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The Dirichlet problem for a complex Hessian equation
on compact Hermitian manifolds with boundary

DONGWEI GU AND NGOC CUONG NGUYEN

Abstract. We solve the classical Dirichlet problem for a general complex Hes-
sian equation on a small ball in Cn . Then, we show that there is a continuous
solution, in pluripotential theory sense, to the Dirichlet problem on compact Her-
mitian manifolds with boundary that equipped locally conformal Kähler metrics,
provided a subsolution.

Mathematics Subject Classification (2010): 53C55 (primary); 35J96, 32U40
(secondary).

1. Introduction

Let (M,↵) be a compact Hermitian manifold with smooth boundary @M , of com-
plex dimension n. Let us denote M := M \ @M . Let 1  m  n be an integer. Fix
a real (1, 1)-form � on M . We have given a right-hand side f 2 C1(M) positive
and a smooth boundary data ' 2 C1(@M). The classical Dirichlet problem for the
complex Hessian equation is to find a real-valued function u 2 C1(M):

(� + ddcu)m ^ ↵n�m = f ↵n,
u = ' on @M,

(1.1)

where u is subjected to point wise inequalities

(� + ddcu)k ^ ↵n�k > 0, k = 1, . . . ,m. (1.2)

We first solve the equation in a small ball.

Theorem 1.1. Let M = B(z, �) b B(0, 1) be a Euclidean ball of radius � in
the unit ball B(0, 1) ⇢ Cn . Assume that �,↵ are smooth on B(0, 1). Then, the
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classical Dirichlet problem (1.1) is uniquely solvable for � small enough, which
depends only on �,↵.

A C2 real-valued function satisfying inequalities (1.2) is called (�,m) � ↵-
subharmonic. These inequalities can be generalised to non-smooth functions to
obtain the class of (�,m) � ↵-subharmonic functions on M . Locally, the convolu-
tion of a function in this class with a smooth kernel, in general, will not belong to
this class again. However, using the theorem above and an adapted potential theory,
we prove the approximation property.

Corollary 1.2. Any (�,m)�↵-subharmonic function on M is locally approximated
by a decreasing sequence of smooth (�,m) � ↵-subharmonic functions.

Following Bedford-Taylor [1–3] and Ko lodziej [38–40], the two results above allow
us to use Perron’s envelope together with pluripotential theory techniques, adapted
to this setting, to study weak solutions to this equation with the continuous right-
hand-sides. A Hermitian metric ↵ is called a locally conformal Kähler metric on M
if at every given point on M , there exist a local chart � and a smooth real-valued
function G such that eG↵ is Kähler on �. This class of metric is strictly larger than
the Kähler one, and not every Hermitian metric is locally conformal Käher (see,
e.g., [9]). Our main result is:

Theorem 1.3. Assume that ↵ is locally conformal Kähler. Let 0  f 2 C0(M) and
' 2 C0(@M). Assume that there is aC2-subsolution ⇢, i.e., ⇢ satisfying inequalities
(1.2) and

(� + ddc⇢)m ^ ↵n�m � f ↵n in M, ⇢ = ' on @M.

Then, there exists a continuous solution to the Dirichlet problem (1.1) in pluripo-
tential theory sense.

When m = n we need not assume ↵ is locally conformal Kähler. The Dirichlet
problem for the Monge-Ampère equation on compact Hermitian manifolds with
boundary has been studied extensively, in smooth category, in recent years by
Cherrier-Hanani [15, 16], Guan-Li [28] and Guan-Sun [29]. Our theorem gener-
alises the result in [28] for continuous datum.

When 1 < m < n and ↵ = ddc|z|2 is the Euclidean metric, the Dirichlet
problem for the complex Hessian equation in a domain in Cn has been studied ex-
tensively by many authors [5, 14, 18, 45, 48, 50, 54]. To our best knowledge the
classical Dirichlet problem (1.1) on a compact Hermitian (or Kähler) manifold with
boundary still remains open. The difficulty lies in the C1-estimate for a general
Hermitian metric ↵. Here we only obtain such an estimate in a small ball (Theo-
rem 1.1). Moreover, in our approach, the locally conformal Kähler assumption of ↵
is needed to define the complex Hessian operator of bounded functions (Section 3).

Motivations to study the Dirichlet problem for such equations come from re-
cent developments of fully non-linear elliptic equations on compact complex mani-
folds. First, it is the natural problem after the complex Hessian equation was solved
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by Dinew-Ko lodziej [19] on compact Kähler manifolds, and by Székelyhidi [62]
and Zhang [69] on compact Hermitian manifolds. Indeed, such a question is raised
in [62]. Second, on compact Hermitian manifolds, it is strongly related to the ele-
mentary symmetric positive cone with which several types of equations associated
were studied by Székelyhidi-Tosatti-Weinkove [63], Tosatti-Weinkove [65,66]. Our
results may provide some tools to study these cones. In the case when ↵ is Kähler
(� may be not), the Hessian type equations related to a Strominger system, which
generalised Fu-Yau equations [24], have been studied recently by Phong-Picard-
Zhang [56–58]. Lastly, the viscosity solutions of fully nonlinear elliptic equations
on Riemannian and Hermitian manifolds have been also investigated by Harvey and
Lawson [32,33] in a more general framework, and the existence of continuous solu-
tions was proved under additional assumptions on the relation of the group structure
of manifolds and given equations.

Organisation. In Section 2 we give definitions for generalised m-subharmonic
functions and their basic properties. Assuming Theorem 1.1, in Section 3 we de-
velop “pluripotential theory” for corresponding generalised m-subharmonic func-
tions to the equation. This enables us to prove Corollary 1.2. Section 4 is devoted
to study weak solutions to the Dirichlet problem in a small Euclidean ball. The-
orem 1.3 is proved in Subsection 4.2. Finally, in Sections 5, 6, 7, 8 we prove
Theorem 1.1 independent of the other sections. The appendix is given in Section 9.

ACKNOWLEDGEMENTS. We are grateful to S lawomir Ko lodziej for many valuable
comments, which help to improve significantly the exposition of the paper. We also
thank S lawomir Dinew who has read the draft version of our paper and pointed out
some mistakes. Furthermore, we would like to thank Blaine Lawson for bringing
our attention to results in [32–34]. Part of this work was written during the visit of
the second author at Tsinghua Sanya International Mathematics Forum in January
2016. He would like to thank the organisers for the invitation and the members of
the institute for their hospitality. Lastly, we would like to thank the referee for the
helpful comments.

2. Generalised m-subharmonic functions

Fix a Hermitian metric ↵ =
p

�1↵i j̄ dzi ^ dz̄ j on a bounded open set � in Cn .
Consider another real (1, 1)-form � =

p
�1�i j̄ dzi ^ dz̄ j .

A C2 function u on � is called ↵-subharmonic if

1↵u(z) =
X

↵ j̄ i (z)
@2u
@zi@ z̄ j

(z) � 0, (2.1)
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where ↵ j̄ i is the inverse of ↵i j̄ . We can rewrite it simply in term of (n, n)-positive
forms

ddcu ^ ↵n�1 � 0, where ddc =

p
�1
⇡

@@̄.

This form has the advantage that one can generalise to non-smooth functions and
possibly define higher powers of the wedge product of ddcu (see Remark 2.5). We
start with the following definition which is adapted from subharmonic functions.

Definition 2.1. A function u : � ! [�1,+1[ is called ↵-subharmonic if

(a) u is upper semicontinuous and u 2 L1loc(�);
(b) for every relatively compact open set D b � and every h 2 C0(D) and1↵h =

0 in D, if h � u on @D, then h � u on D.

Remark 2.2. Comparing to subharmonic functions we have that:

(1) If an upper semicontinuous u satisfies (b), then by Harvey-Lawson [31, Theo-
rem 9.3(A)] it follows that either u ⌘ �1 or u 2 L1loc(�);

(2) The ↵-subharmonicity for continuous function u is equivalent to the inequality
1↵u � 0 in the distributional sense, a detailed statement of this fact will be
given in Lemma 9.10 (appendix).

We shall define (�,m)�↵-subharmonicity for non-smooth functions. Let us denote

0m = {� = (�1, . . . , �n) 2 Rn : S1(�) > 0, . . . , Sm(�) > 0}.

The positive cone 0m(↵) associated with the metric ↵ is defined as follows.

0m(↵) =
n
� real (1, 1) � form: � k ^ ↵n�k > 0 for every k = 1, . . . ,m

o
. (2.2)

In other words, in the orthonormal coordinate such that ↵ =
P

i
p

�1dzi ^ dz̄i at a
given point in�, and � =

P
i �i

p
�1dzi ^dz̄i also diagonalised at this point, then

� 2 0m(↵) if (�1, . . . , �n) 2 0m .

Definition 2.3. A function u : � ! [�1,+1[ is called m � ↵-subharmonic if u
is ↵̃-subharmonic for any ↵̃ of the form ↵̃n�1 = �1 ^ · · · ^ �m�1 ^ ↵n�m, where
�1, . . . , �m�1 2 0m(↵).

Here, the metric ↵̃ is uniquely defined thanks to a result of Michelsohn [52]. By a
simple consideration we have a generalisation

Definition 2.4. A function u : � ! [�1,+1[ is called (�,m)�↵-subharmonic
if u + ⇢ is ↵̃-subharmonic for any ↵̃ of the form ↵̃n�1 = �1 ^ · · · ^ �m�1 ^ ↵n�m,
where �1, . . . , �m�1 2 0m(↵), and the smooth function ⇢ is defined, up to a con-
stant, by the equation ddc⇢ ^ ↵̃n�1 = � ^ ↵̃n�1.
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Notice that when � ⌘ 0, Definition 2.4 coincides with Definition 2.3. Thanks to
Lemma 9.10 in Appendix, we get that for a (�,m) � ↵-subharmonic function u,

(� + ddcu) ^ �1 ^ · · · ^ �m�1 ^ ↵n�m � 0, (2.3)

for any collection �i 2 0m(↵), in the weak sense of currents. We denote the set of
all (�,m) � ↵-subharmonic functions in � by

SH�,m(↵,�) or SH�,m(↵)

(for short) if the considered set is clear from the context.

Remark 2.5. (1) For a C2 function u the inequality (2.3) is equivalent to the in-
equalities

�
� + ddcu

�k
^ ↵n�k � 0 for k = 1, . . . ,m. (2.4)

This fact can be seen as follows: for any real (1, 1)-form ⌧ 2 0m(↵) and 1  k  m,

⌧ k ^ ↵n�k

↵n
=

 

inf
�

(
⌧ ^ � k�1 ^ ↵n�k

↵n

)!k
, (2.5)

where � is taken such that � 2 0m(↵) and � k ^ ↵n�k/↵n = 1. In other words,
u 2 SH�,m(↵,�) if and only if � + ddcu 2 0m(↵) at any given point in �.
(2) There are other possible definitions for m � ↵-subharmonic functions. The first
one is suggested by B locki [5] and the second one is given by Lu [49, Definition
2.3] in a more general setting. All definitions are equivalent in the case of m-
subharmonic functions, i.e., ↵ = ddc|z|2. Later on, by Lemma 9.17, we will find
that our definition is equivalent to the one in [49].

We list here some basic properties of (�,m) � ↵-subharmonic functions.

Proposition 2.6. Let � be a bounded open set in Cn .

(a) If u1 � u2 � · · · is a decreasing sequence of (�,m) � ↵-subharmonic func-
tions, then u := lim j!1 u j is either (�,m) � ↵-subharmonic or ⌘ �1;

(b) If u, v belong to SH�,m(↵), then so does max{u, v};
(c) Let {u↵}↵2I ⇢ SH�,m(↵) be a family locally uniformly bounded above. Put

u(z) := sup↵ u↵(z). Then, the upper semicontinuous regularisation u⇤ is
(�,m) � ↵-subharmonic.

Proof. It is enought to verify ↵̃-subharmonicity for every ↵̃n�1 = �1^· · ·^�m�1^↵
with �i 2 0m(↵). Once ↵̃ is fixed the proof follows from appendix (Proposition 9.3,
Corollary 9.16).



1194 DONGWEI GU AND NGOC CUONG NGUYEN

3. Potential estimates in a small ball

In this section we develop potential theory for (�,m) � ↵-subharmonic functions
in a Euclidean ball, where ↵ is conformal to a Kähler metric on this ball. To do this
we fix a ball B := B(z, r) b � with small radius, where � is a bounded open set
in Cn . We also fix a smooth function G : B ! R such that ! := eG↵ is Kähler
metric, i.e.,

d(eG↵) = 0 on B. (3.1)
Notice that by Definition 2.4 we have SH�,m(↵) ⌘ SH�,m(!) as 0m(↵) ⌘ 0m(!).

First, we will work with an apparently smaller class of functions.
Definition 3.1. Let v be a (�,m) � ↵-subharmonic function in a neighborhood
of B. v is said to belong to A if there exists a sequence of smooth (�,m) � ↵-
subharmonic functions v j 2 C1(B) decreasing point-wise to v in B as j goes
to1.
For simplicity we also assume in this section that for every z 2 �,

�(z) 2 0m(↵) (3.2)

(otherwise we replace � by �̃ := � + Cddc⇢ for a strictly plurisubharmonic func-
tion ⇢ in � and C > 0 large.) Since B is compact, there exists 0 < c0  1,
depending on �,↵, B, such that

� � c0↵ 2 0m(↵).

Throughout the paper we often write

�u := � + ddcu for u 2 SH�,m(↵).

3.1. Hessian operators

According to the results in [43], for any v1, . . . , vm 2 A\C0(B) the wedge product

�v1 ^ · · · ^ �vm ^ ↵n�m

is a well defined positive Radon measure for a general Hermitian metric ↵. How-
ever, to define the wedge product for vi 2 A \ L1(B) we will need the Kähler
property of ! = eG↵ in (3.1).

Following ideas of Bedford-Taylor [2], by a simple modification, we can define
the wedge product for vi 2 A\ L1(B) as follows. Fix a strictly plurisubharmonic
function ' in a neighborhood of B such that

⌧ := ddc' � � > 0.

