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Abstract. We prove that there is no entire solution of the symmetric minimal sur-
face equation which is of sublinear growth. This result is extended to parametric
and non-parametric minimizers of the corresponding variational integral.
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1. Introduction

By a well known result of Bernstein [3] every entire classical solution u of the
minimal surface equation

. Du
div| ———=]=0
(w/l + |Du|2)

in R2, has to be an affine-linear function. In fact this theorem was shown to hold
up to dimension 7 by Fleming [17], De Giorgi [6], Almgren [1] and J. Simons [27],
while there exist nonlinear entire solutions in R”, n > 8, as was first discovered by
Bombieri-De Giorgi-Giusti [4]. Many more non-affine examples were constructed
by L. Simon [25].

On the other hand Moser [21] proved that every entire solution # of the minimal
surface equation in R”, n arbitrary, is affine linear, provided | Du|o g~ is finite, and
it follows from the a priori gradient estimate of Bombieri-De Giorgi-Miranda [5]
that this is already the case if u grows at most linearly, in the sense that

u(x) < C( + |x|) for some C > 0 and all x € R".
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Ecker and Huisken [16] extended Moser’s result by requiring instead of bounded-
ness only sublinear growth of the gradient Du, that is

|Du(x)| = o(|x|) as |x| — oo.
Optimal results of this type were proved by L. Simon [25,26].

In this paper we consider entire solutions of the symmetric minimal surface
equation (in short: s.m.s.e.)

di Du o %)
iv = , *
Vv 1+ |Dul? uy/1+ |Du|?

where o > 0 denotes some positive number. (x) is the Euler-equation of the varia-

tional integral
E(u) = /u“\/l + |Du|? dx,

which, for « = m € N and positive u : Q — R, describes, up to a constant factor,
the area of the rotated graph

Mooy = {(x,u(x)a)) ER'"xR" !y e QC R andw € s’”},

where §” < R™*! denotes the unit m-sphere, see, e.g., the computation in [13].

A different interpretation for equation (x) with @ = 1 in the two-dimensional
case was already given by Poisson [23], who considered (x) as a model equation
for an ideal heavy surface of constant mass density which is exposed to a vertical
gravitational field. Furthermore, architects consider (x) as a model equation for a so
called hanging roof, which is of importance for the constructions of perfect domes
or cupolas, see the discussion in [22] and the literature cited therein.

The symmetric (or singular) minimal surface equation (x) is an equation of
mean curvature type, with mean curvature H given by

o
uy/1+ |Dul?’

whence H is a priori not bounded, nor can a solution u of (%) be of class C? in
a neighbourhood of a point xg with u(xg) = 0. Thus we typically consider either
classical positive solutions, or weak Lipschitz solutions # > 0 of the s.m.s.e. For
the existence of classical solutions of (x) with prescribed boundary values we refer
to the papers by Dierkes-Huisken [15] and Dierkes [12].

On the other hand, it is easily checked that the cones

o 3 o
cg(x) = ’nj (x12++x,%>2 = lnTllxl

H(u, Du) =
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are classical solutions of (%) on R" — {0} and weak Lipschitz-solutions on all of R",
for every « > 0,n > 2. For a complete classification of these cones concerning
their minimizing properties and for the construction of nonaffine entire C °°-solution
asymptotic to these cones, we refer to the papers by Dierkes [7-9].

In view of these remarks the following result is optimal.

Theorem 1.1. There is no entire nonnegative solution u € C%'(R") of the sym-
metric minimal surface equation (x) satisfying

u(x) =o(xl|) as |x| — oc.
(Here a > 0, n > 2 are arbitrary).

We also prove a version of Theorem 1.1 for less regular, local minimizers of the
integral E in R”.

Theorem 1.2. Let o > 0 and u € BVJIFTTS‘C(R”) be a local minimizer of E in R"

which is of sublinear growth. Then u = 0.

Here the class BV_LJ“’(Q), where 2 C R” is open and & > 0 is defined by
BVI (@) i={u € Liso(@ 1wz 0andu' ™ € BV(®@)} .

It is the natural function space on which the integral

E(u) :/ u®y/1 4 |Du|*dx
Q

can be defined (as a measure) and also minimized, cf. the papers by Bemelmans
and Dierkes [2] and [9]. Note that %-H'c')lder—continuity is the optimal regularity for
minimizers of E(-) that can be expected in general, see the examples by Dierkes [7,
8]. Recently T. Tennstddt [28,29] proved %—Hblder—continuity for every minimizer
in dimensions n < 6. Again, by the examples constructed in [7,8] it follows that
Theorem 1.2 is optimal of its type.

