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Generalized stochastic Lagrangian paths
for the Navier-Stokes equation

MARC ARNAUDON, ANA BELA CRUZEIRO AND SHIZAN FANG

Abstract. In the note added in proof of the seminal paper [14], Ebin and Mars-
den introduced the so-called correct Laplacian for the Navier-Stokes equation on
a compact Riemannian manifold. In the spirit of Brenier’s generalized flows for
the Euler equation, we introduce a class of semimartingales on a compact Rie-
mannian manifold. We prove that these semimartingales are critical points to
the corresponding kinetic energy if and only if its drift term solves weakly the
Navier-Stokes equation defined with Ebin-Marsden’s Laplacian. We also show
that for the case of torus, classical solutions of the Navier-Stokes equation realize
the minimum of the kinetic energy in a suitable class.

Mathematics Subject Classification (2010): 49Q20 (primary); 35Q30, 58J65
(secondary).

1. Introduction

Euler equations describe the velocity of incompressible non-viscous fluids. Con-
sidering these equations on a compact Riemannian manifold M without boundary,
they are

d
dt
ut + (ut · r)ut = �r p, div(ut ) = 0. (1.1)

Lagrange’s point of view consists in describing the position of the particles: for a
solution u to (1.1), it concerns solutions of the ordinary differential equation (ODE)

d
dt
gt (x) = ut (gt (x)), g0(x) = x . (1.2)

When (t, x) ! ut (x) is smooth, the ODE (1.2) defines a flow of C1-diffeomor-
phisms gt . From the position values, we get the velocity by

ut (x) =

✓
d
dt
gt
◆⇣

g�1
t (x)

⌘
.
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In this case, the two points of view are equivalent. Throughout the whole paper we
shall consider the interval of time [0, T ]. Equation (1.2) defines a continuous map

g· : [0, T ] ! Diff(M)

from [0, T ] to the group of diffeomorphisms of M .
In a famous work [6], V.I. Arnold gave a geometric interpretation to the incom-

pressible Euler equation, saying that u is a solution to (1.1) if and only if t ! gt is
a geodesic on the submanifold of Diff(M) keeping the volume measure invariant,
equipped with the L2 metric. Equivalently, g· minimizes the action

S['] =
1
2

Z T

0

Z

M

�
�
�
�
d
dt

't (x)
�
�
�
�

2

Tx M
dxdt (1.3)

on C([0, T ],Diff(M)), where dx denotes the normalized Lebesgue measure on U
or the normalized Riemannian volume on M (see also [14]).

In [7], Y. Brenier gave a probabilistic interpretation to (1.1), by looking for
probability measures6 on the path spaceC([0, T ],M), which minimize the kinetic
energy

S[6] =
1
2

Z

C([0,T ],M)

Z T

0
|�̇ (t)|2T� (t)M dt

�
d6(� ), (1.4)

with constraints (et )⇤6 = dx , where et : � ! � (t) denotes the evaluation map.
Let

X (� , t) = � (t).

Then under 6, {X (·, t); t � 0} is a M-valued stochastic process. Moreover, in [7]
as well as in [8], Brenier proved that such a probability measure 6 gives rise to a
weak solution of the Euler equation in the sense of Di Perna and Majda [13]. More
precisely, define a probability measure µ on [0, T ] ⇥ T M by

Z

[0,T ]⇥T M
f (t, x, v) µ(dt, dx, dv)

=
1
T

Z T

0

Z

C([0,T ],M)
f (t, � (t), � 0(t))d6(� ) dt.

Then µ solves the Euler equation in generalized sense:
Z ⇥

v · w(x)↵0(t) + v · (rw(x) · v)↵(t)
⇤

µ(dt, dx, dv) = 0

for any ↵ 2 C1(]0, T [) and any smooth vector field w such that div(w) = 0. We
also refer to [1] in which the authors used the theory of mass transportation.
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In this work, we will be concerned with Navier-Stokes equations. We will
be interested in studying, in analogy with Brenier’s work for the Euler equation, a
possible concept of weak (Lagrangian) solution of the Navier-Stokes equation. The
weak solutions that we construct will not, in particular, have necessarily the flow
property, contrary to [2], where we considered another notion of weak solution. In
a well-known book [28], Temam tried to develop Arnold’s paradigm for Navier-
Stokes equations on the torus. He solved the ODE (1.2) with coefficients ut arising
from solutions of these equations. However paths coming from ODE (1.2) are not
suitable to be seen as Lagrangian paths for Navier-Stokes equations and they are
not derived from a variational principle. On the other hand, in [11], P. Constantin
and G. Iyer established a probabilistic representation of Navier-Stokes equations,
using stochastic flows: this suggests to say that Lagrangian paths for Navier-Stokes
equations shoud be semimartingales.

We will deal with Navier-Stokes equations on a compact Riemannian manifold
M . There are two natural ways to define the “Laplace” operator on vector fields.
The first way is to use the de Rham-Hodge Laplace operator ⇤ on differential 1-
forms, that is ⇤ = dd⇤ + d⇤d. As usual, with respect to the Riemannian metric
tensor h , i given a vector field A, we set A] for the associated differential 1-form;
for a differential 1-form !, we set ![ for the corresponding vector field. Then we
define

⇤A =
�
⇤A]

�[
.

Weitzenböck formula states that
�⇤A = 1A � Ric(A) (1.5)

where 1A = Trace(r2A) and Ric(A) is the vector field associated to the Ricci
tensor Ricci by hRic(A), Bi = Ricci(A, B). Another natural way, following [14],
is to use the deformation tensor. More precisely, let A be a vector field on M , the
deformation tensor Def A is a symmetric tensor of type (0, 2) such that

(Def A)(X,Y ) =
1
2

(hrX A,Y i + hrY A, Xi) . (1.6)

Then Def : T M ! S2T ⇤M maps a vector field to a symmetric tensor of type (0, 2).
Let Def⇤ : S2T ⇤M ! T M be the adjoint operator. According to [25], as well as
to [27], we define

⇤̂ = 2Def⇤Def. (1.7)
Let us explain briefly the relation between these two Laplace operators. Let x 2 M
and {e1, . . . , ed} be an orthonormal basis of the tangent space TxM; then

||Def(A)x ||
2
Tx M⌦Tx M =

dX

i, j=1
Def(A)x (ei , e j )2

=
dX

i, j=1

1
4
�
hrei A, e j i + hre j A, ei i

�2

=
1
2

⇣
||rA||2Tx M⌦Tx M + hrA, (rA)⇤iTx M⌦Tx M

⌘
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where ⇤ denotes the transposed operator. Therefore
Z

M
h⇤̂A, Ai dx =

Z

M

⇣
||rA||2Tx M⌦Tx M + hrA, (rA)⇤iTx M⌦Tx M

⌘
dx . (1.8)

On the other hand, by Weitzenböck formula, we have
Z

M
|div(A)|2dx+

Z

M
|d A]|2dx=

Z

M
||rA||2Tx M⌦Tx Mdx+

Z

M
hRic(A), Ai dx . (1.9)

Notice that
Z

M
||rA||2Tx M⌦Tx M dx �

Z

M
|d A]|2dx =

Z

M
hrA, (rA)⇤iTx M⌦Tx M dx . (1.10)

Combining (1.8)-(1.10), we get
Z

M
h⇤̂A, Ai dx =

Z

M
||rA||2Tx M⌦Tx M +

Z

M
|div(A)|2 dx �

Z

M
hRic(A), Ai dx .

