendering commutative the diagram

N //

✏✏

G

~~~

~

~

~

~

~

~

~

G.
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Said differently, N ! G is an initial object in the category of flat group schemes
G ! G over G which induce an isomorphism on generic fibres.

Proof. We need to prove that R[G] ⇢ K [G] is contained in R[N ]. For that, let a
and aG stand respectively for the augmentation ideals of R[G] and R[G]. Writing
an f 2 aG as ⇡�m f 0 with f 0 2 a, we conclude that f 2 [n⇡�na. But then
f 2 R[N ] (Proposition 2.20) and we are done since R · 1� aG = R[G].

Corollary 2.23. Let N ! G be the automatic blowup of the identity. Then, for
each n � 0, the group scheme N⌦Rn over Rn is trivial, i.e. isomorphic to Spec Rn .

Conversely, let ⇢ : G ! G be an arrow of FGSch/R which is an isomorphism
on generic fibres. If G ⌦ Rn is trivial for all n, then ⇢ is the automatic blowup of
the identity.

Proof. In this argument, we let a, aN and aG stand respectively for the augmen-
tation ideals of R[G], R[N ] and R[G]. We know that R[N ] = [n R[G][⇡�na]
and that aN = ([n⇡�na). Hence, aN ⇢ (⇡n+1) for any n; the first claim fol-
lows. On the other hand if Rn[G] is always trivial, then aG is contained in (⇡n+1).
Hence, a · R[G] ⇢ (⇡n+1), which shows that R[G] � [n R[G][⇡�na] = R[N ]. In
view of Corollary 2.22, the inclusion R[N ] � R[G] always holds and the proof is
finished.

In fact, the second statement in the above corollary allows the following rele-
vant amplification in case G is a closed subgroup scheme of GLn,R .

Corollary 2.24. Let V 2 RepR(G)o afford a faithful representation of G. Let ⇢ :
G ! G be an arrow of FGSch/R which is an isomorphism on generic fibres. If
V ⌦ Rn is the trivial representation of G ⌦ Rn for all n, then ⇢ is the automatic
blowup of the identity.

Proof. Let [ai j ] 2 GLr (R[G]) be the matrix associated to V on some unspecified
basis. Write bi j = ai j � �i j . Since V ⌦ Rn is the trivial representation of G ⌦ Rn ,
we conclude that ⇡n+1|bi j in R[G] for all n. Now, the augmentation ideal a of
R[G] is generated by the functions bi j , so that a · R[G] ⇢ (⇡n+1). Hence, R[G] �
[n R[G][⇡�na] = R[N ]. Using Corollary 2.22, we have R[N ] = R[G].

3. Faithful representations of Neron blowups

Let G be a flat group scheme over R. We assume furthermore that G is of finite
type over R, so that the Neron blowup (see Section 2) of any closed subgroup of Gk
is again of finite type. As such a group scheme, it admits a closed embedding into
some GLr,R (adapt the proofs in [31, 3.3]), or, according to the terminology at the
end of section 1, it possesses a faithful representation. (The reader is again warned
that this terminology differs from [10], where in Exposé I, Definition 2.3.6.2, a
faithful action is one having a trivial kernel.) In this section we describe a means
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to find faithful representations of Neron blowups. Of course, put this way, our
task might seem pointless since it is sufficient to run a general argument. But our
point of view is to produce faithful representations by performing linear algebraic
constructions in RepR . This is most desirable when the category RepR is in fact one
side of a Tannakian correspondence, see Example 7.9.

The principle is quite simple and we begin with a particular case:

G 0 �! G

is the Neron blowup of the identity in the closed fibre. Let V 2 RepR(G)o be a
faithful representation of rank r ; since G 0k ! Gk is the trivial morphism, we know
that 1r ⌦ k ' V ⌦ k as representations of G 0. We then obtain a diagram

V

✏✏

1r '
// V ⌦ k

in the category RepR(G 0). (Here ' is the obvious morphism.) Let V 0 stand for its
pull-back. In concrete terms,

V 0 =
�
(v, e) 2 V � 1r : v⌦ 1 = '(e)

 
. (3.1)

Proposition 3.1. In the above setting, the representation V 0 of G 0 is faithful.

The proof hinges on the following lemma, whose verification is omitted.

Lemma 3.2. Let M and E be free R-modules. Let {m1, . . . ,mr } be a basis for M
and {e1, . . . , es} be one for E . Let q  min{r, s} and define ' : E ! M ⌦ k by

'(e j ) =

(
m j ⌦ 1, 1  j  q
0, otherwise.

Then the R-module

{(m, e) 2 M � E : m⌦ 1 = '(e)}

is free on the basis
(⇡m1, 0), . . . , (⇡mr , 0)
(m1, e1), . . . , (mq , eq)
(0, eq+1), . . . , (0, es).

Proof of Proposition 3.1. This is plain linear algebra. Let {v1, . . . , vr } be a basis of
V and let ai j 2 R[G] stand for the matrix coefficients inducing the representation
of G. Let " : R[G]! R stand for the counit; by definition of a representation we
have "(ai j ) = �i j , so that

ai j = �i j · 1+ bi j , (3.2)
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with bi j 2 Ker ". By definition of G 0, there exist b0i j 2 R[G 0] such that

⇡b0i j = bi j . (3.3)

Let {e1, . . . , er } be an ordered basis of 1r which is sent by ' to {v1⌦1, . . . , vr⌦1}.
According to Lemma 3.2, V 0 is free on

{⇡v1, . . . ,⇡vr , v1 + e1, . . . , vr + er }.

Employing this basis and the equations (3.2) and (3.3), we conclude that the matrix
defining the representation of G 0 on V 0 is


ai j b0i j
O �i j

�
.

Since the functions ai j together with 1/ det [ai j ] generate the R-algebra R[G], the
functions bi j generate the ideal Ker "; by definition the functions ai j , 1/ det [ai j ]
and b0i j = ⇡�1bi j generate R[G 0] and the proof is finished.

Before moving to the search for a faithful representation of a general Neron
blowup G 0 ! G, we record some valuable properties of V 0 and give an example.

Corollary 3.3. We maintain the above notation.

(1) The representation V 0 is an extension of 1r by V . In particular, V is a sub-
representation of V 0;

(2) Let ⇠ be the evident extension class in ExtG0(V ⌦ k, V ). Then the class of
V 0 in ExtG0(1r , V ) is simply the image of ⇠ under the morphism induced by
1r ! V ⌦ k;

(3) The cokernel of the injection V 0 ! V � 1r is annihilated by ⇡;
(4) The natural arrow V 0 ⌦ K ! (V � 1r )⌦ K is an isomorphism of representa-

tions of G 0 ⌦ K ;
(5) Let {v1, . . . , vr } and {e1, . . . , er } be respectively ordered bases of V and 1r

as constructed above. Write ⇢K : GK ! GL2r,K for the homomorphism
associated to the representation (V � 1r )⌦ K by means of these bases. Then,
if

� =

2

6
6
6
6
6
6
4

⇡
. . . Idr

⇡

Idr

3

7
7
7
7
7
7
5

,

it follows that G 0 is the closure of the image of ��1 · ⇢K · � in GL2r,R;
(6) As representations of G 0, V 0 is a sub-representation of V � 1r , and V is a

sub-representation of V 0.
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Proof. The only statements which need comment are (2) and (5). Concerning (2),
we only need to inform the reader that we follow [18, page 87] in constructing
Ext(V ⌦ k, V )! Ext(1r , V ). Concerning (5), we produce the following justifica-
tions. Let [ai j ] 2 GLr (R[G]) stand for the matrix associated to the representation
V and the basis {v1, . . . , vr }. We observe that

��1 · ⇢K · � =


ai j (ai j � �i j )/⇡
O �i j

�
.

Now the above matrix is also the matrix of a faithful representation G 0 ! GL2r,R ,
see the proof of Proposition 3.1. Since G 0 ⌦ K ⇠

! G⌦ K , the closure of the image
of ��1 · ⇢K · � is the same as the closure of the image of G 0 ⌦ K by ��1 · ⇢K · �.
This is G 0, since two flat and closed subschemes having the same generic fibre must
be equal.

Example 3.4. Let G 0 be the Neron blowup ofGm,R = Spec R[u, 1/u] at the origin
in Gm,k . If V is the obvious representation of Gm,R (corresponding to id), then V 0
is the representation of G 0 corresponding to the matrix


⇡ 1
0 1

��1
·


u
1

�
·


⇡ 1
0 1

�
=


u (u � 1)/⇡
0 1

�
.

It follows that G 0 is ⇢
u v
0 1

�
: ⇡v + 1 = u

�
.

Let us now assume that
G 0 �! G,

is the Neron blowup of a closed subgroup scheme H0 ⇢ G ⌦ k. The idea to
construct a faithful representation of G 0 by means of a faithful representation of
G is to express H0 as the stabilizer of some line. This means that the problem is
divided into two:

Step 1. Express H0 as a stabilizer.

Step 2. Construct a faithful representation of the Neron blow of a stabilizer in the
special fibre.

We start by discussing Step 2 and presenting our findings as Proposition 3.5.
Step 1 follows from standard material in the theory of affine group schemes and is
explained in Lemma 3.7 below.

Let V 2 RepR(G)o be faithful and let v⌦ 1 2 V ⌦ k be a nonzero vector. Let
H0 ⇢ Gk stand for the stabilizer of the line

` := v⌦ k.
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Clearly, it is possible to find an ordered basis {v1, . . . , vr } of V such that v1 = v.
Let [ai j ] 2 GLr (R[G]) be the matrix of coefficients associated to {v1, . . . , vr }. It
then follows that the ideal cutting out H0 in R[G] is simply

(⇡, a21, . . . , ar1).

For future use, we write

a21 = ⇡a021, . . . , ar1 = ⇡a0r1 (3.4)

for functions a021, . . . , a
0
r1 2 R[G 0].

The line ` is now fixed by G 0k and we obtain a character G
0
k ! Gm,k (defined

by the group-like element a11 + (⇡) in k[G 0]). In order to follow the method de-
veloped to treat the particular case, we should find a representation L 2 RepR(G 0)o
lifting `. So here we need to modify the argument since there is no reason for L to
exist. Let E 2 RepR(G 0)o be the source of a surjection

' : E �! `

in RepR(G 0). (That E exists is proved in [30, Proposition 3, page 41]). We fix
an element e1 2 E above v ⌦ 1 2 `. A bit of common sense shows that there
exists elements e2, . . . , es 2 Ker' which together with e1 form a basis of E . Let
[bi j ] 2 GLs(R[G 0]) be the matrix associated to the representation E and the ordered
basis {e1, . . . , es}. Note that in this case we have

b11 = a11 + ⇡c11
b12 = ⇡c12
· · · = · · ·

b1s = ⇡c1s,

(3.5)

since '(e1) = v1 ⌦ 1 and the subspace of Ek generated by e2 ⌦ 1, . . . , es ⌦ 1 is
stable under G 0k . We then consider the pull-back diagram

V 0 //

✏✏

⇤

V

✏✏

E '
// Vk,

so that V 0 is naturally a sub-G 0-module of V � E . From Lemma 3.2 we know that

(⇡v1, 0), . . . , (⇡vr , 0)
(v1, e1),
(0, e2), . . . , (0, es)
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is a basis of V 0. A simple computation using equations (3.4) and (3.5) shows that
the matrix of the representation of G 0 on V 0 associated to this basis is

2

6
6
6
6
6
6
6
6
6
6
4

a11 · · · a1r �c11 �c12 · · · �c1s
...