Thirdly we prove an analogous result for Caccioppoli sets minimizing the para-
metric energy functional

EW) = / [xXn11% 1Dyl .

see Sections 3 and 4 for the pertinent definitions.

Theorem 1.3. Let « > 0 and U C R"*! be a Caccioppoli set which locally min-
imizes the integral £(-) in R"™! and which is of sublinear growth. Then U is the
half-space {(x, x,41) € R* x R; x,,41 < 0} or its complement.

Finally we consider certain types of exterior solutions of the s.m.s.e. (x) which
possibly vanish on a set of positive measure.
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Theorem 14. Let « > 1 and n > 2 be arbitrary. There is no non-trivial non-
negative function u € Hl1 oe@®) N C O(R™) which solves the symmetric minimal
surface equation (x) weakly in R" — {u = 0}, where the coincidence set {u = 0} is

supposed to be bounded and which is of sublinear growth in the sense that
u(x) =o(xl|) as |x| — oo.

The examples constructed in [7,8] are of class H ;,loc RMNC 0.3 (R™),forall p < 2,
vanish on balls Bz (0) C R” and are of linear growth at infinity. Hence Theorem 1.4
is optimal.

Further Bernstein type results for stable solutions of () in small dimensions
were proved in [11].

The proofs of Theorems 1.1, 1.2, 1.3 and 1.4 follow from suitable monotonicity
and area estimates given in Sections 3 and 4. The theorems are proved in Section 5.

2. Preliminaries

We here consider quite generally integer multiplicity n-rectifiable varifolds v =
v(M,©) in R™*! (in the sense of Allard and Simon [24]), briefly integer n-varifolds,
that is, modulo n-dimensional Hausdorff-measure zero, a countably n-rectifiable
H"-measurable subset M of R"*! together with an integer valued positive and lo-
cally integrable function ® on M. Associated to the varifold v is the Radon measure
py :=H"L ©,ie uy(A) = [, 0dH" = [,~,, ©dH" for any H" measurable
set A C R*! where we have put ® = 0 outside of M. In particular we have
in mind varifolds (with multiplicity ® = 1) given by the reduced boundary 9*E
of a Caccioppoli set E C R"T!. Recall that E ¢ U c R*"!', U open, is a
set of locally finite perimeter (or Caccioppoli set) in U, if E is £"T!-measurable
and if the characteristic function g of E has locally finite bounded variation in
U, 9 € BVioe(U). If E C R™! has locally finite perimeter in U ¢ R"*!
there is a Radon measure g = |D@g| on U and a |Dgg| measurable function
v = (V1,..., Vy41) (the generalized inward unit normal) with ||v(x)| = 1 for
|Dgg| a.e. x € U and such that for every g = (g1, ..., &n+1) € CCI(U, Ry we
have

/ div g dL™ =—/<g~v>|D<pE|
ENU U

=—/g-D<pE,
U

Do denoting the vector measure v| Dgg|. Furthermore the reduced boundary 9* E
of a Caccioppoli set E is given by

I8 o VIDeE
'E = {x eU; lim o) T exists and has length equal to 1 ¢ .

p=0 [g x) IDOE]
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In particular we have |Dgg| = |Dgg| L 0*E = H" L 9*E, 9*E is countably
n-rectifiable and each point x € 9*E has an approximate tangent space Ty with
multiplicity 1 given by

JB, ) VIDeE]
T, = {y e R y-VE(x) = 0}, where vg(x) := lim L’
=0 [5 ) |D@EI

see [19] and [24] for more discussion and proofs.
Now let v = v(M, ©) be a rectifiable n-varifold in an open set U ¢ R"*+! and
consider the functional

50((M):/ IXpg11¥diy > 0.
M

The first variation can be computed, e.g., as in Simon [10,24]; for convenience we
sketch the proof.

To this end consider a one parameter family ®;, —1 < ¢ < 1, of diffeomor-
phisms of U ¢ R"*! with the following properties,

i) ®(x) =@, x) € C>((=1,1) x U, U);
11) q>0 = Id|U;
iii) ®;(x) = x forall + € [—1, 1] and every x € U — K for some compact set
K cU.