By polarization, for any smooth vector field B, we have
Z

M
hA,Bi dx=

Z

M
hrA,rBiTx M⌦Tx M+

Z

M
div(A)div(B)dx�

Z

M
hRic(A),Bi dx .

It follows that
⇤̂A = �1A � Ric(A) � rdiv(A).

Then on vector fields of divergence zero A, the following relation holds true (see
also [25,26])

�⇤̂A = 1A + Ric(A). (1.11)

Comparing (1.11) to (1.5), the sign of Ric is opposite.
Notice that on the torus Td , the Ricci tensor vanishes, so that ⇤ and ⇤̂ are

the same. However on the sphere Sd , we have Ric(A) = (d � 1)A and these two
operators are different.

Now we consider the following Navier-Stokes equation on M

d
dt
ut + rut ut + ⌫ ⇤̂ut = �r p, div(ut ) = 0, (1.12)

where ⌫ > 0 is the viscosity coefficient. Since div(ut ) = 0, we haveR
M hrut ut , ut i dx = 0. Using the relation ⇤̂ = ⇤ � 2Ric and equation (1.12),
we get

1
2
d
dt

Z

M
|ut |2 dx+⌫

Z

M

✓�
�
�du]

t

�
�
�
2
+
�
�
�d⇤u]

t

�
�
�
2
◆
dx�2⌫

Z

M
hRic ut , ut i dx=0. (1.13)
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When Ric is negative, the above relation yields the existence of Leray’s weak solu-
tion (see for instance [26]). For the general case, in [27], M. Taylor proved the exis-
tence of Leray’s weak solution to (1.12), for any initial condtion u0 2 L2 (see [27,
Theorem 4.6, page 498 and page 504]), that is

R T
0
R
M |ut (x)|2 dx dt < +1.

The purpose of this work is to construct Lagrangian paths for equation (1.12).
A difficulty on a general compact Riemannian manifold is that there does not exist
a family of vector fields {An; n � 1} such that the sum of squares of An defines
Laplace operators and associated stochastic flows preserve the Riemannian volume,
see for example [16]. Therefore in this context, it is suitable to consider a class of
semimartingales on M such that Brownian motions perturbed by a drift belong to
this class. Another advantadge of this point of view is that it is intrinsic, independent
of the construction of Brownian motions on M .

Comparing to Brenier’s generalized flows for Euler equations, the paths t !
⇠t are never of finite energy in the sense of (1.3). Instead, we shall consider the
mean kinetic energy (see Definition 2.9 below). This functional first appeared in
stochastic optimal control [19] as well as in connection with quantum mechanics
[29].

Roughly speaking, the main result of this paper (see Theorem 2.11 below)
says that the semimartingale ⇠t in a suitable class is a critical point to the stochastic
kinetic energy (2.15) if and only if its drift term ut solves Navier-Stokes equation
(1.12) in the sense of Leray.

In the recent years the functional (2.15) has been used with success in various
contexts (see for example [2–5, 10–12, 15, 20, 23]). In comparison with [2–5], we
do not require, in the present work, that martingales have the flow property.

The organisation of the paper is as follows. In Section 2, we shall introduce
and study the class of ⌫-Brownian incompressible semimartingales. We prove that
such a semimartingale is a critical point of the corresponding kinetic energy [12]
if and only if it solves the Navier-Stokes equation in the sense of Leray. We also
prove the existence of a minimum under certain conditions. In Section 3, we shall
show, in the case of a torus Td , that a classical solution to Navier-Stokes equation
gives rise to a ⌫-Brownian incompressible martingale which realizes the minimum
of the kinetic energy in a convenient class.

ACKNOWLEDGEMENTS. The authors are thankful to the referee whose sugges-
tions have helped them to improve the paper. They are also grateful to the support
of the Centre Interfacultaire Bernoulli at Ecole Polytechnique Fédérale de Lausanne
where part of this work was done.

2. Generalized stochastic paths for the Navier-Stokes equation

In this section, M will denote a connected compact Riemannian manifold without
boundary. Let (�,F , P) be a probability space equipped with a filtration {Ft ; t �
0} satisfying the usual conditions.
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A M-valued stochastic process ⇠t defined on (�,F , P) is said to be a semi-
martingale on M if for any f 2 C2(M), f (⇠t ) is a real valued semimartingale. This
notion is independent of the chosen connection on M; however, the correspond-
ing local characteristics are dependent of the choice of connection. In this paper all
the semimartingales considered will be continuous semimartingales with absolutely
continuous local characteristics. They are usually called Itô semimartingales, and
when they are Rd -valued they can always be written in the form (2.1) below. We
will write semimartingales for simplicity. For a semimartingale (⇠t ) starting from a
point x 2 M and given a connection r, the stochastic parallel translation //t along
⇠· can be defined. For the reader’s convenience, we give a brief introduction of //t .
Let (0k

i j ) be the Christofell coefficients of r, that is, on a local chart (x1, . . . , xd),

r@i @ j =
dX

k=1
0k
i j @k, where @i =

@

@xi
.

For simplicity, at first, we consider M = Rd , then (⇠t ) is a semimartingale on Rd

which can be written in the form

⇠t = ⇠0 +
Z t

0
⇠0s ds +

mX

j=1

Z t

0
Hj (s) dw j (s), (2.1)

where s ! (w1(s), . . . , wm(s)) is a standard Brownian motion. Consider the
stochastic differential equation (SDE) with respect to (⇠t ) on Rd :

dZit = �
dX

k,`=1
0(⇠t )

i Z`
t � d⇠ kt , Z0 = v 2 Rd , (2.2)

which admits a unique strong solution. Then v ! Zt is called the stochastic parallel
transport of v along ⇠t with respect to the connection r.

Now we consider the SDE (2.2) on a local chart U of M with ⇠0 = x 2 U and
v 2 TxM . Before the exiting time ⌧x of ⇠t from U , v ! Zt 2 T⇠t M is the parallel
transport of v along {⇠t , 0  t  ⌧x }. By connecting the path chart by chart, the
stochastic parallel transport along (⇠t )t�0 can be defined on M . For a more detailed
description, we refer to the book [9, Chapter VIII, Section 1.d, pages 390-394]. The
following is taken from [9, Theorem 1.7, page 393]:

Theorem 2.1. There exists a negligible subset N of � such that for w 62 N , there
is a time continuously dependent linear map //t from T⇠0M to T⇠t M such that for
any v 2 T⇠0M , the stochastic parallel transport Zt of v defined by the SDE (2.2)
along {⇠s; 0  s  t} is //tv. Moreover, the process t ! //t is adapted, and for
all t � 0, //t is invertible, whose inverse is denoted by //�1

t .