Let us denotewi := vi+'. Thenwi ism�!-subharmonic and bounded in B, which
is also in the classA. Since ! is Kähler, we define inductively for 1  k  m,

ddcwk ^ · · ·^ddcw1^!n�m := ddc
�
wkddcwk�1^ · · ·^ddcw1^!n�m

�
. (3.3)
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The resulting wedge product is a positive (n � m + k, n � m + k)-current. Then,
one puts

ddcwk ^ · · · ^ ddcw1 ^ ↵n�m := e(m�n)Gddcwk ^ · · · ^ ddcw1 ^ !n�m . (3.4)

We see that local properties that hold for a positive current on the right-hand side
will be preserved to the positive currents on the left-hand side. Finally, using a
formal expansion, we set

�v1 ^ · · · ^ �vm ^ ↵n�m

:=
X

{i1,...,ik}⇢{1,...,m}

(�1)n�kddcwi1 ^ · · · ^ ddcwik ^ ↵n�m ^ ⌧ n�k . (3.5)

This is an honest equality in the case when v0
i s are smooth functions. The right-hand

side still makes sense when v0
i s are only bounded, by (3.3) and (3.4). Thus, we get

the wedge product on the left-hand side is a well-defined (n, n)-positive current.
We also observe that equation (3.5) does not depend on the choice of a strictly

plurisubharmonic function ' satisfying ddc' � � > 0. Moreover, let T = �v1 ^
· · · ^ �vk ^ ↵n�m for vi 2 A \ L1(B) and w 2 A \ L1(B). Then, we have

(� + ddcw) ^ T = � ^ T + ddcw ^ T .

In other words, the definition of the wedge product obeys the linearity as in the
smooth case.
Remark 3.2. If we do not assume d↵ = 0 (or d(eG↵) = 0 for some function G),
then in the inductive definition we cannot get rid of the extra terms, e.g.,

ddcvk ^ · · · ^ ddcv1 ^ ddc↵n�m .

As ddcvi is not (1, 1)-positive current, we do not know how to define the wedge
product for bounded functions vi in A once the power of the base ↵ is less than
n � m. It is worth to mention that if v0

i s are continuous and belong to A, then we
can use the uniform convergence of potentials to define wedge product as in [43].
As in [43] the Chern-Levine-Nirenberg (CLN) inequalities are proved quickly in
the present setting.

Lemma 3.3. Let u1, . . . , um 2 A \ L1(B). Let K b B be a compact set. Then,
Z

K
�u1 ^ · · · ^ �um ^ ↵n�m  C,

where C depends on ↵, K , Bku1kL1(B), . . . , kumkL1(B).

Proof. Since ! = eG↵ is Kähler and G is bounded on B,
Z

K
�u1 ^ · · · ^ �um ^ ↵n�m  e(n�m) supB |G|

Z

K
�u1 ^ · · · ^ �um ^ !n�m .

Hence, the inequality follows from formulas (3.4), (3.5) and the classical argument
by integration by parts (see [43, Proposition 2.9]).
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The following Bedford-Taylor convergence theorems are crucial in our approach.

Theorem 3.4. Let {u j1} j�1, . . . , {u
j
m} j�1 ⇢ A \ L1(B) be decreasing (or in-

creasing) sequences which converge point-wise to u1, . . . , um 2 A \ L1(B), re-
spectively. Then, the sequence of positive measures

⇣
� + ddcu j1

⌘
^ · · · ^

⇣
� + ddcu jm

⌘
^ ↵n�m

converges weakly to the positive measure
�
� + ddcu1

�
^ · · · ^

�
� + ddcum

�
^ ↵n�m

as j ! 1.

Proof. Recall that ! := eG↵ is a Kähler form on B. By definitions (3.4) and (3.5)
it is enough to show that if decreasing sequences of bounded m � !-suharmonic
functions {v j1 } j�1, . . . , {v

j
m} j�1 converge to boundedm�!-subharmonic functions

v1, . . . , vm , respectively, then the sequence of (n, n)-positive currents ddcv
j
1^ · · ·^

ddcv jm ^ !n�m weakly converges to ddcv1 ^ · · · ^ ddcvm ^ !n�m . Therefore, the
theorem follows by an easy adaption of arguments of Bedford-Taylor [2].

Let us define the notion of capacity associated with Hessian operators, which
plays an important role in the study of bounded (�,m)�↵-subharmonic functions.
For a Borel set E ⇢ B,

cap(E) := sup
⇢Z

E
(� + ddcv)m ^ ↵n�m : v 2 A, 0  v  1

�
. (3.6)

We first observe that this capacity is equivalent to another capacity.

Lemma 3.5. For a Borel set E ⇢ B,

cm(E) := sup
⇢Z

E
(ddcw)m ^ ↵n�m : w 2 A0, 0  w  1

�
, (3.7)

where A0 is the class A with � ⌘ 0. Then, there exists a constant C depending on
�,↵ such that

1
C
cap(E)  cm(E)  C cap(E)

for any Borel set E ⇢ B.

Proof. Since �  ddc' for some smooth plurisubharmonic function on B, the first
inequality follows. To show the second one, we need to use the positivity of ↵. By
(3.2) there is a constant C > 0 such that

� �
1
C
ddc⇢ 2 0m(↵),
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where ⇢ = |z|2�r2  0. We can choose C such that |⇢/C|  1/2. Take a function
0  w  1/2 inA0; then it is easy to see that

Z

E
(ddcw)m ^ ↵n�m 

Z

E

⇣
� + ddc(w �

⇢

C
)
⌘m

^ ↵n�m  cap(E).

Hence, cm(E)  2m cap(E).

Corollary 3.6. Let u 2 A \ L1(B). Then, u is quasi-continuous with respect to
the capacity cap(·).

Proof. Observe that v := u + ' is m � ↵-subharmonic for some smooth plurisub-
harmonic function ' on B. Therefore, v is also approximated by a decreasing se-
quence of smooth m � ↵-subharmonic functions. By the arguments in Bedford-
Taylor [2] adapted to the case ! = eG↵ (see similar arguments in Lemma 9.19),
we get that v is quasi-continuous with respect to cm(·). By Lemma 3.5 the proof is
completed.

The next consequence is an inequality between volume and capacity.

Lemma 3.7. Fix 1 < ⌧ < n/(n � m). There exists a constant C(⌧ ) such that for
any Borel set E ⇢ B

V↵(E)  C(⌧ )
⇥
cap(E)

⇤⌧
, (3.8)

where V↵(E) :=
R
E ↵

n.

The exponent here is optimal because if we take ↵ = ddc|z|2, then the explicit
formula for cm(B(0, s)) in B = B(0, r) with 0 < s < r , provides an example.

Proof. From [18, Proposition 2.1] we knew that V↵(E)  C[cm(E)]⌧ with cm(E)
defined in (3.7). Note that the argument in [18] remains valid for non-Kähler ↵
since the mixed form type inequality used there still holds by stability estimates for
the Monge-Ampère equation. Thanks to Lemma 3.5 the proof follows.

3.2. Comparison principles inA \ L1(B)

For simplicity if u, v 2 A \ L1(B) we write

u � v on @B meaning that lim inf
z!@B

(u � v) � 0. (3.9)

Lemma 3.8. Let u, v 2 SH�,m(↵) \ L1(B) be such that u � v on @B. Let
T = �v1 ^ · · · ^ �vm�1 ^ ↵n�m with vi 2 SH�,m \ L1(B). Then,

Z

{u<v}
ddcv ^ T 

Z

{u<v}
ddcu ^ T +

Z

{u<v}
(v � u)ddcT .



1198 DONGWEI GU AND NGOC CUONG NGUYEN

Notice that by the equations (3.4) and (3.5)

ddcT = ddc
⇣
e(m�n)G�v1 ^ · · · ^ �vm�1 ^ !n�m

⌘

= ddc
⇣
e(m�n)G�v1 ^ · · · ^ �vm�1

⌘
^ !n�m,

where ! = eG↵ is a fixed Kähler form in (3.1).

Proof. Replacing u by u + � for � > 0, and then letting � & 0, we will work with
{u < v} b K b B, where K is an open set. By the CLN inequality (Lemma 3.3)

Z

K
kddcTk < +1.

By Theorem 3.4, Corollary 3.6, and arguments in [3] we get that

1{u<v}ddcmax{u, v} ^ T = 1{u<v}ddcv ^ T (3.10)

as two measures. Since {u + " < v} b K for " > 0, Stokes’ theorem gives
Z

K
ddcmax{u + ", v} ^ T

=
Z

@K
dcu ^ T +

Z

K
dcmax{u + ", v} ^ dT

=
Z

@K
dcu ^ T +

Z

@K
u ^ dT +

Z

K
max{u + ", v}ddcT

=
Z

K
ddcu ^ T �

Z

K
uddcT +

Z

K
max{u + ", v}ddcT

=
Z

K
ddcu ^ T +

Z

{u+"<v}\K
(v � u)ddcT + "

Z

{u+"�v}\K
ddcT .

Moreover, by the identity (3.10),
Z

{u+"<v}
ddcv ^ T

=
Z

{u+"<v}
ddcmax{u + ", v} ^ T

=
Z

K
ddcmax{u + ", v} ^ T �

Z

{u+"�v}\K
ddcmax{u + ", v} ^ T


Z

K
ddcmax{u + ", v} ^ T �

Z

{u+">v}\K
ddcu ^ T .
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Thus, it follows that
Z

{u+"<v}
ddcv ^ T 

Z

{u+"v}
ddcu ^ T +

Z

{u+"<v}
(v � u)ddcT

+ "

Z

K
kddcTk.

Letting " & 0 we get the desired inequality.

In the Hermitian setting due to the torsion of ↵ and � , the classical comparison
principle no longer holds. However, its weak versions in [17] and [41] are enough
for several applications. We state the local counterparts of those.

Let D1, D2 be two constants such that on B,

�D1↵2  ddc↵  D1↵2, �D1↵3  d↵ ^ dc↵  D1↵3;

�D2↵2  ddc�  D2↵2, �D2↵3  d� ^ dc�  D2↵3.
(3.11)

Lemma 3.9. Let u, v 2 A \ L1(B) be such that u � v on @B. Assume that
d = supB(v � u) > 0 and D1D2 sup{u<v}(v � u)  1. Then,

Z

{u<v}
(� + ddcv)m ^ ↵n�m 

Z

{u<v}
(� + ddcu)m ^ ↵n�m+

+ CD1D2 sup
{u<v}

(v � u)
m�1X

k=0

Z

{u<v}
(� + ddcu)k ^ ↵n�k .

The constant C depends only on n,m.

Proof. We used repeatedly Lemma 3.8 (for T = �ku ^� lv ^↵n�k�l , k+ l  m�1),
and bounds in (3.11) to replace v by u. Thanks to results in [43, Section 2] the
arguments go through for general Hessian operators with respect to the Hermitian
metric ↵.

Recall from (3.2) that there exists 0 < c0  1, depending on �,↵, B, such that

� � c0↵ 2 0m(↵). (3.12)

The weak comparison principle is a crucial tool in pluripotential theory approach to
study weak solutions of Hessian type equations [41–43]. We state a local version.

Lemma 3.10. Let u, v 2 A \ L1(B) be such that u � v on @B. Assume that
d = supB(v � u) > 0. Fix 0 < " < min{1/2, d/(1 + 2kvkL1)}. Denote S(") =
infB[u � (1� ")v], and for s > 0,

U(", s) := {u < (1� ")v + S(") + s}.
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Then, for 0 < s < (c0")3/(16D1D2),
Z

U(",s)

�
� + (1� ")ddcv

�m
^ ↵n�m 

✓
1+

Cs
(c0")m

◆Z

U(",s)
(� + ddcu)m ^ ↵n�m .

The constant depends on n,m, D1, D2.

Proof. We only give here a brief argument as it is very similar to the one of [41,
Theorem 2.3]. Set for 0  k  m,

ak :=
Z

U("(s))
�ku ^ ↵n�k .

Then,

(c0")ak  "

Z

U(",s)
�ku ^ � ^ ↵n�k�1 

Z

U(",s)
�ku ^ �(1�")v ^ ↵n�k�1.

By Lemma 3.8
Z

U(",s)
�ku ^ �(1�")v ^ ↵n�k�1 

Z

U(",s)
�k+1u ^ ↵n�k�1 + R,

where R =
R
U(",s)[(1� ")v + S(") + s � u]ddc

�
�ku ^ ↵n�k�1

�
is bounded by

R  sD1D2(ak + ak�1 + ak�2),

where we simply understand ak ⌘ 0 for k < 0. To be regorous, here we used [43,
Lemma 2.3], hence we should multiply the right-hand side with a constantCm,n > 0
depending only on m, n. This is no harm as we could adjust the definitions of
D1, D2.

Thus, for 0 < s < � := (c0")3
D1D2 , (c0")ak  �(D1D2)(ak + ak�1+ ak�2)+ ak+1.

The rest goes in the same way as in [41, Theorem 2.3].

The following result is obvious if potential functions are smooth.

Corollary 3.11. Let u, v 2 A \ L1(B) be such that u � v on @B. Suppose that
�mu ^ ↵n�m  �mv ^ ↵n�m in B. Then, u � v on B.

Proof. It follows from the proof of [41, Corollary 3.4.] with obvious modifications.
The reason is that there exists a C2 strictly plurisubharmonic function on B.

We have proved the comparison principle (Lemma 3.10) and volume-capacity
inequality (Lemma 3.7). The following uniform a priori estimate is proved in the
identically way as [43, Theorem 3.10].
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Theorem 3.12. Let u, v 2 A \ L1(B) be such that

lim inf
z!@B

(u � v) � 0, d := sup
B

(v � u) > 0.

Let us fix the following constants:

p > n/m, 0 < ⌧ <
p � n

m
p(n � m)

, ⌧⇤ =
(1+ m⌧ )p
p � 1

;

0 < " < min{1/2, d/3(1+ kvk1)};

"0 :=
1
3
min

(

(c0")m,
(c0")3

16D1D2

)

.

Suppose that (� + ddcu)m ^ ↵n�m = f ↵n on B with f 2 L p(B,↵n). Assume that
v is continuous and put

U(", s) =

⇢
u < (1� ")v + inf

B
[u � (1� ")v] + s

�
.

Then, there exists a constant C = C(⌧,↵, B) such that for every 0 < s < "0,

s  C(1+ kvkL1(B))k f k
1
m
L p(B) [V↵(U(", s))]

⌧
⌧⇤ ,

where V↵(E) =
R
E ↵

n for a Borel set E .

Notice that from assumptions, the sub-level sets near the infimum point will be non-
empty and relatively compact in the ball B. The restriction on the class A will be
relaxed later (see Remark 3.19).

3.3. The Dirchlet problems on B

Consider the Dirichlet problem with the right-hand side in L p(B), p > n/m. No-
tice that n/m is the optimal exponent.

u 2 A \ C0
�
B
�
,

(� + ddcu)m ^ ↵n�m = f ↵n,

u = ' 2 C0(@B).