Put X(x) := %(r, X)ji=0 € C g(U , R"*1) to denote the initial velocity vector for

® (¢, x) and let ®;4v denote the image varifold ®,4v = v(th(M), ®o CD,_]). The
general area-formula ([24]) yields

.y (v L K)) :/ T, - OdH
MNK

where we have put ¥; := &, ., K compact, K C U and J\W; denotes the Jaco-
bian of W,;. By definition the first variation is given by

d
8a(v. X) 1= — Eq (P (v L K))—o -

Proposition 2.1. Let v = v(M, ®) be an integer n-rectifiable varifold, ®;(x) =
O(t,x) and X(x) = %CD(I, X)|i—0 be as above. Suppose either M C R" x R,

with RT := {t > 0}, or @ > 1, then the first variation of &, is given by

) Xn-i-l(x)
54 (v) = / gt 1 [ diva X (0 + @ Z—22) dp,,
MNK

Xn+1

where X" denotes the (n+1)-st component of the vector field X= (X', ... X"t1).



1290 ULRICH DIERKES AND TOBIAS TENNSTADT

Proof. For convenience we sketch the argument and refer to [10,24] and [14, Chap-
ter 3.2] for more detailed calculations. By standard arguments one finds for the
Jacobian J W, the development
JY, =1+tdivy X + O(tz),also
Xn+1 X
(x) L

o
‘“’f“(w\ =|xn+1|“{1+az
Xn+1

o(ﬂ)} .

The first variation formula now follows by computing the coefficient of ¢ in the

product W (x)|* - Jw;. O
Definition 2.2. The varifold v = v(M, ®) is called stationary in an open set U C
Rn—i—l ,if
. Xn-H X
[ i (de X() +a A) diy =0 .
M Xn+1

holds for all vector fields X (x) = (X'(x), ..., X""'(x)) € C} (U, R"™).

Remark 2.3. Here we either assume o > lor M C R" x Rt (or M C R" x R™,
with R™ = {t < 0}).

Proposition 2.4. Let M C R"*! be a C?-hypersurface and U C R"*! be an open
set, such that M NU # @, and oM NU = ¥ and H"(M N K) < oo for each
compact set K C U. Then M is stationary in U if and only if the mean curvature
H = H(x), x € MNU, with respect to the unit normal v = (vi, ..., Vy41) = V(X)
satisfies the Euler equation
o o Vn+l
|Xn411% H (x) = a|xp41] . (2.2)
Xn+1

Remarks 2.5.

i) Clearly, if M Cc R" x R, (2) is equivalent to H(x) = ;’;—:i, forall x € M,

and also, if M = graph(u) for some positive function u : Q — R™, to the
symmetric minimal surface equation

Du o
div = . (2.3)
(\/1+|Du|2> uy/ 1+ |Dul?

On the other hand, given a stationary C? hypersurface M C R” x R and
a point yg := (3J9,0) € M, given 3y € R”" with the property that every ball
B (y0) € R™*! with & > 0 contains points y. € M N B, (yo) with (y¢)nt1 # 0
then we can conclude that

li (0[ Vnt1(Ye)
1m _—

o ) = H(yp) exists;
Ye

e—0
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in particular v,4+1(y9) = 0. Hence M intersects the coordinate plane {x,+; =
0} vertically at yg and can be written locally near yg as a graph x; = f(x2, ...,
Xn+1) say (which satisfies some singular elliptic p.d.e.);

ii) The coordinate plane {x,;; = 0} satisfies (2.2) (with « > 1) but is not a
solution of (2.3);

iii) There are Lipschitz hypersurface solutions of (2.2) given by the union of any
vertical half-plane and the corresponding half-plane of the coordinate plane
{xn+1 =0};

iv) There exist (Lipschitz-)continuous piecewise C2-hypersurfaces which are H"-
a.e. solutions of (2.2) (for @ > 1), namely the union of an n-ball Bg(0) C
R" x {0} and a C2-hypersurface in R” x R* with boundary 3B (0) given by
the graph of a particular %-Hi’)lder continuous function # : R" — Br(0) —
R* U {0}. See the work of Dierkes [7].

