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Differentiability properties of Riesz potentials of finite measures
and non-doubling Calderón-Zygmund theory

JULIÀ CUFÍ AND JOAN VERDERA

Abstract. We study differentiability properties of the Riesz potential, with kernel
of homogeneity 2 � d in Rd , for d � 3, of a finite Borel measure. In the plane
we consider the logarithmic potential of a finite Borel measure. We introduce a
notion of differentiability in the capacity sense, where capacity is the Newtonian
capacity in dimension d � 3 and the Wiener capacity in the plane. We require
that the first order remainder at a point is small when measured by means of a nor-
malized weak capacity “norm” in balls of small radii centered at the point. This
implies L p differentiability in the Calderón-Zygmund sense for 1  p < d/d�2.
If d � 3, we show that the Riesz potential of a finite Borel measure is differen-
tiable in the capacity sense except for a set of zero C1-harmonic capacity. The
result is sharp and depends on deep results in non-doubling Calderón-Zygmund
theory. In the plane the situation is different. Surprisingly there are two distinct
notions of differentiability in the capacity sense. For each of them we obtain the
best possible result on the size of the exceptional set in terms of Hausdorff mea-
sures. We obtain, for d � 3, results on Peano second order differentiability in
the sense of capacity with exceptional sets of zero Lebesgue measure. Finally, as
an application, we find a new proof of the well-known fact that the equilibrium
measure is singular with respect to the Lebesgue measure.

Mathematics Subject Classification (2010): 42B20 (primary); 31B15, 26B05
(secondary).

1. Introduction

Calderón and Zygmund applied their celebrated results on singular integrals to
understand differentiability properties of functions defined on subsets of Rd . Be-
sides the foundational paper [5], where logarithmic potentials in the plane and
Riesz potentials in higher dimensions were considered, one may consult [6] and
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the book [15], in which the central results known up to the seventies were pre-
sented. A recent interesting paper on the subject is [2]. The setting for our results
is as follows.

Let µ be a Borel finite measure in Rd and, in dimension d � 3, consider the
Riesz potential

u(x) = P(µ)(x) =
Z

Rd

1
|x � y|d�2 dµ(y), x 2 Rd . (1.1)

In the plane we take the logarithmic potential

u(z) = P(µ)(z) =
Z

C
log

1
|z � w|

dµ(w), z 2 C. (1.2)

The kernel chosen in all dimensions d � 2 is a constant multiple of the fundamental
solution of the Laplacian in Rd . The distributional gradient of the potential u is

ru = �(d � 2)
x

|x |d
⇤ µ, d � 3, (1.3)

and
ru = �

z
|z|2

⇤ µ = �
1
z

⇤ µ, d = 2.

Since the kernel in the preceding identities is locally integrable, ru is a locally
integrable function, hence well defined a.e. The second derivatives of u in the sense
of distributions are given in dimension d > 2 by

@ j j u = �(d � 2) p. v.
|x |2 � d x2j

|x |d+2 ⇤ µ �
1
d

(d � 2)!d�1 µ, 1  j  d, (1.4)

where !d�1 is the d � 1-dimensional surface measure of the unit sphere in Rd , and

@ jku = d(d � 2) p. v.
x j xk

|x |d+2 ⇤ µ, 1  j 6= k  d. (1.5)

In dimension d = 2, setting z = x + iy, one gets

@2

@x2
u = p. v.

x2 � y2

|z|4
⇤ µ � ⇡µ, (1.6)

@2

@y2
u = p. v.

y2 � x2

|z|4
⇤ µ � ⇡µ, (1.7)

and
@2

@x @y
u = p. v.

2xy
|z|4

⇤ µ. (1.8)
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The key fact is that one can give at almost all points a sense to all right hand sides in
(1.4)-(1.8). Indeed, the principal value singular integrals exist a.e. after the results
of [5] and one can assign to the measure µ in (1.4), (1.6) and (1.7) at the point x the
density

lim
r!0

µ(B(x, r))
|B(x, r)|

,

which exists a.e. in Rd . We denote by |E | the d-dimensional Lebesgue measure
of the measurable set E . Calderón and Zygmund proved that if d = 2 and µ is
absolutely continuous with density locally in LlogL, then u has a second differential
in the Peano sense a.e. One obtains the same conclusion for d � 3 ifµ is assumed to
be absolutely continuous with density in Lq(Rd), q > d/2. Recall that a function
u defined in a neighborhood of a point a has a second differential in the Peano sense
if there exists constants Ai , 1  i  d, and Bjk, 1  j, k  d, such that

u(x)=u(a) +
dX

i=1
Ai (xi � ai ) +

dX

j,k=1
Bjk(x j � a j )(xk � ak) + "(|x � a|)|x � a|2,

for a certain function "(t) which tends to 0 with t .
Brilliant work by many people during the last decade has shown that most

of Calderón-Zygmund theory holds in very general contexts in which the classical
homogeneity assumption is dropped. It is enough that the underlying measure m be
a positive locally finite Borel measure in Rd satisfying a growth condition

m(B(x, r))  C rn, 0 < r < R,

R being the diameter of the support ofm and 0 < n  d. Hencem is not necessarily
doubling. See, for instance, [17, Chapter 2] and the many references given there.
It appears then appropriate to explore what new differentiability results might the
general non-doubling Calderón-Zygmund theory make available. We consider a
variant of the notion of differentiability in the L p sense in which we require the
remainder to tend to zero in the weak capacitary “norm”.
Definition 1.1. Let u be a real function defined in a neighborhood of a point a 2
Rd . Given real numbers A1, . . . , Ad set

Q(x) =

�
�
�
�u(x) � u(a) �

dP

i=1
Ai (xi � ai )

�
�
�
�

|x � a|
.

We say that u is differentiable in the capacity sense at the point a provided there
exist real numbers A1, . . . , Ad such that

lim
r!0

supt>0 t Cap({x 2 B(a, r) : Q(x) > t})
Cap(B(a, r))

= 0. (1.9)

Here Cap stands for Wiener capacity in the plane and Newtonian capacity asso-
ciated with the kernel 1/|x |d�2 in higher dimensions. See Section 2 for precise
definitions.
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In other words, we require that the normalized weak capacity norm in the ball
B(a, r) of the quotient Q(x) tends to 0 with r . This makes sense for potentials
u = P(µ) of finite Borel measures, because they satisfy the inequality

Cap
⇣n
x 2 Rd : P(µ)(x) > t

o⌘


kµk

t
, 0 < t, (1.10)

and so, in particular they are defined except for a set of capacity zero.
The notion of differentiability in the capacity sense can be weakened by re-

placing the denominator |x � a| in Q(x) by r and then rescaling t. We get the
following.

Definition 1.2. Let u be a real function defined in a neighborhood of a point a 2
Rd .We say that u is differentiable in the weak capacity sense at the point a provided
there exist real numbers A1, . . . , Ad such that

lim
r!0

sup
t>0

t Cap
✓⇢

x 2 B(a, r) :

�
�
�
�u(x) � u(a) �

dP

i=1
Ai (xi � ai )

�
�
�
� > t

�◆

r Cap(B(a, r))
= 0.

A simple argument, which consists in expressing a ball as a union of dyadic annuli,
gives readily that the above two notions of differentiability coincide if d � 3. In-
stead they are different in the plane as we will discuss later. This is due to the fact
that Cap(B(a, r)) = 1

log 1r
in the plane, while in dimensions d � 3 the dependence

of the capacity of a ball on the radius is via a power: Cap(B(a, r)) = cd rd�2.
Our first result concerns differentiability in the capacity sense of Riesz poten-

tials of finite measures in Rd , d � 3.

Theorem 1.3. For a positive finite Borel measure µ in Rd , d � 3, the Riesz po-
tential

u(x) =
Z

Rd

1
|x � y|d�2 dµ(y), x 2 Rd ,

is differentiable in the capacity sense at the point a 2 Rd if and only if

lim
r!0

µ(B(a, r))
rd�1 = 0, (1.11)

and the principal value

p. v.
Z

a � y
|a � y|d

dµ(y) = lim
"!0

Z

|y�a|>"

a � y
|a � y|d

dµ(y) (1.12)

exists.
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Hence differentiability in the capacity sense is exactly equivalent to vanishing
of the (d � 1)-dimensional density of the measure and existence of the principal
value (1.12). Existence of the principal values brings into the picture singular in-
tegrals with respect to a non-doubling underlying measure. This will happen when
one is dealing with measures µ which are as spread as the vanishing of the (d � 1)-
dimensional density allows. In this case the kernel a � y/|a � y|d will behave as
a singular Calderón-Zygmund kernel with respect to µ and there is no reason to
expect µ to be doubling.

Our second result asserts that the Riesz potential of each finite Borel measure
µ in Rd , d � 3 is differentiable in the capacity sense except in a set whose size is
controlled by an appropriate set function. This set function is called C1 harmonic
capacity and is defined as follows.

The C1 harmonic capacity of a compact set E ⇢ Rd is

c(E) = sup |hT, 1i|, (1.13)

where the supremum is taken over those distributions T supported on E such
that T ⇤ x/|x |d is a continuous vector valued function on Rd satisfying k(T ⇤
x/|x |d)(x)k  1, x 2 Rd . The terminology refers to the fact that convolving such
a distribution with the fundamental solution of the Laplacian one gets a harmonic
function on Rd \ E of class C1(Rd).

It is readily seen that c(E) = 0 if and only each function of class C1(Rd)
harmonic on Rd \ E is linear. The homogeneity of the set function c is d � 1,
that is, c(�E) = �d�1c(E). Deep results of [14] show that C1 harmonic capacity
can be described in terms of positive measures supported on the set, having null
(d � 1)-dimensional density and enjoying the property that the singular integral
operator determined by the vectorial kernel x/|x |d is bounded on the L2 Lebesgue
space of the measure. The description is rather explicit and in particular shows that
c is semiadditive, i.e.,

c(E [ F)  C
�
c(E) + c(F)

�
,

for a dimensional constant C independent of the compact sets E and F. If F is an
arbitrary subset of Rd , then c(F) is defined as the supremum of c(E) over all
compact subsets E of F . See Section 2 for more details.

Theorem 1.4. For each finite Borel measure µ in Rd , d � 3, the Riesz potential

u(x) =
Z

Rd

1
|x � y|d�2 dµ(y), x 2 Rd ,

is differentiable in the capacity sense at c almost all points.

The result is sharp. In fact the unit sphere in Rd can be shown to be the set of
points at which the potential of a positive finite Borel measure is not differentiable
in the capacity sense. The maximal dimension of a set of vanishing c capacity is
d � 1 and the sphere is, in some sense, the biggest such set that one can imagine.
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Somehow surprisingly, in dimension d = 2 the result one finds is different.
This is due to the usual difficulties associated with the logarithmic kernel. Indeed,
there are two separate results, each dealing with one of the two notions of differen-
tiability in the capacity sense we have in the plane.