In what follows, we will consider the Levi-Civita connection, still denoted by
r. Let

⇣t =
Z t

0
//�1

s � d⇠s .
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Then ⇣t is a TxM-valued semimartingale. By [9, Theorem 2.8, page 403], there
exist processes (⇠0(s), H1(s), . . . , Hm(s)) which are adapted to Ft such that

⇠0(s), H1(s), . . . , Hm(s) 2 T⇠s M

and ⇣t admits Itô form

⇣t =
Z t

0
//�1

s ⇠0(s) ds +
mX

i=1

Z t

0
//�1

s Hi (s) dwi
s (2.3)

where wt = (w1t , · · · , wm
t ) is a standard Brownian motion on Rm . For example, if

the semimartingale ⇠t comes from a SDE on M:

d⇠t = X0(t, ⇠t )dt +
mX

i=1
Xi (t, ⇠t ) � dwi

t , ⇠0 = x,

then

⇠0(t) = X0(t, ⇠t ) +
1
2

mX

i=1
(rXi Xi )(t, ⇠t ).

As in [3, 12], we consider the operator

Dt⇠ = //t lim
"!0

E
✓

⇣t+" � ⇣t

"

�
�
�Ft

◆
, (2.4)

which is well-defined and equals ⇠0(t). For a semimartingale ⇠t given by (2.3), Itô’s
formula has the following form (see [9, page 409]):

f (⇠t )= f (⇠0)+
Z t

0

 
D
r f (⇠s), ⇠0(s)

E
+
1
2

mX

i=1
hrHi (s)(r f )(⇠s), Hi (s)i

!

ds

+
mX

i=1

Z t

0
hr f (⇠s), Hi (s)i dwi

s .

(2.5)

Let {gt (x,!); t � 0, x 2 M,! 2 �} be a family of continuous semimartin-
gales with values in M . Let Pg denote the law of g in the continuous path space
C([0, T ],M), that is, for every cylindrical functional F ,

Z

C([0,T ],M)
F(� (t1), . . . , � (tn))dPg(� )

=
Z

M

Z

C([0,T ],M)
F(gt1(x), . . . , gtn (x))dPgx

�
dx

where Pg = Pgx ⌦ dx and under Pgx , the semimartingale gt starts from x .
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We shall say that the semimartingale gt is incompressible if, for each t > 0,

EPg [ f (gt )] =
Z

M
f (x)dx, for all f 2 C(M) (2.6)

the expectation being taken with respect to the law Pg of g.
Let ⌫ > 0; we shall say that gt is a ⌫-Brownian semimartingale if, under Pg,

there exists a time-dependent adapted random vector field ut over gt such that

M f
t = f (gt ) � f (g0) �

Z t

0

⇣
⌫1 f (gs) + hus,r f (gs)i

⌘
ds, (2.7)

is a local continuous martingale with the quadratic variation given by

D
M f1
t ,M f2

t

E
= 2⌫

Z t

0
hr f1,r f2i(gs)ds.

For a semimartingale ⇠t given by (2.3), if {H1(s), . . . , Hm(s)} is a system such
that for any vector v 2 T⇠s M ,

Pm
i=1hv, Hi (s)i2 = 2⌫|v|2, then it is a ⌫-Brownian

semimartingale.
Example 2.2. In the flat caseRd , such a semimartingale admits the following form

dgt (w) =
p
2⌫ dWt + ut (w) dt, (2.8)

where (Wt ) is a Brownian motion on Rd and {ut ; t � 0} is an adapted Rd -valued
process such that

R T
0 |ut (w)|2 dt < +1 almost surely.

Example 2.3. For the general case of a compact Riemannian manifold M , we con-
sider the bundle of orthonormal frames O(M). Let (Vt )t2[0,T ] be a family of C1
vector fields such that the dependence t ! Vt is C1. Denote by Ṽt the horizontal
lift of Vt to O(M). Let div(Vt ) and div(Ṽt ) be respectively the divergence operators
on M and on O(M); they are linked by (see [17, page 595])

div(Ṽt ) = div(Vt ) � ⇡,

where ⇡ : O(M) ! M is the canonical projection. It follows that if div(Vt ) = 0,
then div(Ṽt ) = 0. Consider the horizontal diffusion rt on O(M) defined by the
SDE

drt =
p
2⌫

dX

i=1
Hi (rt ) � dWi

t + Ṽt (rt ) dt, r0 2 O(M), (2.9)

where {H1, · · · , Hd} are the canonical horizontal vector fields on O(M). Let dr
be the Liouville measure on O(M); then the stochastic flow r0 ! rt (r0) leaves dr
invariant. Set

⇠(t, x) = ⇡(rt (r0)), r0 2 ⇡�1(x). (2.10)
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For any continuous function f on M:
Z

M
E( f (⇠(t, x)) dx =

Z

M
f (x) dx .

Then ⇠ is an incompressible ⌫-Brownian diffusion, with Dt⇠(x) = Vt (⇠(t, x)).
Remark 2.4. Let Pt be the semigroup associated to 1

21M + Vt with div(Vt ) = 0;
then for any f 2 C2(M),

d
dt

Z

M
Pt f (x) dx =

Z

M

✓
1
2
1M Pt f + Vt Pt f

◆
dx = 0.

It follows that for any continuous function f : M ! R:
Z

M
Pt f (x) dx =

Z

M
f (x) dx .

Therefore any SDE on M defining a Brownian motion with drift V gives rise to an
incompressible ⌫-Brownian diffusion ⇠ with Dt⇠(x) = Vt (⇠(t, x)).
Example 2.5. Let Z2 be the set of two dimensional lattice points and define Z20 =
Z2 \ {(0, 0)⇤}. For k 2 Z20, we consider the vector k? = (k2,�k1)⇤ and the vector
fields

Ak(✓) =

r
⌫

⌫0

cos(k · ✓)

|k|�
k?, Bk(✓) =

r
⌫

⌫0

sin(k · ✓)

|k|�
k?, ✓ 2 T2,

where � > 1 is some constant.
Let Z̃20 the subset of Z20 where we identify vectors k, k0 such that k + k0 = 0

and let
⌫0 =

X

k2Z̃20

1
2|k|2�

.

The family {Ak, Bk : k 2 Z20} constitutes an orthogonal basis of the space of diver-
gence free vector fields on T2 and satisfies

X

k2Z̃20

⇣
hAk, vi2 + hBk, vi2

⌘
= ⌫ |v|2T✓T2, v 2 T✓T2,

and X

k2Z̃20

rAk Ak = 0,
X

k2Z̃20

rBk Bk = 0.

Consider the SDE on T2,

d⇠t =
X

k2Z̃20

⇣
Ak(⇠t ) � dWk

t + Bk(⇠t ) � dW̃ k
t

⌘
+u(t, ⇠t ) dt, ✓0 = ✓ 2 T2, (2.11)
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where {Wk
t , W̃ k

t ; k 2 Z20} are independent standard Brownian motions on R, and
u(t, ·) is a family of divergence free vector fields in H1(T2), such that,

Z T

0

Z

T2

⇣
|u|2 + |ru|2

⌘
dxdt < +1.

Then by [12,17], for � � 3, the SDE (2.11) defines a stochastic flow of measurable
maps which preserves the Haar measure dx on T2. More precisely, for almost every
w, the map

x ! ⇠t (x, w) solution to (2.11) with initial condition x

leaves dx invariant; this property is stronger than incompressibility.
In what follows, we shall denote by S the set of incompressible semimartin-

gales, by S⌫ the set of incompressible ⌫-Brownian semimartingales and by D⌫ the
set of incompressible ⌫-Brownian diffusions. Clearly we have

D⌫ ⇢ S⌫ ⇢ S.