(3.13)

Lemma 3.13. Let f, g be non-negative functions in L p(B), p > n/m. Let ', 2
C0(@B). Suppose that u, v are solutions to the corresponding Dirichlet problem
(3.13) with the datum ( f,') and (g, ). Then,

ku � vkL1(B)  sup
@B

|' �  | + Ck f � gk
1
m
L p(B),

where C depends only on p and the diameter of B.
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Proof. We use an idea in [18], which used the uniform a priori estimate for Monge-
Ampère equation due to Ko lodziej [37]. The proof here is similar to [54, Theorem
3.11]. Put h = | f � g|

n
m in B. It follows that h 2 L

pm
n (B), where pm

n > 1.
Moreover,

khk
1
n

L
pm
n (B)

= k f � gk
1
m
L p(B).

By a theorem in [37], there exists ⇢ 2 PSH(B) \ C0(B) solving

(ddc⇢)n = h↵n, ⇢|@B = 0.

We also have
k⇢kL1  Ckhk

1
n

L
pm
n (B)

= Ck f � gk
1
m
L p(B),

where C = C(m, n, p, B,↵) a uniform constant. Furthermore, by the mixed-form
inequality,

(ddc⇢)m ^ ↵n�m � h
m
n ↵n = | f � g|↵n.

Therefore,

[�u + ddc⇢]m ^ ↵n�m � �mu ^ ↵n�m + (ddc⇢)m ^ ↵n�m

� f ↵n + | f � g|↵n

� g↵n.

Since ⇢  0 in B, it follows from the domination principle (Corollary 3.11) that
u + ⇢  v + sup@B |u � v|. Hence,

u � v  �⇢ + sup
@B

|u � v|  sup
@B

|u � v| + Ck f � gk
1
m
L p(B).

Similarly, v �u  sup@B |u�v|+Ck f � gk
1
m
L p(B). Thus, the theorem follows.

We also need another stability estimate for solutions whose Hessian operators
are in L p, p > n/m.

Lemma 3.14. Under the assumptions of Lemma 3.13 there exist a uniform constant
C = C(p,m, n, k f kp, kgkp) and a constant a = a(p,m, n) > 0 such that

ku � vkL1(B)  sup
@B

|' �  | + Cku � vkaL1(B)
.

Proof. Having Theorem 3.12 we can repeat the proof of [43, Theorem 3.11] two
times, one for the pair u+sup@B |'� | and v and another for the pair v+sup@B |'�
 | and u.

We get from the existence of smooth solutions (Theorem 1.1) and stability
estimates (Lemma 3.13) existence of weak solutions.
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Theorem 3.15. Let 0  f 2 L p(B) with p > n/m. Then, there exists a unique
solution to the Dirichlet problem (3.13).

The last ingredient to prove the approximation property for (�,m)�↵-subharmonic
functions is the existence of smooth solutions for a Hessian type equation.

Lemma 3.16. Let H be a smooth function on B and ' 2 C1(@B). Then, there
exists a unique u 2 SH�,m(↵) \ C1(B) solving the Hessian equation

(� + ddcu)m ^ ↵n�m = eu+H↵n,

u = ' on @B.

Proof. The right-hand side depends also on u but with the right sign. We solve the
equation by the continuity method as in the proof of Theorem 1.3, provided sec-
ond order a priori estimates. The C0-estimate easily follows by considering the
maximum point and the minimum point of the solution. So does the C1-estimate
on the boundary. The proof of C1-estimate at an interior point will be affected at
equations (7.8) and (7.9) in Section 7. The extra terms appearing in these equations
are O(|ru|2). So this will not affect the conclusion of the inequality (7.10). There-
fore, we will get C1-estimate. The C2-estimate at an interior point goes through
as in Section 8, as it is explained in [43, Lemma 3.18]. For the other C2-estimates
at a boundary point, the equation (8.12) contains a bounded term O(|ru|) by the
C1-estimate. Therefore, the equality (8.13) will still hold and we get the desired
estimates.

Lemma 3.17. Let 0  f 2 L p(B), p > n/m, and ' 2 C0(@B). Let { f j } j�1 be
smooth and positive functions on B, converging in L p(B) to f as j ! +1. Let
' j 2 C1(@B) converge uniformly to '. Assume that

�mu j ^ ↵n�m = eu j f j↵n,

u j = ' j on @B.

Then, u j converges uniformly to u 2 A \ C0(B), which is the unique solution in
A \ C0(B) of

�mu ^ ↵n�m = eu f ↵n,
u = ' on @B.

Proof. Observe that u j is uniformly bounded from above. It follows that the right-
hand side of the equations are uniformly bounded in L p. Applying Lemma 3.13 for
 = 0 and g = 0, this gives the uniform bound for u j . Then, by compactness of
the sequence u j in L1 and Lemma 3.14 we get a continuous solution by passing to
the limit. The uniqueness follows as in [55, Lemma 2.3].
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3.4. Approximation property on B

We have all the ingredients we need to prove the main theorem of this section. By
using results of Pliś [59], Harvey-Lawson-Pliś [34, Theorem 6.1] also proved this
theorem in the case � ⌘ 0 and ↵ being Kähler.
Theorem 3.18. Let u be (�,m) � ↵-subharmonic in a neighborhood of B. Then,
there exists a sequence of smooth functions u j 2 SH�,m(↵) \ C1(B) such that u j
decreases to u point-wise in B as j goes to +1.

Proof. We follow closely the proof of [43, Lemma 3.20], which in turn uses the
scheme introduced by Berman [4] and Eyssidieux-Guedj-Zeriahi [23] (see also Lu-
Nguyen [51]).

By the positivity assumption on � 2 0m(↵) for every z 2 B we have that
j 2 SH�,m(↵) for any constant j . As max{u,� j} belongs to SH�,m(↵), we may
assume that u is bounded. Since u is upper semicontinuous on B, there exists a
sequence of smooth functions � j decreasing to u on B. Fix such an h := � j .
Consider the envelope

h̃ := sup{v 2 SH�,m(↵) \ L1(B) : v  h}. (3.14)

Then, h̃ 2 SH�,m(↵) and u  h̃  h. Therefore, if h̃ 2 A, i.e., it has the approx-
imation property, then so does u by letting h = � j & u. We shall prove that the
function h̃ can be approximated uniformly, and then the lemma will follow.

Since h 2 C1(B), we can write �mh ^ ↵n�m = F↵n with F being a smooth
function on B. Let us denote F⇤ = max{F, 0}. We choose a sequence of smoothly
non-negative functions Fj decreasing uniformly to F⇤ as j ! 1. Fix such a
F̃ := Fj � F⇤. By Lemma 3.16 we solve for 0 < "  1,

�mw̃" ^ ↵n�m = e
1
" (w̃"�h)[F̃ + "]↵n,

w̃" = h on @B.

By maximum principle, w̃"  h and w̃" is increasing as " decreases to 0. Keep "
fixed, and take limits on both sides for F̃ = Fj ! F⇤, i.e., letting j ! 1, we get
from Lemma 3.17,

�mw" ^ ↵n�m = e
1
" (w"�h)[F⇤ + "]↵n,

w" = h on @B.

Here w̃" uniformly increases to w". Thus, w" 2 A \ C0(B) and w" is increasing
as " decreases to 0. Since w"  h, the right-hand side is uniformly bounded in
L1(B̄). The monotone sequence w", bounded above by h, is a Cauchy sequence
in L1(B). By Lemma 3.14, this sequence is also Cauchy in the uniform norm in B.
So, w" uniformly increases to w, which satisfies

�mw ^ ↵n�m  1{w=h}F⇤↵
n,

w = h on @B.
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In particular, w 2 A \ C0(B). Now, we claim that w = h̃. The inequality w  h̃
is clear. One needs to verify that w � h̃ on {w < h}. Take a candidate v in the
envelope (3.14), i.e., v  h. Observe that �mw ^ ↵n�m = 0 on {w < v} ⇢ {w < h}.
By Corollary 3.11 it follows that w is maximal on {w < h}. Thus, the set {w < v}
is empty, i.e., w � v. Since v is arbitrary, so w � h̃. The claim follows and so does
the theorem.

Remark 3.19. (a) In the proof we only used the wedge product for continuous
potential, so Theorem 3.18 holds for a general Hermitian metric ↵. In this case one
should use a counterpart of [43, Theorem 2.16] instead of Corollary 3.11 in the last
argument.

(b) An immediate consequence is that the classA coincides with SH�,m(↵).
Thanks to the quasi-continuity and approximation property of (�,m) � ↵-

subharnonic functions we get an inequality similar to the one for plurisubharmonic
functions in Cegrell-Ko loldziej [11].

Proposition 3.20. Let u, v 2 SH�,m(↵) \ L1(B). Let µ be a positive measure
such that �mu ^ ↵n�m � µ and �mv ^ ↵n�m � µ. Then

�
� + ddcmax{u, v}

�m
^ ↵n�m � µ.

Proof. It is readily adaptable from [11, Theorem 1] with an obvious change of
notations.

4. The Dirichlet problem

On the complex manifold M = M \ @M we define the class SH�,m(↵,M) in local
coordinates. One main difference is that for an arbitrary real (1, 1)-form � on M ,
there are plenty of local (�,m) � ↵-subharmonic functions on each local chart.
However, the global class SH�,m(↵,M) may be empty, e.g., for negative � . Thus,
the existence of a subsolution will guarantee that SH�,m(↵) is non empty.

In this section we shall study weak solutions to the Dirichlet problem for the
complex Hessian type equation. As we pointed out in Subsection 3.1 the assumption
that ↵ is locally conformal Kähler metric on M is needed to develop potential theory
for bounded functions.

Fix the continuous right-hand side density 0  f 2 C0(M) and a continuous
boundary data ' 2 C0(@M). Let us denote

µ := f ↵n.

We wish to solve the Dirichlet problem:

w 2 SH�,m(↵) \ C0(M),

(� + ddcw)m ^ ↵n�m = µ,

w = ' on @M.

(4.1)
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The C2 subsolution ⇢ to the equation (4.1) satisfies:

�⇢ := � + ddc⇢ 2 0m(↵),

and
(� + ddc⇢)m ^ ↵n�m � µ, ⇢ = ' on @M. (4.2)

By replacing � by �⇢ and u by u�⇢ we can reduce the problem to the case of zero
boundary data and � 2 0m(↵) as follows:

w 2 SH�,m(↵) \ C0
�
M
�
,

(� + ddcw)m ^ ↵n�m = µ,

w = 0 on @M.

(4.3)

Then 0 is the subsolution to the equation (4.3), and there exists 0 < c0  1 such
that

� � c0↵ 2 0m(↵).

4.1. Envelope of continuous subsolutions

By assumption (4.2) the set

S =
n
v 2 SH�,m(↵) \ C0

�
M
�

: �mv ^ ↵n�m � µ, v|@M  0
o

is not empty. Hence, we define the envelope

u0(z) := sup
v2S

v(z). (4.4)

One expects that it will be a solution to the continuous Dirichlet problem.

Theorem 4.1. If u0 is continuous, then it solves the Dirichlet problem (4.1).

Proof. We first have u0 2 S by Proposition 2.6-(b) and Proposition 3.20. In partic-
ular,

(� + ddcu0)m ^ ↵n�m � µ.

It remains to show that �mu0 ^ ↵n�m = µ. Fix a small ball B ⇢ M and find
w 2 SH�,m(↵) \ C0(B) solving w = u0 on @B and

(� + ddcw)m ^ ↵n�m = µ in B.

Hence, w � u0 in B. Consider the lift ũ 2 S of u0 with respect to this ball defined
by

ũ =

(
max {w, u0} on B,

u0 on M \ B.

Thus, we have ũ 2 S and u0  ũ in B. On the other hand by the definition of u0
we have ũ  u0. Thus, u0 = ũ in B, which means �mu0 ^ ↵n�m = µ. This holds for
any ball, so the theorem follows.
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Remark 4.2. For continuous (�,m)�↵-subharmonic functions the wedge product
is always well-defined. Theorem 4.1 is valid for a general Hermitian metric ↵. The
remaining issue is to verify the continuity of the envelope u0. So far we could not
do this for a general Hermitian metric ↵.

Remark 4.3. Let us consider m = n and f ⌘ 0 in connection with the geodesic
equation studied notably by Semmes [60], Donaldson [21], Chen [10] and Blocki
[7]. It follows from the comparison principle (an extension of Lemma 3.10 for M
in the place of B), that there exists at most one continuous solution to the equation.
Guan and Li [28] have extended the gradient estimate in [6] to this case. Hence,
we can get a continuous solution to the homogeneous equation by a compactness
argument. This solution is maximal on M , thus equal to u0. Thus, we get the unique
solution even in the case the background metric is only Hermitian.

4.2. Envelope of bounded subsolutions

In this section we shall prove Theorem 1.3, where ↵ is locally conformal Kähler.
First we enlarge the class S above,

Ŝ :=
n
v 2 SH�,m(↵) \ L1�

M
�

: �mv ^ ↵n�m � µ, v⇤
|@M  0

o
.

The locally conformal Kähler assumption of ↵ allows us to use potential theory
which has been developed in Section 3 for bounded (�,m) � ↵-subharmonic func-
tions. Set

u(z) := sup
v2Ŝ

v(z).

It follows from Proposition 2.6-(b) and Proposition 3.20 that u⇤ 2 Ŝ . Hence, u =
u⇤. Let us solve the linear PDE

(� + ddc⇢1) ^ ↵n�1 = 0,
⇢1 = 0 on @M.

Therefore, 0  u  ⇢1. It implies that u = 0 and it is continuous on @M .

Remark 4.4. It is obvious that u0  u. If we can show that u is a continuous on
M , then u 2 S automatically. Then, u0 = u is indeed continuous.

In what follows, we shall prove that u is a solution to the (bounded) Dirichlet prob-
lem, and then we will prove its regularity by using the a priori estimate (Theo-
rem 3.12).

Lemma 4.5 (lift). Let v 2 Ŝ . Let B ⇢ M be a small ball. There exists ṽ 2 Ŝ such
that v  ṽ and �m

ṽ
^ ↵n�m = µ in B.
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Proof. Choose C0(@B) 3 � j & v on @B and solve the Dirichlet problem
8
><

>:

v j 2 SH�,m(↵) \ C0
�
B
�

�
� + ddcv j

�m
^ ↵n�m = µ

v j = � j on @B.

It follows from Corollary 3.11 that v j & w 2 SH�,m(↵, B). Hence, Theorem 3.4
gives that

(� + ddcw)m ^ ↵n�m = µ.

Furthermore, lim supz!⇣2@B w(z)  v(⇣ ). By the domination principle (Corol-
lary 3.11) we have v j � v on B. Thus, w � v on B. Define

ṽ =

(
max {w, v} on B
v on M \ B.

Then, ṽ is the function we are looking for.