Let ' be the measure function

'(t) =

8
<

:

t
1

log 1t
0 < t  e�1,

t, e�1  t,
(1.14)

and H' the associated Hausdorff measure. We then have

Theorem 1.5. For each finite Borel measure µ in C the logarithmic potential

u(z) =
Z

C
log

1
|z � w|

dµ(w), z 2 C,

is differentiable in the weak capacity sense at H' almost all points.

The result is sharp in the scale of Hausdorff measures. Given a measure func-
tion 8 with the property that 8(r)/'(r) ! 1 as r ! 0 and satisfying another
minor assumption, then there exists a finite Borel measure whose logarithmic poten-
tial is not differentiable in the weak capacity sense on a set of positive H8-measure.
See Theorem 5.5 in Section 5 for a precise statement.

The next result deals with differentiability in the capacity sense in the plane.
Let  stand for the measure function

 (t) =

8
><

>:

t
1

log2
⇣
1
t

⌘ 0 < t  e�1

t e�1  t.
(1.15)

Theorem 1.6. For each finite Borel measure µ in C the logarithmic potential

u(z) =
Z

C
log

1
|z � w|

dµ(w), z 2 C,

is differentiable in the capacity sense at H almost all points.

As before, the result is sharp in the scale of Hausdorff measures. Given a
measure function 9 with the property that 9(r)/ (r) ! 1 as r ! 0 and sat-
isfying another minor assumption, then there exists a finite Borel measure whose
logarithmic potential is not differentiable in the capacity sense on a set of positive
H9-measure. See Theorem 6.1 in Section 6 for a precise statement.

We turn now to Peano second order differentiability. Given a function u, a
point a 2 Rd and real numbers Ai , 1  i  d, and Bjk, 1  j, k  d, set

D(x)=
1

|x�a|2

�
�
�
�
�
u(x)�u(a)�

dX

i=1
Ai (xi�ai )�

dX

j,k=1
Bjk(x j�a j )(xk�ak)

�
�
�
�
�
. (1.16)
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Definition 1.7. Let u be a real function defined in a neighbourhood of a point a 2
Rd . We say that u is differentiable of the second order in the capacity sense at the
point a provided there exist real numbers Ai 1  i  d and Bjk, 1  j, k  d,
such that

lim
r!0

supt>0 t Cap({x 2 B(a, r) : D(x) > t})
Cap(B(a, r))

= 0. (1.17)

We also mention for the record that there is the corresponding notion of second
order differentiability in the weak capacity sense, which consists in requiring that

lim
r!0

supt>0 t Cap
��
x 2 B(a, r) : D̃(x) > t

 �

r2 Cap(B(a, r))
= 0,

where D̃(x)=
�
�
�u(x) � u(a)�

Pd
i=1Ai (xi � ai )�

Pd
j,k=1Bjk(x j�a j )(xk�ak)

�
�
� .

Theorem 1.8.

(i) For each finite Borel measure µ in Rd , for d � 3, the Riesz potential

u(x) =
Z

Rd

1
|x � y|d�2 dµ(y), x 2 Rd ,

is differentiable of the second order in the capacity sense at almost all points
(with respect to Lebesgue measure in Rd);

(ii) There exists a finite Borel measure in C such that the logarithmic potential of
µ is not differentiable of the second order in the weak capacity sense at almost
all points of Rd .

The preceding result could have been proved in the sixties and its proof follows
standard arguments from [15] for part (i) and an idea of Calderón from [4] for part
(ii). In Section 8 we apply Theorems 1.6 and 1.8 to provide a new proof of the
well-konwn fact that the equilibrium measure is singular with respect to Lebesgue
measure.

In [2] one proves that the Riesz potential 1/|x |d�1 ⇤ µ of a finite Borel mea-
sureµ is differentiable in the L p sense, 1  p < d/(d�1), at almost all points. One
can also adopt in this context our notion of differentiability in the capacity sense,
where this time the capacity involved is the one related to the kernel 1/|x |d�1,
say Cd�1. Since one has Cd�1(E) � c |E |(d�1)/d , it turns out that differentia-
bility in the capacity sense implies differentiability in the L p sense for the range
1  p < d/(d�1). The argument for the proof of Theorem 1.8 can be adapted eas-
ily to obtain differentiability in the Cd�1-capacity sense almost everywhere. Thus
one has a slightly better result.

The paper is organized as follows. In Section 2 we collect a series of back-
ground facts on capacities, singular integral operators on subsets of Rd , and Cantor
sets. In Sections 3 and 4 we prove Theorems 1.3 and 1.4, respectively. In Section 5
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we prove Theorem 1.5. Sharpness of Theorem 1.5 is established in Theorem 5.5 by
means of a construction, inspired by work of Calderón in [4]. Section 6 is devoted to
Theorem 1.6 and its sharpness, established in Theorem 6.1. The proof of Theorem
1.8 is in Section 7 and the application to equilibrium measure is in Section 8.

Our terminology and notation are standard. For instance, we use the letter C
to denote a positive constant, which may vary at each occurrence, and which is
independent of the relevant parameters. Usually C depends only on dimension.
We use the symbol A ' B to indicate that for some constant C > 1 one has
C�1 B  A  C B.

ACKNOWLEDGEMENTS. We are grateful to S. Gardiner for some useful correspon-
dence.

2. Background facts

2.1. Wiener and Newtonian capacities

If E is a compact subset of Rd , for d � 3, the Newtonian capacity of E is

Cap(E) = supµ(E), (2.1)

where the supremum is taken over all positive finite Borel measures supported on
E such that the Riesz potential P(µ) of µ satisfies P(µ)(x)  1, x 2 Rd . There is
an equivalent definition involving the notion of energy. The energy of a measure ⌫
is

V (⌫) =
ZZ 1

|x � y|d�2 d⌫(x) d⌫(y), (2.2)

and one has

Cap(E) = (inf{V (⌫) : support of ⌫ ⇢ E and k⌫k = 1})�1. (2.3)

It can easily be seen that Cap(B(a, r)) = cd rd�2 (see [3]).
In the plane one would like to make the same definitions with the Riesz kernel

replaced by the logarithm. The difficulty is that the kernel changes sign and this
causes inconveniences. One way to proceed is to consider only subsets of the disc
centered at the origin of radius 1/2, so that |z�w|  1 and log 1

|z�w| � 0. Then the
Wiener capacity is (2.1) with the kernel 1/|x � y|d�2 replaced by log 1

|z�w| . The
energy of a measure is (2.2) with the same change in the kernel. The relation (2.3)
holds true. We have

Cap(B(a, r)) =
1

log 1r
, |a| < 1/4, 0 < r < 1/4.
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Note that the definition of C1 harmonic capacity is similar in structure to that of
Wiener or Newtonian capacities. In (1.13) the supremum is taken on all distribu-
tions with support in the set E whose potential satisfies a certain inequality and in
(2.1) only positive measures are considered. This is a minor difference: one can
show that Cap(E) is the supremum of |hT, 1i| over all distributions T supported
on E such that the potential 1/|x � y|d�2 ⇤ T is a function in L1(Rd) with norm
bounded by 1 (see, for instance, [19]). The essential difference lies in the fact that
the kernel involved in the definition of C1 harmonic capacity is vectorial and each
of its components is a kernel of variable sign. Then subtle cancellation phenomena
have to be taken into account, which explains the enormous difficulties arising in
the study of C1 harmonic capacity. See Subsection 2.3 below.

2.2. Singular integrals on subsets ofRdRdRd

Let m be a positive finite Borel measure. Set, for f 2 L2(m),

R"( f m)(x) =
Z

|y�x |>"

x � y
|x � y|d

f (y) dm(y), x 2 Rd , " > 0.

We say that the operator R with kernel x/|x |d is bounded on L2(m) if there exists
a constant C such that

Z �
�R"( f m)(x)

�
�2 dm(x)  C

Z
| f (x)|2 dm(x), " > 0. (2.4)

In other words, the truncated operators R" are uniformly bounded in L2(m). If m
has no atoms, then a necessary condition for boundedness is the growth condition

m(B(x, r))  C rd�1, x 2 Rd , 0 < r.

Our differentiability theorems depend on the existence of the principal values

p. v.
Z

x � y
|x � y|d

dm(y) = lim
"!0

R"(m)(x). (2.5)

In classical Calderón-Zygmund theory existence of principal values is a conse-
quence of the L2 estimate (2.4), but in the non-doubling context we are considering
existence of principal values is a much subtler issue. A general result which applies
to our situation appeals to the vanishing of (d � 1)-dimensional density, that is,

lim
r!0

m(B(x, r))
rd�1 = 0, x 2 Rd . (2.6)

It was proven in [11] that (2.4) and (2.6) imply existence of the principal values
(2.5) m-a.e. This in turn yields, by classical Calderón-Zygmund theory arguments,
the m a.e. existence of the principal values

p. v.
Z

x � y
|x � y|d

d⌫(y) = lim
"!0

Z

|y�x |>"

x � y
|x � y|d

d⌫(y),

for each finite Borel measure ⌫.
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2.3. C1 harmonic capacity

Consider the quantity
o(E) = supm(E),

where the supremum is taken over all positive finite Borel measures m supported
on E such that m(B(x, r))  rd�1, x 2 Rd , 0 < r, limr!0

m(B(x,r))
rd�1 = 0, x 2

Rd , and the operator R is bounded on L2(m) with constant 1 (that is, (2.4) holds
with C = 1). In [14] one shows that there exists a constant depending only on
dimension such that

C�1 o(E)  c(E)  C o(E) (2.7)

for all compact sets E ⇢ Rd . This is a deep result, depending on previous work
of Tolsa on semi-additivity of analytic capacity in the plane. In fact, C1 harmonic
capacity in the plane turns out to be comparable to continuous analytic capacity.
We will use (2.7) in combination with the previous subsection to conclude that if
c(E) > 0 then there exists a non-zero finite Borel measure m supported on E with
zero (d � 1)-dimensional density for which the principal values (2.5) exist m-a.e.

2.4. L2 boundedness of R

There is a non-trivial sufficient condition for boundedness of the operator R on
d = 2 found by Mattila in [10]. If a positive finite Borel measure m in C satisfies
the growth condition

m(B(x, r))  C '(r), 0 < r < e�1,

where ' is the function (1.14), then the operator R is bounded on L2(m). The proof
of a more general result is a calculation based on Menger curvature. This will be
used in combination with the result of Subsection 2.2 to conclude that the principal
values in (2.5) exist m-a.e.