Proposition 2.6. Let g 2 S⌫; then, for any f 2 C2(M),

EPg (hr f (gt ), ut i) = 0. (2.12)

Proof. Taking the expectation with respect to Pg in (2.7), we have

EPg ( f (gt )) � EPg ( f (g0)) = ⌫

Z t

0
EPg (1 f (gs)) ds +

Z t

0
EPg (hr f (gs), usi) ds.

It follows that

⌫

Z t

0

Z

M
1 f (x) dx ds +

Z t

0
EPg (hr f (gs), usi) ds = 0.

Since
R
M 1 f (x) dx = 0, we get the result.

Proposition 2.7. Let gt be a semimartingale on M satisfying

dgt (x) =
mX

i=1
Ai (gt (x)) � dWi

t + ut (w, x) dx,

where A1, · · · , Am are C2 divergence free vector fields on M and ut (w, x) 2
Tgt (x)M is adapted such that

R
M Ex (

R T
0 |ut (w, x)|2dt) dx < +1; if g is incom-

pressible, then for any f 2 C2(M)

EPg (hr f (gt ), ut i) = 0.



STOCHASTIC LAGRANGIAN PATHS FOR THE NAVIER-STOKES EQUATION 1043

Proof. Let f 2 C2(M); then by Itô’s formula (2.5),

f (gt ) = f (g0) + M f
t +

1
2

mX

i=1

Z t

0

�
hrAi (r f ), Ai i + hr f,rAi Ai i

�
ds

+
Z t

0
hr f (gs), usi ds,

where M f
t is the martingale part. Note that hrAi (r f ), Ai i + hr f,rAi Ai i =

LAiLAi f where LA denotes the Lie derivative with respect to A ; then taking the
expectation under EP, we get

1
2

mX

i=1

✓Z

M
LAiLAi f dx

◆
+ EPg (hr f (gt ), ut i) = 0.

Since for each i ,
R
M LAiLAi f dx = 0, the result follows.

In general it is not clear whether the incompressibility condition implies the
relation (2.12). However, the following is true:

Proposition 2.8. Let A1, · · · , Am be C2+↵ vector fields on M and A0 be a C1+↵

vector field with some ↵ > 0; consider

d⇠t (x) =
mX

i=1
Ai (⇠t (x)) � dWi

t + A0(⇠t (x)) dt, ⇠0 = x . (2.13)

Then for almost all w, the map x ! ⇠t (x) preserves the measure dx if and only if
div(Ai ) = 0 for i = 0, 1, · · · ,m.

Proof. We give a sketch of proof (see [18] for more discussions). By [21], x !
⇠t (x) is a diffeomorphism of M and the push forward measure (⇠�1

t )#(dx) of dx
by the inverse map of ⇠t admits the density Kt which is given by (see [22]):

Kt (x)=exp

 

�
mX

i=1

Z t

0
div(Ai )(⇠s(x)) � dWi

t �
Z t

0
div(A0)(⇠s(x)) ds

!

. (2.14)

If div(Ai ) = 0 for i = 0, 1, · · · ,m, it is clear that Kt = 1 and x ! ⇠t (x) preserves
dx .

Conversely, if Kt (x) = 1 for any x 2 M and t � 0 then:
mX

i=1

Z t

0
div(Ai )(⇠s(x)) � dWi

t +
Z t

0
div(A0)(⇠s(x)) ds = 0,

or in Itô form:
mX

i=1

Z t

0
div(Ai )(⇠s(x))dWi

t +
Z t

0

"
1
2

mX

i=1
LAi div(Ai ) + div(A0)

#

(⇠s(x)) ds = 0.
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The first term of above equality is of finite quadratic variation, while the second one
is of finite variation; so that for each i = 1, · · · ,m, div(Ai )(⇠s(x)) = 0 and also

"
1
2

mX

i=1
LAi div(Ai ) + div(A0)

#

(⇠s(x)) = 0.

It follows that, almost everywhere,

div(Ai )(⇠s(x)) = 0 for i = 0, 1, · · · ,m;

so that div(Ai ) = 0 for i = 0, 1, · · · ,m.

According to [12], as well as [4, 15, 20], we introduce the following action
functional on semimartingales.
Definition 2.9. Let

S(g) =
1
2
EPg

✓Z T

0
|Dtg|2dt

◆
. (2.15)

We say that g has finite energy if S(g) < 1.
In what follows, we shall denote more precisely Dtg(x) for Dtg under the law

Pgx . Then the action defined in (2.15) can be rewritten in the following form:

S(g) =
1
2

Z

M
EPgx

✓Z T

0
|Dtg(x)|2dt

◆
dx . (2.16)

We first recall briefly known results about the calculus of stochastic variation (see
[4, 10, 12]). Let ut (x) be a smooth vector field on a compact manifold (or on Rd )
which, for every t , is of divergence zero. Consider an incompressible diffusion
gt (x) with covariance a such that a(x, x) = 2µg�1(x) where g is the metric tensor
and time-dependent drift u(t, ·). It defines a flow of diffeomorphisms preserving
the volume measure. We have Dtg(x) = ut (gt (x)) and

S(g) =
1
2

Z

Td
EPgx

✓Z T

0
|ut (gt (x))|2 dt

◆
dx .

There are two manners to perform the perturbation.
First type of perturbation of identity. Let w be a smooth divergence free vector
field and ↵ 2 C1(]0, T [). Consider, for " > 0, the ODE

d8"
t (x)
dt

= " ↵0(t)w(8"
t (x)), 8"

0(x) = x . (2.17)

For each t > 0, 8"
t is a perturbation of the identity map id. By Itô’s formula, for

each fixed " > 0, t ! 8"
t (gt (x)) is a semimartingale starting from x . Note that g

and8"(g) are defined on the same probability space. It was proved in [4,12] that u
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is a weak solution to Navier-Stokes equation if and only if g is a critical point of S.
More precisely, d

d" S(8
"(g))

�
�
�
"=0

= 0 if and only if

Z

Td

Z T

0

⌦
ut ,↵0(t)w + ↵(t)rw · ut � ⌫ ↵(t)⇤w

↵
dtdx = 0. (2.18)

Here and in the following, · denotes the duality pairing.
Second type of perturbation of identity. Note that in [20], the perturbation of the
identity was defined in a different way. For each fixed t > 0, the author of [20]
considered the ODE

d9 t
s

ds
= ↵(t)w(9 t

s), 9 t
0(x) = x . (2.19)

Since ↵(0) = ↵(T ) = 0, we have 90
s = 9T

s = Identity. Set

9(g)"t (x) = 9 t
"(gt (x)).

Remarks 2.10. We see that 9" sends a semimartingale g to another one 9"(g),
leaving the initial and final data g0 and gT fixed. Therefore the variational principle
holds among flows with fixed initial and final states with this perturbation. However
with first type of perturbation of identity, the final states are not fixed.