Proof of Proposition 2.4. Suppose M C R"*! is stationary in U and let X (x) :=
E(x)-v(x),where & € CC1 (U, R) is arbitrary and v is some unit normal on M. Then
divyy X = &divyy v = —&H and hence (2.2) follows from (2.1) and a standard
device. On the other hand, if M € C? satisfies (2.2) and X € CL(U, R"*!) is given
arbitrarily, we decompose X = X+ X T into its normal part X+ = (X-v) v and the
tangential part X | € T, M respectively and compute divy X+ = (X - v) divyy v =
—H (X - v). Therefore we have

Vn+1

|xXn1]% divay X+ = —|xpr1|* H(X - v) = —a|xp 1| (X -v) (2.4)

Xn+1

by (2.2). Furthermore we find

v [ divag X =divay (151 17X ) = Vg (ln11%) X7

X o
=divy {|xn+1|°‘XT} - aﬂ (VMx,,+1 . XT)
Xn+1 2.5)
X o .
— divyy {|xn+1|0‘xT} _ o Pt yn
Xn+1
Xn41 |
4 o ] Vng1 (X - v)
Xn+1

where we have used the relation

Vst - X = (ens1 —(€nt1-v)v) - X T
=(ent1 —(epnt1-VIV) - X
=X"T — v (X ),
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denoting by e, the vector (0, ...,0,1) € R"*!. Concluding we finally obtain
from (4) and (5) the identity

Xn+1
|Xn411% (diVM X+ GA)

Xn+1

. avyv |‘xrl+1 |a n+l1 |xl’l+1 |a
= divag Pt OX T} — @22yt o (X )
Xn+1 Xn+1
|Xn411% |Xp1[* X
v (X ) e
Xn+1 Xn+1

= divys { st 1“X T}

—

Hence (2.1) follows from the divergence theorem since X ' has compact support
on M. O

Proposition 2.6. Let u € C%1(R") be a weak nonnegative solution of the symmet-
ric minimal surface equation (x) in R" with @ > 0. Then M = graph(u) C R"*!
is stationary in Rt je.

X"+1(x)

Xn+1

/ X1 {divM Xx)4+a dH"(x) =0
M

holds for all vector fields X = (X', ..., X"ty e C}(R™! Ry,

Remark 2.7. Note that here it is not assumed « > 1 although the level set {# = 0}
might be nonempty. In fact we show existence of the integral in this case, even if
a € (0,1].

Proof. Since M = {(x, u(x)) € R" x R} is the Lipschitz image of R” it is count-
ably n-rectifiable and by Schauder theory we have u € C* ({u > 0}). Whence the
mean curvature of M NR" x {¢r > 0} is simply

Vn+1 o
H(x):a = 3x:(x17"'7-xn+])

Xnt1  uy/1+ |Dul?

and by Proposition 2.4 it follows that M is stationary in R” x {t > 0}, i.e., we have
the relation

Xn+l
/ Xy ydivy X +a dH"(x) =0 (2.6)
M Xn+1

for all vector fields X € CC1 (R" x {t > 0}, R"*1) (and, clearly, forall X CC1 (R™ x
{t # 0}, R"*1) since u > 0).
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By assumption u € CO'(R") = H ;OJOC (R™) is a solution of the equation

Du Dy oQ
dx =0
n | V1+1Dul?  uy/1+ |Dul?

forallp € C g (R™), and |Du| € Lo 1oc(R") together with a standard test function
argument implies that

! € L1 10c(R"), whence also £" ({u =0}) = H" ({u = 0}) = 0.
u

For ¢ > 0 consider a smooth cutoff function n, : R — R given by the conditions
ne(t) = 1, for |t| > 3e, with n.(r) = 0, for || < e and 0 < n, < 1, with |, ()| <
% for all ¢, hence . — 1 ae. as ¢ — 0. Furthermore let X € C!(R"+! R"+1)

be an arbitrary vector field and suppose supp X C Bg(0)  R"*!. The truncated
vector field X, (x) := ne(xy41) - X (x) is admissible in (2.6) and since

divas Xe(x) = ne(xpg1) divy X + X (x) - 0 (Xn+1) - VaXns1,

we get the relation

f xf,(H { Ne(Xpy1) divyy X + X(x)n;(xn—b—l)van—H
MNBg

Xn+l(x)
a—7

Xn+1

ne(xn+1)} dH"(x) =0

for every ¢ > 0. The second integral can be estimated as follows

'/ xff_,_m;(xnﬂ)X(x) - Vmxne1 dH" (x)
MNBR

1
< sup |X| Xpyp - —dH"(x)
MNBg MNBgN{e<x,41<3¢} &

IA

3 sup |X]| x,‘f;f dH"(x)
MNBg MNBrN{e<x,4+1 <3¢}

3||X||O,BR/ u*='/14 |Du|?dx
Br(0)N{0<u<3e}

2

IA

IA

2 —1
30X 10,8, {1+ 10Ul 5, | 10 1.5 - Be)* > 0, ase 0,
sinceu"! € L1 joc(R™).
Observe in particular that the function xfl:l] is integrable with respect to the
n-dimensional Hausdorff-measure over M N B for all « > 0. In addition, since
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Ne(Xp+1) — 1 holds H"-a.e. on M N By (recall H" ({u = 0}) = 0), we infer from
Lebesgue’s dominated convergence theorem that