2.5. Cantor sets

Along the paper we will make a couple of constructions to show sharpness of our
theorems, which involve planar Cantor sets. Now we recall the definition. Take
a sequence (�n)

1
n=1 such that 0 < �n < 1/2. Start with the unit square Q0 =

[0, 1] ⇥ [0, 1]. Take 4 squares contained in Q0, with sides of length �1 parallel to
the coordinate axis, each with a vertex in common with Q0. Repeat the operation
in each of these 4 squares with the dilation factor �2 in place of �1. We obtain 16
squares of side length �1�2. Proceeding inductively we get at the n-th generation
4n squares Qn

j , 1  j  4n, of side length �n =
Qn

k=1 �k . Define the Cantor
set associated with the sequence (�n)

1
n=1 to be K = \1

n=1
�
[4

n
j=1 Q

n
j
�
. There is a

unique Borel measure µ supported on K such that µ(Qn
j ) = 1/4n for all j and n.

This measure plays the role of canonical measure on the Cantor set.
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There is a special family of Cantor sets K� , which is worthwhile keeping in
mind as a working example, depending on a parameter � � 0, associated with the
sequence

�n =
1
4

✓
1+

�

k

◆
, k = 1, 2, . . .

With this choice of �n we have

�n '
n�

4n
.

The canonical measure µ on K� satisfies the growth condition

µ(B(z, r)) ' r
1

log�
⇣
1
r

⌘ , z 2 K�, 0 < r < 1. (2.8)

Note that the function on the right hand side of (2.8) is '(r) for � = 1 and  (r) for
� = 2.

For � = 0 we get the famous “corner quarters” Cantor set, which has positive
finite length but zero analytic capacity. For � > 0 the corresponding Cantor set K�
is a compact set of infinite length and Hausdorff dimension 1.

Combining the results of [8] and [16], we see that for 0  �  1/2 the princi-
pal values

p. v.
Z

z � w

|z � w|2
dµ(w) = lim

"!0

Z

|w�z|>"

z � w

|z � w|2
dµ(w), (2.9)

do not exist µ-a.e. As we will show later, this implies that the logarithmic potential
of µ is not differentiable in the weak capacity sense at µ almost all points of K� .

For 1/2 < � the operator R with kernel z/|z|2 is bounded on L2(µ) (see [8])
and so the principal values (2.9) exist µ a.e. (by Subsection 2.2). In this case the
logarithmic potential of µ is differentiable in the ordinary sense µ-a.e., as it will be
shown later.

Consider a measure function 8 : [0,1) ! [0,1), that is, a continuous
(strictly) increasing function with 8(0) = 0. Associated with 8 there is a Can-
tor set K whose canonical measure satisfies µ(B(x, r))  C 8(r) for x 2 K and
0 < r < 1, provided one has

lim sup
r!0

8(2r)
8(r)

< 4. (2.10)

The construction of the Cantor set proceeds as follows. Define �n by 4�n = 8(�n)
and then set �n = �n/�n�1. To implement the definition of the Cantor set one needs
to check that �n < 1/2. This follows readily for n large enough from (2.10). Indeed,
by (2.10) there exists a positive constant C , C < 4, such that 8(2r)  C 8(r) for
r sufficiently small. Thus, for n large enough,

8(�n) =
8(�n�1)

4

C
4
8
⇣�n�1
2

⌘
< 8

⇣�n�1
2

⌘

and so �n < �n�1/2.
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If �n  r < �n�1 and x 2 K , then B(x, r) is contained in at most 43 squares
Qn
j . Then µ(B(x, r))  438(r).
If the lim sup in (2.10) is exactly 4 then the preceding construction fails for

the function 8(r) = r2 log(1/r)�1, because a measure satisfying µ(B(x, r)) 
C r2 log(1/r)�1, x 2 K , 0 < r < 1, is identically zero.

The measure function giving the Cantor set K� is 8(r) = r/ log�(1/r).
In dimension d condition (2.10) should be modified replacing the upper bound

4 by 2d .

3. Proof of Theorem 1.3

3.1. The sufficient condition in Theorem 1.3

The reader will recognize in the decomposition we are going to use the basic clas-
sical argument in [15, page 242]. Assume that a = 0 to simplify notation. In view
of (1.3) we set Ai = (d � 2) p. v.

R yi
|y|d dµ(y). We have to show that

lim
r!0

supt>0 t Cap({x 2 B(0, r) : Q(x) > t})
Cap(B(0, r))

= 0,

where the quotient Q(x) is

Q(x) =

�
�
�
�u(x) � u(0) �

dP

i=1
Ai xi

�
�
�
�

|x |
.

Given r > 0 and x 2 B(0, r) set " = 2|x |. Then, denoting by hv,wi the scalar
product of the vectors v and w,

Q(x) 
|u(x) � u(0) + (d � 2)hR"(µ)(0), xi|

|x |
+ (d � 2) sup

0<"2r
|R"(µ)(0) � R(µ)(0)| = A"(x) + Tr .

Hence

sup
t>0

t Cap ({x 2 B(0, r) :Q(x)> t})
Cap(B(0, r))

sup
t>0

t Cap
��
x 2 B(0, r) : A"(x) > t

2
 �

Cap(B(0, r))

+sup
t>0

t Cap
��
x 2 B(0, r) : Tr > t

2
 �

Cap(B(0, r))

2 sup
t>0

t Cap ({x 2 B(0, r) : A"(x)> t})
Cap(B(0, r))

+ 2Tr .
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Since Tr ! 0 as r ! 0 we only need to estimate the first term in the right hand
side above. Clearly

A"(x) 

�
�
�
�

Z

|y|>"

1
|x |

✓
1

|x � y|d�2 �
1

|y|d�2 � (d � 2)
⌧
y

|y|d
, x
�◆

dµ(y)
�
�
�
�

+

�
�
�
�

Z

|y|<"

1
|x |

✓
1

|x � y|d�2 �
1

|y|d�2

◆
dµ(y)

�
�
�
�

= B"(x) + C"(x).
By the mean value theorem and integration by parts, for each positive integer N one
has

B"(x)  C
Z

|y|>"

|x |
|y|d

dµ(y)

 C"
Z 1

"

dµB(0, ⇢)

⇢d

= C"
⇢

µB(0, ⇢)

⇢d

�1

"

+ d
Z 1

"

µB(0, ⇢)

⇢d+1 d⇢
�

 C"
⇢Z "N

"

µB(0, ⇢)

⇢d+1 d⇢ +
Z 1

"N

µB(0, ⇢)

⇢d+1 d⇢
�

 C sup
0<⇢<2r N

µB(0, ⇢)

⇢d�1 +
C
N
sup
0<⇢

µB(0, ⇢)

⇢d�1 .

(3.1)

Since N is arbitrary, in view of (1.11) we conclude that

lim
r!0

 

sup
|x |<r

B"(x)

!

= 0.

We now turn our attention to C"(x). Introducing the absolute value inside the inte-
gral

C"(x) 
1
|x |

Z

|y|<"

dµ(y)
|y � x |d�2 +

1
|x |

Z

|y|<"

dµ(y)
|y|d�2 ⌘ D"(x) + F"(x).

The term F"(x) is estimated readily by

F"(x) =
1
|x |

Z "

0

dµB(0, ⇢)

⇢d�2

=
1
|x |

⇢
µB(0, ⇢)

⇢d�2

�"

0
+ (d � 2)

Z "

0

µB(0, ⇢)

⇢d�1 d⇢
�

 C sup
0<⇢2r

µB(0, ⇢)

⇢d�1 ,
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and thus

lim
r!0

 

sup
|x |<r

F"(x)

!

= 0.

It remains to bound D"(x) and here is the only place where a capacitary estimate,
based on (1.10), is used. We have

D"(x) 
Z

|y|<2r

1
|x � y|d�2

dµ(y)
|y|

,

and the mass of the measure dµ(y)/|y| is estimated by
Z

|y|<2r

dµ(y)
|y|

=
Z 2r

0

dµB(0, ⇢)

⇢

=


µB(0, ⇢)

⇢

�2r

0
+
Z 2r

0

µB(0, ⇢)

⇢2
d⇢

 Crd�2 sup
0<⇢<2r

µB(0, ⇢)

⇢d�1 .

By (1.10)

sup
t>0

t Cap ({x 2 B(0, r) : D"(x) > t})
Cap(B(0, r))

 C sup
0<⇢<2r

µB(0, r)
⇢d�1 ,

which tends to 0 with r .

3.2. The necessary condition in Theorem 1.3

The Green function for the ball B(a, r) is

1
|x � a|d�2 �

1
rd�2 , |x � a| < r.

By the Green-Poisson formula for u and the ball B(a, r)

u(a) =
1

� (@B(a, r))

Z

@B(a,r)
(u(x) � hA, x � ai) d� (x)

+ cd
Z

B(a,r)

✓
1

|x � a|d�2 �
1

rd�2

◆
dµ(x),

where A = (A1, . . . , Ad) is the gradient in the definition of differentiability in the
capacity sense (1.9) and cd is a positive constant. Since

1
|x � a|d�2 �

1
rd�2 � cd

1
rd�2 , |x � a| <

r
2
,
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we obtain

cd
1

rd�2µB
⇣
a,
r
2

⌘


1
� (@B(a, r))

Z

@B(a,r)
|u(x) � u(a)�hA, x�ai| d� (x)

=
1

!d�1rd�1

Z 1

0
� {x 2 @B(a, r) : |Du(x)| > t} dt,

(3.2)

where
Du(x) = u(x) � u(a) � hA, x � ai, x 2 Rd . (3.3)

Estimating from above the potential of the measure �E (x) d� (x) one readily ob-
tains the well known estimate [1, Corollary 5.1.14]

cd � (E)  Cap(E)
d�1
d�2 , E ⇢ @B(a, r). (3.4)

Hence, the right hand side of (3.2) is not greater than

cd
1

rd�1

Z 1

0
Cap

d�1
d�2 {x 2 @B(a, r) : |Du(x)| > t} dt. (3.5)

We split the integral between 0 and1 into two pieces: first we integrate between 0
and T and then between T and1. The positive number T will be chosen later. For
the integral between 0 and T we estimate the capacity of the set {x 2 @B(a, r) :
|Du(x)| > t} by Cap(@B(a, r)) = cdrd�2. Thus

cd
rd�1

Z T

0
Cap

d�1
d�2 {x 2 @B(a, r) : |Du(x)| > t} dt  cdT .

Define "(r) as

"(r) =

sup
t>0

t Cap {x 2 B(a, r) : |Du(x)| > t}

r Cap(B(a, r))
,

so that "(r) ! 0 as r ! 0 if u is differentiable in the capacity sense at a. We get

1
rd�1

Z 1

T
Cap

d�1
d�2 {x 2 @B(a, r) : |Du(x)| > t} dt  cd (r"(r))

d�1
d�2

Z 1

T

dt

t
d�1
d�2

= cd (r"(r))
d�1
d�2

1

T
1

d�2
.