Our perturbations do not preserve covariations of processes. The perturbations
presented in Eyink [15] preserve covariations and can be generalized to manifolds
with methods similar to calculus of variations in Wiener space. For these pertur-
bations, we are able to prove that smooth solutions to Navier Stokes equation are
critical points of the energy functional. But we are not able to prove the converse
and we believe that the argument in [15] is incomplete.

By [20], d
d" S(9(g)")

�
�
�
"=0

= 0 if and only if the equation (2.18) holds.
Now we deal with the general case of compact Riemannian manifolds.
Let (ut )t2[0,T ] be a family of divergence free vector fields on M , belonging to

the Sobolev space D21 and such that
Z T

0

Z

M

⇣
|ut (x)|2 + |rut (x)|2

⌘
dxdt < +1. (2.20)

Consider the SDE (2.9) and (2.10) with such a ut = Vt for t 2 [0, T ]. First we
notice that in [17, Proposition 4.3], the condition q > 2 is used only to insure the
tightness of a family of probability measures; this condition can be relaxed to q = 2
using Meyer-Zheng tightness results (see the proof of Theorem 2.12 below). There-
fore by [17, Theorem 6.4], equations (2.9) and (2.10) define a diffusion process g,
which is in D⌫ .

We have the following result,
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Theorem 2.11. Let g 2 D⌫ be given as above. Then g is a critical point of the
action functional S if and only if ut solves weakly the Navier-Stokes equation in
Leray’s sense, that is,

Z

M

Z T

0

D
ut ,↵0(t)w + ↵(t)rw · ut � ⌫ ↵(t)⇤̂w

E
dtdx = 0 (2.21)

for all ↵ 2 C1c (]0, T [) and all smooth vector fields w such that div(w) = 0.

Proof. Let9 t
" be the perturbation of identity defined in (2.19). Set ⌘"

t = 9 t
"(gt (x)).

Then {⌘"
t , t�0} is a semimartingale on M . We denote by (⇠0(s),H1(s), . . . ,Hm(s))

the local characteristics of gt (x). Notice that they depend on x . In order to state
Itô’s formula for manifold-valued functions, for the moment, consider a C2 map
f : M ! M . Let x 2 M and two tangent vectors u, v 2 TxM be given. Let
x(t) 2 M be a smooth curve such that x(0) = x, x 0(0) = u, and Yt 2 Txt M such
that Y0 = v. Define Q( f )(x) : TxM ⇥ TxM ! T f (x)M by

Q( f )(x)(u, v) =
d
dt

�
�
�
�
t=0

h
//�1

t (d f (xt ) · Yt )
i

� d f (x) · ruv. (2.22)

Then by Itô’s formula (see [9, page 408]), the drift term in local characteristics of
⌘"
t is given by

Dt9 t
"(gt (x)) =

@

@t
9 t

"(gt (x)) + d9 t
"(gt (x)) · ⇠0t

+
1
2

mX

i=1
Q(9 t

"(gt (x)))(Hi (t), Hi (t)).
(2.23)

Let '(", t) = Dt9 t
"(gt (x)) 2 T⌘"

t M; then

S(9"(g)) =
1
2
EPg

✓Z T

0
|'(", t)|2 dt

◆
.

We have '(0, t) = Dtg(x) = ut (gt (x)). Let

'1(", t) =
@

@t
9 t

"(gt (x)),

'2(", t) = d9 t
"(gt (x)) · ⇠0t ,

'3(", t) =
1
2

mX

i=1
Q(9 t

"(gt (x)))(Hi (t), Hi (t)).

Since the connection is torsion-free, we have

D
d"

'1(", t)
�
�
�
�
"=0

=
D
d"

d
dt

9 t
"(gt (x))

�
�
�
�
"=0

=
D
dt

d
d"

�
�
�
�
"=0

9 t
"(gt (x)) = ↵0(t)w(gt (x)).
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In order to compute the derivative of '2, consider a smooth curve �(s) 2 M such
that �(0) = gt (x),� 0(0) = Dtg(x). Then

d9 t
"(gt (x)) · ⇠0t =

d
ds

�
�
�
�
s=0

9 t
"(�(s)).

Therefore

D
d"

�
�
�
�
"=0

'2(", t) =
D
ds

�
�
�
�
s=0

d
d"

�
�
�
�
"=0

9 t
"(�(s)) =

D
ds

�
�
�
�
s=0

[↵(t)w(�(s))]

= ↵(t) (rw)(gt (x)) · Dtg(x).

Let �(s) 2 M be a smooth curve such that �(0) = gt (x) and � 0(0) = Hi (t) and
{Ys; s � 0} be a family of tangent vectors along {�(s); s � 0} such that Y0 = Hi (t).
Set

� (", s) = 9 t
"(�(s)) and X (", s) = d9 t

"(�(s)) · Ys .

If R denotes be the curvature tensor on M , the following commutation relation
holds,

D
d"

D
ds
X (", s) =

D
ds

D
d"

X (", s) + R
✓

@�

@"
,
@�

@s

◆
X (", s).

We have X (0, 0) = Hi (t), @�
@" (0, 0) = ↵(t)w(x), and @�

@s (0, 0) = Hi (t); therefore

R
✓

@�

@"
,
@�

@s

◆
X (", s)

� ��
�
�
"=0,s=0

= ↵(t) R(w(gt (x)), Hi (t))Hi (t).

Now let c(⌧ ) 2 M be a smooth curve such that c(0) = �(s), c0(0) = Ys . We have

D
d"

�
�
�
�
"=0

X (", s) =


D
d⌧

d
d"

9 t
"(c(⌧ ))

�
(0, 0)

= ↵(t)
D
d⌧

�
�
�
�
⌧=0

w(c(⌧ )) = ↵(t) (rYsw)(�(s)),

and
D
ds

�
�
�
�
s=0

(rYsw)(�(s)) = hrHi (t)rw, Hi (t)i + hrw,rHi (t)Hi (t)i.

Note that

D
d"

�
�
�
�
"=0

d9 t
"(gt (x)) · rHi (t)Hi (t) = ↵(t) hrw,rHi (t)Hi (t)i.

Using (2.22), we finally get

D
d"

�
�
�
�
"=0

'3(", t) =
1
2
↵(t)

mX

i=1

⇥
hrHi (t)rw, Hi (t)i + R(w, Hi (t))Hi (t)

⇤
.
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Note that
Pm

i=1hHi (t), vi2 = 2⌫ |v|2 holds for any v 2 Tgt (x)M . This implies that

mX

i=1
hHi (t), v1ihHi (t), v2i = 2⌫ hv1, v2i, for v1, v2 2 Tgt (x)M.

Let {e1, · · · , ed} be an orthonormal basis of Tgt (x)M . We put

Hi (t) =
dX

k=1
hHi (t), ekiek .

Then

mX

i=1
hrHi (t)rw, Hi (t)i =

dX

k,`=1

mX

i=1
hrekrw, e`ihHi (t), ekihHi (t), e`i

=
dX

k=1
hrekrw, eki = 1w(gt (x)).

In the same way we get
Pm

i=1 R(w, Hi (t))Hi (t) = (Ricw)(gt (x)).
Therefore

D
d"

�
�
�
�
"=0

'3(", t) = ⌫↵(t) (1w + Ricw)(gt (x)),

which, due to (1.11), is equal to

⌫↵(t)
⇣
�⇤̂w)(gt (x)

⌘
.