Lemma 4.6. u 2 SH�,m(↵) \ L1(M) \ C0(@M) and �mu ^ ↵n�m = µ.

Proof. It only remains to show that �mu ^ ↵n�m = µ. Fix a small ball B ⇢ M and
consider the lift ũ 2 Ŝ of u with respect to this ball. Then, u  ũ in B. On the other
hand by the definition of u we have ũ  u. Thus, u = ũ in B. Since B is arbitrary,
�mu ^ ↵n�m = µ on M .

We shall prove the most technical part.

Lemma 4.7. u is continuous on M .

By Lemma 4.6, the function u satisfies the (bounded) Dirichlet problem:

w 2 SH�,m(↵) \ L1(M),

(� + ddcw) ^ ↵n = µ,

lim
z!⇣

w(z) = 0 for every ⇣ 2 @M.

Proof of Lemma 4.7. We follow closely [38, Section 2.4]. We argue by contradic-
tion. Suppose u is not continuous, then the discontinuity of u occurs at an interior
point of M . Hence

d = sup
M

(u � u⇤) > 0,

where u⇤(z) = lim✏!0 infw2B(z,✏) u(w) is lower regularisation of u. Consider the
closed nonempty set

F = {u � u⇤ = d} b M.
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One remark is that u|F is continuous on F . Therefore, we may choose a point
x0 2 F such that

u(x0) = min
F
u.

Choose a local coordinate chart about x0, relatively compact in M , which is iso-
morphic to a small ball B := B(0, r) ⇢ Cn with origin at z(x0) = 0 and of small
radius. Since � 2 0m(↵), there exists � > 0 such that

� (z) := �(z) � �ddc|z|2 2 0m(↵) (4.5)

for every z 2 B. Set
v := u + �|z|2 2 SH� ,m(↵).

Since u � 0 on M , v⇤(0) = u⇤(0) � 0. Hence, we have v 2 L1(B), which solves

(� + ddcv)m ^ ↵n�m = µ. (4.6)

We also find that

sup
B

(v � v⇤) = sup
B

(u � u⇤) = u(0) � u⇤(0) = d.

Let us consider the sublevel sets, for 0 < s < d,

E(s) = {u⇤  u � d + s} \ B. (4.7)

It’s clear that E(s) is closed and by our assumption 0 2 E(s). Furthermore,

E(s) & E(0) = {u⇤ = u � d} \ B(0, r) 3 0.

Let us denote
⌧ (s) = u(0) � inf

E(s)
u(z).

Since E(s) is decreasing, it follows that ⌧ (s) decreasing as s & 0. Moreover, ⌧ (s)
is bounded for 0  s  d. We also need the following fact.
Claim 4.8. lims!0 ⌧ (s) = 0.

Proof of Claim 4.8. It is easy to see that lim infs!0 ⌧ (s) � ⌧ (0) = 0. It is enough
to show that lim sups!0 ⌧ (s)  0. Suppose that it is not true, i.e.,

lim sup
s!0

⌧ (s) = 2✏ > 0

for some ✏ > 0. Then, there exists a sequence s j ! 0 such that ⌧ (s j ) > ✏ for every
integer j > 0. It means that

inf
E(s j )

u < u(0) � ✏.
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Therefore, there is a sequence {z j } j�1 ⇢ E(s j ) satisfying u(z j ) < u(0) � ✏. Since
any limit point z of {z j } j�1 belongs to E(0), u(z) � u(0). Hence,

lim sup
j!1

u(z j )  u(0) � ✏  u(z) � ✏.

The upper semicontinuity of �u⇤ gives

lim sup
j!+1

⇥
� u⇤(z j )

⇤
 �u⇤(z).

Hence, d = lim sup j!+1[u(z j ) � u⇤(z j )]  u(z) � ✏ � u⇤(z) = d � ✏. This is
not possible and the claim follows.

Take B0 = B(0, r 0) with a bit larger r 0 > r . By the approximation property in
a small ball (Theorem 3.18), one can find a sequence

SH� ,m(↵) \ C1(B0) 3 v j & v = u + �|z|2 in B0. (4.8)

Let us fix this sequence from now on. Unless we specify otherwise, v and v j ’s
are these functions. The following result is a variation of the Hartogs lemma
(Lemma 9.14).

Lemma 4.9. Let K ⇢ B be a compact set and c � 1 a constant. Assume that for
some t > 0,

v < c v⇤ + t on K .

Then
v j < c v + t on K

for j > j0 with a fixed j0 > 0 depending only on K , t .

Proof of Lemma 4.9. Let z0 2 K . It follows from the assumption that z0 2 {v �
c v⇤ < t}, which is an open set by the upper semicontinuity of v � c v⇤. Thus,
z0 2 {v � c v⇤ < t 0} for some 0 < t 0 < t . Hence, v(z0) � c v⇤(z0) < t 0, i.e., by
definition

lim
✏0!0

 

sup
B(z0,2✏0)

v � c inf
B(z0,2✏0)

v

!

< t 0.

Therefore, for 0 < t1 = t�t 0
2 , there exists ✏

0 = ✏0(t1, z0) > 0 such that

B(z0, 2✏0) ⇢ {v < v⇤ + t},

and supB(z0,2✏0) v � c infB(z0,2✏0) v  t 0 + t1. It implies that

sup
B(z0,✏0)

v  c v + t 0 + t1 on B(z0, ✏0).
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By Hartogs’ lemma for (� , 1) � ↵-subharmonic functions (Corollary 9.15),

v j  sup
B(z0,✏0)

v + t1 < c v + t 0 + 2t1 = c v + t,

for j � j (t1, z0, ✏0). Since K is compact, it is covered by finitely many balls
B(z j , ✏0j ). Thus, the proof follows.

We wish to apply Theorem 3.12 to the function v and its approximants v0
j s

defined in (4.8) to get a contradiction. Therefore, we need to study the value of v
and v j ’s on the boundary @B. More precisely, we are going to show that there exist
c > 1, a > 0 and s0, which are independent of j , such that

{c v + d � a + s < v j } (4.9)

is non-empty and relatively compact in B = B(0, r) for every 0 < s < s0. For
this purpose we need to analyse the value of the function c v � v j on the boundary
S(0, r) of B(0, r), with the help of Lemma 4.9.

Take two parameters c > 1 and 0 < a < d, which are to be determined later.
We need to estimate

c v + d � a � v j

on S(0, r). Recall that v = u + �|z|2 and

E(s) = {u⇤  u � d + s} \ B(0, r)
= {v⇤  v � d + s} \ B(0, r).

We consider two cases:

Case 1: z 2 S(0, r) \ E(a). We have

v⇤(z) = u⇤(z) + �r2

� u(z) � d + �r2

= (u(z) � u(0)) + (u(0) � d) + �r2.

As 0 2 E(a), we have ⌧ (a) � u(0) � u(z). Combining with u(0) � u⇤(0) = d, we
get that

v⇤(z) � v⇤(0) � ⌧ (a) + �r2.

Note that r > 0 (small) is already fixed. It implies that, for c > 1,

v(z)  v⇤(z) + d < c v⇤(z) + d � (c � 1)
h
v⇤(0) + �r2 � ⌧ (a)

i
.

Since v � cv⇤ is upper semicontinuous,

v < c v⇤ + d � (c � 1)
h
v⇤(0) + �r2 � ⌧ (a)

i
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on the closure of a neighbourhood V of S(0, r) \ E(a). Applying Lemma 4.9 for
the compact set V \ B and

t := d � (c � 1)
h
v⇤(0) + �r2 � ⌧ (a)

i
> 0, (4.10)

we get

v j < c v + d � (c � 1)
h
v⇤(0) + �r2 � ⌧ (a)

i
on V \ B, (4.11)

if j > j1(V ).

Case 2: z 2 S(0, r) \ V . Since E(a) \ (S(0, r) \ V ) = ;, the inequality

v < v⇤ + d � a

holds on S(0, r) \ V . Applying Lemma 4.9 again, we get

v j < v + d � a < c v + d � a on S(0, r) \ V (4.12)

for j > j2(V ). Thus, it follows from (4.11) and (4.12) that

v j < c v + d �min
n
a, (c � 1)

h
v⇤(0) + �r2 � ⌧ (a)

io
(4.13)

on S(0, r) for j > max{ j1, j2}.
Next, if there exists c > 1 such that for 0 < s0 < a,

(c � 1)v⇤(0) < a � s0, (4.14)

then c v⇤(0)+d�(a�s0) < v(0)  v j (0). It follows that the set {c v+d�a+s <
v j } is non-empty for 0 < s < s0.

According to Claim 4.8, (4.10), (4.13) and (4.14) we need to choose 0 < a <
d, c > 1 and 0 < s0 < a, in this order, such that

⌧ (a) 
�r2

2
;

d � (c � 1)
h
v⇤(0) + �r2 � ⌧ (a)

i
> 0;

(c � 1)v⇤(0) < a < (c � 1)

 

v⇤(0) +
�r2

2

!

;

s0 =
a � (c � 1)v⇤(0)

2
> 0.

This is always possible. Thus, we get relatively compact subsets that satisfy (4.9).
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Now we can apply Theorem 3.12 to get that a contradiction. In fact, we have
for w j := v j/c and 0 < s < s0,

{c v + d � a + s < v j } = {v + (d � a + s)/c < w j } b B.

It follows that
d j := sup

B
(w j � v) �

d � a + s0
c

> 0.

We denote for 0 < s < "0 < " (as in Theorem 3.12),

Uj (", s) :=

⇢
v < (1� ")w j + inf

�
[v � (1� ")w j ] + s

�
.

Notice that "0 depends only on d, a, s0. Hence, applying Theorem 3.12 for v in
(4.6) and � in (4.5), we get that for 0 < s < "0,

s  C(1+ kvkL1)k f k
1
m
L p [V↵(Uj (", s))],

where V↵(Uj (", s)) =
R
Uj (",s) ↵

n. Furthermore, for such a fixed s > 0,

Uj (", s) ⇢ {v < w j � d j + "kw jkL1 + s} ⇢ {v < v j }.

Since V↵({v < v j }) ! 0 as j ! +1, we get the contradiction. The proof of
Lemma 4.7 is finished.

4.3. Some applications

The first application is the mixed type inequality for Hessian operators with the
Hermitian form. When both � and ! are Kähler metrics the inequality is proved by
Dinew and Lu [20]. Since the inequality is local, we state it for a small Euclidean
ball B in Cn.

Proposition 4.10. Let f, g 2 L p(B), p > n/m. Suppose that u, v 2 SH�,m(↵) \
C0(B) satisfy

�mu ^ ↵n�m = f ↵n, �mv ^ !n�m = g↵n. (4.15)
Then, for any 0  k  m,

�ku ^ �m�k
v ^ ↵n�m � f

k
m g

m�k
m ↵n. (4.16)

Proof. It is a simple consequence of the mixed type inequality in the smooth case,
and then for continuous functions we use Theorem 1.1 and Lemma 3.13.

Thanks to this type of inequality with � = ↵ = ! we are able to relax the
smoothness assumption on potentials in the statement of [43, Proposition 3.16]. In
particular, the uniqueness of continuous solutions to the complex Hessian equa-
tion on compact Hermitian manifolds with strictly positive right-hand side in L p,
p>n/m.
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Corollary 4.11. Let (X,!) be a compact Hermitian manifold. Suppose that u, v 2
SHm(!) \ C0(X), supX u = supX v = 0, satisfy

!mu ^ !n�m = f !n, !mv ^ !n�m = g!n, (4.17)

where f, g 2 L p(X,!n), p > n/m. Assume that

f � c0 > 0 (4.18)

for some constant c0. Fix 0 < a < 1
m+1 . Then,

ku � vkL1  Ck f � gkaL p , (4.19)

where the constant C depends on c0, a, p, k f kL p , kgkL p ,!, X .

We can also show that continuous solutions obtained in [43] are also the continu-
ous solutions in the viscosity sense and vice versa (Lu [48] proved the existence
and uniqueness of viscosity solutions to the complex Hessian equation on some
special compact Hermitian manifolds). The viscosity approach for the Monge-
Ampère equation on Kähler manifolds was used by Eyssidieux, Guedj, Zeriahi [22],
Wang [68]. It seems to be interesting to investigate the viscosity method for the
complex Hessian equation on compact Hermitian manifolds with or without bound-
ary. We refer the readers to [32, Example 18.1], [33, Example 3.2.7] for some results
in this direction.

5. Proof of Theorem 1.1

In this section we proceed to prove Theorem 1.1, which we used in Sections 3, 4.
The proof is independent of results in those sections.

Let us rewrite the equation in the PDE form as in the paper by Székelyhidi [62].
Without loss of generality we fix � := B(0, �) ⇢ B(0, 1) ⇢ Cn for 0 < � << 1.
Let ↵ be a Hermitian metric in B(0, 1). Fix a smooth real (1, 1)-form � on B(0, 1).
For a C2 function u we consider the real (1, 1)-form g = � +

p
�1@@u, i.e.,

gi j̄ = �i j̄ + ui j̄ . We can define A
i
j := ↵ p̄i g j p̄, where ↵ j̄ i is the inverse of ↵i j̄ .

Then, the matrix Aij is Hermitian with respect to the metric ↵, i.e., A ⇥ [↵i j̄ ] is a
Hermitian matrix. Denote �(A) = (�1, . . . , �n) 2 Rn the n-tuple of eigenvalues
of A. In other words, � is the eigenvector of gi j̄ with respect to the metric ↵. The
complex Hessian equation (1.1) is

F(A) = h,

where
F(A) := f (�(A)) = [(Sm(�)]1/m,
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and f is a symmetric increasing concave function defined on the cone 0m . Recall
that the m-th elementary symmetric cone is

0m = {� 2 Rn : S1(�) > 0, . . . , Sm(�) > 0}.