. . .
... a021 0 · · · 0

...
...

...
...

...
...

ar1 · · · arr a0r1 0 · · · 0
0 · · · 0 b11 b12 · · · b1s
...

. . .
...

...
...

. . .
...

0 · · · 0 bs1 bs2 · · · bss

3

7
7
7
7
7
7
7
7
7
7
5

.

Since the ai j together with 1/ det [ai j ] generate R[G], and a021, . . . , a
0
r1 generate

R[G 0] over R[G], we conclude that V 0 is a faithful representation of G 0. We have
then proved the following.

Proposition 3.5. Let V 2 RepR(G) be faithful and let ` ⇢ Vk be a line whose
stabilizer is denoted by H0 ⇢ Gk . Let G 0 be the Neron blowup of G at H0 and let
' : E ! ` be a surjective morphism in RepR(G 0) such that the R-module E is free.
Then V 0 := V ⇥Vk E is a faithful representation of G 0.

Corollary 3.6. Let V 2 RepR(G)o be faithful and let v ⌦ 1 2 Vk \ 0 be a vector
whose stabilizer is denoted by H0 ⇢ Gk . (Note that H0 is smaller than the stabilizer
of the line!) Let G 0 be the Neron blowup of G at H0 and note that there is an
obvious G 0-equivariant morphism 1 ! Vk whose image is the line v ⌦ k. Then
V 0 := V ⇥Vk 1 is a faithful representation of G 0. Moreover, if [ai j ] 2 GLr (R[G])
is the matrix associated to some basis {v1, . . . , vr } with v1 = v, then the matrix of
the representation V 0 of G 0 is

2

6
6
6
6
6
4

a11 · · · a1r ↵11
...

. . .
... a021

...
...

...
ar1 · · · arr a0r1
0 · · · 0 1

3

7
7
7
7
7
5

,

where ⇡↵11 = a11 � 1 and ⇡a0i1 = ai1 for each i � 2.

To address Step 1 we only need the following:

Lemma 3.7. Let H0 ⇢ Gk be a closed subgroup scheme of G. Then there exists a
faithful representation V of G and a line ` ⇢ Vk whose stabilizer is exactly H0.

Proof. By [31, 16.1, Corollary] there exists ⇢ : Gk ! GLr,k and a line ` ⇢
kr whose stabilizer is H0. Using [30, Proposition 3, page 41] we can find W 2
RepR(G)o together with a Gk-equivariant injection kr ! Wk . Obviously, H0 is
still the stabilizer of the line ` ⇢ Wk . Replacing W by V = W � F , with F
faithful, we are done.
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Let us now criticize Proposition 3.5. Finding explicitly the “covering” repre-
sentation ' : E ! ` is by no means a simple task. (But in many important cases,
the character of G 0k ! Gm,k associated to ` will be a reduction of a character
G 0 ! Gm,R .) Also, if we abandon the need to construct the faithful representation
V 0 by means of linear algebra in the abelian category RepR(G 0), a more efficient
path is:

Proposition 3.8. Let V be a free R-module on the basis v1, . . . , vr affording a
faithful representation of G. Let H0 ⇢ Gk be the stabilizer of the line spanned by
v1 ⌦ 1 in Vk and denote by G 0 ! G the Neron blowup of H0. Write [ai j ] 2
GLr (R[G]) for the matrix associated to the representation of G on V , and let
a021, . . . , a

0
r1 be functions of R[G 0] which, when multiplied by ⇡ , become respec-

tively a21, . . . , ar1. Then the following claims are true.

(1) The R-submodule of VK freely generated by v1⌦⇡�1, v2⌦ 1, . . . , vr ⌦ 1 has
the structure of an R[G 0]-comodule. Its associated matrix is

2

6
6
4

a11 ⇡a12 · · · ⇡a1r
a021 a22 · · · a2r
...

...
. . .

...
a0r1 ar2 · · · arr

3

7
7
5 ;

(2) If V 0 stands for the representation of G 0 considered in the previous item, then
V � V 0 is a faithful representation of G 0.

Proof. Once one knows what to look for, the proof is a triviality.

Provided the centre of the Neron blowup has certain particular features, the
point of view of [28] provides another means to construct faithful representations.

Proposition 3.9. Let H ⇢ G be an R-flat, normal subgroup scheme and write A
for the quotient group scheme. Denote by G 0 and A0 the Neron blowups of G at
Hk and of A at {e} ⇢ Ak , respectively. Let G 0 ! A0 be the morphism obtained by
the “universal property” (Lemma 2.1). If ⇢ : G ! GLr and � : A0 ! GLs are
faithful representations, then ⇢ � � is a faithful representation of G 0.

Proof. Here are the properties of the quotient which we shall need: R[A] is a sub-
ring of R[G] and if aA stands for the augmentation ideal of R[A], then aA · R[G]
cuts out H . Hence, if a1, . . . , am are generators of aA, it follows that

R
⇥
G 0
⇤

= R[G]
h
⇡�1a1, . . . ,⇡�1am

i
.

We now verify that

⇢⇤ ⌦ � ⇤ : R[GLr ]⌦ R[GLs] �! R[G 0]

is a surjection. By definition of ⇢, R[G] ⇢ Im(⇢⇤ ⌦ � ⇤). By definition of � , the
elements ⇡�1ai belong to Im(� ⇤). This finishes the proof.
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4. Images of morphisms between flat group schemes

Let ⇢ : 5 ! G be a morphism in FGSch/R. There are two natural ways of
defining “images” of ⇢.
Definition 4.1 (The diptych). Define9⇢ as the group scheme whose Hopf algebra
is the image of R[G] in R[5]. Define R[9 0⇢] as the saturation of the latter inside
R[5]. The obvious commutative diagram

9 0⇢ // 9⇢

✏✏

5 ⇢
//

OO

G

is called the diptych of ⇢.
Implicit in the above definition is the fact that R[9 0⇢] is a Hopf algebra. This

can be extracted from the proof of [9, Lemma 3.1.2] (see Remarks 2.16). Another
relevant fact, whose proof the reader can find in [9, Theorem 4.1.1], is the following.

Theorem 4.2. The morphism5! 9 0⇢ is faithfully flat.

A basic property of 9⇢ is as follows.

Lemma 4.3. The group scheme 9⇢ is the closure of the image of5K ! GK in G.

Other useful facts having simple proofs are collected in the next lemma.

Lemma 4.4. Let ⇢ : 5! G be as before and consider a factorization of ⇢ in the
category FGSch/R:

5 �! G 0 �! G.

(1) If5! G 0 faithfully flat, then there exists a unique dotted arrow rendering the
diagram

9 0⇢

  

A

A

A

A

A

A

A

5

??

�

�

�

�

�

�

�

�

// G 0 //

OO�

�

�

G,

commutative;
(2) If G 0 ! G is a closed embedding, then there exists a unique dotted arrow

9⇢

✏✏

�

�

�

  

A

A

A

A

A

A

A

A

5

>>

~

~

~

~

~

~

~

~

// G 0 // G,

rendering this diagram commutative;
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(3) If G 0 ! G is a closed embedding, and the arrow 9⇢ ! G 0 produced in (2)
induces an isomorphism on generic fibres, then 9⇢ ! G 0 is an isomorphism;

(4) If 5 ! G 0 is faithfully flat and the arrow G 0 ! 9 0⇢ produced in (1) induces
an isomorphism on generic fibres, then G 0 ! 9 0⇢ is an isomorphism.

Lemma 4.5. If 9 0⇢,k ! 9⇢,k is faithfully flat, then 9 0⇢ ! 9⇢ is an isomorphism.

Proof. By construction, R[9⇢] ! R[9 0⇢] is injective. If k[9⇢] ! k[9 0⇢] is also
injective, which follows from the assumption, then R[9⇢] ⇢ R[9 0⇢] is saturated.
The equality K [9⇢] = K [9 0⇢] then finishes the proof.

Over the residue field k, there is yet another interesting group scheme in sight:
the image of ⇢k . We then have the triptych of ⇢, which is the commutative diagram

9 0⇢,k

##

##

G

G

G

G

G

G

G

G

G

// 9⇢,k� _

✏✏

Im(⇢k)
- �

;;

w

w

w

w

w

w

w

w

w

✓ r

$$

H

H

H

H

H

H

H

H

H

5k

OO

OO

⇢k
//

::

::

v

v

v

v

v

v

v

v

v

Gk .

� �
// = closed immersion

// // = faithfully flat.

(4.1)

Together with Lemma 4.5, diagram (4.1) proves the following:

Corollary 4.6. The following claims are true.

i) If Im(⇢k)! 9⇢,k is an isomorphism, then 9 0⇢ ! 9⇢ is an isomorphism;
ii) If 9 0⇢ ! 9⇢ is an isomorphism, then Im(⇢k)! 9⇢,k is an isomorphism;
iii) The image of 9 0⇢,k in 9⇢,k is none other than Im(⇢k).

Proposition 4.7. The kernel of 9 0⇢,k ! Im(⇢k) is unipotent.

Proof. Obviously, the kernel in question is also Ker9 0⇢,k ! 9⇢,k as we learn from
diagram (4.1). Using Theorem 2.11, we are able to write9 0⇢ as lim �i 9

0
i , where each

9 0i+1 ! 9 0i is a Neron blowup and 9
0
0 = 9⇢ . The reader can immediately verify

that
Ker

⇣
9 0⇢,k ! 9⇢,k

⌘
= lim
 �
i
Ker

�
9 0i,k ! 9⇢,k

�
.

Consequently, using [8, Proposition 2.3 on page 485], we only need to show that
each kernel in the above limit is unipotent. This, in turn follows directly from
[32, Theorem 1.5] and two fundamental properties of unipotent group schemes: a
closed subgroup scheme of a unipotent group scheme is unipotent, and the extension
of a unipotent group scheme by a unipotent group scheme is still unipotent [8,
Proposition 2.3 on page 485].
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We show in the following example that it is possible that neither 9 0⇢,k !
Im(⇢k) nor Im(⇢k)! 9⇢,k be an isomorphism:
Example 4.8. Let ⇢ : G 0 ! G be the Neron blowup of the origin in the closed
fibre of G = Gm,R . The diptych of ⇢ is

G 0
⇢

// G

G 0
id

OO

⇢
// G.

id

OO

Then 9 0⇢,k = Ga,k , 9⇢,k = Gm,k and Im(⇢k) = {e}.

Further ahead, in Example 7.9, we will show how this example fits in a more
empiric situation.

Let V be a free R-module of finite rank and assume that our G above equals
GL(V ). We now interpret 9⇢ and 9 0⇢ in terms of their representation categories.
This amounts simply to finding proper references in the literature.
Definition 4.9. Let5 2 FGSch/R, as before.