In conclusion, d
d" S(9"(g))

�
�
�
�
"=0

= 0 yields

EPg
Z T

0

h
↵0(t)w(gt ) · ut (gt ) + ↵(t) (rutw)(gt ) · ut (gt )

� ⌫↵(t) ⇤̂w(gt ) · ut (gt )
i
dt = 0.

(2.24)

This is nothing but (2.21).

Note that in [4, Theorem 3.2], a variational principle was established by using
the first type of perturbations of identity, defined by (2.17); on the other hand the
manifold M was supposed there to be a symmetric space in order to insure the
existence of semimartingales having flow properties. A variational principe on a
quite general Lie groups framework was derived in [3] (cf. also [10]).
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In [7], generalized flows with prescribed initial and final configuration were
introduced; more precisely, for any probability measure ⌘ on M⇥M , the minimizer
6 to (1.4) satisfies the constraint:

Z

C([0,T ],M)
f (� (0), � (T )) d6(� ) =

Z

M⇥M
f (x, y) d⌘(x, y)

for any continuous function f on M ⇥ M . It is quite difficult to construct in-
compressible semimartingales with given prescriptions. In order to emphasize the
contrast with the situation in [7], let us see the example of a Brownian bridge gx,yt
on R over [0, 1]. It is known that for t < 1, gx,yt solves the following SDE:

dgx,yt = dwt �
gx,yt � y
1� t

dt, gx,y0 = x . (2.25)

Then gx,yt ! y as t ! 1, and we have

E
 Z 1

0
|Dtgx,y|2 dt

!

= +1. (2.26)

Let ⌘ be a probability measure on M⇥M having dx as two marginals; we shall say
that the incompressible semimartingale {gt } has ⌘ as final configuration if

EPg ( f (g0, gT )) =
Z

M⇥M
f (x, y) d⌘(x, y), f 2 C(M ⇥ M). (2.27)

This means that the joint law of (g0, gT ) is ⌘. If gt is as in Example 2.3, then

EPg ( f (g0, gT )) =
Z

M⇥M
f (x, y)pT (x, y) dxdy,

where pt (x, y) is the heat kernel associated to (gt ). Conversely if (⇢t (x, y)) is
solution to the following Fokker-Planck equation

d
dt

⇢t (x, y) = ⌫ 1x⇢t (x, y) + hut (x),rx⇢t (x, y)i,

with limt!0 ⇢t = �x , for u 2 L2([0, T ], D21(M)) with div(ut ) = 0, it has been
constructed in [17] an incompressible ⌫-Brownian semimartingale which has
⇢T (x, y)dxdy as final configuration.

In order to prove the existence of minimizers to the energy functional (2.16),
we have to consider a larger class than the class D⌫ of incompressible ⌫-Brownian
diffusions, that is the class S⌫ of incompressible ⌫-Brownian semimartingales. We
have the following existence result:
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Theorem 2.12. Let ⌘ be a probability measure as above. If there exists an incom-
pressible ⌫-Brownian semimartingale g on M of finite energy S(g) such that ⌘ is
its final configuration, then there exists one that minimizes the energy among all
incompressible ⌫-Brownian semimartingales having ⌘ as final configuration.

Proof. Let J : M ! RN be an isometric embedding; then d J (x) : TxM ! RN

is such that for each x 2 M and v 2 TxM , |d J (x) · v|RN = |v|Tx M . Denote by
(d J (x))⇤ : RN ! TxM the adjoint operator of d J (x), that is,

h(d J (x))⇤a, viTx M = hd J (x)v, aiRN , a 2 RN , v 2 TxM.

Let {"1, . . . , "N } be an orthonormal basis of RN and set

Ai (x) = (d J (x))⇤"i , i = 1, . . . , N .

Then it is well-known that the vector fields {A1, . . . , AN } enjoy the following prop-
erties:

(i) For any v 2 TxM , |v|2Tx M =
PN

i=1hAi (x), vi2Tx M ;
(ii)

PN
i=1 rAi Ai = 0.

Combining (i) and (ii) gives that 1M f =
PN

i=1L2Ai f for any f 2 C2(M). On the
other hand, let J (x) = (J1(x), . . . , JN (x)); then:

hd J (x)v, "i i = d Ji (x) · v = hr Ji (x), viTx M , for any v 2 TxM.

It follows that
Ai = r Ji , i = 1, · · · , N . (2.28)

Let f 2 C2(M); then there exists f̄ 2 C2(RN ) such that f (x) = f̄ (J (x)). We
have

LAi f =
NX

j=1

@ f̄
@x j

(J (x)) hr J j (x), Ai (x)i

=
NX

j=1

@ f̄
@x j

(J (x)) hA j (x), Ai (x)i.

(2.29)

Therefore

1M f =
NX

i=1

NX

j,k=1

@2 f̄
@x j@xk

(J (x)) hA j , Ai ihAk, Ai i

+
NX

i=1

NX

j=1

@ f̄
@x j

(J (x))LAi hA j , Ai i.
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Notice that
NX

i=1
LAi hA j , Ai i = div(A j ) = 1M Jj ,

and according to property (i),

NX

i=1
hA j , Ai ihAk, Ai i = hA j , Aki.

Finally the Laplacian 1M on M can be expressed by

1M f =
NX

j,k=1

@2 f̄
@x j@xk

(J (x)) hA j , Aki +
NX

j=1

@ f̄
@x j

(J (x))1M Jj . (2.30)

Having these preparations, we prove now the existence of a g 2 S⌫ such that the
minimum of action functinal S is attained at g in the class of those in S⌫ having ⌘
as final configuration. Let

K = inf
g2S⌫

S(g).

There is a minimizing sequence gn 2 S⌫ , that is, limn!+1 S(gn) = K . Consider
the canonical decomposition:

J (gnt ) = J (gn0 ) + Mn
t +

Z t

0
bn(s) ds.

Let Mn
t = (Mn,1

t , · · · ,Mn,N
t ); then

D
Mn,i
t ,Mn, j

t

E
= 2⌫

Z t

0
hr Ji ,r J j i(gns ) ds. (2.31)

By Itô’s formula, we have

bn(t) = d J (gnt ) · Dtgn + ⌫ 1J
�
gnt
�
. (2.32)

It follows that

E
✓Z T

0
|bn(t)|2 dt

◆
 2S(gn) + 2T ⌫ ||1J ||1.

Therefore
R T
0 |bn(t)|2 dt is bounded in L2. We can use [30, Theorem 3] to conclude

that the joint law P̂n of
(J (gn· ),Mn

· , Bn· ,Un
· )
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in C([0, T ], RN ) ⇥ C([0, T ], RN ) ⇥ C([0, T ], RN ) ⇥ C([0, T ], RN⇥N ) is a tight
family, where

Bnt =
Z t

0
bn(s) ds, Un

t =
⇣D
Mn,i
t ,Mn, j

t

E⌘

1i, jN
.

Let P̂ be a limit point; up to a subsequence, we suppose that P̂n converges weakly
to P̂ .