Fix 0 < h 2 C1(�) and a smooth boundary data ' 2 C1(@�). We wish to study
the Dirichlet problem, seeking u 2 C1(�) and u = ' smooth on @� such that

(
�(A) 2 0m
F(A) = h,

(5.1)

where Aij = ↵ p̄i (� j p̄ + u j p̄). To simplify notation, first we extend ' 2 C1(@�)

smoothly to B(0, 1). Upon replacing

ũ := u � C
�
|z|2 � �2

�
� ',

�̃ := � +
p

�1@@
h
C(|z|2 � �2) + '

i
,

with C > 0 large enough, which does not change gi j̄ , we may assume that

u = 0 on @�, � � ↵ on �, (5.2)

and 0 is the subsolution, i.e., �m ^ ↵n�m � h.
Let Fi j (A) := @F/@ai j be the partial derivative of F at A with respect to entry

ai j . We also denote
F :=

X

1in
fi ,

where fi = @ f/@�i > 0 are precisely eigenvalues of Fi j with respect to metric ↵.
If we choose coordinates in which ↵ is orthonormal and A being diagonal, then

Fi j = �i j fi ,

and thus F =
Pn

i=1 Fii .
We will proceed in Sections 6, 7, 8 to get a priori estimates, up to second or-

der, and using the results in Tosatti-Weinkove-Wang-Yang [64], to get C2,↵ interior
estimates. This combined with the C2-estimates at the boundary thus gives the full
C2 estimates up to the boundary of the real Hessian of u. This allows us to apply
Krylov’s boundary estimate [44] to get the desired C2,↵(�) estimate. The higher
order estimates are obtained by the bootstrapping argument, and then using the con-
tinuity method to obtain a solution to the equation (5.1). The uniqueness follows
from the maximum principle.
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6. C0-estimate

Denote Bij = ↵ p̄i� j p̄. Then, F(A) = h  F(B) and u � 0 on @�. Solve the linear
PDE (

n
�
� +

p
�1@@u1

�
^ ↵n�1/↵n = 0

u1 = 0 on @�.

By the maximum principle we get that for some C0 > 0,

0  u  u1  C0. (6.1)

As u = u1 = 0 on @�, it also follows that for some C 0
0 > 0,

|ru|  C 0
0 on @�. (6.2)

7. C1-estimate

In this section we prove the gradient estimate. Here the assumption of small radius
is important. (Notice that Pliś [59] has claimed this estimate in the case � ⌘ 0 and
↵ Kähler for any ball but no proof was given there.)

By (5.2) we may suppose that for some C1 > 0,

�i j

C1
 ↵i j̄  �i j̄  C1�i j . (7.1)

L := sup
�

|u| + 1.

Let r denote the Chern connection with respect to ↵. Note that kzk2↵ is strictly
plurisubharmonic as long as � small. More precisely, we choose � so that

r p̄rpkzk2↵ = @ p̄@p

⇣
↵i j̄ z

i z̄ j
⌘

= ↵p p̄ + O(|z|) � ↵p p̄/2. (7.2)

Denote v = N (supz2� kzk2↵ � kzk2↵), where N > 0 is a constant to be determined
later. We see that

0  v  NC1�2 and � vp p̄ = �@p@ p̄v � N/2C1. (7.3)

Consider
G = log kruk2↵ +  (u + v),

with
 (t) = �

1
2
log

✓
1+

t
L + NC1�2

◆
.
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Note that a similar function was considered by Hou-Ma-Wu [36] and it satisfies

 0 < 0,  00 = 2 02. (7.4)

If G attains its maximum at a boundary point, then sup� |ru| is uniformly bounded
by sup@� |ru|, up to a uniform constant. By (6.2), the latter one is uniformly
bounded. Then, we will get the C1-estimate. Therefore, we may assume that the
maximum point belongs to �. We shall derive the desired estimate by using maxi-
mum principle at this point.

We choose the orthonormal coordinates for ↵ such that at this point ↵i j̄ is the
identity matrix and Aij is diagonal. All computations bellow are performed at this
point and the subscripts stand for usual derivatives unless we specify otherwise.

Differentiating G twice and evaluating the equations at the maximum point we
have:

Gp =
(rpri u)uī + uirprī u

|ru|2
+  0(u p + vp) = 0; (7.5)

Gpp̄ =
(r p̄rpri u)uī + uir p̄rprī u + |rpri u|2 + |r p̄ri u|2

|ru|2

�
1

|ru|4
�
�uirprī u + uīrpri u

�
�2

+  00|u p + vp|
2 +  0�u p p̄ + vp p̄

�
.

(7.6)

Next, we have

r p̄rpri u = u p p̄i �
�
@ p̄0

q
pi
�
uq � 0

q
pi uq p̄

= gp p̄i � �p p̄i �
�
@ p̄0

q
pi
�
uq � 0

p
pi�p + 0

q
pi�q p̄,

(7.7)

where we used that gi j̄ is diagonal. Similarly,

r p̄rprī u = u p p̄ī � 0
q
pi u pq̄

= gp p̄ī � �p p̄ī � 0
p
pi�p + 0

q
pi�pq̄ .

Moreover, by applying the covariant derivatives to the equation we get

F ppri gp p̄ = hi .

As ri gp p̄ = gp p̄i �0mipgm p̄, we have F
ppgp p̄i = hi + F pp0

p
ip�p. Combining with

(7.7) we get that

F pp(r p̄rpri u)uī = hiuī + F pp�0 p
ip � 0

p
pi
�
�puī � F pp�p p̄i uī

� F pp�@ p̄0
q
pi
�
uquī + F pp0

q
pi�q p̄uī .

(7.8)
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Similarly,

F pp�r p̄rprī u
�
ui = hīui + F pp

⇣
0
p
ip � 0

p
pi

⌘
�pui

� F pp�p p̄ī ui � F pp0
q
pi�pq̄ui .

(7.9)

Let us denote
R := sup

p,q,i

�
�@ p̄0

q
pi
�
�, T := sup

i,p

�
�0 p

ip � 0
p
pi
�
�,

which are bounds for the curvature and torsion of metric ↵ on B(0, 1).
It follows from (7.8) and (7.9) that, for K := |ru|2 large enough,

1
K
F pp ⇥(r p̄rpri u)uī + (r p̄rprī u)ui

⇤

� �C/K 1/2 � F pp|�p|T/K 1/2 � CF/K 1/2 � RF

� �C �
1
2K

F pp�2p � (R + T 2 + 1)F ,

(7.10)

where in the last inequality we used

|�p|T
K 1/2


1
2

 
�2p

K
+ T 2

!

.

By the equation (7.5)

�
1
K 2

�
�uirprī u + uīrpri u

�
�2 = � 02|u p + vp|

2. (7.11)

By
Pn

p=1 f p�p = h and �p p̄ � 1 we have

 0F pp�u p p̄ + vp p̄
�

=  0F pp�p + | 0|F pp⇥�p p̄ + (�vp p̄)
⇤

� �C + | 0|[1+ N/2C1]F .
(7.12)

We also note that

1
K
F pp|r p̄ri u|2 =

1
K
F pp|gi p̄ � �i p̄|

2

�
1
2K

F pp|�p|
2 �

1
K
F pp|�i p̄|

2

�
1
2K

F pp|�p|
2 �

CF
K

.

(7.13)
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Therefore, combining (7.6), (7.10), (7.11), (7.12) and (7.13), we get that

0 � F ppG p p̄ � �C �
1
2K

F pp|�p|
2 �

�
R + T 2 + 1

�
F

+
1
2K

F pp|�p|
2 �

CF
K

+
�
 00 �  02�F pp|u p + vp|

2

+ | 0|[1+ N/2C1]F .

We may assume that K > C . As  00 = 2 02, we simplify the inequality:

0 �  02F pp|u p + vp|
2 + | 0|(1+ N/2C1)F �

�
R + T 2 + 2

�
F � C. (7.14)

Now we decrease further � (if necessary) so that 16(R+ T 2 + 3)C21�
2 < 1. Hence,

we can choose N > 1 satisfying
N

8
�
LC1 + NC21�2

� � R + T 2 + 3.

On the interval t 2 [0, L + NC1�2], we have | 0| � 1/4(L + NC1�2). Hence,

N | 0|

2C1
� R + T 2 + 3. (7.15)

It follows from (7.14) and (7.15) that

F pp|u p + vp|
2 +F  C, (7.16)

where C = C(A,C1, L). We shall use (7.16) to prove that

Fii =
S�1+1/m
m (�)

m
Sm�1;i (�) � c > 0

for some uniform c and for every 1  i  n. Indeed, since

F =
S�1+1/m
m (�)

m

nX

i=1
Sm�1;i (�)  C,

we have Sm�1;i (�)  C for every i = 1, . . . , n. By the inequality [67, Proposition
2.1 (4)]

nY

i=1
Sm�1;i (�) � Cn,m[Sm(�)]n(m�1)/m,

where Cn,m > 0 depends only on n,m. Thus, the desired lower bound for each
Sm�1;i (�) follows from the equation (Sm(�))

1
m = h > 0 and the upper bound for

Sm�1;i (�). We also get the lower bound for each Fii . Finally, from

F pp|u p + vp|
2  C

we easily get the a priori gradient bound, |ru|  C .
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8. C2-estimates

In this section we prove the following estimate

sup
�

�
�
p

�1@@̄u
�
�  C, (8.1)

where C depends on kukL1(�), krukL1(�) and the given data.
If sup� |@@̄u| is attained at an interior point of�, then by a result of Székelyhidi

[62] (see also Zhang [69]) we have for some C > 0, which depends on kuk1 and
the given data,

�
�
p

�1@@̄u
�
�  C

 

1+ sup
�

|ru|2
!

.

Therefore, we only need to consider the case when the maximum point P is on
the boundary. At this point, following Boucksom [8], we choose a local half-ball
coordinate U such that z(P) = 0 and r is the defining function for U \ @�. Then,
U \ � = {r  0} \ �. We choose the coordinates z = (z1, . . . , zn), centred at 0,
such that the positive xn axis is the interior normal direction, and near 0 the graph
U \ @� is written as

r = �xn +
nX

j,k=1
a jkz j z̄k + O

⇣
|z|3

⌘
= 0. (8.2)

We refer the reader to the expository paper of Boucksom [8] for more details on this
coordinate.

Recall that �i ’s are eigenvalue functions of matrix A, i.e.

�(A) = (�1, . . . , �n).

We often represent quantities in the orthonormal coordinates (w1, . . . , wn) in which
↵i j̄ is the identity and Aij is diagonal. The following equations will help us in
computing quantities in the orthonormal coordinates once we know their forms in
the fixed coordinates (z1, . . . , zn).

Suppose at a given point we change the coordinates, w = Xz, i.e.

wi = xik zk, xik 2 C,

and we obtain at that point

↵i j̄
p

�1dzi ^ dz̄ j =
nX

a=1

p
�1dwa ^ dw̄a;

gi j̄
p

�1dzi ^ dz̄ j =
nX

a=1
�a

p
�1dwa ^ dw̄a.
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It follows that
↵i j̄ = xai xaj , gi j̄ = xai�axaj .

It is clear that for every 1  i  n,
nX

a=1
|xai |2 = ↵i ī < C.

Moreover, the inverse of matrix ↵i j̄ is given by the formula

↵ j̄ i = x jaxia,

where xia is the inverse of X . Hence,

Aij = ↵ p̄i g j p̄ = xia�axaj .

In Cn⇥n if we change coordinates B = X AX�1 = (bkl), then at the considered
point B is a diagonal matrix (�1, . . . , �n). Therefore, �a is smooth at the diagonal
matrix B (see e.g., [61]) and

@F
@bkl

=
@ f
@�a

·
@�a

@bkl
= fa�ak�al;

@F
@ai j

=
@F
@bkl

@bkl
@ai j

=
X

k,l

nX

a=1
fa�ak�al xki x jl = x ja faxai .

An easy consequence from the above formula is that

L p̄ j := Fi j↵ p̄i = x pa fax ja,

where Fi j = @F/@ai j at Aij , is a positive definite Hermitian matrix.
To derive the desired a priori estimate we will use the linearised elliptic oper-

ator, for a smooth function w,

Lw := L p̄ j@ j@ p̄w = Fi j↵ p̄i@ j@ p̄w.

It is worth to recall that
F :=

X

1in
fi

where fi = @ f/@�i are eigenvalues of Fi j with respect to metric ↵.
Following Guan [26] (see also Boucksom [8]) we construct the important bar-

rier function.

Lemma 8.1. Set b = u � r � µr2. Then, there exist constants µ > 0 and ⌧ > 0
such that

Lb  �
1
2
F

and b � 0 on the half-ball coordinate U of radius |r | < ⌧ .
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Proof. By shrinking the radius of the half coordinate ball U , we have r is plurisub-
harmonic in U . Then

0  Lr = L p̄ jr j p̄  CF . (8.3)

As b j p̄ := @ j@ p̄b is a Hermitian matrix and ↵i j̄ > 0, we can represent

b j p̄ = xaj�axap,

where �a 2 R are eigenvalues of bi j̄ with respect to the matrix ↵i j̄ . Hence,

Lb =
nX

a=1
fa�a,

which does not depend on the choice of coordinates of ↵. Thus, to verify the desired
inequality at a given point, we compute, at this point, in orthonormal coordinates of
↵ and Aij = ↵ p̄i (� j p̄ + u j p̄) = (�1, . . . , �n) diagonal. So is L p̄i = ( f1, . . . , fn).

We now compute, as r  0,

Lb = Līi ui ī � Lr � 2µr Lr � 2µLīi |ri |2

= Līi gi ī � Līi�i ī � Lr + 2µ|r |Lr � 2µLīi r2i

=
nX

i=1
fi�i + (2µ|r | � 1)Lr � Līi

�
�i ī + 2µr2i

�
.

(8.4)

We have
Pn

i=1 fi�i = h and

(2µ|r | � 1)Lr  2Cµ|r |F . (8.5)

Notice that �i ī � ↵i ī = 1. The last negative term (8.4) will be divided into three
parts. First

�Līi�i ī/2  �F/2.

Next, we use �Līi�i ī/4 to absorb the right-hand side of (8.5) (i.e., the second term
in (8.4)), provided that

Cµ|r |  1/8.

We will use the part �Līi (�i ī4 + 2µr2i ) for µ large to absorb the first term in (8.4).
We claim that

Līi
⇣�i ī
4

+ 2µr2i
⌘

� c0µ
1
m (8.6)

for some uniform c0 > 0. In fact, if m = 1, then it is obvious. We may assume that
m > 1. Observe that |rr | > 0 at 0, then decrease ⌧ if necessary, we have

|rr |2 =
nX

i=1
r2i > c1 (8.7)
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for a uniform c1 > 0 on U . By Gårding’s inequality [25, Theorem 5] with �0 =
(
�11̄
4 + 2µr21 , . . . ,

�nn̄
4 + 2µr2n ) and Sm�1;i (�), we have

nX

i=1

⇣�i ī
4

+ 2µ|ri |2
⌘
Sm�1;i (�) � m

h
Sm

�
�i ī/4+ 2µ|ri |2

�i 1
m

[Sm(�)]
m�1
m

�
mµ

1
m hm�1

4
m�1
m

 
nX

i=1
2|ri |2

Y

k 6=i
�kk̄

! 1
m

�
mµ

1
m hm�1

4
m�1
m

 
nX

i=1
2|ri |2

! 1
m

�
2
1
m mµ

1
m hm�1

4
m�1
m

c
1
m
1 ,

where we used �kk̄ � 1 for the third inequality and used (8.7) for the last inequality.
To obtain the inequality (8.6), we only need to notice that

Līi = fi =
[Sm(�)](1�m)/mSm�1;i (�)

m
.