The upper bound we obtain for (3.5) is

cd (T + (r"(r)))
d�1
d�2

1

T
1

d�2
,
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which is minimized by T = r"(r). Therefore

cd
1

rd�2µB
⇣
a,
r
2

⌘
 r"(r),

which yields (1.11).
It remains to prove the existence of the principal value (1.12). Assume that

a = 0 to simplify the writing. We know that there exist Ai , 1  i  d, such that

"(r) =

sup
t>0

t Cap {x 2 B(0, r) : |Du(x)| > t}

r Cap(B(0, r))
tends to 0 with r . Here Du is as in (3.3) with a = 0. Set

Rr = (d � 2)
Z

|y|>r

y
|y|d

µ(y), r > 0.

Given r > 0 and x 2 B(0, r), x 6= 0, we have
|hR2|x | � A, xi|  Du(x) + |u(x) � u(0) � hR2|x |, xi|

= Du(x) + Eu(x),

and

⌘(r) := sup
t>0

t Cap
��
x 2 B(0, r) : |hR2|x | � A, xi| > t

 �

r Cap(B(0, r))

 2"(r) + 2 sup
t>0

t Cap ({x 2 B(0, r) : Eu(x) > t})
r Cap(B(0, r))

.

In the proof the sufficiency in Subsection 3.1 we showed that the second term in the
right hand side of the preceding inequality tends to 0 with r . Therefore ⌘(r) tends
to 0 as r tends to 0.

If Rr 6= A define

Kr =

⇢
x 2 Rd : |x | =

r
2

and
⌧
x
|x |

,
Rr � A

|Rr � A|

�
�

1
p
2

�
. (3.6)

Observe that Kr is the intersection of the sphere of center 0 and radius r/2 with a
cone with vertex at 0, axis determined by the unit vector in the direction of Rr � A,
and aperture ⇡/4. A dilation argument shows that Cap(Kr ) = cd rd�2. Hence, if
Rr 6= A,

Cap
⇣n
x 2 B(0, r) : |hR2|x | � A, xi| > |Rr � A|

r
25/2

o⌘
� Cap(Kr ) = cdrd�2.

Taking t = |Rr � A|r/25/2 in the definition of ⌘(r) we get

⌘(r) � c|Rr � A|,

and therefore
lim
r!0

Rr = A.
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4. Proof of Theorem 1.4

Let µ be a finite Borel measure in Rd , d � 3, and let u be its Riesz potential, as
in (1.1). In proving Theorem 1.4 we can assume, without loss of generality, that µ
is positive. Let E be the set of points where u is not differentiable in the capacity
sense. Take a positive finite Borel measure m supported on a compact subset of
E satisfying m(B(x, r))  rd�1, x 2 Rd , 0 < r, limr!0m(B(x, r))/rd�1 =
0, x 2 Rd , and such that the operator R with kernel x � y/|x � y|d is bounded on
L2(m). We will show that u is differentiable in the capacity sense m a.e. Hence m
must be identically zero and thus kc(E) = 0, as desired.

The Radon-Nikodym decomposition of µ with respect to m is µ = f m + µs
where f 2 L1(m) and µs is singular with respect to m. On the one hand one has

lim
r!0

µs(B(a, r))
m(B(a, r))

= 0,

at m almost all points a and, on the other hand, m almost all points are Lebesgue
points of f . Hence

µ(B(a, r))  C(a)m(B(a, r)), 0 < r,

at m almost all points a, C(a) being a constant which depends only on the point
a. Since the operator R with kernel x � y/|x � y|d is bounded on L2(m), by
Subsection 2.2 the principal value

p. v.
Z

a � y
|a � y|d

dµ(y),

exists at m a.e. Hence we can apply the sufficient condition in Theorem 1.3 to
conclude that the potential u of µ is differentiable in the capacity sense at m almost
all points, which completes the proof.
Example 4.1. Let � be the surface measure on the unit sphere S = {x 2 Rd : |x | =
1}. Since � has non-zero (d � 1)-dimensional density, one can apply Theorem 1.3
to conclude that the Riesz potential 1/|x |d�2 ⇤ �, d � 3 is not differentiable in the
capacity sense at any point of S. One can avoid appealing to Theorem 1.3 and make
a direct calculation, which works also in dimension d = 2 for the logarithmic po-
tential log(1/|z|)⇤�. Since S has positive and finite (d�1)-dimensional Hausdorff
measure we get a satisfactory example showing that Theorem 1.4 is sharp.

5. Proof and sharpness of Theorem 1.5

Let µ be a finite Borel measure and u its logarithmic potential, as in (1.2). For the
purpose of proving Theorem 1.5 one can assume, without loss of generality that µ
is positive. Let E stand for the set of points at which u is not differentiable in the
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weak capacity sense. Take a positive finite Borel measure m with compact support
contained in E satisfying the growth condition m(B(z, r)  '(r), 0 < r, where '
is the function in (1.14). If we see that u is differentiable in the weak capacity sense
at m almost all points, then m has to be identically 0 and hence H'(E) = 0.

The Radon-Nikodym decomposition of µ with respect to m has the form µ =
f m + µs , with f 2 L1(m) and µs singular with respect to m. Given a point a set
⌫ = ( f � f (a))m + µs so that µ = ⌫ + f (a)m. At m almost all points a one has

|⌫|(B(a, r))  ⌘(r)'(r), (5.1)

where ⌘ is a function depending on a with ⌘(r) ! 0 as r ! 0. We plan to show
that the logarithmic potential of ⌫ is differentiable in the weak capacity sense at the
point a if (5.1) is satisfied and the principal value p. v.(a�w)/|a�w|2 d⌫(w) exists.
As we mentioned in Subsection 2.4 the growth condition fulfilled by m implies that
the operator R with kernel (z � w)/|z � w|2 is bounded on L2(m), which yields
m a.e. existence of the principal values p. v.(a � w)/|a � w|2 d⌫(w) for each finite
Borel measure ⌫ (by Subsection 2.2). Finally we will show that the logarithmic
potential of m is differentiable in the ordinary sense m a.e. This will complete the
proof of Theorem 1.5.

We first deal with the logarithmic potential of m.

Lemma 5.1. Let m be a positive finite Borel measure such that

m(B(z, r))  ⌘(r) r, z 2 C, 0 < r,

with ⌘(r) ! 0 as r ! 0, and the principal value

p. v.
Z

a � w

|a � w|2
dm(w)

exists at the point a. Then the logarithmic potential of m is differentiable in the
ordinary sense at the point a.

Proof. Assume that a = 0 and set

A = p. v.
Z

w

|w|2
dm(w),

R" =
Z

|w|>"

w

|w|2
dm(w), " > 0,

Q(z) =
|u(z) � u(0) � hA, zi|

|z|
, z 2 C \ {0}.

Then

Q(z) 
|u(z) � u(0) � hR2|z|, zi|

|z|
+
�
�R2|z| � A

�
�, z 2 C \ {0}.
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The second term in the right hand side above tends to 0 with z and the first can be
estimated by

1
|z|

�
�
�
�

Z

|w|>2|z|

✓
log

1
|w � z|

� log
1

|w|
�

⌧
w

|w|2
, z
�◆��
�
� dm(w)

+
1
|z|

Z

|w|<2|z|

✓
log

3|z|
|w � z|

� log
3|z|
|w|

◆
dm(w)

= A(z) + B(z).

The term A(z) is treated by the mean value theorem and integration by parts simi-
larly to what was done in the proof of the sufficiency for Theorem 1.3. One gets

A(z)  C|z| + C⌘(N |z|) + C
1
N

sup
0<⇢< 1

4

⌘(⇢),

where N is an arbitrary positive integer. Thus limz!0 A(z) = 0. We estimate B(z)
by

B(z) 
1
|z|

Z

|w�z|<3|z|
log

3|z|
|w � z|

dm(w) +
1
|z|

Z

|w|<3|z|
log

3|z|
|w|

dm(w)

= C(z) + D(z).

For C(z) one has

C(z) =
1
|z|

Z 3|z|

0
log

3|z|
⇢

dmB(z, ⇢)

=
1
|z|

Z 3|z|

0

mB(z, ⇢)

⇢
d⇢

 3 sup
0<⇢<3|z|

⌘(⇢),

which yields limz!0 C(z) = 0. A similar estimate for D(z) gives that

lim
z!0

D(z) = 0,

which completes the proof.

It remains to deal with the differentiability in the weak capacity sense of the
logarithmic potential of ⌫. We can assume without loss of generality that ⌫ is a
positive measure. The following lemma settles the question.
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Lemma 5.2. Let ⌫ be a positive finite Borel measure such that

lim
r!0

⌫(B(a, r))
'(r)

= 0,

and the principal value

p. v.
Z

a � w

|a � w|2
d⌫(w), (5.2)

exists. Then the logarithmic potential of ⌫ is differentiable in the weak capacity
sense at the point a.

Proof. Assume that a = 0 and set

A = p. v.
Z

w

|w|2
d⌫(w),

Du(z) = |u(z) � u(0) � hA, zi|,

R" =
Z

|w|>"

w

|w|2
d⌫(w), " > 0,

Eu(z) = |u(z) � u(0) � hR2|z|, zi|.
Then

sup
t>0

t Cap ({z 2 B(0, r) : Du(z) > t})
r Cap(B(0, r))

 2 sup
t>0

t Cap ({z 2 B(0, r) : Eu(z) > t})
r Cap(B(0, r))

+ 2 sup
|z|<r

|R2|z| � A|.

The second term in the right hand side above tends to 0 as r ! 0. To estimate the
first note that for z 2 B(0, r)

Eu(z)  Cr↵(r) +
Z

|w|<2r
log

1
|w � z|

d⌫(w) +
Z

|w|<2r
log

1
|w|

d⌫(w), (5.3)

with ↵(r) ! 0 as r ! 0. This is proved as in the sufficiency part of Theorem 1.3.
The third term in the right hand side of (5.3) is
Z 2r

0
log

1
⇢
d⌫B(0, ⇢) =

✓
log

1
2r

◆
⌫B(0, 2r) +

Z 2r

0

⌫B(0, ⇢)

⇢
d⇢

 Cr sup
0<⇢<2r

⌘(⇢),
(5.4)

where ⌘(⇢) = ⌫(B(0, ⇢)/'(⇢). The second term in the right hand side of (5.3) is
the logarithmic potential P(�B(0,2r)⌫) of the measure �B(0,2r)⌫. This is estimated
via (1.10) and we obtain

sup
t>0

t Cap
��
z 2 B(0, r) : P(�B(0,2r)⌫) > t

 �

r Cap(B(0, r))
 C log

✓
1
r

◆
⌫(B(0, 2r))

r
 C⌘(2r).
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Therefore gathering all previous inequalities

sup
t>0

t Cap ({z 2 B(0, r) : Eu(z) > t})
r Cap(B(0, r))

 C↵(r) + sup
0<⇢<2r

⌘(⇢),

which tends to 0 with r .