Again by [30, Theorem 3], under P̂ , the coordinate process

(Xt ,Mt , Bt ,Ut )

has the following properties:

(1) M0 = B0 = 0,U0 = 0;
(2) (Mt ) is a local martingale such that Ut = (hMi

t ,M
j
t i)1i, jN ;

(3) Bt =
R t
0 b(s) ds with

R T
0 |b(s)|2 ds < +1 almost surely.

Since J (M) is closed in RN we see that Xt 2 J (M). Let

Xt = J (gt ).

For any f 2 C2(M), remark that f (gt ) = f̄ (Xt ) therefore f (gt ) is a real-valued
semimartingale. In other words, {gt ; t � 0} is a semimartingale on M . Let f 2
C(M); the map f � J�1 : J (M) ! R can be extended as a bounded continuous
function on RN ; therefore letting n ! 1, we get
Z

M
f (x) dx=E

�
f
�
gn(t)

��
=E

⇣
f � J�1 �J

�
gnt
��⌘

!E
⇣
f � J�1(Xt )

⌘
=E( f (gt )).

In the same way, for f 2 C(M ⇥ M), we have
Z

M⇥M
f (x, y) d⌘(x, y)=E

�
f
�
gn(0),gn(T )

��
=E

⇣
f
�
J�1J

�
gn(0)

�
,J�1 J

�
gn(T )

��⌘

which goes to, as n ! +1,

E( f (g(0), g(T ))).

So g is incompressible and has ⌘ as final configuration.
Besides, by (2.31), we have

⇣D
Mi
t ,M

j
t

E⌘

1i, jN
= 2⌫

Z t

0
hr Ji ,r J j i(gs) ds. (2.33)
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Let f 2 C2(M); denote by M f
t the martingale part of f (gt ). Then, by Itô’s for-

mula,

dM f
t =

NX

j=1

@ f̄
@x j

(Xt ) dM
j
t .

Therefore for f1, f2 2 C2(M), according to (2.33), we have

D
dM f1

t , dM f2
t

E
=

NX

j,k=1

@ f̄1
@x j

(Xt )
@ f̄2
@xk

(Xt ) 2⌫hA j , Akigt dt.

On the other hand, using relation (2.29) and property (i), we have

hr f1,r f2i =
NX

↵=1
LA↵ f1LA↵ f2 =

NX

j,k=1

@ f̄1
@x j

@ f̄2
@xk

hA j , Aki.

Combining the above two equalities, we finally get
D
dM f1

t , dM f2
t

E
= 2⌫ hr f1,r f2igt dt. (2.34)

Since Xt = J (gt ), we have

dBt = d J (gt ) · Dtg dt +
1
2
HessJ (gt ) dgt ⌦ dgt .

Relation (2.34) implies that 12HessJ (gt ) dgt ⌦ dgt = ⌫1M J (gt ) dt . Therefore we
get

Bt =
Z t

0
d J (gs) · Dsg ds + ⌫

Z t

0
1M J (gs) ds, (2.35)

which implies (2.7). In conclusion {gt ; t � 0} is a ⌫-Brownian semimartingale on
M , that is, g 2 S⌫ .

We want to see that K = S(g). Firstly using the relation (2.32), for any t 2
[0, T ], Z t

0
d J
�
gns
�
· Dsgn ds = Bnt � ⌫

Z t

0
1J

�
gns
�
ds.

Let � : C([0, T ], RN ) ! R be a bounded continuous function, consider ' :
C([0, T ], RN ) ⇥ C([0, T ], RN ) ! R defined by

'(B, g) = �

✓
B· � ⌫

Z ·

0
1J (gs) ds

◆
.

Then ' is a bounded continuous function on C([0, T ], RN ) ⇥ C([0, T ], RN ). It
follows that

R ·
0 d J (g

n
s ) ·Dsgn ds converges in law to

R ·
0 d J (gs) ·Dsg ds. Let " > 0;

for n big enough,

E
✓Z T

0
|d J (gns ) · Dsgn|2 ds

◆
 K + ".
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Now by [24, Theorem 10],

E
✓Z T

0
|d J (gs) · Dsg|2 ds

◆
 K + ",

that is E
⇣R T
0 |Dsg|2 ds

⌘
K+". Letting "!0 gives S(g)K . So S(g)=K .

Remarks 2.13. Although the second type of perturbation 9" of identity defined in
(2.19) preserve the semimartingales in S with the prescribed final configuration,9"

does not preserve the class of Brownian ⌫-semimartingales. Therefore it is not clear
whether the minimizer is a critical point to the functional (2.16).

3. Classical solutions and generalized paths

The purpose of this section is to try to reconcile minimizers and critical points in
a convenient way. Indeed one may ask whether classical solutions are in any way
related to minimizers of action functionals; the answer is affirmative, within the
class S⌫ with fixed boundary conditions and modulo a time change in the equation.

In this section, M will be a torus: M = Td . Let g 2 D⌫ be the solution of the
following SDE on Td :

dgt =
p
2⌫ dwt � u(T � t, gt ) dt, g0 2 Td , (3.1)

where g0 is a random variable having dx as law,wt is the standard Brownian motion
on Rd , and {u(t, x); t 2 [0, T ]} is a family of C2 vector fields on Td , identified to
vector fields on Rd which are 2⇡-periodic with respect to each space component.
Suppose that u is a strong solution to the Navier-Stokes equation

@

@t
u(t, x) + ru(t, x) · u(t, x) � ⌫ 1u(t, x) = �r p(T � t, x).

By Itô’s formula,

du(T � t, gt ) = �

✓
@u
@t

◆
(T � t, gt ) � ru(T � t, gt ) · u(T � t, gt )

+ ⌫ 1u(T � t, gt ) +
p
2⌫ ru(T � t, gt ) · dwt

= r p(t, gt ) dt +
p
2⌫ ru(T � t, gt ) · dwt .

(3.2)

According to definition (2.4), Dtg = �u(T � t, gt ) and

Dt Dt g = �r p(t, gt ). (3.3)

In what follows, we shall consider

G=
n
g⇤ 2S⌫; dg⇤

t =
p
2⌫ dwt + Dtg⇤ dt, g⇤(0) = g(0), g⇤(T )=g(T )

o
. (3.4)

Note that semimartingales in G are defined on a same probability space.
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Example 3.1. Let ↵ be a real continuous function on Rd and set

�(w, t) = sin
✓

⇡ t
T

◆Z t

0
↵(ws) ds, c(w, t) =

d
dt

�(w, t).

Let a 2 Rd be fixed. Consider v(w, t) = c(w, t)a; then v is an adapted vector field
on Td . Define

g⇤
t = gt +

Z t

0
v(w, s) ds.

Then g⇤ 2 G.
We have the following result.

Theorem 3.2. Let g 2 D⌫ be given in (3.1). Assume that the process g is associated
with the Navier-Stokes equation in the sense that

Dt Dt g = �r p(t, gt )

a.s. for a regular pression p such that r2 p(t, x)  R Id, with RT 2  ⇡2. Then g
minimizes the energy S in the class G.