(1) Let V be an object of RepR(5)o. Write Ta,bV for the representation V⌦a ⌦
V_⌦b and denote by hV i⌦ the full subcategory of RepR(5) having as objects
sub-quotients of direct sums Ta1,b1V � · · ·� Tam ,bm V for varying ai , bi ;

(2) Let ↵ : V 0 ! V be a monomorphism in RepR(5) with both V and V 0 free as
R-modules. If Coker(↵) is also free as an R-module, we say, following [26,
Definitions 10 and 23], that ↵ is a special monomorphism. Call an object V 00 2
RepR(5)o a special sub-quotient of V if there exists a special monomorphism
V 0 ! V and an epimorphism V 0 ! V 00. The category of all special sub-
quotients of various Ta1,b1V � · · ·� Tam ,bm V is denoted by hV is⌦.

Proposition 4.10. Let V be an object of RepR(5)o and ⇢ be the natural homomor-
phism5! G := GL(V ).

(1) The obvious functor RepR(9⇢) ! RepR(5) defines an equivalence of cate-
gories between RepR(9⇢)

o and hV is⌦;
(2) The obvious functor RepR(9 0⇢) ! RepR(5) defines an equivalence between

RepR(9 0⇢) and hV i⌦.

Proof. (1) We know that RepR(9⇢)
o ! RepR(5) takes values in hV is⌦ [26, Propo-

sition 12], that it is fully faithful [9, Proposition 3.2.1(i)], and that its image is stable
under special subobjects (loc. cit.). With little effort one then shows that its image
is also stable under taking special subquotients.
(2) We know that RepR(9 0⇢) ! RepR(5) is fully faithful and that its image is
stable under taking subobjects [9, Proposition 3.2.1(ii)]. With little effort one then
shows that its image is also stable under taking subquotients. Consequently, hV i⌦
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is a full subcategory of RepR(9 0⇢) and we set out to prove that anyW 2 RepR(9 0⇢)
o

actually belongs to hV i⌦; this fact, together with [30, Proposition 3, page 41] suf-
fices to show that RepR(9 0⇢) = hV i⌦. Let us regard R[9 0⇢], respectively R[9⇢],
as a 9 0⇢-module, respectively 9⇢- module, by means of the right-regular action.
Restricting via 9 0⇢ ! 9⇢ , we can also think of R[9⇢] as a 9 0⇢- module. Since
W can be embedded in R[9 0⇢]

�r , we may concentrate on the case where W is a
9 0⇢-submodule of R[9 0⇢]. Let m 2 N be such that ⇡mW ⇢ R[9⇢]. It follows that
multiplication by ⇡m defines an embedding of 9 0⇢-modules W ! R[9⇢]. Using
part (1) we then conclude that W belongs to hV i⌦.

Note that, in general, RepR(9⇢) is not a full subcategory of RepR(5). This
means that we have the following interpretation of the diptych (Definition 4.1) in
terms of representation categories:

hV i⌦

✏✏

hV is⌦oo

✏✏

RepR(5) RepR(GL(V ))o.oo

We now deal with the representation theoretic interpretation of the triptych (diagram
(4.1)) of ⇢. For that, given an R-linear category C, write C(k) to denote the full sub-
category whose objects W are annihilated by ⇡ , i.e. ⇡ · idW = 0 in HomC(W,W ).
We then have a commutative diagram of solid arrows between k-linear abelian cat-
egories:

RepR(9 0⇢)(k)

✏✏

RepR(9⇢)(k)oo

wwp

p

p

p

p

p

hV ⌦ ki⌦

ggN

N

N

N

N

N

N

N

N

N

N

wwo

o

o

o

o

o

o

o

o

o

o

RepR(5)(k).

(4.2)

From [19, Part I, 10.1, 162] the categories RepR(�)(k) are simply the corresponding
representations categories of the group schemes obtained by base change R ! k.
Since V is a faithful representation of 9⇢ (recall that 9⇢ ! GL(V ) is a closed
immersion by construction), V ⌦ k is a faithful representation of 9⇢ ⌦ k, so that
each object of RepR(9⇢)(k) is a sub-quotient of some

L
Tai ,bi (V ⌦k). This means

that the upper horizontal arrow in diagram (4.2) factors through hV ⌦ ki⌦, i.e. the
dotted arrow exists and still produces a commutative diagram. We conclude that
diagram (4.2) captures the essence of diagram (4.1) as the former can easily be
completed by introducing the representation category of the general linear group on
the lower right corner.
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5. Neron blowups of formal subgroup schemes

Let G be group scheme over R which is flat and of finite type. In what follows, we
fix a non-negative integer n. Let Hn ⇢ G ⌦ Rn be a closed subgroup scheme (over
Rn) cut out by the ideal In ⇢ R[G]. We note that, in this case, ⇡n+1 2 In .

Definition 5.1. The subring of K [G] obtained by adjoining to R[G] all elements
of the form ⇡�n�1a with a 2 In will be denoted by En .

Lemma 5.2. Let 1, ", and S denote respectively the co-multiplication, the co-
identity and the antipode of K [G]. Then 1, " and S send En into En ⌦ En , R
and En respectively.

Proof. Let a 2 In . Since (Ker ",⇡n+1) � (In,⇡n+1), there exists some c 2 Ker "
and some f 2 R[G] such that a = c + ⇡n+1 f . It then follows that "(a) =
⇡n+1"( f ), so that "(a⇡�n�1) 2 R. Also, there are ai , a0i 2 In together with
⌧ 2 R[G]⌦ R[G] such that

1(a) =
X

ai ⌦ xi + x 0i ⌦ a
0
i + ⇡n+1⌧.

Then,
1
⇣
⇡�n�1a

⌘
=
X

⇡�n�1ai ⌦ xi + x 0i ⌦ ⇡
�n�1a0i + ⌧.

The verification of the statement concerning the antipode is equally trivial and is
omitted.

Definition 5.3. The group scheme

Spec En,

is called the Neron blowup of Hn .

Obviously, there is a morphism of group schemes

Spec En �! G

which, when tensored with K , becomes an isomorphism. The next result, whose
simple proof is left to the reader, says a bit more about the group scheme Spec En .

Lemma 5.4. The following claims are true:

(1) The morphism Spec En ! G when tensored with Rn factors thorough Hn ⇢
G ⌦ Rn;

(2) If f : G 0 ! G is an arrow of FGSch/R such that f ⌦ Rn factors through
Hn ⇢ G ⌦ Rn , then f factors uniquely through Spec En ! G.
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We now wish to concentrate on the case “n = 1.” We assume that R is complete.
Let bG be the completion of G along its closed fibre (it is automatically flat over
R) and let H ⇢ bG be a closed formal subgroup scheme which is moreover flat
over R. We follow traditional notation in the theory of adic algebras and write
RhGi, respectively RhHi, to denote the algebra associated to the formal schemes
bG, respectively H. This being so, RhHi is a quotient of RhGi by some ideal I . In
order to carry on proofs, we shall find useful to let In ⇢ R[G] be the ideal of the
closed subgroup Hn of G ⌦ Rn induced by H. (The integer n should no more be
thought as fixed.) Note that ⇡n+1 2 In and In RhGi = (⇡n+1, I ). Using Lemma
5.4, we see that En ⇢ En+1.
Definition 5.5. We denote by E1 the algebra [n En .

Of course, replacing “n” by “1” in the statement of Lemma 5.2 still produces
a true claim so that we have the following.
Definition 5.6. The group scheme associated to the R-algebra E1 of Definition
5.5 will be denoted by N1H or N1H (G) if the need presents. The group scheme
N1H will be called the blowup of G along H.

The group scheme Spec En associated to Hn = H ⌦ Rn (see Definition 5.3)
will be denoted by N n

H or N n
H(G) if the need presents. The group scheme N n

H will
be called the partial blowup of G of level n along H.

If H is the completion of a closed subgroup H of G, we putN ⇤H = N ⇤H.
Example 5.7. The automatic blowup of the identity introduced in Definition 2.18
is, due to Proposition 2.20,N1{e}(G).

Note that the obvious arrow of groups N1H ! G becomes an isomorphism
when tensored with K . The following is a trivial observation which will prove
useful further ahead.

Lemma 5.8. Let ' : G 0 ! G be a morphism in FGSch/R. Denote by '̂ : bG 0 ! bG
the morphism induced between ⇡-adic completions. If H0 ⇢ bG 0 is a closed and R-
flat formal subgroup which is taken by '̂ into H, then there exists a unique arrow of
affine group schemesN1H0 (G 0)! N1H (G) rendering the diagram

N1H0 (G 0)

✏✏

// G 0

'

✏✏

N1H (G) // G

commutative.

In the following lines we wish to present some elementary features of the
blowup along a formal subgroup. We maintain the above notations and introduce

K hGi = K ⌦ RhGi and K hHi = K ⌦ RhHi.
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For what comes, the following commutative diagram can be helpful.

R[G]� _

✏✏

// RhGi� _

✏✏

// // RhHi� _

✏✏

K [G] // K hGi //// // K hHi.

Lemma 5.9. An element b 2 K [G] belongs to E1 if and only if its image in K hHi
belongs to the image of RhHi.

Proof. Let b 2 R[G] and m � 1. We assume that the image of ⇡�mb in K hHi
coincides with the image of an element a⇤ 2 RhGi. Then ⇡ma⇤ and b have the same
image in K hHi. This implies that ⇡ma⇤ ⌘ b mod I . As I Rn[G] = In Rn[G], we
have 0 ⌘ b mod Im�1Rm�1[G]. Hence ⇡�mb 2 Em�1(G).

Let a 2 In . Since (I,⇡n+1) = In RhGi, we can write a = ⇡n+1a⇤ + a⇤⇤,
where a⇤ 2 RhGi and a⇤⇤ 2 I . Then, ⇡�n�1a = a⇤ + ⇡�n�1a⇤⇤ in K hGi with
a⇤ 2 RhGi and ⇡�n�1a⇤⇤ 2 I · K hGi. The image of ⇡�n�1a in K hHi is then the
image of a⇤.

The next statement employs the notion of fibre product of rings, cf. [14, Sec-
tion 1].

Corollary 5.10. The first projection

K [G]⇥K hHi RhHi �! K [G]

induces an isomorphism between K [G]⇥K hHi RhHi and E1.

The next result marks a distinctive feature of the Neron blowup of a formal flat
subgroup as opposed to Neron blowups centered at the special fibre (cf. the second
remark after [32, Theorem 1.4]).

Corollary 5.11. For each n 2 N, the obvious morphism of Rn-groupsN1⌦Rn !
G ⌦ Rn induces an isomorphism ofN1 ⌦ Rn with Hn = H⌦ Rn .

Proof. In view of Corollary 5.10, it is enough to show that the obvious morphism

✓ : R[G] �! K [G]⇥K hHi RhHi,

when tensored with Rn , gives the ensuing factorization:

Rn[G]

✏✏

// Rn ⌦
�
K [G]⇥K hHi RhHi

�

Rn ⌦ RhHi.
⇠

55

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
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We consider the commutative diagram of R-algebras

K [G]⇥K hHi RhHi
pr2

// RhHi

R[G]

✓

OO

// RhGi,

OO

OO

and claim that pr2 ⌦ Rn is an isomorphism. Surjectivity is easily checked and
injectivity is justified as follows: If ( f,') 2 K [G] ⇥K hHi RhHi is such that ' =
⇡n+1'0, then ( f,') = ⇡n+1(⇡�n�1 f,'0), so that ( f,') belongs to (⇡n+1). The
proof then follows by tensoring the above commutative square with Rn .