There are a couple of necessary conditions for differentiability in the weak
capacity sense which provide interesting examples of positive measures with non-
differentiable logarithmic potentials. The first is the complete analogue of the nec-
essary condition in Theorem 1.4 concerning the vanishing of (d � 1)-dimensional
density.

Lemma 5.3. Let µ be a positive finite Borel measure such that its logarithmic po-
tential is differentiable in the weak capacity sense at the point a 2 C. Then

lim
r!0

µ(B(a, r))
r

= 0. (5.5)

Then the logarithmic potential of the arc length measure on S = {z 2 C : |z| = 1}
is not differentiable in the weak capacity sense at any point of S. In the same vein,
the logarithmic potential of the length measure on the corner quarters Cantor set K0
is not differentiable in the weak capacity sense at any point of K0.

Proof of Lemma 5.3. The argument presented for the necessary condition in The-
orem 1.3 works perfectly well in dimension d = 2. Indeed, one can replace (3.4)
by

c � (E)  exp
✓

�
1

Cap(E)

◆
, E ⇢ @B(a, r),

where c stands for a small positive constant, and argue similarly ( [1, Corollary
5.1.14]). There is, however, an alternative argument which goes as follows. Using
the notation introduced in the proof of the necessary condition in Theorem 1.3 and
recalling that the Green function of the disc of center a and radius r is log(r/|z�a|)
one gets

cµB
⇣
a,
r
2

⌘


1
2⇡r

Z

@B(a,r)
|Du(x)| d� (x),

by (3.2) and (3.3). Then, for at least one point p = p(r) 2 @B(a, r), we have, for
a smaller constant c,

cµB
⇣
a,
r
2

⌘
 |Du(p)|.

We claim that

Cap
⇣n
x 2 B(a, r) : |Du(x)| > cµB

⇣
a,
r
4

⌘o⌘
� c Cap(B(a, r)). (5.6)
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Let us finish the argument assuming (5.6). Taking t = cµB(a, r4 ) we get

"(r) �
cµB

�
a, r4

�
Cap

��
x 2 B(a, r) : |Du(x)| > cµB

�
a, r4

� �

r Cap B(a, r)

� c
µB

�
a, r4

�

r
,

which gives (5.5).
To show the claim take ⇢, r2 < ⇢ < r . Then there exists p = p(⇢) with

|p � a| = ⇢ and

|Du(p)| > cµB
⇣
a,
⇢

2

⌘
� cµB

⇣
a,
r
4

⌘
.

The mapping
p �! �(p) = |p � a|,

is Lipschitz with constant 1 and

�
n
x 2 B(a, r) : |Du(x)| > cµB

⇣
a,
r
4

⌘o
◆
hr
2
, r
i
.

Since Lipschitz mappings with constant 1 do not increase capacity we conclude that

Cap
⇣n
x 2 B(a, r) : |Du(x)|>cµ

⇣
a,
r
4

⌘o⌘
� Cap

⇣hr
2
, r
i⌘

' c Cap B(a, r).

We do not know if the existence of principal values is a necessary condition for
differentiability in the capacity sense in dimension d = 2. We can prove, however,
the following.

Lemma 5.4. Let µ be a positive finite Borel measure such that its logarithmic po-
tential is differentiable in the weak capacity sense at the point a 2 C. Assume also
that one of the following two conditions is satisfied

(i) µ(B(z, r))  C ⌘(r) r, z 2 C, 0 < r,

with ⌘(r) ! 0 as r ! 0.

(ii) lim
r!0

µ(B(a, r))
'(r)

= 0.

Then the principal value

p. v.
Z

a � w

|a � w|2
dµ(w), (5.7)

exists.
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Let K be a Cantor set satisfying the condition
1X

n=1

1
(4n�n)2

= 1.

In the scale of the Cantor sets K� this is equivalent to 0  �  1/2. Then the
operator R with kernel (z � w)/|z � w|2 is unbounded on L2(µ), where µ is the
canonical measure on K (see [8]) and the principal value (5.7) does not exist for µ
almost all points a 2 K (see [16]). Hence, by Lemma 5.4 the logarithmic potential
of µ is not differentiable in the weak capacity sense at µ almost all points a 2 K .

Proof of Lemma 5.4. The proof parallels that of the necessary condition in Theorem
1.3. If u is the logarithmic potential of µ and a = 0, then one proves there that,
setting

Eu(z) = |u(z) � u(0) � hR2|z|, zi|,

one has

lim
r!0

sup
t>0

t Cap {z 2 B(0, r) : Eu(z) > t}

r Cap(B(0, r))
= 0.

This is proven in Lemma 5.1 under the assumption (i) and in Lemma 5.2 under the
assumption (ii). The rest of the proof is the same, except for the fact that now the
set Kr of (3.6) satisfies Cap(Kr ) ' 1/ log(1/r).

Theorem 1.5 is sharp in the scale of Hausdorff measures. This is the content
of the following result.

Theorem 5.5. Let 8 : [0,1) ! [0,1), 8(0) = 0, be a continuous (strictly)
increasing function such that

lim sup
r!0

8(2r)
8(r)

< 4, (5.8)

and
M(r) :=

8(r)
'(r)

! 1, as r ! 1.

Then there exists a compact set K with H8(K ) > 0 and a finite Borel measure
whose logarithmic potential is not differentiable in the weak capacity sense at H8

almost all points of K .

This means that you cannot get any condition better than H'(E) = 0 on the set
E of points of non differentiability in the weak capacity sense for the logarithmic
potential of a finite Borel measure. In particular, there exists a finite Borel measure
whose logarithmic potential is not differentiable in the weak capacity sense on a
set of positive C1 harmonic capacity (that is, positive continuous analytic capacity).
Hence the size of the exceptional sets may be larger in dimension 2 than in higher
dimensions. See Subsection 2.5 for a comment on condition (5.8).
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Proof of Theorem 5.5. Let K be the Cantor set associated with 8 and let µ be its
canonical measure (see Subsection 2.5). We aim at constructing a finite Borel mea-
sure ⌫ whose logarithmic potential is not differentiable in the weak capacity sense
at µ almost all points.

Given a positive integer n take another large positive integer Nn to be deter-
mined later. Given a square QNn

j of generation Nn , 1  j  4Nn , choose a square
of generation Nn + n (it is not important which one is chosen). Denote the center
of the chosen square of generation Nn + n contained in QNn

j by pnj , 1  j  4Nn .
Set

En =
4Nn[

j=1
B
⇣
pnj ,

p
2 �Nn+n

⌘
,

Dm =
1[

n=m
En,

and

D =
1\

m=1
Dm .

Clearly µ(En) = 4Nn4�(Nn+n) = 4�n , and this is the only reason why we have
descended n more generations after Nn . Hence µ(Dm)

P1
n=m 4�n and µ(D)= 0.

Take a 2 K \D. Then a 6= pnj , for all n and j , because p
n
j /2 K . Since a /2 D,

a /2 Dm for some m, and so a /2 B(pnj ,
p
2 �Nn+n) for all n � m and all j.

We proceed now to define the finite Borel measure whose logarithmic potential
is not differentiable in the weak capacity sense at all points a /2 D. First note that if
B is the unit disc B(0, 1) we have

L(z) := �B(z) log
1
|z|

= log
1
|z|

⇤

✓
�0 �

d�
2⇡

◆
, (5.9)

where �0 is the Dirac delta at the origin and d� the arc-length measure on the unit
circle {z : |z| = 1}. The second identity in (5.9) can be shown by computing the
Laplacian of L and recalling that 1/(2⇡) log |z| is the fundamental solution of the
Laplacian in the plane. Translating and dilating we get

L
✓
1
⇢

(z � p)
◆

= log
1
|z|

⇤

✓
�p �

d�p,⇢
2⇡⇢

◆
, p 2 C, 0 < ⇢,

where �p is the Dirac delta at the point p and d�p,⇢ is arc-length measure on
@B(p, ⇢). Define

⌫ =
1X

n=1

1
n2 4Nn

4NnX

j=1

 

�pnj �
d�pnj ,

p
2 �Nn+n

2⇡
p
2 �Nn+n

!

,
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which is a finite Borel measure because k⌫k 
P1

n=1 2/n2. The logarithmic poten-
tial of ⌫ is

u(z) =
1X

n=1

1
n2 4Nn

4NnX

j=1
L

 
1

p
2 �Nn+n

�
z � pnj

�
!

.

To simplify notation write

Sn(z) =
1
4Nn

4NnX

j=1
L

 
1

p
2 �Nn+n

�
z � pnj

�
!

.

Given a 2 K \ D as before, we have a /2 B(pnj ,
p
2 �Nn+n) for all n � m and all j.

Thus Sn(a) = 0, for all n � m and consequently

u(z) � u(a) =
m�1X

n=1

1
n2

(Sn(z) � Sn(a)) +
1X

n=m

1
n2
Sn(z).

Recall that a 6= pnj , for all n and j . If r > 0 is small enough, then pnj /2 B(a, r),
for n  m � 1 and all j. Therefore

m�1X

n=1

1
n2

(Sn(z) � Sn(a)) ,

is smooth on B(a, r). Consequently the differentiability properties of u at the point
a depend only on

R(z) :=
1X

n=m

1
n2
Sn(z).

Assume that R is differentiable in the weak capacity sense at a. It is a general fact
that then R is Lipschitz in the weak capacity sense at the point a. Since R(a) = 0
this means that

supt>0 t Cap({z 2 B(a, r) : |R(z)| > t})
r Cap(B(a, r))

 Ca, 0 < r < 1/4,

for some constant Ca depending only on a. To disprove the preceding inequality we
take radii of the form

r = rk =
p
2 �Nk , k = 1, 2, . . .

For each k the point a belongs to a square QNk
j of generation Nk . Hence

B
⇣
pkj ,

p
2 �Nk+k

⌘
⇢ B

⇣
a,

p
2 �Nk

⌘
.

Take k � m large enough so that pnj /2 B(a,
p
2 �Nk ), for n  m � 1 and all j.
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Then

R(z) �
1
k2
Sk(z) �

1
k24Nk

L

 
1

p
2 �Nk+k

�
z � pkj

�
!

.

The right hand side of the inequality above is larger than t if and only if

�
�z � pkj

�
� <

p
2 �Nk+k e

�k24Nk t .

Thus

sup
t>0

t Cap
⇣n
z 2 B(a,

p
2 �Nk ) : |R(z)| > t

o⌘
� c sup

t>0

t
k24Nk t + log 1p

2 �Nk+k

= c
1

k24Nk
,

and

sup
1/4>r>0

sup
t>0

t Cap ({z 2 B(a, r) : |R(z)| > t})

r Cap(B(a, r))
� c

1
k24Nk�Nk

log
1
�Nk

= c
M(�Nk )

k2
.

Given k take now Nk so that M(�Nk ) � k3, which is possible because M(r) ! 1
as r ! 0.