Therefore, the uniform constant we get is c0 = C(c1, h,m) > 0. So we can choose
µ > 0 large enough to get the desired inequality for Lb.

It remains to check that b � 0. Since u � 0 it is enough to have that

�r � µr2 = |r |(1� µ|r |) � 0.

This easily follows by further decreasing (if necessary) the radius ⌧ of the half-ball
coordinate.

We are ready to prove the second order estimates for u at the boundary point
0 2 @�. Following Caffarelli, Nirenberg, Kohn, Spruck [12] (see also [8]) we set

t1 = x1, t2 = y1, . . . , t2n�2 = yn�1, t2n�1 = yn, t2n = xn.

Let D1, . . . , D2n be the dual basis of dt1, . . . , dt2n�1,�dr, then

Dj =
@

@t j
�
rt j
rxn

@

@xn
for 1  j < 2n,

and
D2n = �

1
rxn

@

@xn
.

Because u = 0 on @�, we can write, for some positive function �,

u = �r.
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Then,
@u/@xn(0) = �� (0). (8.8)

So, |� (0)| < C . Moreover, for 1  j  2n � 1,

@2u
@ti@t j

(0) = � (0)
@2r
@ti@t j

(0)

and hence tangential-tangential derivatives |@ti @t j u| are under control.
Next, we bound normal-tangential derivatives:

Theorem 8.2. We have
�
�
�
�
�
@2u
@t j@xn

(0)

�
�
�
�
�
 C for j  2n � 1,

where C depends on u, |ru| and the given datum.

Proof. Without loss of generality we fix j = 1 and we shall show that

|D2nD1u(0)|  C.

The derivative D1, acting on functions, is equal to

@1 + @1̄ + r̃(@n + @n̄),

where @ denotes the usual partial derivatives and r̃ := �
rx1
rxn
is a smooth real-valued

function near 0. Recall that we use the subindex to denote usual derivatives in
direction @/@z1, . . . , @/@zn and their conjugates if there is no other indication. This
gives

D1u = u1 + u1̄ + r̃(un + un̄).

Following Caffarelli, Nirenberg, Spruck [13] and Guan [26, 27], our goal is to con-
struct a function of form

w = D1u �
X

k<n
|uk |2 � |un � un̄|2 + µ1b + µ2|z|2,

satisfying the following:

(i) w(0) = 0;
(ii) w � 0 on @U ;
(iii) Lw = L p̄ j@ j@ p̄w  0 in the interior of U ,

where b is the barrier function constructed in Lemma 8.1, constants µ1, µ2 > 0 are
to be determined later.
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To see the first property (i) we note that, for i < n,

2ui (0) =
@u
@xi

(0) �
p

�1
@u
@yi

(0) = 0,

and
un(0) � un̄(0) = �

p
�1

@u
@yn

(0) = 0.

Moreover, D1u(0) = b(0) = r̃(0) = 0. Therefore, the first property follows.
Next, we verify the second property (ii). We claim that there exists a constant

µ2 > 0 such that
w � 0 on @U.

To see this consider two parts @� \ U and @U \ (@� \ U) of the boundary @U
separately.

Part 1: On @� \U . We know that D1u = b = 0, and near 0

xn =
nX

j,k=1
a jkz j z̄k + O

�
|z|3

�
.

By writing xn = ⇢(t1, . . . , t2n�1) = ⇢(t) we deduce that

⇢(t) =
X

i, j<2n
ki j ti t j + O

�
|t |3

�
,

where (ki j ) =
h
@2xn
@ti @t j (0)

i
is uniformly bounded. Since u(t, ⇢(t)) = 0,

@u/@ti + @u/@xn · @⇢/@ti = 0

for i < 2n. Applying for yn = t2n�1 gives

|@u/@yn|2  C|t |2  C|z|2.

Similarly, for i < n,
|ui |2  C|z|2.

Therefore, w � 0 on @� \U for µ2 > 0 large enough.

Part 2: On @U \ (@� \U). On this piece |z|2 = ⌧ 2 with ⌧ being the radius of U .
Since b � 0 on U , we have w � 0 as soon as

µ2⌧
2 � |D1u| +

nX

i=1
|ui |2.

This is done by choosing µ2 > 0 large as the right-hand side is under control by the
C1-estimate. Thus, the second property is satisfied.
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To verify the third property (iii), L p̄ jw j p̄  0 in the interior of U , we fix an
interior point z0 2 U . Below we compute at this fixed point. The estimation will
be split into several steps.
(1) Estimate for D1u. We start by computing

L p̄ j (D1u) j p̄ = L p̄ j
⇥
u1 + u1̄ + r̃(un + un̄)

⇤
j p̄

= L p̄ j
h
u1 j p̄ + u1̄ j p̄ + r̃(uni p̄ + un̄ j p̄)

i

+ L p̄ j
⇥
r̃ j (un + un̄) p̄ + r̃ p̄(un + un̄) j

⇤

+ L p̄ j r̃ j p̄(un + un̄)
=: I1 + I2 + I3.

(8.9)

Let us denote K := sup� |ru|2, which is bounded by the C1-estimate.

Lemma 8.3. There exists a constant C depending only on ↵ such that for any fixed
j, q,

�
�
�L p̄ j gq p̄

�
�
�  C

nX

i=1
fi |�i |.

Similarly,
�
�
�L j̄ pgpq̄

�
�
�  C

nX

i=1
fi |�i |.

Proof. Recall that we have ↵i j̄ = xai xaj , gi j̄ = xai�axaj , and L p̄ j = x pa fax ja.
Therefore,

L p̄ j gq p̄ = x pa fax jaxbq�bxbp = x ja fa�axaq .

Thus, the conclusion follows. The second inequality is proved in the same way.

(1a) Estimate I2 and I3. We first easily have

|I3| =
�
�
�L p̄ j r̃ j p̄(un + un̄)

�
�
�  CK

1
2F

 CF .
(8.10)

Since two terms in I2 are conjugate, so we will estimate one of them. We proceed
as follows:

r̃ j (un + un̄) p̄ = r̃ j [2un � (un � un̄)] p̄
= 2r̃ j un p̄ � r̃ j (un � un̄) p̄
= 2r̃ j gn p̄ � 2r̃ j�n p̄ � r̃ j Vp̄,

where we wrote V = un � un̄.
By Lemma 8.3, we have for F |�| :=

P
i fi |�i |,

|2L p̄ j r̃ j gn p̄|  C|L p̄ j gn p̄|  CF |�|.



HESSIAN EQUATIONS ON HERMITIAN MANIFOLDS WITH BOUNDARY 1227

A straightforward estimate gives
�
�
�2L p̄ j r̃ j�n p̄

�
�
�  CF .

Cauchy-Schwarz’s inequality implies that
�
�
�L p̄ j r̃ j Vp̄

�
�
� 

1
2
L p̄ j r̃ j r̃ p̄ +

1
2
L p̄ j

�
V
�
j Vp̄

 CF +
1
2
L p̄ j

�
V
�
j Vp̄.

Thus, the above estimates give

|I2|  C(F +F |�|) + L p̄ j
�
V
�
j Vp̄. (8.11)

(1b) Estimate I1. We have

u1 j p̄ = u j p̄1 = g j p̄1 � � j p̄1.

Covariant differentiation in direction @/@z1 of the equation F(A) = h gives

Fi j↵ p̄ir1g j p̄ = L p̄ j
h
g j p̄1 � 0

q
1 j gq p̄

i
= h1. (8.12)

It follows that �
�
�L p̄ j u1 j p̄

�
�
� =

�
�
�L p̄ j (g j p̄1 � � j p̄1)

�
�
�

=
�
�
�hk + L p̄ j0q1 j gq p̄ � L p̄ j� j p̄1

�
�
�

 C(1+F) +
�
�
�L p̄ j0q1 j gq p̄

�
�
�

 C(1+F +F |�|),

(8.13)

where we used Lemma 8.3 for the last inequality.
The remaining terms in I1 are estimated similarly, when the index 1 is replaced

by 1̄, n̄ or n. Therefore,
|I1|  C(1+F +F |�|). (8.14)

Combining (8.10), (8.11) and (8.14) yields
�
�
�L p̄ j (D1u) j p̄

�
�
�  C(1+F +F |�|) + L p̄ j (V ) j Vp̄. (8.15)

We continue to estimate the other terms in the formula for w.

(2) Estimate for �
P
k<n |uk|2. By computing

(ukuk̄) j p̄ = ukj p̄uk̄ + ukuk̄ j p̄ + ukjuk̄ p̄ + uk p̄uk̄ j . (8.16)
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Similarly to the estimation of I1, we have

X

k<n

�
�
�L p̄ j (ukj p̄uk̄ + ukuk̄ j p̄)

�
�
�  CK

1
2 (1+F +F |�|)

 C(1+F +F |�|).

For the third term, with k fixed, L p̄ j uk j uk̄ p̄ � 0. The last term in (8.16) will give a
good positive term. By using Lemma 8.3,

L p̄ j uk p̄uk̄ j = L p̄ j
�
gk p̄ � �k p̄

��
g jk̄ � � j k̄

�

� L p̄ j gk p̄g j k̄ � C(F +F |�|).
(8.17)

The following result is similar to Guan’s [27, Proposition 2.19] in the real case.

Lemma 8.4. There exists an index s such that

X

k<n
L p̄ j gk p̄g j k̄ �

mini ⌧i
2

X

i 6=s
fi�2i ,

where ⌧i ’s are the eigenvalues of the matrix ↵i j̄ .

Proof of Lemma 8.4. First at the given point let E = (ei j ) be a unitary matrix such
that ↵ = Et3Ē , where 3 = diag(⌧1, . . . , ⌧n). Without loss of generality, we can

assume X = 3
1
2 E , so that ↵ = Xt X̄ and xi j = ⌧

1
2
i ei j . Again we have formulas

↵i j̄ = xai xaj and ↵ ī j = xiax ja . Moreover,

L p̄ j = x pa fax ja, gi j̄ = xib�bxbj .

Thus, for a fixed k < n,

L p̄ j gk p̄g j k̄ = x pa fax ja xbk�bxbp xcj�cxck

=
nX

i=1
fi�2i |xik |

2.

As
X

k<n
|xik |2 =

nX

k=1
|xik |2 � |xin|2 = ⌧i

�
1� |ein|2

�
,

we have

S :=
X

k<n
L p̄ j gk p̄g j k̄ =

nX

i=1
fi�2i ⌧i

�
1� |ein|2

�
.
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If for every 1  i  n we have |ein|2  1
2 , then

S �
mini ⌧i
2

nX

i=1
fi�2i .

Otherwise, there exists an index s such that |esn|2 > 1
2 . It follows that

X

i 6=s
|ein|2 

1
2
.

Then,

S =
nX

i=1
fi�2i ⌧i

�
1� |ein|2

�
�

X

i 6=s
fi�2i ⌧i

�
1� |ein|2

�
�
mini ⌧i
2

X

i 6=s
fi�2i .

Thus, the lemma follows.

It follows from Lemma 8.4 and (8.17) that for some index s,
X

k<n
L p̄ j uk p̄uk̄ j �

mini ⌧i
2

X

i 6=s
fi�2i � C(F +F |�|).

Therefore,

L

 

�
X

k<n
|uk |2

!

 �
mini ⌧i
2

X

i 6=s
fi�2i + C(F +F |�|). (8.18)

(3) Estimate for �|V |2 = �|un � un̄|2. We compute
�
VV

�
j p̄ =

�
unj p̄ � un̄ j p̄

�
V + V

�
un̄ j p̄ � unj p̄

�

+ Vj
�
V
�
p̄ +

�
V
�
j Vp̄.

Since L p̄ j Vj (V ) p̄ � 0, we get, similarly to (8.13), the following

L p̄ j
�
� |V |2

�
j p̄  �L p̄ j

�
V
�
j Vp̄ + C(1+F +F |�|). (8.19)

Combining (8.15), (8.18) and (8.19) gives us

Lw  �
mini ⌧i
2

X

i 6=s
fi�2i + C(1+F +F |�|) + µ1Lb + µ2L

�
|z|2

�
.

By this and Lemma 8.1 we get that, for some index s,

Lw  �
mini ⌧i
2

X

i 6=s
fi�2i + CF |�| +

⇣
C + µ2 �

µ1
2

⌘
F . (8.20)

Recall thatµ2 was chosen to have the property (ii) andµ1 > 0 can be chosen freely.
To archive the third property of w we need the following
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Lemma 8.5. Let " > 0. There is a constant C" > 0 such that for any index s,

F |�| =
nX

i=1
fi |�i |  "

X

i 6=s
fi�2i + C"F .

Proof of Lemma 8.5. Since
Pn

i=1 fi�i = h, we have

F |�|  2
X

i 6=s
fi |�i | + h


X

i 6=s
fi
✓
"�2i +

1
"

◆
+ h

 "
X

i 6=s
fi�2i + C"F ,

where we used the fact that F is uniformly bounded from below by a positive
constant.

Using Lemma 8.5 we get from (8.20) that

Lw 

✓
�
mini ⌧i
2

+ C"
◆X

i 6=s
fi�2i +

⇣
µ2 + C + C" �

µ1
2

⌘
F .

Thus, we choose " so small that the first term on the right-hand side is negative, and
then choose µ1 so large that the second term is also negative. The third property
(iii) is proved.

We are ready to conclude the bound for tangential-normal second derivatives.
By the maximum principle we have w � 0 on U . Therefore, as w(0) = 0,
D2nw(0)  0. It follows that

D2nD1u(0)  C.

The properties (i), (ii) and (iii) also hold, with the same argument, if we replace w
by the function

w̃ = �D1u �
X

k<n
|uk |2 � |un � un̄|2 + µ1b + µ2|z|2.

Therefore, D2nD1u(0)��C. Thus, we get the desired bound for |D2nD1u(0)|.

The last estimate we need is the normal-normal derivative bound.

Lemma 8.6. We have �
�
�
�
�
@2u
@x2n

(0)

�
�
�
�
�
 C,

where C depends on h,C0,C1, and the bounds of tangential-normal derivatives.
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Proof. Since 4unn̄ = @2u/@x2n+@2u/@y2n , the normal-normal estimate is equivalent
to

|unn̄(0)|  C.

Moreover, as |ui j̄ | < C with i + j < 2n, we get that for j < n,
�
�
�Aij

�
�
� =

�
�
�↵ p̄i (� j p̄ + u j p̄)

�
�
� < C.