We now analyze the standard sequence (see Definition 2.12) associated to
N1H ! G. We will see that this sequence can be produced by a spontaneous
process. For that we need the following concept.
Definition 5.12 (Strict transform). Let H ⇢ bG be as before. Write I ⇢ RhGi for
the ideal ofH and let ⇢ : G 0 ! G be the Neron blowup of some closed subgroup of
G⌦k. Then the strict transform ofH, denoted ⇢#(H), is the closed formal subgroup
of bG 0 cut out by the saturation of the ideal I · RhG 0i, namely [n

�
I · RhG 0i : ⇡n

�
.

If H ⇢ G is a closed R-flat subgroup, we can equally define the strict transform
⇢#(H), which now is a closed, subgroup of G 0.

Remarks 5.13.
(1) By construction, all strict transforms are flat over R;
(2) The strict transform of closed subgroups H ⇢ G is used in [28, Section 1];
(3) If ⇢ : G 0 ! G and H ⇢ G are as in Definition 5.12, then the strict transform

⇢#(H) is just the closure in G 0 of the closed subgroup H ⌦ K in G 0 ⌦ K . The
same reasoning can be applied in the case of a formal subgroup as H ⇢ bG
if we use the concept of schematic closure in the setting of rigid geometry,
see [5, 0.2.4(vi), page 17]. (Note that K hGi ! K hG 0i is not usually an iso-
morphism.);

(4) The completion bA of a noetherian R-algebra A is flat an an A-module [23,
Theorem 8.8, page 60]. From this, we conclude that for any noetherian R-
algebra A and for any ideal J of A, the equality J satbA = (J bA)sat holds. This
proves that, in the notation of the previous item, the completion of ⇢#(H) is
⇢#(bH).

We are now ready to state:

Theorem 5.14. Let H ⇢ bG be as above.

(1) Let G0 := G, H0 := H and denote by ⇢0 : G1 ! G0 the Neron blowup of
H0 ⌦ k. If Hn is defined, write ⇢n : Gn+1 ! Gn for the Neron blowup of
Hn ⌦ k and put Hn+1 := ⇢#n(Hn). Then

· · ·
⇢1�! G1

⇢0�! G0 = G
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is the standard sequence (see Definition 2.12) ofN1H (G)! G;
(2) The image of the canonical morphism N1H (G) ⌦ k ! Gn+1 ⌦ k is taken

isomorphically by ⇢n ⌦ k onto the image ofN1H (G)⌦ k ! Gn ⌦ k.

The proof will need the following preparation. From Corollary 5.11 we know that
the image of ⇢0 ⌦ k is just H0 ⌦ k. Let a⇤1 , . . . , a

⇤
r generate the ideal I of H and

let ai 2 R[G0] be such that a⇤i ⌘ ai mod ⇡ . Obviously, the ideal of H0 ⌦ k
is (⇡, a1, . . . , ar ). The Neron blowup ⇢0 : G1 ! G0 of H0 ⌦ k is given by the
inclusion

R[G0] ⇢ E = R[G0]
ha1
⇡

, . . . ,
ar
⇡

i
.

In the what follows, we write Ah⇠1, . . . , ⇠r i for the ⇡-adic completion of A[⇠1, . . .,
⇠r ].

Lemma 5.15. Let bE stand for the ⇡-adic completion of E . Then

bE '
RhG0ih⇣1, . . . , ⇣r i

�
⇡⇣1 � a⇤1 , . . . ,⇡⇣r � a⇤r

�sat .

Proof. We use bold letters to stand for r-tuples. It is clear that, as RhG0i-algebras,

RhG0ih⇠i
(⇡⇠ � a)

'
RhG0ih⇣ i
(⇡⇣ � a⇤)

,

by means of ⇠i 7! ⇣i � ⇡�1(a⇤i � ai ). We then recall that for a noetherian R-
algebra A, its completion bA is A-flat [23, Theorem 8.8, page 60]. From this, we
conclude that for any noetherian R-algebra A and for any ideal J of A, the equality
J satbA = (J bA)sat holds. Now

bE =

✓
R[G0][⇠ ]

(⇡⇠ � a)sat

◆^
(by Remark 2.2)

=
RhG0ih⇠i

(⇡⇠ � a)satRhG0ih⇠i
(by [23, Theorem 8.7, page 60])

=
RhG0ih⇠i

(⇡⇠ � a)sat
(by the argument above).

The algebra bE in the statement of the lemma is quite close to a fundamental object
in rigid analytic Geometry. Following the terminology of [15, 4.1], the analytic
space Sp K ⌦ bE is just the rational domain |a⇤i |  |⇡ | in the rigid analytic space
Sp K hG0i.

Proposition 5.16. The morphism of affine formal schemes bG1 ! bG0 induces an
isomorphism between ⇢#0(H0) and H0. The same statement also holds if, instead of
a formal subgroup H0 ⇢ bG0, we choose a closed subgroupo H0 ⇢ G0 which is flat
over R.



GROUP SCHEMES OVER DVRS 1007

Remark 5.17. In the usual theory of blowups, this is known as the statement that
the strict transform is the blowup of the intersection [11, Proposition IV-21] and that
blowing up a “hypersurface” operates no change. In the present setting, a separate
consideration has to be made due to the fact that the generic fibre of bG1 is not the
generic fibre of bG0.

Proof. We will omit the verification of the statement concerning a closed subgroup
H0 ⇢ G0 and concentrate on the formal case.

Write I # for the ideal of ⇢#0(H0). We must show that the obvious arrow � :
RhG0i/I ! RhG1i/I # is an isomorphism. By the description of bE = RhG1i
offered in Lemma 5.15, the equality I = (a⇤1 , . . . , a

⇤
r ) and the definition of I # as

the saturation of I · RhG1i, it is evident that � is surjective. Injectivity will follow
from injectivity of � ⌦ K , which for those accustomed to rigid analytic geometry
is a triviality. Indeed, there exists a dotted arrow rendering the diagram

K hG1i

((

P

P

P

P

P

P

K hG0i //

OO

K hG0i/I · K hG0i

commutative, see [15, 4.1.2, page 71]. The injectivity of � ⌦ K is then obvious as
I · K hG1i = I # · K hG1i.

Proof of Theorem 5.14. We have now obtained an affine and flat group scheme G1
together with a closed formal subgroup scheme ⇢#0(H0) = H1 ⇢ bG1. By functori-
ality (Lemma 5.8), we arrive at a commutative diagram

N1H1(G1)

✏✏

// G1

✏✏

N1H0(G0) // G0.

Furthermore, inserting the obvious morphism N1H0(G0) ! G1 in the above dia-
gram still produces a commutative one. (Recall that G1 is the Neron blowup of
H0 ⌦ k.) Using Corollary 5.11 and Corollary 5.16 we conclude that

N1H1(G1)⌦ k
⇠
�! N1H0(G0)⌦ k.

As
N1H1(G1)⌦ K ⇠

�! N1H0(G0)⌦ K ,

we deduce that N1H1(G1) ! N1H0(G0) is an isomorphism and the image of
N1H0(G0) ⌦ k ! G1 ⌦ k is the image of N1H1(G1) ⌦ k ! G1 ⌦ k. Theorem
5.14 can now be proved by induction.
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To end this section, we use Theorem 5.14 to study the standard sequence of the
partial blowup of level m ofH ⇢ bG (cf. Definition 5.3). One probable candidate for
this sequence is the truncation of the standard sequence of N1H (G). The situation
here seems to be a bit more subtle and we only propose an easy consequence of
Theorem 5.14.

Corollary 5.18. We maintain the notation of Theorem 5.14. Let n � 0 be given.
Then there exists µ � 0 depending on n and H such that the standard sequence of
Nm

H ! G, for all m � µ starts as

Gn+1
⇢n
�! · · ·

⇢0�! G0 = G.

Proof. We write J⌫ ⇢ R[G⌫] for the ideal of H⌫ ⌦ k ⇢ bG⌫ ⌦ k = G⌫ ⌦ k. From
Theorem 5.14, we know that

(1) Each R[G⌫] is contained in E1 = [mEm ;
(2) The ideal ⇡E1 \ R[G⌫], which cuts out the image ofN1H (G)⌦ k in G⌫ ⌦ k,

is just J⌫ .

Since G = G0 is assumed to be of finite type, there exists some µ0 � 0 such that
R[Gn+1] ⇢ Em for allm � µ0. We now take µ � µ0 to be such that the generators
of each one of the ideals J0, . . . , Jn belong to ⇡Eµ. This µ is the one predicted in
the statement as in this case, for m � µ, the image ofNm

H (G)⌦ k ! G⌫ ⌦ k is cut
out by J⌫ for each ⌫  n.

Question 5.19. Under which conditions does the standard sequence of the “partial
blowup”N n

H(G)! G (see Definition 5.3) begin as Gn+1! · · ·! G0, where the
Gi are as in Theorem 5.14?

6. Study of a particular class of standard sequences

In this section, we assume that R is complete. Let G be a group scheme over R
which is flat and of finite type. Theorem 5.14 guarantees that the centres appearing
in the standard sequence of

N1H (G) �! G,

are all isomorphic. In this section we wish to understand a possible converse for
this: Corollary 6.10.

As the next paragraph argues, standard sequences with “constant” centres may
easily appear; the utility of this study is therefore not restricted to proving a converse
to Theorem 5.14.

Assume that k is of characteristic zero and let

· · · �! Gn �! Gn�1 �! · · · �! G0,

be a standard sequence (cf. Definition 2.13). As n 7! dim Bn is nondecreasing and

dim Bn  dimGn,k = dimG0,K
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(the equality follows from [10, VIB , Corollary 4.3]) there exists n0 2 N such that
dim Bn0 = dim Bn for all n � n0. Since the kernel of Bn+1 ! Bn is either trivial
or positive dimensional (it is a subgroup scheme of some Gra,k due to Theorem 2.4)
we conclude that for n � n0, the arrows Bn+1! Bn are all isomorphisms.

It is quite possible that a result more general than Corollary 6.10 holds, but for
the moment, our best effort needs higher control on the relation between centres
(i.e., the conclusion of Proposition 6.1 hold) so that more hypothesis were intro-
duced.

Proposition 6.1. Let

· · · �! Gn+1
⇢n
�! · · ·

⇢0�! G0 = G

be a standard sequence (Definition 2.13) where the centre of ⇢n is Bn ⇢ Gn ⌦ k.
Assume the following particularities.

i) The group G0 is smooth over R, and B0 is smooth over k;
ii) For every n � 0, the restriction ⇢n ⌦ k : Bn+1! Bn is an isomorphism;
iii) There exists an R-flat closed subgroup L0 ⇢ G0 with L0 ⌦ k = B0;
iv) For each representation V of B0, the first cohomology group H1(B0; V ) van-

ishes (linear reductivity).

Then, for every n � 1, there exist an inner automorphism an : Gn ! Gn together
with a closed and R-flat subgroup Ln ⇢ Gn enjoying the following properties.

(1) For any n � 1, the closed subgroup Ln is an(⇢#n�1Ln�1). (See Definition 5.12
for notation.);

(2) The special fibre of Ln is Bn .

Proof. We construct a1 and L1. From assumption (ii) and [31, Theorem 14.1], we
know that G1 ⌦ k ! B0 is faithfully flat; we arrive at an exact sequence

1 �! U1 �! G1 ⌦ k �! B0 �! 1, (e)

which, again by property (ii), ensures that G1 ⌦ k is a semidirect product U1 o B1.