f Xy Me (Xpg1) divyy X (x) dH" (x) — / Xy g divay X (x) d'H" (x)
MNBR MNBg
and
/ o XX X" (e (ongr) dH" (x) — / XX () dH (x)
MNBg MNBg

both as ¢ — 0. In conclusion we have

Xn+l
/ Xpi {diVMX(x)—}—aJ} dH"(x) =0
MNBg Xn+1

for arbitrary X € C!(R"*!, R"*!) compactly supported in the ball Bgx(0) C
R+l . O

Similarly we prove for a > 1.

Proposition 2.6'. Leta > landu : R" — R} = {t > 0}, withu € H}, .(R") N

1,loc
CO(R™), be a weak solution of the s.m.s.e. (x) in R" —{u = 0}. Then M := graph(u)
is stationary in R"+1.

Remarks 2.8.

i) Here we have in mind exterior solutions of (2.3) in (R” :5), where 2 C R" is
bounded and open, which in addition satisfy # = 0 on 2. Recall that there are
even minima u for E of this type, where Q = Bg(0) isaball and u € C*°(R" —

Br(O) N CO’%(R”) N H; (R™), for all p < 2, see [8]. Recently, Tennstadt

loc
[28,29] proved that every local minimizer u of E is of class H 11 e NC 0.3 , if
n <6, ’

ii) It was recently shown by Tennstadt [28,30] that, for minimizing functions u,
the zero set {u = 0} has locally finite perimeter and is locally mean convex.

Proof. By assumption the set {u > 0} is open and classical regularity theory im-
plies u € C? ({u > 0}). Furthermore u € Hll’loc(R”) C BVioc(R™), whence the
subgraph U := {(x,7) € R" x R: ¢ < u(x)} has locally finite perimeter given by
JV1+|Dul>dx and M = 3*U = graph(u) is n-rectifiable. Invoking Proposi-
tion 2.4 we obtain that M = graph(u) is stationary in R” x {t # 0} ¢ R"*! and
a similar argument as the one given in the proof of Proposition 2.6, using that now
o > 1 is assumed, finishes the proof. O
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3. Monotonicity formulae

We here give two versions of the monotonicity formula; namely one for stationary
varifolds and — somewhat differently — another formula for minimizing boundaries.

First assume that v = v(M, ®) is stationary in U C ]R”H, i.e. we have the
identity

Xn+l
/ |xn411% (divM X(x) + ozA) dH'(x) =0
M Xn+1
for all differentiable vector fields X = (X', ..., X"*!) with compact support in U .

We choose the standard test function X (x) := y(r)(x — &), where £ € U is fixed,
r:=|x —&|and y € CY(R) with y'(¢) < 0,forallt € R,and y () = 1 fort < 2,
and y (1) =0fort > p and B,(§) C U. Standard calculations (see [14,24]) yield

divy X (x) = divy (y (r)(x = §)) = y () divy (x —=&) +y (1) Vyr - (x —&) (3.1)

and since .
x f—
Vi = Vylx — g = S8
lx —§&]
we have
T (v T _ gLy 2
VMr(x—é-‘):r(x £ =8 =r|l1— <u> =r [l —’D}’L|2i|,
lx — & |x—§| lx — &I
where Dr = g:g? denotes the gradient of r.
Furthermore
n+l1 n+1
divi(x —§) =) e;-Vu(x; = &) =) ejef
j=1 j=1
n+l1 n+1 )
:Zej(ej—ej*)=(n+l)—2(e]+) 3
j=1 = (32)

n+1
=n+D-> [wep v =@+ -1
=1
=n,

]*, with ey, ..., e,+] denoting the standard

basis of R*t1, By (3.1), (3.2) and the first variation formula we find

. T L . —
sincee; =e; +ej andve; =v; =ve

divy X =nyr)+y'(nr (1 — |Drl|2>
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whence

2
o [ ety i+ [ty (1= D) du,
M M

+ Ol/ |xn+l|axn__|1_1)’(r)(xn+l —&nr1)dpy =0,
M

or

(”“‘a)/ |Xn+11%y (r) dpey +f [Xn1 1“7y (r) d iy

M M

) (3.3)