Hence, it follows from
nX

i=1
Aii =

nX

i=1
�i � 0

that Ann � �C , so is gnn̄ � �C . It implies that unn̄ � �C. Therefore, it remains to
prove that unn̄  C. By u = �r, with � > 0, we have for j, k < n,

u jk̄(0) = � (0)r j k̄(0).

Let S be a (n � 1) ⇥ (n � 1) unitary matrix diagonalising [u jk̄] j,k<n . It means that
for j, k < n,

u jk̄(0) =
X

p
S⇤
j pdpSpk .

Since r is strictly plurisubharmonic inU , we get that dp > 0, p = 1, . . . , n�1. By
elementary matrix computation we have for D = (d1, . . . , dn�1) a diagonal matrix
and the column vector V = (u1n̄, . . . , u(n�1)n̄)

t ,
✓
S 0
0 1

◆
⇥

⇥
ui j̄

⇤
i, jn ⇥

✓
S⇤ 0
0 1

◆
=

✓
D SV

V ⇤S⇤ unn̄

◆
.

By |u jn̄|, |un j̄ | < C for j < n and �i j̄ > 0, we may assume that unn̄ is so large
(otherwise we are done) that gi j̄ = �i j̄ + ui j̄ (0) > 0, i.e., positive definite. So

�i (A) > 0

for every i = 1, . . . , n. Hence,

(det A)
1
n  Cm,n[Sm(�(A))]

1
m = Cm,nh.

By det gi j̄ = det↵i j̄ · det Aij we get that det gi j̄  C . Since
⇥
gi j̄

⇤
i, j<n �

⇥
�i j̄

⇤
i, j<n > 0

and
det gi j̄ = gnn̄ det

⇣⇥
gi j̄

⇤
i, j<n

⌘
+ O(1),

we have gnn̄  C . Thus, the normal-normal derivative bound at a boundary point is
proven.

Altogether, we have proven the C2-estimate (8.1) and completed the proof of
Theorem 1.1.
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9. Appendix

The results in this section are classical. It is a natural generalisation of properties
of subharmonic functions (see, e.g., [35]). However, we could not find the the
precise forms that we need in the literature. Some of them have been pointed out
recently by Harvey-Lawson [31]. Our setup here is simpler than the one in [31],
therefore we have several finer properties. We emphasize here the use of a theorem
of Littman [47]. For the readers’ convenience we give results with proofs here.

9.1. Littman’s theorem

We briefly recall a simpler version of a result of Littman [46, 47]. Roughly speak-
ing it allows to approximate a generalised subharmonic function (with respect to a
uniformly elliptic operator L) in a constructive way.

Let D be a smoothly bounded domain in Rn , n � 3. Consider the partial
differential operator L defined by

Lu =
�
bi j u

�
xi x j

�
�
bi (x)u

�
xi

and assumed to be uniformly elliptic there. Its formal adjoint L⇤ is given by

L⇤v = bi j (x)vxi x j + bi (x)vxi ,

where coefficients bi j (x), bi (x) are smooth function on D.
We say that u 2 L1loc(D) satisfies Lu � 0 weakly if

Z
u(x)L⇤v(x) � 0 (9.1)

for any non-negative function v in C2(D) with compact support in D. The natural
question is to find a sequence of smooth functions u j such that Lu j � 0 and u j
decreases to u. The usual convolution with a smooth kernel will not give us the
desired sequence.

Before stating Littman’s theorem let us introduce some notations. We denote
by g(x, y) the Green function of the operator Lx with respect to domain D and with
singularity at y 2 D; as constructed for example in [53]. The subindex x means
that L acts on functions of x . The basic properties of g are:

L⇤
x g(x, y) = 0 on D \ {y},

and
g(x, y) = O

�
|x � y|2�n

�
as x ! y.

In particular, g(x, y) ! 1 as x ! y. Furthermore, let us denote 1 = {(x, x) :
x 2 D}, then

g 2 C0
�
D ⇥ D \1

�
\ C2(D ⇥ D \1);
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also g(x, y) = 0 for x 2 @D and a fixed y 2 D. If we denote r = |x � y|. Then

g(x, y) = O
�
r2�n

�
, gxi = O

�
r1�n

�
, gxi x j = O

�
r�n�.

Fix a function p(t) = 1� t2 for t 2 R. So p(0) = 1 and p(t) � �0 > 0 for |t | < �0
small enough. It is easy to see that

L⇤
x p(|x � y|) < 0 for |x � y| < 2�0 and x, y 2 D.

Let 8(t) � 0 be a smooth function supported on [0, 1] satisfying

8(t) ! 0 exponentially as t ! +1;
Z 1

�1
8(t)dt = 1.

For � > 0 we write D� = {z 2 D : dist(z, @D) > �}. For h � 0, x 2 D, y 2 D2�
we define a function Gh(x, y) on D ⇥ D2� by letting

Gh(x, y) := 0 for |x � y| � 2�,

and for |x � y| < 2�,

Gh(x, y) :=
Z 1

�1
8(s � h)max{g(x, y) � sp(x, y), 0}ds.

Notice that Gh(x, y) = 0 for |x � y| � � and h � h� , where

h� :=
1
�0
max

�
g(x, y) : �  |x � y|  2�, (x, y) 2 D ⇥ D2�

 
. (9.2)

Another remark is that

Gh(x, y) � g(x, y) = g(x, y)
Z 1

g/p
8(s � h)ds � p

Z g/p

�1
8(s � h)ds (9.3)

is continuous for x 2 D and y 2 D2� and it belongs to C2(D ⇥ D2�) as the rate of
g(x, y) growing to1 is polynomially while8(t) ! 0 exponentially. In particular,
Gh(x, y) ! +1 as x ! y with the same order of growth as g(x, y).

By a direct computation we get that

@Gh

@h
= �p

Z g/p

�1
8(s � h)ds  0. (9.4)

The formula also shows that @Gh
@h 2 C2(D) and it compactly supported is a function

of x . Hence,
Jh :=

Z
L⇤
xGhdx = 1
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for every h � h� . Indeed, by the property [47, 4.f] we have limh!1 Jh = 1, and
for any constant c we have Lc = 0. Therefore,

@ Jh/@h =
Z
L⇤
x
�
@Gh/@h

�
dx =

Z
@Gh/@h Lx1 = 0.

Since coefficients bi j (x), bi (x) are smooth, we have

Gh(x, y) � g(x, y) 2 C2(D2�)

as a function of y uniformly with respect to x (c.f [47, 4.e]). Hence, Gh is a Levi
function satisfying

L⇤
xGh(x, y) = O(|x � y|��n)

for any 0 < �  1 (see also [53, (8.5) page 18]). Therefore, for u 2 L1loc(D) and
h � h� ,

uh(y) =
Z
u(x)L⇤

xGh(x, y)dx =
Z

|x�y|�
u(x)L⇤

xGh(x, y)dx (9.5)

is well defined. Notice that the support of Gh(x, y), as a function in x , shrinks to y
as h ! +1.

We are ready to state a theorem of Littman [47].

Theorem 9.1 (Littman). Let u 2 L1loc(D) be such that Lu � 0 weakly in D in the
sense of (9.1). Then, {uh(x)}h�h� , defined by (9.5), are smooth functions satisfying:

• Luh � 0;
• uh is a nonincreasing sequence as h ! +1, uh converges to u in L1(D2�);
• U(x) := limh!1 uh(x) is upper semicontinuous, and U(x) = u(x) almost
everywhere.

9.2. Properties of !-subharmonic functions

Let ! be a Hermitian metric on a bounded open set � ⇢ Cn . Let us denote

1! := ! j̄ i (z)
@2

@zi@ z̄ j
. (9.6)

We first recall:
Definition 9.2. A function u : � ! [�1,+1[ is called !-subharmonic if

(a) u is upper semicontinuous and u2L1loc(�);
(b) for every relatively compact open set Db� and every h2C0(D) and1!h=0

in D, if h � u on @D, then h� u on D.

As in the case of subharmonic functions we have the following properties. These
properties are proved by using the above definition (see also [35, Theorem 3.2.2]).
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Proposition 9.3. Let � be a bounded open set in Cn .

(a) If u1 � u2 � · · · is a decreasing sequence of !-subharmonic functions, then
u := lim j!+1 u j is either !-subharmonic or ⌘ �1;

(b) If u, v belong to SH(!), then so does max{u, v}.

Proof. (a) is obvious. We shall prove (b). It is rather standard (see [30]), but
probably it is not so well known. We include the proof for the sake of completeness.
Observe that

max{u, v} = lim
j!+1

log(e ju + e jv)
j

.

By a simple computation we get that

ddc log(eu + ev) =
euddcu + evddcv

(eu + ev)
+
eu+vd(u � v) ^ dc(u � v)

(eu + ev)2
.

It follows that 1j log(e
ju + e jv) is !-subharmonic. So is max{u, v}.

The subharmonicity is a local notion meaning that a function is subharmonic
in a open set if and only if at every point there exists a neighbourhood such that the
function is subharmonic in that neighbourhood. The precise statement is

Proposition 9.4. The following are equivalent for an upper semicontinuous and
locally integrable function u in �.

(1) u is an !-subharmonic function in �;
(2) In a neighbourhood U of a given point a, if q 2 C2(U) such that q � u � 0

and q(a) = u(a), then
1!q(a) � 0.

Proof. (1) ) (2).We argue by contradiction. Suppose that there exist a neighbour-
hood U of a point a and q 2 C2(U) satisfying q � u and q(a) = u(a), but

1!q(a) < 0.

By Taylor’s formula we may assume that q is quadratic and there exists " > 0 such
that 1!q < �" on a small ball B(a, r). Solve

1!v(z) = �1!q, v = 0 on @B(a, r).

Notice that by maximum principle we get that v(a) < 0. Let h = v + q. Then,
1!h = 0, and h � u on B(a, r). However, h(a) = u(a) + v(a) < u(a), which is
impossible. The first implication follows.

(2) ) (1). We also argue by contradiction. Suppose that there exist an open
set D b � and a function h 2 C0(D) and 1!h = 0 in D, which satisfies u  h
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on @D, such that {u > h} is non-empty. Without loss of generality we may assume
that D is a small ball B and h is continuous on B. Set for " > 0

v"(z) = h(z) � "|z|2.

Then, the upper semicontinuous function (u � v") takes its maximum at a point
a 2 B, so

u(z)  v"(z) + u(a) � v"(a) for z 2 B.

By Taylor’s formula

h(z) = h(a) + <(P(z)) +
1
2
@2h
@zi@ z̄ j

(a)(zi � ai )(z j � a j ) + O
�
|z � a|3

�

=: H(z) + O(|z � a|3),

where P(z) is a holomorphic polynomial. Therefore, 1!H(a) = 0. Consider the
function

q(z) = u(a) � v"(a) + H(z) � "|z|2 +
"

2
|z � a|2.

Then, it is easy to check that 1!q(a) < 0, q(a) = u(a) and q(z) � u(z) in a
neighbourhood of a. This is impossible and the proof is completed.

Since !-subharmonicity is a local property we easily get the gluing lemma.

Lemma 9.5. Let U ⇢ V be two open sets. Let u 2 SH(!,U) and v 2 SH(!, V ).
Assume that

lim sup
z!⇣

u(z)  v(⇣ ) 8⇣ 2 @U \ V . (9.7)

Then, ũ 2 SH(!, V ), where

ũ =

(
max{u, v} on U
v on V \U.

Proof. Consider

u" =

(
max{u, v + "} on U
v + " on V \U.

If x 2 U , then there is a small ball B(x, r) ⇢ U . Hence,

u" = max{u, v + "} (9.8)

is !-subharmonic in B(x, r). Similarly, for x 2 V \U by the assumption on @U\V ,
there is B(x, r) ⇢ V such that u" = v+" on B(x, r). Thus, u" 2 SH(!, V ). Since
u" & u we can apply Proposition 9.3 getting the lemma.
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The proposition above shows that we only need to check the !-subharmonicity
of a function on a small ball, but it is not clear whether a sum of two subharmonic
functions is again subharmonic. We shall need another criterion.

By linear PDEs potential theory, e.g., see [53], for any ball B(a, r), there exists
a Poisson kernel Pa,r for the operator 1!. Namely, for every continuous function
' on @B(a, r), the function

h(z) =
Z

@B(a,r)
'(w)Pa,r (z, w)d�r (w),

is the unique continuous solution to the Dirichlet problem

1!h(z) = 0 in B(a, r), h = ' on @B(a, r),

where d�r (z) is the standard surface measure on @B(a, r).

Lemma 9.6. Let u : � ! [�1,+1[ be a locally integrable upper semicontinu-
ous function. For �� = {z 2 � : dist(z, @�) > �}, � > 0, consider the function

M(u, a, r) =
Z

@B(a,r)
u(z)Pa,r (a, z)d�r (z), a 2 ��,

where r 2 [0, �]. Then, u is an !-subharmonic function if and only if

u(a)  M(u, a, r)

for a 2 �� , r 2 [0, �]. Furthermore, M(u, a, r) decreases to u(a) as r goes to 0.

Proof. We first prove that it is a necessary condition. Take � � u to be a continuous
function on @B(a, r). Then

h(z) =
Z

@B(a,r)
�(w)Pa,r (z, w)d�r (w)

satisfies 1!h = 0 and h = � � u on @B(a, r). It follows from definition that
h � u on B(a, r). In particular,

u(a) 
Z

@B(a,r)
�(w)Pa,r (a, w)d�r (w).

As u is upper semicontinuous, we can let � & u. By monotone convergence
theorem we get the desired inequality.

Now we prove the other direction by contradiction. Assume that there exist a
relatively compact open set D ⇢ �, h 2 C0(D) with 1!h = 0 and h � u on @D,
but

c := sup
D

(u � h) > 0.
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As v = u�h is upper semicontinuous, c is finite and F := {v = c} is a compact set
in D. We choose a 2 F such that it is the closest point to the boundary @D. Assume
that dist(a, @D) = 2� > 0. Since there exists x 2 B(a, �) such that v(x) < c, so
there is B(x, ✏0) ⇢ {v < c � ✏} \ B(a, �) for some ✏, ✏0 > 0. It follows from
1!h = 0 on D that

v(a)  M(v, a, r) 8z 2 B(a, r),8r  �.

Notice that in our case 1!1 = 0 and
Z

@B(a,r)
Pa,r (z, w)d�r (w) = 1.

Integrating from 0 to � we get that

�v(a) 
Z

[0,�]

Z

@B(a,r)
v(z)Pr (a, z)d�r (z)dr < �c.