In G1 ⌦ k, besides B1, we have another closed subgroup isomorphic to B0, viz.
the special fibre of 31 := ⇢#0(L0) (see Definition 5.12 and Proposition 5.16). As
U1 is isomorphic to Gra,k , due to (i) and Theorem 2.4, the action of B0 on U1
by conjugation defines a linear action of B0 on U0. (See Section 2.3 for details.)
Assumption (iv) together with the exercise proposed in [29, I.5.1] shows that there
exists an inner automorphism a1 : G1 ⌦ k ! G1 ⌦ k taking 31 ⌦ k to B1.

Now G1 is smooth over R due to the “fibre-by-fibre” smoothness criterion [16,
IV4, 17.8.2, page 79], the isomorphism G1 ⌦ K ' G0 ⌦ K and smoothness of
G1⌦ k ! B0 (Theorem 2.4). The infinitesimal lifting criterion allows us to find an
inner automorphism of G1, parsimoniously called a1, such that a1(31 ⌦ k) = B1;
define L1 := a1(31). This deals with the case n = 1. The inductive step “n )
n + 1” proceeds in the exactly same fashion.
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It is perhaps worth expressing the conclusion of Proposition 6.1 in a pictorial
form by means of the following stair:

higher level
...

G2
⇢1

✏✏

a2
// G2

G1
⇢0

✏✏

a1
// G1

G0,

(6.1)

where
⇢0 = blowup of L0 ⌦ k,
a1 = inner automorphism of G1,
L1 = a1

⇥
⇢#0(L0)

⇤
,

⇢1 = blowup of L1 ⌦ k,
a2 = inner automorphism of G2
L2 = a2

⇥
⇢#1(L1)

⇤
,

· · · = · · · .

(6.2)

For the sake of discussion, we make some definitions.
Definition 6.2 (Spontaneous sequences). A standard sequence as depicted in the
above stair is called an almost spontaneous sequence associated to L0 ⇢ G0. An al-
most spontaneous standard sequence is spontaneous if all the inner automorphisms
appearing in it equal the identity.

Using Remark 5.13-(4), another way of stating Theorem 5.14(1) is then:

Theorem 6.3. Let H ⇢ G be a closed immersion in FGSch/R. Then the standard
sequence ofN1H (G)! G is the spontaneous sequence of H ⇢ G.

We now wish to prove Theorem 6.8 below which sheds light on the nature
of almost spontaneous sequences. We fix, in addition to G, a closed immersion
L0 ⇢ G0 = G in FGSch/R and a stair as in (6.1)-(6.2), which is the almost
spontaneous sequence associated to L0 and the inner automorphisms ai .

Proposition 6.4. We maintain the above notation. For each n � 1, define inner
automorphisms a0,n, . . . , an,n by decreeing that an,n = an and that

Gm
am,n

//

⇢m�1
✏✏

Gm

⇢m�1
✏✏

Gm�1 am�1,n
// Gm�1,
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commutes. In other words, we complete the stair (6.1) as suggested by:

G3
⇢2

✏✏

G2
a2

//

⇢1
✏✏

G2
⇢1

✏✏

G1
a1

//

⇢0
✏✏

G1
a1,2

//

⇢0
✏✏

G1
⇢0

✏✏

G0 a0,1
// G0 a0,2

// G0.

(case n = 2)

Then
Gn+1

⇢n
�! · · ·

⇢0�! G0 = G,

is the spontaneous sequence associated to

a0,n · · · a0,2a0,1(L0),

and truncated at level n + 1.

Proof. We proceed by induction and begin with n = 1. In this case, we have a
commutative diagram

G2
⇢1

✏✏

G1
a1

//

⇢0
✏✏

G1
⇢0

✏✏

G0 a0,1
// G0.

We remark that a0,1 : G0 ⌦ k ! G0 ⌦ k is conjugation by an element of L0 ⌦ k.
Hence, L0⌦ k = a0,1(L0)⌦ k and commutativity of the above diagram guarantees
that ⇢#0

⇥
a0,1(L0)

⇤
= a1

⇥
⇢#0(L0)

⇤
. The desired result then follows.

Let n > 1 and assume that the result is valid for all almost spontaneous se-
quences associated to L1 = a1

⇥
⇢#0(L0)

⇤
⇢ G1 and truncated at level n. Since

G1
a1,1

//

⇢0
✏✏

G1
a1,2

//

⇢0
✏✏

· · ·
a1,n

// G1
⇢0

✏✏

G0 a0,1
// G0 a0,2

// · · · a0,n
// G0,
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is commutative, functoriality of the strict transform and the definition of L1 give us

⇢#0
⇥
a0,n · · · a0,1(L0)

⇤
= a1,n · · · a1,1

⇣
⇢#0(L0)

⌘

= a1,n · · · a1,2(L1).
(6.3)

(Recall that by construction a1,1 = a1.) Since a0, j is conjugation by an element of
G0(R) belonging to the image of G1(R)! G0(R), we can affirm that a0, j leaves
L0⌦k invariant. Consequently, L0 and a0,n · · · a0,1(L0) have the same closed fibre,
from which we conclude that ⇢0 is also the blowup of

�
a0,n · · · a0,1(L0)

�
⌦ k.

Since
Gn+1

⇢n
�! · · ·

⇢1�! G1,

is, by induction hypotehsis, the spontaneous sequence of a1,n · · · a1,2(L1) ⇢ G1
truncated at level n and, as (see equations (6.3))

a1,n · · · a1,2(L1) = ⇢#0
⇥
a0,n · · · a0,1(L0)

⇤
,

we obtain that
Gn+1

⇢n
�! · · ·

⇢1�! G1
⇢0�! G0,

is the spontaneous sequence associated to a0,n · · · a0,1(L0) truncated at level
n + 1.

We maintain the above notation and write

Cn := a0,n · · · a0,1(L0).

Proposition 6.5. For each n � m, we have Cn ⌦ Rm = Cm ⌦ Rm as closed
subschemes of G ⌦ Rm . The limit C := lim

�!n Cn ⌦ Rn defines a closed formal
subgroup of bG0 = lim

�!n G0 ⌦ Rn which is furthermore flat over R.

The proof relies on the following result.

Lemma 6.6. Let L ⇢ G be a closed immersion in FGSch/R. Let

· · ·
�0�! G0 = G

stand for the spontaneous sequence associated to L. Let gn+1 2 Gn+1(R). Then its
image by the obvious arrow

Gn+1(R) �! G(R) �! G(Rn),

lies in L(Rn).
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Proof. To help with the verification, we employ the following observation:

Lemma 6.7. Let L ⇢ G be a closed immersion in FGSch/R. If J stands for the
ideal of L and � : G0 ! G for the blowup of L ⌦ k, then the ideal of the strict
transform � #(L) of L contains ⇡�1 J .

Proof. Evident since the ideal of the strict transform is the saturation [⌫(J R[G0] :
⇡⌫).

We carry on the verification of the lemma. Write L0 = L and define Ln+1 as
the strict transform of Ln in Gn+1. Let Jn stand for the ideal of Ln in R[Gn]. From
Lemma 6.7, we know that for any f0 2 J0, there exists an element fn+1 2 R[Gn+1]
(belonging to Jn+1) such that ⇡n+1 fn+1 = f0. Consequently, if gn+1 : R[Gn+1]!
R is a morphism of R-algebras, we conclude that gn+1( f0) = ⇡n+1gn+1( f0), so
that the morphism g0 : R[G0] ! R associated to it satisfies g0(J0) ⇢ (⇡n+1).
Hence, g0⌦ Rn : Rn[G0]! Rn annihilates J0, i.e. the corresponding point belongs
to L0(Rn).

Proof of Proposition 6.5. We wish first to verify

Cn+1 ⌦R Rn = Cn ⌦R Rn. (6.4)

Proposition 6.4 ensures us that for each fixed n,

Gn+1
⇢n
�! · · ·

⇢0�! G0 = G,

is the spontaneous sequence of Cn ⇢ G0 truncated at level n+ 1. We know that the
inner automorphism a0,n+1 : G0 ! G0, which sends Cn isomorphically to Cn+1,
is conjugation by an element of the form

⇢n � · · · � ⇢0(gn+1), gn+1 2 Gn+1(R).

Hence, due to Lemma 6.6, it is true that

a0,n+1(Cn ⌦R Rn) = Cn ⌦R Rn.

Therefore,

Cn+1 ⌦R Rn = a0,n+1(Cn)⌦R Rn
= a0,n+1(Cn ⌦ Rn)
= Cn ⌦ Rn.

Another way of expressing equality (6.4) is by saying that, if kn stands for the
kernel of Rn[G0]! Rn[Cn], then Rn+1[G0]! Rn[G0] takes kn+1 onto kn . Con-
sequently, lim

 �n
Rn[G0]! lim

 �n
Rn[Cn] is surjective and C is a closed formal sub-

scheme of bG0. We omit the verification that C is a subgroup of bG0 and refer the
reader to [23, 22.3, page 174] for the statement about flatness.
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Everything is now in place for the proof of

Theorem 6.8. Let

· · · �! Gn+1
⇢n
�! · · ·

⇢0�! G0 = G

be the almost spontaneous sequence (see Definition 6.2) associated to L0 ⇢ G0 as
defined on page 1010. If C = lim

�!
Cn ⌦ Rn stands for the formal closed subgroup

of bG0 obtained by means of Proposition 6.4 and Proposition 6.5, then the standard
sequence above is the the standard sequence ofN1C (G)! G.

In order to provide a clear proof of Theorem 6.8, we need the following lemma.

Lemma 6.9. Let G 0 ! G and H ! G be respectively an isomorphism and a
closed immersion of FGSch/R. Denote by H 0 ! G 0 the closed immersion corre-
sponding to H ! G and let n be an integer.

Assume that for someµ 2 N, the standard sequence ofNµ
H (G)! G coincides

with the spontaneous sequence associated to H when both are truncated at level
n + 1. Then the same property holds forNµ

H 0(G
0)! G 0.

Proof of Theorem 6.8. We fix some n � 0 and show that the spontaneous sequence
of C ⇢ bG truncated at level n + 1 is

Gn+1
⇢n
�! · · ·

⇢0�! G0 = G.

The goal is to apply Proposition 6.4. To avoid repetitions we let “�n+1” abbreviate
“standard sequence truncated at level n + 1.” We also omit reference to G when
possible.

Let µ be a positive integer satisfying the following properties.

P1. The �n+1 ofN1C coincides with the �n+1 ofNµ
C ;

P2. The spontaneous sequence of L0 ⇢ G0 truncated at level n+ 1 coincides with
the �n+1 ofNµ

L0 ;
P3. µ � n.

That µ exists is a consequence of Corollary 5.18 and Theorem 6.3. From P1, the
�n+1 of N1C is the �n+1 of Nµ

C = Nµ
Cµ
. From P2 and Lemma 6.9, the �n+1 of

Nµ
Cµ
is the truncation of the spontaneous sequence of Cµ ⇢ G0 at level n + 1.

Due to Proposition 6.4 and P3, the spontaneous sequence associated to Cµ ⇢ G0,
truncated at level n + 1, is just what we started with:

Gn+1
⇢n
�! · · ·

⇢0�! G0 = G.