=a [ ol Obdi + [ el o [or] d,
M M

Now we take y(r) := CD(%) with ® € CI(R) satisfying ®(¢) = 1if r < %, and

®()=0ifr > 1,aswellas0 < ®(z) < 1and ®'(¢) <0forall# € R. Then

, AR d r
ry'r)y=rd®|—)—=—p—o| —
p)p ap  \p

and (3.3) yields

r ad r
(n —}—(X)/ |xn+1|acb <_> duy — ,0/ |xn+1|a_cb <_> d iy
M P M i \p
_ r
=05/ |xn+l|axn+1 < >€n+ldﬂv - / |xn+l|a_®( > )Dr
M Y

Defining
o r
1(p) = | lans1l“® (=) dpo
M o

L(p) = fM st 2 g1 @ (p) dpt,y

J(p) —/ EIC <1>( )\Dr

we infer the equation

duy.

dpy

(n+a)l(p) — pl'(p) = aL(p) — pJ'(p)
and since
d
i [P~ 01 (0) | = =+ @)p= TV 1 (p) + o~ ()

_ _p—(n+a+]) [(l’l +a)l — pl/]
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this implies the differential equation

d / _ _ _
45 (P7L) = o7 () = ap DL ().
Integration between 0 < o < p yields
P p :
o~ (p) — oV () =/ T (1) dt —a/ " L (r) d
o o

and upon partial integration of the first integral, then letting & tend to the charac-
teristic function of the interval (—oo, 1) and finally applying Fubini’s theorem, we
conclude the monotonicity formula

p "t / 1% dpy — o~ / X1 %d o
By (&) By (&)

2 (3.4)
_/ o [ |Dr| du a§n+1/ 1| [ 1 1 } »
= i — —
By-B (&) rrte S0 nta)p, xpr Lrpte o pnte !
where r, := max(r, o).
In particular, if £,+; = O we have the identity
U_(n+a)/ IXp1|%dny = p_(n+a)/ |Xp11%d ey
B, (§) B,(&) 35)
oo '
- 5,5, [Xn+1] Tt duy
and the inequality
o [l <o [ a6
Bs(§) By (§)

holding true for all0 < o < p with B,(§) C U.
We have thus proved

Proposition 3.1. Suppose v = v(M, ©) is stationary in U C R""! and B,(&) €
U. Then we have the monotonicity formula (3.4), and if ¢ = (&1, ...,&,,0) both
formulae (3.5) or (3.6) hold true.

Remark 3.2. In general we assume o > 1 in the definition of stationarity; how-
ever if M = graphu, where u > 0 is some Lipschitz-solution of the s.m.s.e. ()
then, because of Proposition 2.6, o > 0 is sufficient in this case. In particular we
then also have the monotonicity formulae for all « > 0 and M = graph of a Lips-
chitz solution u. Similarly, if v is given by the reduced boundary of a minimizing
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set E ¢ R"*!, then we conclude a monotonicity formula for all & > 0 directly
from the minimizing property of v, rather then first differentiating the functional
as in Proposition 2.1, see Proposition 3.5. To show this we consider n-rectifiable
varifolds v = v(M, ©) given by the reduced boundary 0*E of a Caccioppoli set
E c R"*! which locally minimizes the functional

EWU) = / |xp411% | Doy, fora >0,
in R je. we have
/ X411 | DoE| 5/ |Xn411% | DoF|
Q Q

for any bounded open set @ C R"*! and all sets F  R"*! with locally finite
perimeter such that FAE & 2. In other words, if we introduce the quantities
N = N(E, Q) by

N(E, Q) := inf{/ |xn111%|Der|; F has finite perimeter in Q and FAE € Q}
Q
and the indicator function ¥ = W(E, Q2) by
W(E.) 1= [ i l*IDgr |~ NCE. 9,
Q

we consider E ¢ R*t! | so that
W (E, Q) = 0 for all open sets Q C R"*!.

The following result immediately implies the monotonicity formula for minimizing
boundaries, see also Giusti [19, Lemma 5.8] for a similar estimate.