Proof. We define the following:

B(g) =
1
2

Z T

0
|Dtg|2dt �

Z T

0
p(t, g(t))dt. (3.5)

Notice that the function b(x, y) defined in [7, page 243] has no meaning in our
setting (cf. (2.25) and (2.26)). Let g⇤ 2 G; we shall prove that

E(B(g))  E(B(g⇤)). (3.6)

Consider the function
�(t, x) =

R
2

|x |2 � p(t, x).

For each t � 0, the function x ! �(t, x) is convex on Rd as r2 p(t, x)  R Id. By
Itô formula

d (Dtg · gt ) = d(Dtg) · gt +
p
2⌫ Dtg · dwt + |Dtg|2 dt + d(Dtg) · dgt .

Analogously,

d(Dtg · g⇤
t ) = d(Dtg) · g⇤

t +
p
2⌫ Dtg · dwt + Dtg · Dtg⇤ + d(Dtg) · dg⇤

t .
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Remarking that d(Dtg) · dgt = d(Dtg) · dg⇤
t , and making the substraction of the

above two equalities, we obtain

d
�
Dtg · (g⇤

t � gt )
�

= d(Dtg) · (g⇤
t � gt ) +

⇣
Dtg · Dtg⇤ � |Dtg|2

⌘
dt.

It follows that

DT g ·
�
g⇤
T � gT

�
� D0g ·

�
g⇤
0 � g0

�

=
Z T

0
d(Dtg) ·

�
g⇤
t � gt

�
+
Z T

0

⇣
Dtg · Dtg⇤ � |Dtg|2

⌘
dt.

Notice that g⇤
0 = g0, g⇤

T = gT , and using (3.1), we have

Z T

0

⇣
�Dtg · Dtg⇤ + |Dtg|2

⌘
dt =

Z T

0
d(Dtg) · (gt � g⇤

t )

=
Z T

0

�
g⇤
t � gt

�
·
⇣
�

p
2⌫ ru(T � t, gt )dwt � r p(t, gt )dt

⌘
.

(3.7)

Using the convexity, of �, we have

�
�
t, g⇤

t
�
� �(t, gt ) �

�
Rgt � r p(t, gt )

�
·
�
g⇤
t � gt

�
. (3.8)

From (3.7) and (3.8), we get

Z T

0

⇣
�Dtg · Dtg⇤ + |Dtg|2 + Rgt ·

�
g⇤
t � gt

�⌘
dt

 �
p
2⌫
Z T

0

�
g⇤
t � gt

�
· ru(T � t, gt )dwt +

Z T

0

�
�
�
t, g⇤

t
�
� �(t, gt )

�
dt.

(3.9)

We have g⇤
t �gt =

R t
0 (Dsg

⇤ �Dsg) ds. Since g⇤
0�g0 = g⇤

T �gT = 0, by Poincaré
inequaliy on the circle to get

Z T

0

�
�g⇤
t � gt

�
�2 dt 

✓
T
⇡

◆2 Z T

0

�
�Dtg⇤ � Dtg

�
�2 dt.

Since ( T⇡ )2  1
R , we have

R
2

Z T

0

�
�g⇤
t � gt

�
�2 dt 

1
2

Z T

0

�
�Dtg⇤ � Dtg

�
�2 dt. (3.10)
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Remark that the inequality, for x, y, a, b 2 R

x2 � xy � Rb2 + Rab �
1
2
x2 �

1
2
y2 �

R
2
b2 +

R
2
a2

holds if and only if
1
2
(x � y)2 �

R
2

(b � a)2.

Therefore by (3.10), we have
Z T

0

⇣
|Dtg|2 � Dtg · Dtg⇤ � R|gt |2 + Rgt · g⇤

t

⌘
dt

�
Z T

0

✓
1
2
|Dtg|2 �

1
2
|Dtg⇤|2 �

R
2

|gt |2 +
R
2

|g⇤
t |
2
◆
dt.

(3.11)

Combining (3.9) and (3.11), we get
Z T

0

✓
1
2
|Dtg|2 �

1
2
�
�Dtg⇤

�
�2 �

R
2

|gt |2 +
R
2
�
�g⇤
t
�
�2
◆
dt

 �
p
2⌫
Z T

0

�
g⇤
t � gt

�
· ru(T � t, gt )dwt +

Z T

0

�
�
�
t, g⇤

t
�
� �(t, gt )

�
dt,

from which we deduce
Z T

0

✓
1
2
|Dtg|2 �

R
2

|gt |2 + �(t, gt )
◆
dt

 �
p
2⌫
Z T

0

�
g⇤
t � gt

�
· ru(T � t, gt )dwt

+
Z T

0

✓
1
2
�
�Dtg⇤

�
�2 �

R
2
�
�g⇤
t
�
�2 + �

�
t, g⇤

t
�
◆
dt,

or
Z T

0

✓
1
2
|Dtg|2 � p(t, gt )

◆
dt

 �
p
2⌫
Z T

0

�
g⇤
t � gt

�
· ru(T � t, gt )dwt +

Z T

0

✓
1
2
|Dtg⇤|2 � p

�
t, g⇤

t
�
◆
dt.

Using definition (3.5),

B(g)  �
p
2⌫
Z T

0

�
g⇤
t � gt

�
· ru(T � t, gt )dwt + B

�
g⇤�.
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Taking the expectation of this inequality, we obtain (3.6). Notice that

Z T

0
E(p(t, gt )) dt =

Z T

0
E
�
p
�
t, g⇤

t
��
dt;

then (3.6) yields E(S(g))  E(S(g⇤)).

The following result provides a perturbation in a natural way and illustrates
Theorem 3.2.

Proposition 3.3. Let v(w, t) be the vector field constructed in Example 3.1. Con-
sider the following perturbation of gt given by (3.1):

dg"
t =

p
2⌫dwt � u(T � t, gt ) dt + " v(w, t) dt, g"

0 = x .

Then we have
d
d"
S(g")

�
�
�
�
"=0

= 0.

Proof. We see that {g"; " � 0} ⇢ G. We have

S(g") =
1
2
E
✓Z T

0
|u(T � t, gt ) � " v(w, t)|2 dt

◆
.

Therefore

d
d"
S(g")

�
�
�
�
"=0

= �E
✓Z T

0
hu(T � t, gt ), v(w, t)i dt

◆
.

Let Vt =
R t
0 vs ds. By construction of v, VT = 0. Now by integration by parts,

�
Z T

0

⌦
u(T � t, gt ), V̇ (w, t)

↵
dt =

Z T

0
hd(u(T � t, gt )), V (w, t)i dt

which, using (3.2), is equal to
R T
0 hr p(t, gt ), V (w, t)i dt . Therefore

d
d"
S(g")

�
�
�
�
"=0

=
Z T

0
E
✓Z

Td
hr p(t, gt (x)),�(w, t)ai dx

◆
dt

=
Z T

0
E(�(w, t))

✓Z

Td
hr p(t, x), ai dx

◆
dt = 0.
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ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16
(1966), 316–361.

[7] Y. BRENIER, The least action principle and the related concept of generalized flows for
incompressible perfect fluids, J. Amer. Math. Soc. 2 (1989), 225–255.

[8] Y. BRENIER, Minimal geodesics on groups of volume-preserving maps and generalized
solutions of the Euler equations, Comm. Pure Appl. Math. 52 (1999), 411–452.
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