We then obtain our main converse of Theorem 5.14 as a consequence of Proposition
6.1, Definition 6.2 and Theorem 6.8.
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Corollary 6.10. Let

· · · �! Gn+1
⇢n
�! · · ·

⇢0�! G0 = G

be a standard sequence (Definition 2.12). Denote the center of the Neron blowup
⇢n by Bn ⇢ Gn ⌦ k. Assume that the four hypothesis in Proposition 6.1 hold:

i) The group G0 is smooth over R, and B0 is smooth over k;
ii) For every n � 0, the restriction ⇢n ⌦ k : Bn+1! Bn is an isomorphism;
iii) There exists an R-flat closed subgroup L0 ⇢ G0 with L0 ⌦ k = B0;
iv) For each representation V of B0, the first cohomology group H1(B0; V ) van-

ishes (linear reductivity).

Then the above standard sequence is the standard sequence of N1C (G) ! G,
where C is a formal, R-flat, closed subgroup scheme of bG.

7. Group schemes over R in differential Galois theory

We nowwish to apply the theory so far developed to study differential Galois theory.
Let f : X ! S be a smooth morphism between locally noetherian schemes. We let
D(X/S) be the ring of differential operators which in [16, IV4, 16.8], respectively
[6, Section 2], is denoted by diffX/S , respectively diff(OX ,OX ). We let

D(X/S)-mod,

stand for the category of (sheaves of) D(X/S)-modules whose underlying OX -
module is coherent. In fact, in the present work, a D(X/S)-module will always
mean an object of D(X/S)-mod. The obvious action of D(X/S) on OX gives rise
to an object of D(X/S)-mod which is denoted by 1; arrows in HomD(X/S)(E,E 0)
will frequently be called horizontal morphisms between E and E 0, and, in the par-
ticular case where E = 1, these will be named horizontal sections of E 0. It is
obvious that D(X/S)-mod is an abelian category and that the evident functor from
D(X/S)-mod to coherent modules is exact and faithful. Furthermore, the tensor
product of coherent modules induces a tensor product (denoted simply by ⌦OX or
⌦) in D(X/S)-mod.
Remark 7.1. In order to render referencing more effective, we inform the reader
that D(X/S)-mod is frequently denoted by str(X/S) (see [9, 26], [6, Section 2]).
Also, as [6, Theorem 2.15] explains, if S is a Q-scheme, D(X/S)-mod coincides
with the category of OX -coherent modules endowed with an integrable connection
in the sense of [22, Section 1].

Objects ofD(X/S)-modwhich underlie locally freeOX -modules (vector bun-
dles) are the objects of a full subcategory D(X/S)-modo. Note that the natural
“dualization” in the category of vector bundles allows us to define a dualization in
D(X/S)-modo; this will be denoted by a superscript (�)_.
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The proposition below is a basic result in the theory. (For proofs, the reader is
directed to [22, Proposition 8.9] of [6, 2.16] for the first statement and to [21, page
40], [26, page 82] or [9, 5.1.1] for the second.)

Proposition 7.2. If S is the spectrum of a field, anyM 2 D(X/S)-mod is locally
free as an OX -module. If S is the spectrum of R, anyM 2 D(X/S)-mod which is
free of ⇡-torsion belongs to D(X/S)-modo (and conversely).

We now fix some assumptions and notation which will be in force for the rest
of this section. We write

S = Spec R,

and let
f : X �! S,

be a smooth and geometrically connected (hence integral) morphism of finite type
admitting a section ⇠ : S ! X . (The discrete valuation ring R is not assumed to
be complete.) The base-change functor induced by Spec k ! S will be denoted by
a subscript “k”, and whenever convenient we write “R”, or “k” in place of “S” or
“Spec k”.

With these conventions, another cornerstone ensues. (For proofs, the reader
should consult [9, Proposition 5.1.1] and [6, 2.16].)

Proposition 7.3. The pull-back functors

⇠⇤ : D(X/R)-mod �! mod(R),

and
⇠⇤k : D(Xk/k)-mod �! mod(k),

are exact and faithful.

In possession of these facts, we can put forward the main definitions of this
section.
Definition 7.4.

(1) LetM be an object of D(X/S)-modo. Write Ta,bM for theD(X/S)-module
M⌦a ⌦M_⌦b and denote by hMi⌦ the full subcategory of D(X/R)-mod
having as objects subquotients of direct sums Ta1,b1M� · · ·� Tam ,bmM for
varying ai , bi ;

(2) Let ↵ : M0 ! M be a monomorphism in D(X/R)-mod with bothM and
M0 locally free as OX -modules. If Coker(↵) is also locally free, we say, fol-
lowing [26, Definitions 10 and 23], that ↵ is a special monomorphism. Call
an objectM00 2 D(X/R)-modo a special sub-quotient ofM if there exists
a special monomorphismM0 !M and an epimorphismM0 !M00. The
category of all special sub-quotients of various Ta1,b1M� · · ·� Tam ,bmM is
denoted by hMis⌦.
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The structure result which will enable us to see the theory of D-modules through
group theoretical lenses is the following (the proof, which is in Saavedra’s seminal
work [24], is explained concisely in [9]):

Theorem 7.5. LetM 2 D(X/R)-modo. The R-point ⇠ induces an equivalence of
abelian tensor categories

⇠⇤ : hMi⌦ �! RepR(Gal0(M)),

where Gal0(M) is a flat group scheme over R.

Definition 7.6. The group scheme Gal0(M) is called the full differential Galois
group ofM.
Definition 7.7. LetM 2 D(X/R)-modo and write

⇢ : Gal0(M) �! GL(⇠⇤M)

for the associated representation of the full differential Galois group. The restricted
differential Galois group ofM, denoted Gal(M), is the group scheme 9⇢ of Defi-
nition 4.1.

Consider the diptych (Definition 4.1) of ⇢:

9 0⇢ // Gal(M)� _

✏✏

Gal0(M)

OO

⇢
// GL(⇠⇤M).

From Proposition 4.10(2), Definition 7.4(1) and [9, Theorem 4.1.2] we know that
the leftmost arrow above is an isomorphism. Of course, due to this, one may think
that we have chosen an improper way to present things; the reader who wishes
to complete the diagram by including the fundamental group scheme 5(X/S, ⇠)
(see [9, Definition 5.1.4]) in the lower left corner is invited to do so at the expense
of having to understand that RepR(5) is not what one might naively think it is.
Since we focus on differential Galois groups and not fundamental group schemes,
we leave5(X/S, ⇠) as inspirational.

Then, as in Section 4 we have:

Proposition 7.8. The following claims are true.

(1) The arrow Gal0(M) ! Gal(M) induces an isomorphism on generic fibres
and is a possibly infinite iteration of Neron blowups;

(2) The functor ⇠⇤ induces an equivalence

hMis⌦
⇠
�! RepR(Gal(M))o.
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We are then ready to present the “empiric” version of Example 4.8.
Example 7.9. Assume that k is of characteristic zero and that R contains a copy
of it. Let A = R[x, 1/x] and define X to be Spec A. In this case, the structure of
D(X/S) is quite simple, and to give the free OX -module L = OXe the structure
of a D(X/S)-module we only need to specify the action of d/dx =: @ (see 2.6 and
2.15 of [6] for details). We put

@e = �
⇡

x
e

and set out to compute Gal(L) and Gal0(L) (at some unspecified R-point).
In hLi⌦ we have the D(X/R)-module V given by

@v1 =
1
x
(v2 � ⇡v1)

@v2 = 0;

it is the sub-object of 1�L generated by v1 = (1, e) and v2 = (⇡, 0). (Needless to
say, the construction of V parallels that in Proposition 3.1.) Since ⇡(1�L) ⇢ V , we
conclude that hVi⌦ = hLi⌦. We denote by Gal0 the full differential Galois group
of L, which is the same as that of V , at some R-point, so that we have, associated
to L, the representation ⇢ : Gal0 ! Gm,R . Let G0m,R stand for the Neron blowup
of Gm,R at the origin of the closed fibre. Since ⇢k is the trivial representation (it
corresponds to Lk), we derive a factorization

Gal0
⇢0

//

⇢
""

E

E

E

E

E

E

E

E

E

G0m,R

�

✏✏

Gm,R

of ⇢. Under this factorization, the faithful representation of G0m,R constructed in
Proposition 3.1 is taken to V . In particular, we have a faithful representation of
G0m,R ⌦ k which is taken to Vk 2 hLi⌦. Now we note that Vk is the module of the
logarithm, so that hVki⌦

⇠
! Repk(Ga,k). We arrive at a commutative diagram

Gal0k
⇢0k

//

✏✏

✏✏

G0m,R ⌦ k

Ga,k .

::

t

t

t

t

t

t

t

t

t

Since the arrow
Repk(G0m,R ⌦ k) �! Repk(Ga,k)

takes a faithful representation of G0m,R ⌦ k to a faithful representation of Ga,k , we
conclude that Ga,k ! G0m,R ⌦ k is a closed embedding. As G

0
m,R ⌦ k = Ga,k and
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k is of characteristic zero, Ga,k ! G0m,R ⌦ k is an isomorphism. This guarantees
that ⇢0 is is an isomorphism [32, Lemma 1.3, page 551] so that the diptych of ⇢ (see
Section 4) is

G0m,R
�

// Gm,R

id
✏✏

Gal0

⇢0

OO

// Gm,R .

To summarise, Gal0 = G0m,R and Gal = Gm,R . When reduced modulo ⇡ , this gives

Ga,k // Gm,k

id
✏✏

Gal0k

⇠

OO

⇢k
// Gm,k,

in which the image of ⇢k is the trivial group [31, 8.3, Corollary, page 65].
Remark 7.10. Note that this example shows that [2, Theorem 3.3.1.1, page 729]
cannot be true. In fact, what in [2] is defined as Gal(L), respectively Gal(Lk),
is what we here call Gal0, respectively Im(⇢k), and we have showed that Gal0k 6'
Im(⇢k). It seems that the inconsistency in the proof lies in the definition of the
arrow u in [2, 3.2.3.4, page 727].
Example 7.11. Assume k to be of characteristic zero and that R contains a copy of
it. Let X = Spec R[x] and define L to be the free OX -module on the element e.
We then introduce on L the structure of D(X/R)-module by fixing

@

@x
e = �⇡e.

(The reader should consult [6, 2.15] to understand this construction.) Since this is
just the differential equation of the “function” exp(�⇡x), we are led to consider the
following identity:

@

@x

 
nX

⌫=0

(⇡x)⌫

⌫!
e

!

= �
xn

n!
⇡n+1e.

Consequently, we see that L ⌦ Rn ' 1 ⌦ Rn . Using Corollary 2.24, we conclude
that Gal0(L) is the automatic blowup of Gal(L) = Gm,R at {e}.

8. Coincidence of Galois groups in the case of inflatedDDD-modules

Wemaintain the notation of Section 7 introduced after Proposition 7.2. In particular,
f : X ! S = Spec R is a smooth and geometrically connected (hence integral)
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morphism admitting a section ⇠ : S ! X . We also assume that k is algebraically
closed and that R contains a copy of it.

We now wish to study the differential Galois groups of certain objects in
D(X/S)-mod of a very special kind: inflations. As X is certainly not of finite
type over k – an assumption which is usually present in the literature, see for ex-
ample [22, Section 1] or [6, Section ] – we shall need a few adjustments to our
theory.