Proposition 3.3. Ler E C R"*! have finite perimeter in a ball Bg(0) C R**1.
Then for all balls B,(0) C B,(0) € Bg(0) we have the estimate

2
lx - Dog| |DoE|

Xpgt |* —— ] <2 [Xp41]%
</BP—B,, |x|rtotl B,—Bs |x |t

0
.{(n+a)/ r_”_“_l\I/(E,Br)dr-i-,O_"_a/ [Xn411% | DoE|
o

By
—0_”_0‘/ |xn+l|a|D¢E|}
By

where a > 0 and B, = B;(0), B, = B,(0).
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Remark 3.4. The same result holds for arbitrary balls B, € B,(§) C Bg(0) with
center & = (&1, ..., &,,0) lying on the coordinate hyperplane {x,; = 0}.

Proof of Proposition 3.3. Let ¢} be a mollification of the characteristic function
g with the properties

/ loE — ¢%|dH" — 0, ase — 0,
B,

3.7
/ |Xnt11%| DP% | dx — / 1Xn111%|DgEl, ase — 0
B, B,
for almost all » € [0, R], (see [20, Theorem 12.3]).
Define
X .
YE (r—), if x| <r
PEg (x) == x|
@E(x), if [x] > r
and
& Y- i
) = P (r |x|) '
First observe that
f In; — ¢Eg | dx 2/ / In; — @Eg |dH" dp
B, 0 JoB,
A% e n
[ [ w-veiaman o9
0 \r 3B,

r
n—+1

/ 165 — gl dH" — 0
0B,

as ¢ — 0 for almost all r € [0, R] whence by lower semicontinuity also

/ i1 | D] — W(E, By) < / a1 ¥ | Do,
Br Br (3.9)
< liminf/ |Xn111% | Dnf| dx.
e—~>0 Jp,

From the definition of ¢ we compute

D) 2 D%, (rlg—l) ) (D¢g(rlj§_|) .x) .
x| |x|3
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and therefore

[ il o x
B, 1
2 2)2
) X 4 X
= r/ [xn11% 1 1x]77 | D% (r—) — |x] <x - D¢ <r—>> dx
B, |x] |x]
2
x - D¢5 r%
= / / 1% D¢E( >‘ 1— ( E< |>) dH"dr.
9B, |x] L) 12

xP2IDg (r
Using the transformation x = T~y we find

|, wiatiDa
(5) oo SRR DN VEA
—rff|yn+1| (3 |D¢E<y)|{1 |y|2|D¢E(y)|2}(?) H'dx

o e Dt 1 (3.10)
fr/ (E)” “ / X197 D | 1—% dH"d
0 9B,

r |x|2| D@5 (x)]?
- 1 (x- Do) | .
faB, [xn411% D@ (x)| {1 -3 —|x|2|D¢%(x)|2 dH".

Now multiply (3.9) by r#~*~! integrate over r from & to p and then employ
(3.10) to obtain

o
/r_”_"_l (/ Ixn+1I“|D<pEI—‘IJ(E,Br)> dr
o B,

P
§liminf/ r_"_“_lf [Xn411%| Dnf | dx dr
a B,

e—>0

=<
n—+o

< liminf {

e—0

0
e Xpt1|“ I D% ()| dH" dr
— /aBr|n+1|| 05 ()|

2(n+a)/g ' /aB, bt g op 4T

1
= hmmf{ / a1 1% D ()| dix — 07" / a1 | D ()| dix

n+oa -0

+ +a)f r_"_"‘_lf |Xn+11%| D% (x)| dx dr
o B,

1P (x - Do, (x))°
_ - n—o n a—dHnd ,
2/0 ! /aB, Pt P Dt o] '
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where in the last step we have used an integration by parts. Rearranging terms we
get

2
lim sup ! |1 (X'qu%(X)) X
— 1
em0 20 +a) Jp, g, T e[ Dgl (1)

p P
=< —/ rnalf Ixn+1|“|D<PE|dr—l-/ r "N (B,) dr
o B, o

. ligri)iélf {p"“ fBP |Xnt11% | DG (x)| dx (3.11)

—U"“/ |Xn411%| D@ (x)| dx
By

P
+(n+a)/ r"‘“/ |xn+1|“|D¢g(x)|dxdr}.
o B,

On the other hand we apply Schwarz’ inequality to obtain

2
o X - Do (x))]
(»/Bp—Bg |Xn-41] |x|n+a+1 dx

.| Do5 ()] o (¥ Dgp)’
5(/3 el /B el e

and estimate the second factor with the help of (3.11). This yields the inequality