6. Proof and sharpness of Theorem 1.6

The proof follows the pattern of that of Theorem 1.5. Following the details of the
argument below should provide a clear explanation of the role of the function  in
(1.15) as a substitute for the function ' in Theorem 1.5.

Let µ be a finite Borel measure and u its logarithmic potential. We assume,
without loss of generality, that µ is positive. Let E stand for the set of points at
which u is not differentiable in the capacity sense. Take a positive finite Borel
measure m with compact support contained in E satisfying the growth condition
m(B(z, r)   (r), z 2 C, 0 < r. If we see that u is differentiable in the capacity
sense at m almost all points, then m has to be identically 0 and hence H (E) = 0.

The Radon-Nikodym decomposition of µ with respect to m has the form µ =
f m + µs , with f 2 L1(m) and µs singular with respect to m. Given a point a set
⌫ = ( f � f (a))m + µs so that µ = ⌫ + f (a)m. At m almost all points a one has

|⌫|(B(a, r))  ⌘a(r) (r), (6.1)
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where ⌘a is a function, possibly depending on a, with ⌘a(r) ! 0 as r ! 0.
We plan to show that the logarithmic potential of ⌫ is differentiable in the ca-
pacity sense at the point a if (6.1) holds. This will complete the proof because
the logarithmic potential of the measure m is of class C1(C). This is a conse-
quence of the fact that its gradient �1/2

R
(w � z)�1 dm(w) is a continuous func-

tion, which in turn follows from the uniform growth condition m(B(z, r)   (r),
z 2 C, 0 < r.

Let us proceed to prove that the logarithmic potential of ⌫ is differentiable in
the capacity sense at the point a if (6.1) holds. If one has |⌫|(B(a, r))  Ca  (r)
for 0 < r with a constant Ca , which may depend on a, then it is easily seen thatR

|w � a|�1 d|⌫|(w) < 1. Hence the principal value p. v.(a� w)/|a� w|2 d⌫(w)
exists. Without loss of generality we can assume ⌫ to be a positive measure. Assume
that a = 0 and set

A =
Z

w

|w|2
d⌫(w),

Qu(z) =
|u(z) � u(0) � hA, zi|

|z|
, z 6= 0,

R" =
Z

|w|>"

w

|w|2
d⌫(w), " > 0,

Eu(z) =
|u(z) � u(0) � hR2|z|, zi|

|z|
, z 6= 0.

Then

sup
t>0

t Cap ({z 2 B(0, r) : Qu(z) > t})
Cap(B(0, r))

 sup
t>0

t Cap ({z 2 B(0, r) : Eu(z) > t})
Cap(B(0, r))

+ sup
|z|<r

|R � R2|z||.

The second term in the right hand side above tends to 0 as r ! 0. To estimate the
first one notes that

Eu(z)  C|z|
Z

|w|>2|z|

d⌫(w)

|w|2
+
1
|z|

Z

|w|<2|z|
log

1
|w � z|

d⌫(w)

+
1
|z|

Z

|w|<2|z|
log

1
|w|

d⌫(w)

⌘ A(z) + B(z) + C(z).
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Set ⌘ = ⌘a for the sake of notational simplicity. Integrating by parts we get for all
positive integers N

A(z)  C|z|

⌫B(0, ⇢)

⇢

�1/4

2|z|
+ C|z|

Z 1/4

2|z|

⌫B(0, ⇢)

⇢3
d⇢

 C|z|k⌫k + C|z|
Z 2|z|N

2|z|

⌘(⇢)

⇢2 log2(⇢)
d⇢

+ C|z|
Z 1/4

2|z|N

⌘(⇢)

⇢2 log2(⇢)
d⇢

 C|z|k⌫k + C
k⌘k1

log2(2|z|N )
+ C

k⌘k1

N
.

Since N is arbitrary we see that
lim
r!0

sup
|z|<r

A(z) = 0.

The term C(z) is estimated similarly via an integration by parts. We obtain

C(z) =
1
|z|


log(

1
⇢

)⌫B(0, ⇢)

�2|z|

0
+
1
|z|

Z 2|z|

0

⌫B(0, ⇢)

⇢
d⇢


k⌫k1

log 1
2|z|

+
1
|z|

Z 2|z|

0

⌘(⇢)

log2(⇢)
d⇢


k⌘k1

log 1
2|z|

+
k⌘k1

log2(2|z|)
,

and so
lim
r!0

sup
|z|<r

C(z) = 0.

For the term B(z) we perform a capacity estimate. First, note that

B(z)  2
Z

|w|<2|z|
log

1
|w � z|

d⌫(w)

|w|
,

and
Z

|w|<2|z|

d⌫(w)

|w|
=


⌫B(0, ⇢)

⇢

�2|z|

0
+
Z 2|z|

0

⌫B(0, ⇢)

⇢2
d⇢


k⌫k1

log2(2|z|)
+
Z 2|z|

0

⌘(⇢)

log2(⇢)

d⇢
⇢


k⌘k1

log2(2|z|)
+

1
log 1

2|z|
sup
⇢<2|z|

⌘(⇢).
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Therefore

sup
t>0

t Cap ({z2 B(0, r) : B(z)> t})
Cap(B(0, r))


1

Cap(B(0, r))

 
k⌘k1

log2(2r)
+

1
log 1

2r
sup
t<2r

⌘(t)

!

C

(
k⌘k1

log 1
2r

+ sup
t<2r

⌘(t)

)

,

which tends to 0 with r. It is worth remarking that only in the last inequality we
used that ⌘(r) tends to 0 with r .

Theorem 1.6 is sharp in the scale of Hausdorff measures, as the next result
shows.

Theorem 6.1. Let 9 : [0,1) ! [0,1), 9(0) = 0, be a continuous (strictly)
increasing function such that

lim sup
r!0

9(2r)
9(r)

< 4, (6.2)

and
M(r) :=

9(r)
 (r)

! 1, as r ! 1.

Then there exists a compact set K with H9(K ) > 0 and a finite Borel measure
whose logarithmic potential is not differentiable in the capacity sense at H9 almost
all points of K .

Therefore there is no condition better than H (E) = 0 on the set E of points
of non differentiability in the capacity sense for the logarithmic potential of a finite
Borel measure. In particular, there exists a finite Borel measure whose logarithmic
potential is not differentiable in the capacity sense on a set of positive H' mea-
sure. Thus the two notions of differentiability in the capacity sense are different
in dimension 2. Also note that the size of the exceptional sets is definitely larger
in dimension 2 than in higher dimensions. See Subsection 2.5 for a discussion of
condition (6.2).

Proof of Theorem 6.1. The proof is similar to that of Theorem 5.5, although a dif-
ficulty appears that requires a new idea. The proof is written to make it accessible
to a reader who has not gone through the proof of Theorem 5.5.

Let K be the Cantor set associated with 9 and let µ be its canonical measure.
We aim at constructing a finite Borel measure ⌫ whose logarithmic potential is not
differentiable in the capacity sense at µ almost all points.

Given a positive integer n take another large positive integer Nn to be deter-
mined later. Given a square QNn

j of generation Nn let Q2Nnj , 1  j  4Nn , the
squares of generation 2Nn contained in QNn

j . Choose a square of generation 2Nn+n
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inside Q2Nnj and let pnj be its center. It is not important what square is chosen; what
matters is that it is a square of generation 2Nn + n. Descending to generation 2Nn
instead of Nn is a first difference with respect to the proof of Theorem 5.5. It will
become apparent later why we need to do so. Set

En =
42Nn[

j=1
B
⇣
pnj ,

p
2 �2Nn+n

⌘
,

Dm =
1[

n=m
En,

and

D =
1\

m=1
Dm .

Clearly µ(En) = 42Nn4�(2Nn+n) = 4�n , and this is the only reason why we have
descended n more generations after 2Nn . Hence µ(Dm) 

P1
n=m 4�n and µ(D) =

0.
Take a 2 K \D. Then a 6= pnj , for all n and j , because p

n
j /2 K . Since a /2 D,

a /2 Dm for some m, and so a /2 B(pnj ,
p
2 �2Nn+n) for all n � m and all j.

We proceed now to define the finite Borel measure whose logarithmic potential
is not differentiable in the capacity sense at all points a 2 K \ D. Set

⌫ =
1X

n=1

1
n2 42Nn

42NnX

j=1

 

�pnj �
d�pnj ,

p
2 �2Nn+n

2⇡
p
2 �2Nn+n

!

,

where �p is the Dirac delta at the point p and d�p,⇢ is the arc length measure on
@B(p, ⇢). Since k⌫k  2

P1
n=1 1/n2, ⌫ is a finite Borel measure. The logarithmic

potential of ⌫ is

u(z) =
1X

n=1

1
n2 42Nn

42NnX

j=1
L

 
1

p
2 �2Nn+n

�
z � pnj

�
!

,

where L is the function in (5.9). To simplify notation write

Sn(z) =
1
42Nn

42NnX

j=1
L

 
1

p
2 �2Nn+n

�
z � pnj

�
!

.

Given a 2 K \ D as before, we have a /2 B(pnj ,
p
2 �2Nn+n) for all n � m and all

j. Thus Sn(a) = 0, for all n � m and consequently

u(z) � u(a) =
m�1X

n=1

1
n2

(Sn(z) � Sn(a)) +
1X

n=m

1
n2
Sn(z).
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Recall that a 6= pnj , for all n and j . If r > 0 is small enough, then pnj /2 B(a, r),
for n  m � 1 and all j. Therefore

m�1X

n=1

1
n2

(Sn(z) � Sn(a))

is smooth on B(a, r). Consequently the differentiability properties of u at the point
a depend only on

R(z) :=
1X

n=m

1
n2
Sn(z).

Assume that R is differentiable in the capacity sense at a. Then R is Lipschitz in
the capacity sense at the point a, as a simple argument shows. Since R(a) = 0 this
means that

supt>0 t Cap
⇣n
z 2 B(a, r) : |R(z)|

|z�a| > t
o⌘

Cap(B(a, r))
 Ca, 0 < r < 1/4,

for some constant Ca depending only on a. To disprove the preceding inequality we
take radii of the form

r = rk =
p
2 �Nk , k = 1, 2, . . .

with k � m large enough so that pnj /2 B(a,
p
2 �Nk ), for n  m � 1 and all

j. For each such k the point a belongs to a square QNk of generation Nk , which
contains 4Nk points pkj . Now we classify the p

k
j 2 QNk according to their distance

to a. Denote by QNk+1 a square of generation Nk + 1 contained in QNk and not
containing a. The square QNk+1 contains 4Nk�1 points pkj . If p

k
j 2 QNk+1 and

z 2 B(pkj ,
p
2 �2Nk+k), then |z � a| < 2�Nk . We construct inductively pairwise

disjoint squares QNk+l , l = 1, 2, ..., Nk , of generation Nk + l, contained in QNk ,
containing 4Nk�l points pkj , and with the property that if p

k
j 2 QNk+l and z 2

B(pkj ,
p
2 �2Nk+k), then |z � a| < 2�Nk+l�1. Since

B
⇣
pkj ,

p
2 �2Nk+k

⌘
⇢ B

⇣
a,

p
2 �Nk

⌘
= B(a, r), pkj 2 QNk ,

and

R(z) �
1
k2
Sk(z) �

1
k242Nk

L

 
1

p
2 �2Nk+k

�
z � pkj

�
!