8.1. Approximating R by smooth k-algebras of finite type

When R is the Zariski or etale local ring of a closed point on a smooth curve over
k, it is possible to find a filtered family of k-subalgebras {R�} of R enjoying the
ensuing properties.

i) The k-scheme S� := Spec R� is smooth;
ii) The natural arrow S! lim

 ��
S� is an isomorphism.

On the other hand, such a family of k-subalgebras invariably exists as can be seen
from the arguments given by Artin on [3, pages 40 and 41]. (Unfortunately the
statements of the results in [3, Section 4] do not immediately apply in our set-
ting. Since it seems pointless to present a quick survey of the concerned theme, we
simply leave the reader with the previous reference and the task of examining the
mentioned pages.)

As explained in [16, IV3 8.8.2(ii) page 28 and IV4, 17.7.8(ii) page 75], there
exists some index ↵ and a smooth morphism of finite type

f↵ : X↵ �! S↵,

giving back f : X ! S. In addition, [16, IV3, 12.2.4, page 183] lets us assume
that f↵ is geometrically integral. In fact, many other properties of f are reflected
starting from some model on, see [16, IV3, 8.10.5] for example.

In order to ease communication in what comes, for � � ↵, we call X�, f�, etc.,
a model of X , f , etc., and we write models as well as “objects associated to these”
using bold letters instead of putting subscripts.

Finally, two more conventions will prove useful: A certain Xµ is said to be
thiner than X� if µ � � if µ � �, and for each model f : X ! S of f : X ! S,
we write Xk for the fibre of f above the point

Spec k
closed point

// S canonic
// S.

8.2. InflatingD-modules

Let f : X ! S be a model of f : X ! S and let M 2 D(X/k)-mod. Since on
X we have a morphism of leftOX -algebras

D(X/S) �! D(X/k),
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we can give M the structure of a D(X/S)-module. This association, which is
clearly functorial, is called the inflation functor and denoted by Inf(M). Analo-
gously, we define the inflation ofM to X , call it InfX (M), as being the D(X/S)-
module on X induced by Inf(M) via the canonical morphism X ! X . The reader
who is unfamiliar with the process of pulling-back D-modules will find it made
clear in [4, 2.1].

The following result will prove useful.

Lemma 8.1. Let M 2 D(X/k)-mod and N 2 hMi⌦. Then, InfX (N ) 2
hInfX (M)is⌦.

Proof. This follows immediately from the fact that all C in D(X/k)-mod underlie
locally freeOX -modules (see Proposition 7.2).

8.3. The differential Galois group of an inflatedD-module

Theorem 8.2. We assume in addition that f : X ! S is projective. Let M be an
object of D(X/k)-mod for some model X of X , and letM = InfX (M). Then the
morphism of group schemes over R

Gal0(M) �! Gal(M)

is an isomorphism.

Example 8.3. Here is an example showing that the Theorem 8.2 does not hold if X
is simply affine. Let X = SpecC[⇡, x] be the affine line over C[⇡], andL = OXe
the freeOX -module on e. We induce on L the structure of a D(X/C)-module by

@

@x
e = �⇡e

@

@⇡
e = �xe.

(The reader should consult [6, 2.15] to understand this construction.) Its inflation L
is then defined by

@

@x
e = �⇡e.

As we saw in Example 7.11, Gal0(L) is the automatic blowup of Gal(L) = Gm,R
at {e}.

Our proof of Theorem 8.2 depends on two known results (found in [12,27,33]).
Since some work has to be done in order to adapt the substance of these theorems to
our setting, we prefer to explain them in Section 9 and give a proof of Theorem 8.2
now.
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Proof of Theorem 8.2. To lighten notation, we write G and G 0 in place of Gal(M)
and Gal0(M), respectively. We also make use of the notation and conventions in-
troduced on Section 8.1.

It is enough to prove that the functor

Repk(Gk) �! hM|Xk i⌦,

is an equivalence (cf. Corollary 4.6(i) and diagram (4.2)). The proof is a conse-
quence of the following claims.

Claim 1. LetN andN 0 be objects in D(X/k)-mod and let

InfX (N )|Xk
✓

// InfX (N 0)|Xk

N |Xk N 0|Xk ,

be an arrow of D(Xk/k)-modules. Then there exists a morphism of D(X/S)-
modules

e✓ : InfX
�
N
�
�! InfX

�
N 0�,

lifting ✓ .

Verification. We have an arrow of D(Xk/k)-modules

✓ : N
�
�Xk �!N 0

�
�
Xk ,

which gives us an arrow of D(Xk/k)-modules

� : OXk �!N
�
�_
Xk ⌦N 0

�
�
Xk

=: E|Xk .

We will show that � is the restriction of an arrowOX ! E ofD(X/S)-mod. Now,
let

◆ : T �! E|Xk

be the maximal trivial subobject; the arrow � can therefore be written as a compo-
sition in D(Xk/k)-mod

OXk
⌧
�! T ◆

�! E|Xk . (8.1)

According to Theorem 9.1-(1), it is possible to find T 2 D(S/k)-mod and a mor-
phism of D(X/k)-modules

e◆ : f ⇤(T ) �! E

such that ◆ is the restriction to Xk ofe◆. As f is proper, flat and geometrically
integral, we have f ⇤OX = OS [17, X, Proposition 1.2, page 202]; it then follows
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that the functor f ⇤ from vector bundles on S to vector bundles on X is full and
faithful. As S is affine, we conclude that the morphism ofOXk -modules

f ⇤(OS)|Xk = OXk
⌧
�! T = f ⇤(T )|Xk ,

appearing in (8.1) is the restriction of a morphism

e⌧ = f ⇤(�) : f ⇤(OS) �! f ⇤(T ).

Of course, � need not be a morphism of D(S/k)-modules, but f ⇤(�) is surely a
morphism of D(X/S)-modules, that is, an arrow between inflations

Inf(OX) �! Inf( f ⇤T ).

In conclusion, we have proved that � is the restriction ofe◆ �e⌧ .

Claim 2. For each V 2 hM|Xk i⌦, there exist E and E 0 in hMis⌦ and an arrow of
D(X/S)-mod

e✓ : E �! E 0,

such that
V ' Coker

�e✓ |Xk : E |Xk �! E 0|Xk
�
.

Verification. By definition,M|Xk = M|Xk . Hence, according to Theorem 9.1-(2)
(applied to the dual of V ), we can find N and N 0 in hMi⌦ fitting into an exact
sequence of D(X/k)-modules:

N
�
�
�Xk

✓
�!N 0

�
�
�
Xk
�! V �! 0.

Using Claim 1, ✓ is the restriction to Xk of an arrow in D(X/S)-mod

e✓ : InfX
�
N
�
�! InfX

�
N 0�.

We then take E = InfX (N ) and E 0 = InfX (N 0), and the proof is finished since
these do belong to hMis⌦ (see Lemma 8.1).

Claim 3. Denote by ⌘ the composition of functors

RepR(G) �! RepR(G 0) ⇠
�! hMi⌦.

For each V 2 Repk(Gk), there exists N 2 RepR(G)o such that

(a) V is a quotient of Nk ;
(b) After eventually passing to a thiner model of X , there exists someN 2 hMi⌦

such that ⌘(N ) = InfX (N ).
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Verification. According to [30, Proposition 3, page 41] we can “almost lift” V .
Precisely, there exists E 2 RepR(G)o and a surjection Ek ! V . By means of the
equivalence

⌘ : RepR(G)o
⇠
�! hMis⌦,

of Proposition 7.8, we can find a diagram in D(X/S)-mod:

F //

✏✏

T

⌘(E),

where T is some tensor power (see Definition 7.4-(1)) of M = InfX (M), the
vertical arrow is an epimorphism (in D(X/S)-mod), and the horizontal arrow is
special (see Definition 7.4). In particular, T = InfX (T ) for some tensor power T
ofM. According to Theorem 9.2, eventually passing to a thiner model of X , there
exists

N 2 hM : D(X/k)-modi⌦,

and an epimorphism
InfX

�
N
�
�! F .

Using Lemma 8.1, we conclude that InfX (N ) in fact belongs to hMis⌦; the above
equivalence then produces the desired N , viz. any object of 2 RepR(G)o which is
taken by ⌘ to InfX (N ). Indeed, (b) is verified by construction, and (a) follows from
the fact that if ⌘(✓) : ⌘(N )! ⌘(E) is an epimorphism of D(X/S)-modules, then
✓ is an epimorphism in RepR(G) (between objects of RepR(G)o).
Claim 4. The functor

⌘k : Repk(Gk) = RepR(G)(k) �! hMi⌦,(k),

is full.
Verification. Let ' : ⌘k(V )! ⌘k(V 0) be a morphism inD(Xk/k)-mod. It then fits
into a commutative diagram

⌘(N )⌦ k ✓
//

✏✏

✏✏

⌘(N 0)⌦ k

⌘k(V )
'

// ⌘k(V 0),
?�

OO

where ⌘(N ) = InfX (N ) and ⌘(N 0) = InfX (N 0) are constructed from Claim 3.
Claim 1 gives us a lift

e✓ : ⌘(N ) �! ⌘
�
N 0
�

of ✓ . Lemma 8.1 allied to the fact thatN andN 0 belong to hMi⌦ shows that both
InfX (N ) and InfX (N 0) lie in hMis⌦. Since ⌘ is an equivalence between RepR(G)o
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and hMis⌦, there exists � : N ! N 0 such that ⌘(� ) = e✓ . Since the vertical
arrows in the above diagram also belong to the image of ⌘k , the proof of the claim
is finished.

9. Adapting two known results to our setting

Our goal in this section is to adapt two known results (Theorem 9.1 and Theorem
9.2) to the setting of Theorem 8.2. The conventions and notation we follow are those
in the beginning of Section 8. In particular, f : X ! S is a smooth morphism with
geometrically connected (hence integral) fibres and R contains a copy of the residue
field k. We also adopt the hypothesis and terminology developed on Section 8.1,
in particular S is a limit of affine smooth k-schemes. To handle the projectivity
hypothesis on a model of f : X ! S appearing in the next statement, the reader is
referred to [16, IV3, 8.10.5-(xiii), page 37].

Theorem 9.1. Assume in addition that f : X ! S is projective and let f : X ! S
be a projective model of f . Let M be an object of D(X/k)-mod and write Xk for
the fibre of f : X ! S above the k-point of S induced by the k-point of S.

(1) The maximal trivial subobject of M|Xk (this belongs to D(Xk/k)-mod) is
the restriction of a subobject T ⇢ M. Moreover, T is the pull-back to
D(X/k)-mod of an object of D(S/k)-mod;

(2) If N belongs to hM|Xk i⌦, then there exists N in hMi⌦ and a monic N !
N |Xk .

Proof. If 5(�) stands for the affine group scheme associated to the category
D(X/k)-mod, then the sequence of fundamental group schemes

5(Xk) �! 5(X) �! 5(S) �! 1

is exact (cf. [33, Theorem 1.1] or [27, Theorem 1]). Using the characterisation of
exactness presented in [13, Appendix], we immediately arrive at the desired con-
clusion. Moreover, the proof in loc.cit. shows thatN can be chosen in hMi⌦.

We now head to prove the following.

Theorem 9.2 (see [12, Theorem 5.10]). Suppose that f : X ! S is separated.