This is impossible. Thus, the sufficient condition is proved.
For the last assertion, let 0  r < �. Fix a continuous function � � u on

@B(0, �). As 1!h = 0 in B(a, �) for

h(z) =
Z

@B(a,�)
�(w)P�(z, w)d��(w),

we get that u(z)  h(z) on B(a, �). Therefore,

M(u, a, r) 
Z

@B(a,r)
h(w)Pr (a, w)d�r (w) = h(a). (9.9)

Moreover,
h(a) =

Z

@B(a,�)
�(w)P�(a, w)d��(w).

Letting � & u, we get the monotonicity of M(u, a, r) in r 2 [0, �].Moreover, as u
is upper semicontinuous,

lim
r!0

M(u, a, r)  u⇤(a) = u(a),

where we used the fact above that
R
@B(a,r) Prd�r = 1.

An immediate consequence of the last assertion in the above lemma is

Corollary 9.7. If two !-subharmonic functions are equal almost everywhere, then
they are equal everywhere.

We are ready to state a consequence of Littman’s theorem, which says that we can
always find a smooth approximation for !-subharmonic functions.
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Corollary 9.8. Let u 2 SH(!,�) and �0 b �.There exists a sequence of smooth
!-subharmonic functions [u]" decreasing to u as " ! 0 on �0.

Proof. We simply choose a smooth domain D ⇢ � and � > 0 small such that
�0 ⇢ D2� and let

[u]"(z) := uh(z) (9.10)

where uh(z), h = 1/" > h� , is defined in Theorem 9.1. As U(z) := lim"[u]"
is equal to u(z) almost everywhere and u is also !-subharmonic, it follows from
Corollary 9.7 that U = u everywhere.

Corollary 9.9. Let {u↵}↵2I ⇢ SH(!) be a family that is locally bounded from
above. Let u(z) := sup↵ u↵(z). Then, the upper semicontinuous regularisation u⇤

is !-subharmonic.

Proof. By Choquet’s lemma one can choose an increasing sequence u j 2 SH(!)
such that u = lim j u j . Then, by Littman’s theorem and the notation in Corol-
lary 9.8, lim"[u]" = U 2 SH(!) and u = U almost everywhere. As u j 2 SH(!)
we have

u j  [u j ]" ! [u]" as j ! +1

uniformly on compact subsets of �. It follows that u  U . By upper semicontinu-
ous of U we have u⇤  U . By the formula (9.5) and Jh = 1, lim"[u]"  u⇤. Thus,
u⇤ = U .

Lemma 9.10. Let u be an !-subharmonic function in �. Then,

1!u � 0

in the distributional sense. Conversely, if v 2 L1loc(�) and 1!v � 0 (as a
distribution), then there exists a unique function V 2 SH(!) such that V = v
in L1loc(�).

Proof. Let [u]", " > 0, be the smooth decreasing approximation of u. As1![u]" �
0 and the family weakly converges to 1!u, we get the first statement. Conversely,
by Littman’s theorem we know that V (z) = lim"!0[v]"(z) 2 SH(!) and V (z) =
v(z) almost everywhere. Therefore, we get the existence. The uniqueness follows
from the fact that two !-subharmonic functions are equal almost everywhere.

The following result is rather simple but it is important.

Lemma 9.11. Let u 2 SH(!). Let K b D b � be a compact set and an open set.
Then, Z

K
ddcu ^ !n�1  C(D,�)kukL1(D).
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Proof. Let � be a cut-off function of K and supp� ⇢ D. Then,
Z

K
ddcu ^ !n�1 

Z
�ddcu ^ !n�1

=
Z
uddc

�
�!n�1

�

 C(D,�)kukL1(D),

where we used that � is smooth and has compact support in �.

Lemma 9.12. The convex cone SH(!) is closed in L1loc(�), and it has the property
that every bounded subset is relatively compact.

Proof. Let u j be a sequence in SH(!). If u j ! u in L1loc(�), then 1!u j ! 1!u
in weak topology of distributions, hence 1!u � 0, and u can be represented by an
!-subharmonic function thanks to Lemma 9.10.

Now suppose that ku jkL1(K ) is uniformly bounded for every compact subset
K of �. Let µ j = 1!u j � 0. Let  be a test function such that 0    1 and
 = 1 on K . Then, by Lemma 9.11

µ j (K ) 
Z

�
 1!u j  Cku jkL1(K 0),

where K 0 = Supp  . By weak compactness µ j weakly converges to a positive
measure µ. Let G(x, y) be the Green kernel for the smooth domain D, where
K 0 ⇢ D ⇢ �. Consider

h j := u j (z) �
Z
G(z, w) µ j (w).

Notice that since G(x, y) 2 L1(d�(z)) and  has compact support in D,
Z
G(z, w) µ j (w) !

Z
G(z, w) µ(w)

in L1 as j goes to +1. Therefore, 1!h j = 0 in K and kh jkL1  C . Since

h j (z) =
Z

@D
h j (w)P(z, w)d� (w),

it follows that kh jkC1  C . Then, there exists a subsequence h j converging to h
uniformly. Therefore,

h j +
Z
G(z, w) µ j (w) ! u = h +

Z
G(z, w) µ(w)

in L1(K ) as j goes to1.



HESSIAN EQUATIONS ON HERMITIAN MANIFOLDS WITH BOUNDARY 1241

Lemma 9.13. Let u j be a sequence of !-subharmonic functions which are uni-
formly bounded above. If u is an !-subharmonic function and u j ! u in D0(�),
then u j ! u in L1loc(�), and

lim j!1u j (z)  u(z), z 2 �,

(where two sides are equal and finite almost everywhere).

Proof. By Corollary 9.8 for " > 0 small enough,

u j  [u j ]" ! [u]" (9.11)

uniformly on compact sets in � as j ! 1. If 0  � 2 C1
c then

Z
([u]" + � � u j )�d�(z) !

Z
([u]" + � � u)�d�(z)

as j ! 1 and if � > 0 the integrand is positive for j large. Hence,

lim j!1

Z
|u � u j |�d�(z)  2

Z
|[u]" + � � u|�d�(z).

Since ", � are arbitrary it follows that u j ! u in L1loc.
By (9.11) it is easy to see that lim j!1u j  u in �. Furthermore, Fatou’s

lemma gives Z
lim u j�d� � lim

Z
u j�d� =

Z
u�d�,

so we conclude that lim j u j = u almost everywhere.

Lemma 9.14 (Hartogs). Let f be a continuous function on � and K b � be a
compact set. Suppose that {v j } j�1 ⇢ SH(!) decreases point-wise to v 2 SH(!).
Then, for any � > 0, there exists j� such that

sup
K

(v j � f )  sup
K

(v � f ) + �

for j � j� .

Proof. Let [v j ]" and [v]" be decreasing approximations defined in Corollary 9.8 for
v j and v, respectively. As v j converges to v in L1loc(�), for any fixed " > 0,

[v j ]" ! [v]" (9.12)

uniformly on compact sets of � as j goes to +1. Since v j  [v j ]", we have

sup
K

(v j � f )  sup
K

�
[v j ]" � f

�
.
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Let M := supK (v � f ). By Dini’s theorem max{M, [v]"(z) � f (z)} decreases
uniformly to M on � as " goes to 0. Hence, for " > 0 small enough,

sup
K

([v]" � f )  M + �/2.

Let us fix such a small ". By uniform convergence (9.12), for j � j1

sup
K

([v j ]" � f )  sup
K

([v]" � f ) + �/2.

Thus, altogether we get the desired inequality.

A direct consequence of this lemma is:

Corollary 9.15. Let � be a real (1, 1)-form in �. Let v 2 SH� ,1(!) \ L1(�). Let
{v j } j�1 ⇢ SH� ,1(!) \ L1(�) be such that

lim
j!+1

v j (z) = v(z) 8z 2 �.

Let K ⇢ � be a compact set and � > 0. Then, there exists j� such that for j � j� ,

v j (z)  sup
K

v + �.

Proof. We can find a smooth function w in � such that

ddcw ^ !n�1 = � ^ !n�1.

As u j = v j + w and u = v + w satisfy assumptions of Lemma 9.14, we can apply
it for f = w to get the statement of the corollary.

Corollary 9.16. Let {u j } j�1 ⇢ SH(!) be a sequence that is locally uniformly
bounded above. Define u(z) = lim sup j!+1 u j (z). Then, the upper semicontinu-
ous regularisation u⇤ is either !-subharmonic or ⌘ �1.

Proof. Let vk = sup j�k u j . Thanks to Corollary 9.9, v⇤
k 2 SH(!) and v⇤

k decreases
to v 2 SH(!) or ⌘ �1. Clearly, v � u, and thus v � u⇤ � u. Since vk = v⇤

k
almost everywhere, so v = u almost everywhere. Furthermore, it is easy to see that
1!u � 0. By Lemma 9.13

v = lim
"

[v]"  lim sup
"

[u]"  u⇤. (9.13)

Therefore, v = u⇤ everywhere.

We now prove that our definition is indeed equivalent to the definition given
by Lu-Nguyen [51, Definition 2.3], (see also Dinew-Lu [20]).
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Lemma 9.17. A function u : � ! [�1,+1[ is !-subharmonic if and only if it
satisfies the following two conditions:

(i) Upper semicontinuous, locally integrable and 1!u � 0 in �;
(ii) If v satisfies the condition (i) and v � u almost everywhere, then v � u

everywhere.

Proof. We first show that it is a necessary conditions. The only thing that remains to
be checked is the condition (ii). Pick v satisfying (i) and v � u almost everywehre,
we wish to show that v � u everywhere. As Jh = 1, it follows from the formulas
(9.5), (9.10), and the upper semicontinuity of v that

lim
"!0

[v]"(z)  v(z).

Since [v]" � [u]" for " > 0, letting " ! 0, we get that v � u everywhere.
Suppose that u satisfies (i) and (ii) above. By Littman’s theorem U(z) =

lim"[u]" = u(z) almost everywhere, where U(z) is an !-subharmonic function,
which also satisfies (i). Hence, u(z)  U(z) everywhere in �.Moreover, using the
upper semicontinuity of u as above, we have u(z) � U(z) in �.

We define the capacity for Borel sets E ⇢ �,

c1(E) = sup
⇢Z

E
ddcv ^ !n�1 : 0  v  1, v 2 SH(!)

�
.

According to Lemma 9.11 c1(E) is finite as long as E is relatively compact in �.
The quasi-continuity of !-subharmonic functions was used in [43]. We give

here the details of the proof. First, the decreasing convergence implies the conver-
gence in capacity.

Lemma 9.18. Suppose that u j 2 SH(!) \ L1(�) and u j & u 2 SH(!) \
L1(�). Then, for any compact K ⇢ � and � > 0,

lim
j!+1

c1({u j > u + �} \ K ) = 0.

Proof. Applying the localisation principle [40, page 7], we assume that � is a ball
and u j = u = h outside a neighbourhood of K . Let 0  v  1 be !- subharmonic
in �. We have

Z

{u+�<u j }\K
ddcv ^ !n�1 

1
�

Z
(u j � u)ddcv ^ !n�1.

By Stokes’s theorem,
Z

(u j � u)ddcv ^ !n�1 = �
Z
d(u j � u) ^ dcv ^ !n�1

+
Z

(u j � u)dcv ^ d!n�1.
(9.14)
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We shall show that both integrals on the right-hand side tend to 0 as j goes to
+1. Hence, we get the lemma. The second one is easier. Indeed, by Schwarz’s
inequality [55],

�
�
�
�

Z
(u j � u)dcv ^ d!n�1

�
�
�
�  C

✓Z
(u j � u)dv ^ dcv ^ !n�1

◆ 1
2

⇥

✓Z
(u j � u)!n

◆ 1
2
.

Therefore the second integral of the right-hand side in (9.14) goes to 0 as j ! +1.
Similarly, we use the Schwarz inequality for the first integral in (9.14). Let

K ⇢ D b � such that u j = u on � \ D.

�
�
�
�

Z
d(u j � u) ^ dcv ^ !n�1

�
�
�
�  C

✓Z
d(u j � u) ^ dc(u j � u) ^ !n�1

◆ 1
2

⇥

✓Z

D
dv ^ dcv ^ !n�1

◆ 1
2
.

Again by Stokes’s theorem
Z
d(u j � u) ^ dc(u j � u) ^ !n�1

= �
Z

(u j � u)ddc(u j � u) ^ !n�1 +
Z

(u j � u)dc(u j � u) ^ d!n�1

=
Z

(u j � u)ddcu ^ !n�1 �
Z

(u j � u)ddcu j ^ !n�1

+
1
2

Z
dc(u j � u)2 ^ d!n�1


Z

(u j � u)ddcu ^ !n�1 +
1
2

Z
dc(u j � u)2 ^ d!n�1.

Thus, the fist integral goes to 0 as j ! +1 by the Lebesgue dominated conver-
gence theorem. For the second integral we use Stokes’ theorem once more

Z
dc(u j � u)2 ^ d!n�1 = �

Z
(u j � u)2ddc!n�1

 C
Z

(u j � u)2!n.

The right-hand side also goes to 0 as j ! 1. Thus, we get the lemma.

Lemma 9.19. Let u 2 SH(!) \ L1(�). Then for each " > 0, there is an open
subsetO of � such that c1(O,�) < " and u is continuous on � \O.
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Proof. We may assume that � is a small ball because of the properties of capacity:

• If E ⇢ �1 ⇢ �2, then c1(E,�2)  c1(E,�1);
• c1(

S
j E j ) 

P
j c1(E j ).

Let SH(!) \ C1(�) 3 u j & u and fix a compact set K ⇢ �. By Lemma 9.18
there exists an integer jk and an open set

Ol =

⇢
u jl > u +

1
l

�
⇢ �, (9.15)

such that c1(Ok \ K ,�) < 2�k . If Gk = [l>kOl . Then, u jk decreases uniformly
to u on K \ Gk . Hence, u is continuous on K \ Gk .

Applying the argument above for a sequence of compact sets K j increasing
to � we get open sets G j that c1(G j ,�) < "2� j . Let O = [ jG j , the lemma
follows.
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Ampère complexes modifiées, J. Funct. Anal. 156 (1998), 208–251.

[16] P. CHERRIER and A. HANANI, Le problème de Dirichlet pour des équations de Monge-
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[59] S. PLIŚ, The smoothing of m-subharmonic functions, preprint, arXiv: 1312.1906.
[60] S. SEMMES, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114

(1992), 495–550.
[61] J. SPRUCK,Geometric aspects of the theory of fully nonlinear elliptic equations, In: “Global

Theory of Minimal Surfaces”, Clay Math. Proc., 2, Amer. Math. Soc., Providence, RI, 2005,
283–309.
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