,
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we get

⇢
z 2 B(a, r) :

R(z)
|z � a|

> t
�

�
Nk[

l=1

[

pkj2Q
Nk+l

(

z 2 B
⇣
pkj ,

p
2 �2Nk+k

⌘
: log

p
2 �2Nk+k
|z � pkj |

> t k2 42Nk2�Nk+l�1

)

=
Nk[

l=1

[

pkj2Q
Nk+l

Bl j ,

where

Bl j = B
⇣
pkj ,

p
2 �2Nk+k e

�t 2 k2 42Nk �Nk+l�1
⌘

, pkj 2 QNk+l .

Lemma 6.2 below yields that if t > Tk for a large positive number Tk , then the balls
Bl j are disjoint and

Cap

0

B
@

Nk[

l=1

[

pkj2Q
Nk+l

Bl j

1

C
A �

1
2

NkX

l=1

X

pkj2Q
Nk+l

Cap
�
Bl j
�
. (6.3)

The proof of Lemma 6.2 will be discussed later. It seems worthwhile to make
a digression now to explain the need to descend to generation 2Nk . Should we
have proceeded as in the proof of Theorem 5.5 we would have descended up to
generation Nk only, which means taking only one term in the union in the left hand
side of (6.3). Thus we would have obtained

supt>0 t Cap
⇣n
z 2 B(a, r) : R(z)

|z�a| > t
o⌘

Cap(B(a, r))

� log
✓
1
r

◆
sup
t>0

t
t2k24Nk�Nk + log 1/

p
2 �Nk+k

� c log
✓
1
�Nk

◆
1

k24Nk�Nk
�

c
k2

M(�Nk )

log 1/�Nk
,

which does not conclude.
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We proceed to complete the proof using Lemma 6.2. We have

sup
t>0

t Cap
✓⇢

z 2 B(a, r) :
R(z)

|z � a|
> t

�◆

� c sup
t>Tk

NkX

l=1

X

pkj2Q
Nk+l

t
t 2 k2 42Nk �Nk+l�1 + log 1p

2 �2Nk+k

� c sup
t>Tk

NkX

l=1

t 4Nk�l

t 2 k2 42Nk �Nk+l�1 + log 1p
2 �2Nk+k

=
c
k2

NkX

l=1

4Nk�l

42Nk �Nk+l�1

=
c
k2

NkX

l=1

1
4Nk+l�1 �Nk+l�1

=
c
k2

NkX

l=1

M(�Nk+l�1)

log2
⇣

1
�Nk+l�1

⌘

�
c
k2

inf
N�Nk

M(�N )
NkX

l=1

1

log2
⇣

1
�Nk+l�1

⌘ ,

and so, recalling that r = rk =
p
2�Nk ,

supt>0 t Cap
⇣n
z 2 B(a, r) : R(z)

|z�a| > t
o⌘

Cap(B(a, r))

�
c
k2

inf
N�Nk

M(�N ) log
✓
1
�Nk

◆ NkX

l=1

1

log2
⇣

1
�Nk+l�1

⌘ .

(6.4)

At this point it is convenient to distinguish two cases. The first is that

lim
n!1

9(�n)

�n
= 0. (6.5)

Let us check that then, for some positive integer n0,

n log 2  log
1
�n

 n log 4, n � n0. (6.6)

The first inequality follows from the definition of Cantor sets which gives �n <
2�n for all n. The second follows from (6.5), which yields 4n�n � 1, n � n0.
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Introducing (6.6) in (6.4) one gets

supt>0 t Cap
⇣n
z 2 B(a, r) : R(z)

|z�a| > t
o⌘

Cap(B(a, r))
�

c
k2

inf
N�Nk

M(�N ),

and now it only remains to choose Nk large enough so that

inf
N�Nk

M(�N ) � k3.

If (6.5) is not satisfied then for some � > 0 and for infinitely many indexes n one
has9(�n)/�n � � > 0.Given x in the Cantor set K let Qn the square of generation
n containing x . Then for the measure µ associated with K we have

µ
�
B
�
x,

p
2 �n

��

p
2 �n

�
µ(Qn)
p
2 �n

=
1

p
2
9(�n)

�n
�

�
p
2
,

which says that µ has no vanishing linear density at any point of K . Thus the loga-
rithmic potential ofµ is not differentiable in the capacity sense at any point of K and
we are done in this case without resorting to any complicated measure like ⌫.

We now turn to the discussion of inequality (6.3).

Lemma 6.2. Let Bj = B(p j , r j ), 1  j  N , a family of disjoint discs of center
p j and radius r j < 1. Let � = min

j 6=k
dist(Bj , Bk) and assume that 0 < � < 1. Set

� = max
j
r j . If �  �N , then

Cap

 
N[

j=1
Bj

!

�
1
2

NX

j=1
Cap(Bj ). (6.7)

To apply Lemma 6.2 to (6.3) note that the radius of the disc Bl j is

p
2 �2Nk+k e

�t 2 k2 42Nk �Nk+l�1  e�t 4
2Nk �2Nk ,

and the distance between two such discs is larger than �2Nk�1�2�2 Nk > 0. For any
fix k the number of discs Bl j is less than 4Nk . Hence the hypothesis of Lemma 6.2
are satisfied if

t � Tk :=
4Nk

42Nk �2Nk
log

1
�2Nk�1 � 2�2 Nk

,

which is the large number Tk used in the proof of Theorem 6.1.
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Proof of Lemma 6.2. The normalized equilibrium potential of the disc Bj =
B(p j , r j ) is

u j =
1

log 1
r j

log
1
|z|

⇤
d� j
2⇡r j

,

where � j stands for the arc-length measure on @Bj . Then

u j (z) =

8
><

>:

1
log 1

r j

log
1

|z � p j |
if |z � p j | � r j ,

1 if |z � p j |  r j .

If z 2 Bk, k 6= j then

u j (z) 
log 1�
log 1�

,

and so

NX

j=1
u j (z)  1+ (N � 1)

log 1�
log 1�

 1+
N � 1
N

 2, z 2 C,

which yields (6.7) by definition of Wiener capacity (2.1).

7. Second order differentiability

Proof of Theorem 1.8, part (i). Assume that d � 3. Then the first order derivatives
of 1/|x |d�2 in the distributions sense are the locally integrable functions

@i
1

|x |d�2 = �(d � 2)
xi

|x |d�2 , 1  i  d.

The second order derivatives in the distributions sense are given by principal value
distributions and the Dirac delta �0 at the origin via the identities

@i j
1

|x |d�2 = d(d � 2) p. v.
xi x j

|x |d+2 , i 6= j,

@i i
1

|x |d�2 = �(d � 2) p. v.
|x |2 � d x2i

|x |d+2 + ad �0,

where ad = �(d�2)!d�1/d and !d�1 is the (d�1)-dimensional surface measure
of the unit sphere in Rd .
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Assume that ' is a C1 function with compact support. Then u = 1/|x |d�2 ⇤'
is a C1 function on Rd and its second order partial derivatives are

@i j u(x)=d(d � 2)
✓
p. v.

xi x j
|x |d+2 ⇤ '

◆
(x), i 6= j, x 2 Rd ,

@i i u(x)=�(d � 2)

 

p. v.
|x |2 � d x2i

|x |d+2 ⇤ '

!

(x) + ad '(x), 1  i  d, x 2 Rd .

In particular, the principal value integrals exist at each point x 2 Rd .
Given a finite Borel measureµ inRd , there is a way of defining first and second

derivatives of the potential u = 1/|x |d�2 ⇤ µ at a fixed point a 2 Rd . For the first
order derivatives we only have to require that a is a Lebesgue point of the locally
integrable functions

@i u = �(d � 2)
xi

|x |d�2 ⇤ µ, 1  i  d.

For the second order derivatives

@i j u = d(d � 2)
✓
p. v.

xi x j
|x |d+2 ⇤ µ

◆
, i 6= j, x 2 Rd ,

@i i u = �(d � 2)

 

p. v.
|x |2 � d x2i

|x |d+2 ⇤ µ

!

+ ad µ, 1  i  d,

(7.1)

it is natural to require existence at the point a of all the above principal value inte-
grals and of the limit

µ̃(a) := lim
r!0

µ(B(a, r))
rd

. (7.2)

We know, by Lebesgue differentiation theorem and by standard Calderón-Zygmund
theory, that the stated conditions are satisfied for almost all points a with respect to
d dimensional Lebesgue measure dx . Then the prospective second order Taylor
polynomial of u at a

u(a) +
dX

i=1
@i u(a)(xi � ai ) +

1
2

dX

i, j=1
@i j u(a)(xi � ai )(x j � a j ) (7.3)

is defined at almost all points.
Now we make a convenient reduction. To study differentiability properties of

u at a fixed point a it is enough to replace µ by �Bµ, with B = B(a, 1), because
the potentials of µ and �Bµ differ by a smooth function on B. Let ' 2 C1 be a
function with compact support in the ball B(a, 2) taking the value 1 on B. Then by
the Radon-Nikodym decomposition there is a function f in L1(B) such that

µ = ( f � f (a))' dx + µs + f (a)' dx,
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where µs is the singular part of µ. Since the potential of 'dx is smooth on Rd , we
can assume that µ is a positive measure which satisfies

µ̃(a) := lim
r!0

µ(B(a, r))
rd

= 0.

One of the effects of this assumption is that in the definition of the second order
derivatives @i i u at the point a one can avoid the second term in (7.1), which would
be the limit (7.2).

We have to show (1.17) where D(x) is as in (1.16) with the second order Taylor
polynomial as in (7.3). The structure of the proof is very similar to that of the
sufficiency part in Theorem 1.3, so we only outline the argument. Take a = 0 for
simplicity. First we replace the principal value integrals by truncations at level ",
where " = 2|x |. The difference is a term which tends to 0 with ". We split the
domain of integration of the integral into two pieces, one corresponding to |y| > ".
In that piece one estimates the remainder of the Taylor expansion up to order 2 in
terms of third derivatives. The upper bound one gets is

C "
Z

|y|>"

dµ(y)
|y|d+1 .

This term is estimated by integration by parts introducing a parameter N as is (3.1).
It remains to estimate the integral over |y| < " with respect to µ of

1
|x |2

�
�
�
�

1
|x � y|d�2 �

1
|y|d�2 � (d � 2)

⌧
y

|y|d
, x
���
�
� ,

which is not greater than a constant times the sum of the 3 terms

1
"2

1
|x � y|d�2 +

1
"2

1
|y|d�2 +

1
"

1
|y|d�1 .