Let f : X ! S be a model of f : X ! S and M an object of D(X/k)-mod.
Write

M := InfX (M)

and let
V �!M

be a special monic (see Definition 7.4) in the categoryD(X/S)-mod. Then, eventu-
ally passing to a thiner model, there exists S 2 D(X/k)-mod and an epimorphism

InfX (S) �! V .
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Colloquially, each special D(X/S)-submodule of an inflation is also a quotient of
an inflation. Moreover, S can be chosen in hMi⌦.

The proof hinges on the concept of socle (see Lemma 9.3) and on a criterion
which allows us to detect when aD-submodule of an inflation actually comes from
an inflation (Corollary 9.8).

Lemma 9.3. Let L and E be objects of D(X/S)-mod. Assume that E , respectively
L, is locally free, respectively locally free of rank one, as an OX -module. Define
the L-socle of E ,

Soc(L) ⇢ E,

as the sum of all subobjects of E which are isomorphic to L. The following proper-
ties are true.

(1) The sub-object Soc(L) of E is special;
(2) In D(X/S)-mod we have Soc(L) ' L�r for some r .

Proof. Assume that L is the trivial D(X/S)-module 1. Since hEi⌦ is equivalent
to the category of representations of an affine and flat group scheme over R (see
Theorem 7.5), the result becomes a simple exercise. The general case is treated by
employing the D(X/S)-module L_ ⌦ E .

We now explain a condition which guarantees that a D(X/S)-submodule of
some inflation is still an inflation. The results follow mainly from:

Theorem 9.4. Let T = Spec3 be a k-scheme possessing a system of etale co-
ordinates t1, . . . , tm relative to k, and g : Y ! T a smooth morphism. Let
M 2 D(Y/k)-mod and let E ! Inf(M) be a monomorphism inD(Y/T )-mod. If

HomDY/T (E, Inf(M)/E) = 0,

then E is in fact invariant under the action ofD(Y/k) onM, that is, it is aD(Y/k)-
submodule.

Proof. Let U = Spec A be an affine open subset of Y on which there are etale
coordinates x1, . . . , xn relative to T . We then have etale coordinates t1, . . . , tm
and x1, . . . , xn on U relative to k. Let @ [q,r] be the differential operators con-
structed from [16, IV4, 16.11.2, page 54] by means of the system of etale coor-
dinates t1, . . . , tm , x1, . . . , xn; here q 2 Nm and r 2 Nn . Note that @ [q,0](g⇤(a)) =
g⇤(@ [q]

t (a)), where @ [q]
t is the differential operator @ [q]

t constructed from the set of
etale coordinates t1, . . . , tm . This means that we have lifted @

[q]
t , but the reader

should note that if x1, . . . , xm is another system of etale coordinates on U rela-
tive to T , then the differential operator obtained from x1, . . . , xn , call it @

[q,0], is
not necessarily the same as @ [q,0]. However, @ [q,0] � @

[q,0] does annihilate 3 and
induces therefore a section of D(U/T ).
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Let µ 2 Nm have zeroes all over except at one entry, where it has a 1. We
define the additive map

�µ : E(U) �!M(U)/E(U), e 7�! @ [µ,0](e) mod E(U).

It is easily verified that �µ is A-linear and that

�µ(@ [0,r]e) = @ [0,r]�µ(e).

Note that, if x1, . . . , xn is another system of etale coordinates for U over T , em-
ploying the notation introduced above, the fact that @ [µ,0] � @

[µ,0] is a section of
D(U/T ) means that �µ is independent of the choice of the system of etale coordi-
nates of U relative to T . This allows us to construct a morphism

�µ : E �!M/E

of D(Y/T )-modules. By assumption, �µ = 0; we conclude that E is invariant
under D1(Y/k) (we adopt the notation of [16, IV4, 16.8.3, page 40]).

We now assume thatE is invariant underD`(Y/k). Pick anyµ=(µ1,. . . ,µm)2
Nm such that µ1+ . . .+µm = `+1. Define, as before, the map of additive groups:

�µ : E(U) �!M(U)/E(U), e 7�! @ [µ,0](e) mod E(U).

If e is a section of E overU and � = (�1, . . . , �m) 2 Nm is such that �1+. . .+�m 
`, then @ [�,0](e) is, by hypothesis, also a section of E . Then,

�µ(ae) = @ [µ,0](ae) mod E(U)

=
X

µ0+µ00=µ

✓
µ

µ0

◆
@ [µ0,0](a) · @ [µ00,0](e) mod E(U)

= a · @ [µ,0](e) mod E(U)

= a�µ(e) mod E(U).

This shows that �µ is A-linear. Note also that [16, 16.11.2, page 54] gives

�µ(@ [0,r]e) = @ [0,r](�µ(e)).

Finally, �µ is independent of the choice of the system of coordinates x1, . . . , xn
of U relative to T . To verify this claim we adopt the same notations as before:
for any other system x1, . . . , xn of etale coordinates relative to T , we associate the
differential operators @ [q,r], and note that @ [µ,0]

� @ [µ,0] preserves E(U), so that �µ

is independent of x1, . . . , xn . Hence, we obtain a morphism of D(Y/T )-modules

�µ : E �!M/E,

which must therefore vanish. Consequently, since µ is arbitrarily chosen, E is in-
variant under D`+1(Y/k), and by induction we are done.
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To deduce from Theorem 9.4 the result we need in order to prove Theorem 9.2,
Corollary 9.8, we make a few minor observations.

Lemma 9.5. Let v : Y 0 ! Y be a schematically dominant [16, IV3, 11.10.2, page
171] affine morphism of schemes. Let F be a locally free OY -module. Then v⇤ :
0(Y,F)! 0(Y 0, v⇤F) is injective.

Lemma 9.6. Assume in addition that f : X ! S is separated. Let ✓ : E !
M be a morphism of coherent OX -modules and assume that on some finite open
covering {Ui } of X we can find retractions ri : M|Ui ! E |Ui . (In particular, ✓ is a
monomorphism ofOX -modules.) Then, there exists a model X of X , a morphism of
coherent OX -modules ✓ : E !M, an open covering {U i } of X , and retractions
r i : M|U i ! E|U i which, when pulled back by the canonical arrow X ! X , give
back ✓ , {Ui }, and the {ri }.

Proof. All carefully explained in [16, IV3], to which we refer in the following lines.
From 8.10.5(v) (page 37), we can assume that all models are also separated. Using
8.5.2 (page 20) we obtain our ✓ : E ! M. Using 8.2.11 (page 11) we find the
covering {U i }. Note that, employing 8.2.5 (page 9), the scheme Ui is the limit of
the inverse images of U i in the thinner models. To end, another application of 8.5.2
(page 20) gives the retractions.

Lemma 9.7. Suppose in addition that f : X ! S is separated. Let M 2
D(X/S)-mod and letM stand for the D(X/S)-module induced by M. Assume
thatM is a vector bundle and let

✓ : E �!M,

be a special monic of D(X/S)-mod. Then there exists, possibly after passing to a
thinner model of X , a morphism

✓ : E �!M,

in D(X/S)-mod giving back ✓ : E ! M. In addition, the morphism of OX -
modules ✓ can be chosen to be injective and to have a locally free cokernel.

Proof. Using Lemma 9.6, we can find a morphism of OX -coherent modules ✓ :
E !M giving back ✓ and possessing, locally, a retraction. Moreover, employing
[16, IV3, 8.5.5, page 23] it is licit to assume that E andM are locally free.

Passing to a thinner model, we can assume that ✓ comes from an arrow ✓ :
E ! M of locally free OX -modules, see [16, IV3, 8.5.2(i), page 20 and 8.5.5,
page 23]. Moreover, Lemma 9.6 allows us to assume that locally ✓ possesses a
retraction. We now need to show that E can be given a structure of a D(X/S)-
module, and for that we only need to prove that E is locally invariant under the
action of D(X/S).

So let U ⇢ X be an affine open of X having the following properties: (a) the
arrow ✓(U) : E(U)!M(U) possesses a retraction r : M(U)! E(U), (b) the
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O(U)-module M(U) is free, and (c) on U we have etale coordinates x1, . . . , xn
with respect to S. Moreover, we write U = U ⇥S S.

In this setting, we conclude that, if 1⌦m 2 O(U)⌦O(U) M(U) actually lies
inO(U)⌦O(U) E(U), then 1⌦✓ r(m) = 1⌦m, which shows that m 2 E(U) since
M(U)! O(U)⌦O(U)M(U) is injective. Consequently, if @ [q] is the differential
operator on U constructed via the above system of coordinates [16, IV4, 16.11.2,
page 54] we see that @ [q](e) 2 E(U) for each e 2 E(U) as 1⌦ @ [q](e) does belong
toO(U)⌦O(U) E(U).

Corollary 9.8. We suppose that f is separated. Let M 2 D(X/k)-mod and con-
sider a special monic ✓ : E ! InfX (M) such that

HomD(X/S)(E, InfX (M)/E) = 0.

Then, replacing eventually X by some thiner model of X , there exist

E 2 D(X/k)-mod

and an arrow ✓ : E !M which is taken to ✓ by the functor InfX (�).

Proof. Lemma 9.7 shows that ✓ : E ! InfX (M) is the image of an arrow E !
Inf(M) between D(X/S)-modules. Moreover, ✓ is injective and its cokernel, call
it C, is locally free. We now show that

HomD(X/S)(E , C) = 0.

Let ' : E ! C be a morphism of D(X/S)-modules. Then, if u : X ! X stands
for the canonical morphism, we see that u⇤(') =: ' is a morphism of D(X/S)-
modules from E to the cokernel of ✓ . By assumption, ' = 0 and because of Lemma
9.5, ' = 0.

We can now apply Theorem 9.4 to show that ✓ is an arrow of

D(X/k)-mod.

We can now present the

Proof of Theorem 9.2. The idea is to apply Corollary 9.8 to the socle series obtained
from Lemma 9.3. We begin by assuming that V is of rank one as anOX -module.

Employing the terminology of Lemma 9.3, define Soc1(V) as the V-socle of
M. If Soci is defined, put

Soci+1(V) =
inverse image inM of

the V-socle ofM/Soci (V),

so that
Soci+1(V)/Soci (V) ' V-socle ofM/Soci (V).
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Using that the socle is a special subobject (Lemma 9.3) we see that Soci (V) ⇢M
is special too, so, for some r 2 N, we have

Socr (V) = Socr+1(V) = · · ·

Due to the definition of the socle, we conclude that there are no submodules of

M/Socr (V),

isomorphic to V . The assumption on the rank of V and Proposition 7.2 then force
all arrows

V �!M/Socr (V),

in D(X/S)-mod to be null. Using that

Soc1(V),
Soc2(V)

Soc1(V)
, . . .

are all isomorphic to direct sums of V , we see that any arrow

Socr (V) �!M/Socr (V),

is null. By Corollary 9.8, the D(X/S)-module Socr (V) is an inflation, i.e. after
eventually passing to a thiner model, there exists S 2 D(X/k)-mod together with
a monomorphism S !M of D(X/k)-modules such that

InfX (S) �! InfX (M) = M

is our special monic Socr (V)!M. Since V is a quotient of Socr (V) = InfX (S)
and since S is a subobject ofM, we are done.

In general, write m = rank(V) and let InfX (S)! det(V) be an epimorphism.
Then n

^m�1V
o_
⌦ det(V) ' V,

which shows that V is a quotient ofM_ ⌦ InfX (S).
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