The integral over |y| < " with respect to dµ of the second and third terms above is
less than or equal to

1
"

Z

|y|<"

1
|y|d�1 dµ(y),

which is estimated by an integration by parts as in (3.1). The upper bound one gets
is

C sup
0<⇢<"

µ(B(0, ⇢))

⇢d
! 0, as " ! 0.

One is left with
F(x) =

1
"2

Z

|y|<"

1
|x � y|d�2 dµ(y).
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If x 2 B(0, r) then

F(x)  P
✓
�B(0,2r)(y)

dµ(y)
|y|2

◆
(x),

where P is the Newtonian potential of the indicated measure, as in (1.1). The total
mass of the measure �B(0,2r)(y) dµ(y)/|y|2 is estimated by an integration by parts
and one gets the upper bound

sup
0<⇢<r

µ(B(0, ⇢))

⇢d
rd�2.

Therefore

sup
t>0

t Cap ({x 2 B(0, r) : F(x) > t})
Cap(B(0, r))

 C sup
0<⇢<r

µ(B(0, ⇢))

⇢d
,

which completes the proof of Theorem 1.8, part (i).

Proof of Theorem 1.8, part (ii). The construction is practically that of Calderón in
[4], so that we will briefly outline the argument. It is enough to construct a finite
Borel measure in the unit square Q = [0, 1] ⇥ [0, 1] whose logarithmic potential is
not second order differentiable in the weak capacity sense at almost all points of the
square. If this measure has been constructed, then one covers the plane by disjoint
dyadic squares Qn , n = 0, 1, . . . of side length 1 and one sets µ =

P1
n=0 1/2n µn ,

where µn is the translation into Qn of the measure constructed in the unit square.
Divide the unit square into 4n2 disjoint squares of side length 2�n2 . The ver-

tices of those squares not lying in the boundary of the unit square are of the form
(i2�n2, j2�n2) with 1  i, j  (2n2 � 1). There are Nn := (2n2 � 1)2  4n such
vertices. Denote them by pnk , where the index k varies from 1 to Nn. Let Bnk be
the ball with center pnk and radius 1/(n2n

2
). Set

En =
Nn[

k=1
Bnk, Dm =

1[

n=m
En, D =

1\

m=1
Dm,

so that |En|  Nn/(n24n
2
)  1/n2. Hence |Dm | ! 0 as m ! 1 and |D| = 0.

Let L be the function in (5.9). Define

Sn(z) =
1
Nn

NnX

k=1
L
⇣
n2n

2
(z � pnk)

⌘
, z 2 C,

u(z) =
1X

n=1

1
n3/2

Sn(z), z 2 C.

Then u is the logarithmic potential of a finite Borel measure supported in the unit
square.
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We claim that u is not second order differentiable in the weak capacity sense at
any point of Q \ D. Take a 2 Q \ D, so that a 2 Q \ Dm for some positive integer
m. Thus a 2 Q, a /2 Bnk, n � m, 1  k  Nn. We consider radii of the form
r = rq = 1/2q2 . If q is large enough then r is small enough so that the ball B(a, r)
does not contain any pnk , 1  n  m � 1, 1  k  Nn . Then

u(z) � u(a) � hru(a), z � ai

=
m�1X

n=1

1
n3/2

(Sn(z) � Sn(a) � hrSn(a), z � ai) +
1X

n=m

1
n3/2

Sn(z),

and the first term in the right-hand side is smooth on B(a, r). Hence the differen-
tiability properties of u are exactly those of

R(z) :=
1X

n=m

1
n3/2

Sn(z).

Assume that R is second order differentiable in the weak capacity sense at a. Then

supt>0 t Cap({z 2 B(a, r) : |R(z)| > t})
r2 Cap(B(a, r))

 Ca, 0 < r < 1/4, (7.4)

for some constant Ca depending only on a. To disprove (7.4) we note that, since
a 2 Q, there is a point pqk 2 B(a, 1/2q2). Moreover |pqk � a| < (1/

p
2)r, r =

1/2q2 .
If q � m, then

R(z) �
1

q3/2
Sq(z) �

1
q3/2Nq

L
⇣
q2q

2
(z � pqk)

⌘
.

If q is large enough the set {z 2 B(a, r) : |R(z)| > t} contains the ball of center
pqk and radius 1/(etq

3/24q2q2q2). Thus the left-hand side of (7.4) is not less than a
constant times

q24q
2
sup
t>0

t
q3/24q2 t + log q + q2 log 2

= q24q
2 1
q3/24q2

= q1/2,

which shows that (7.4) cannot hold.
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8. The equilibrium measure

For each compact E subset of Rd , d � 2, there exists a unique probability mea-
sure µ supported on E of minimal energy. In other words, the infimum in (2.3) is
attained by µ. This probability measure is called the equilibrium measure and it
can be shown that its potential (the equilibrium potential) is constant on E except
for a set of zero Newtonian capacity (Wiener capacity for d = 2). In this sec-
tion we present a proof of the following result, due to Oksendal in the plane; see
[12, Corollary 1.5] and [13]. An alternative proof which works in higher dimensions
for harmonic measure is in [7, Theorem 10].

Theorem 8.1. The equilibrium measure of a compact subset of Rd is singular with
respect to d-dimensional Lebesgue measure.

Proof in Rd , d � 3. We plan to apply Theorem 1.8.
Set u = 1

|x |d�2 ⇤µ. By Theorem 1.8 we have (1.17) at almost all points a 2 Rd .
Set ru(a) = (A1, . . . , Ad) and let B stand for the symmetric d ⇥ d matrix with
entries Bi j . Here the Ai and the Bi j are as in (1.16). Set µ = f dx + µs , with
f 2 L1(dx) and µs singular with respect to dx . Thus, by (7.1) and (7.2),

dX

i=1
Bii = d ad f (a). (8.1)

Lemma 8.2. The set of points a 2 E where u is second order differentiable in
the capacity sense and ru(a) 6= 0 is a countable union of sets of finite (d � 1)-
dimensional Hausdorff measure.

Proof. Since the equilibrium potential u is constant Cap-a.e. on E we have, by
Theorem 1.8,

lim
r!0

1
Cap B(a, r)

sup
t>0

t

⇥Cap
✓⇢
x 2 B(a, r) \ E :

|hru(a), x�ai+hB(x�a), x � ai|
|x � a|2

> t
�◆

=0,
(8.2)

for almost all points a 2 E . Assume that a = 0, ru(0) 6= 0 and, without loss of
generality, that ru(0) = �(0, . . . , 0, 1), with � > 0. Given � > 0 consider the cone

K� =

⇢
x 2 Rd\{0} : �

|xd |
|x |

> �

�
. (8.3)

If x 2 B(0, r) \ E \ K� and r is small enough we have, for some positive constant
C ,

|hru(0), xi + hBx, xi|
|x |2

� �
|xd |
|x |2

� C �
�

|x |
� C �

�/2
|x |

.
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Taking t = 1 and r < �/2 we get

lim
r!0

Cap(B(0, r) \ E \ K�)
rd�2 = 0.

Since one has the general inequality Cap(F)
1

d�2 � cd Hd�1
1 (F)

1
d�1 relating ca-

pacity and (d � 1)-dimensional Hausdorff content of compact sets F [1, Corollary
5.1.14], we conclude that

lim
r!0

Hd�1
1 (B(0, r) \ E \ K�)

rd�1 = 0,

which means that the hyperplane xd = 0 is an approximate tangent hyperplane
to E at 0. The set of points of E where there exists such a tangent hyperplane is a
countable union of sets with finite (d� 1)-dimensional Hausdorff measure [9, page
214, 15.22].

To continue the proof recall that

Cap(F)
1

d�2 � cd |F |
1
d ,

where |F | denotes the d-dimensional Lebesgue measure of the compact set F .
Therefore (8.2) yields, at almost all points a 2 E and for all t > 0,

lim
r!0

1
|B(a, r)|

�
�
�
�

⇢
x 2 B(a, r) \ E :

|hB(x � a), x � ai|
|x � a|2

> t
���
�
� = 0.

Set a = 0 and

U = Ut =

⇢
x 2 Rd\{0} :

|hBx, xi|
|x |2

> t
�

.

Then

|B(0, 1) \U |

|B(0, 1)|
=

|B(0, r) \U |

|B(0, r)|
=

|B(0, r) \U \ E |

|B(0, r)|
+

|B(0, r) \U \ Ec|
|B(0, r)|


|B(0, r) \U \ E |

|B(0, r)|
+

|B(0, r) \ Ec|
|B(0, r)|

.

If 0 is a point of density of E we obtain, letting r ! 0, that |U | = 0, which means,
U being an open set, that U = Ut = ; for all t . In other words, B ⌘ 0 and thus,
appealing to (8.1), f (a) = 0, for almost all a 2 E .

Proof in R2. We plan to apply Theorem 1.6. Recall that in the plane when dealing
with capacity we tacitly assume that all our sets are contained in the disc centered
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at the origin and of radius 1/2. Since the equilibrium potential is constant Cap-a.e.
on E we have for some real numbers A1 and A2

lim
r!0

1
Cap B(a, r)

sup
t>0

t Cap

0

B
B
B
@

8
>>><

>>>:

x 2 B(a, r) \ E :

�
�
�
�
2P

i=1
Ai (xi � ai )

�
�
�
�

|x � a|
> t

9
>>>=

>>>;

1

C
C
C
A

= 0

at H -almost all points a 2 E , hence at almost all points a 2 E with respect to
area. Set ru(a) = (A1, A2). By the well-known inequality [1, Corollary 5.1.14]

Cap(F) � C
1

log
�
1/H11(F)

� ,

valid for a constant C independent of the compact set F , we get, for each t > 0,

lim
r!0

1
r
H11

✓⇢
x 2 B(a, r) \ E :

|hru(a), x � ai|
|x � a|

> t
�◆

= 0.

Assume that ru(a) 6= 0, set a = 0 and, without loss of generality, ru(0) =
�(0, 1), � > 0. Then we obtain, with � = t ,

lim
r!0

H11(B(a, r) \ E \ K�)
r

= 0,

where K� is the cone (8.3). Hence the line x2 = 0 is an approximate tangent line
for E at 0. Therefore the set of points in E where ru(a) is non-zero is a countable
union of sets of finite length. In particular ru(a) = 0, for almost all a 2 E and

Cµ(a) =

✓
1
z

⇤ µ

◆
(a) = 0, a.e. on E .

We can now resort to the proof of Theorem 1 in [18] to conclude that the abso-
lutely continuous part of µ vanishes. Indeed in [18] one takes µ absolutely contin-
uous with respect to dx , but a minor variation of the argument applies to our situa-
tion.
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