2
D@5 (x) - x
lim sup / |xn+1|a7| Pp) |dx
e—0 B,—B, |x|n+a+1

Do)

|x|n+a

<limsup2(n + o) [Xn+1
e—0 Bp_BG

0
x{—/ r—"—““/ |Xn111% | DoE| dr
o r

P
+/ r" VY (E, B,)dr
o

+

liminf | p7"*7¢ Y| Dgs d
(n+a) e ['0 ./B,, 1] ’ ¢E(X)| !

e / on1 19| Dy ()| dx
B,

P
+(n+a)/ r—"—“—I/ |xn+1|“|D¢g(x);dxdr]}
o B,
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which in turn, using the approximation (3.7), proves the final estimate

2
Dok - x| |Dykg|
Xnp1 | ———5 | <2 |Xn411
<\/Bp—B,, n+ |x|n+a+l B,~B, n+ |x|n+a

o
~{(n—|—ot)/ r el (E, Br)dr-l-,o_"_a/ [Xn411% | DoE|
o

B,

—0"_"_0‘/30 |xn+1|a‘D(0E|}- 0

Proposition 3.3 immediately implies the monotonicity formula for minimizing
boundaries.

Proposition 3.5. Let o > 0 and suppose E C R"T! is a Caccioppoli set which
locally minimizes £ in @ C R"™! ie. W(E, Q) = 0. Then we have the inequality

o f enit |71 D] < o / us1 ] Dy |
Bs

By

for all balls B, = B;() C B, = B,(§) € Q, where § = (&1,...,&,,0) €

R"™ x {0} is arbitrary.

4. Area growth

Here we suppose that E C R"*! has locally finite perimeter in R"*! and minimizes
EW) = / X411 Doy | for o > 0

locally in R"*! among Caccioppoli sets, i.e. the indicator function

W(E,Q) =0

for all open sets @ C R"*!. We say that E has sublinear growth, if there exists
some nonnegative measurable function s : R” — R* such that M = 9* E fulfills

M C {(x,xp41) € R" x R: —s(x) < xp41 < s(x)} 4.1)
and
lim 18100,Br (@) -0 42)
R— o0 R ’ ’

Here Bg(0) C R” denotes the n-ball with center at 0 € R” and ||, 5, stands for
the sup-norm of s on Bg. Analogously a function u € BVioc(R") is of sublinear
growth, if the subgraph

U:={(x,) e R"xR:t <ux)}

has sublinear growth.
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Proposition 4.1. Let E C Rt be a Caccioppoli set which locally minimizes € in
R+ for some a > 0 and suppose M = d*E is of sublinear growth. Then we have

lim R_”_“/ X441 Dor| =0 for Br(0) C RFL,
Br(0)

R— o0

Remark 4.2. Proposition 4.1 is sharp as one sees by considering the cones

ce :={(x,xn+1)eR"xR: 0 < xXpy1 < Llnxn}
Vs

which are of linear growth and minimize

5=/|xn+1la|D§0U|,

if, for example, n = 2 and « > 6 say, see [7,8] for more details. Also, one easily
computes

/ [xn411%|Doce | = c(n, @) R"
Bg(0)
for some constant c(n, o) > 0.
Proof. Define the cylinder
Cr:={(x.xp41) €R" xR: |x| < Rand — |s]oo,Bz < Xnt1 < IS|oo,Bg}

where s : R" — RT™ is some dominance function with the properties (4.1) and
(4.2). The minimum property of E implies for any ¢ > 0

E(E, Crie) =/

CRte

— & (E— Tk, Crue)

iust 1Dzl < [ vwal® Doy
" Crie ECr 43)

and the trace formula for BV -functions yields for almost all R, and ¢ > 0

& (E - C_R, CR+£) =& (E, CR+s - C_R) +/ |xn+1|adHn (4-4)
JCRNE

and similarly also

E(E, Cpae) < /

[xp1” )D(pEUC_R

CRte
= & (EUCR, Crye) 4.5)
= 8 (E, CR+8 — C_R) +/ |xn+1 |adHn.
BCRO(R”“fE)
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Formulae (4.3), (4.4) and (4.5) imply the estimate

E(E, CRr+e) =/ |xn411% Dol

CR+te

+ min {/ |xXp11|“dH,, | X1 |°‘dHn}
ACRNE ACRN(RM 1 _F)

which in turn yields for almost all R > 0,as ¢ — 0

E(E,Cpr) < min {/ |Xp11“dH,, [Xn+1 |ad7'fn} . 4.6
ACRNE ICRNR*! —E)

Weput 90Cgr=ZrU D;F U Dy, where
Zr = {(x, xp4) €R" xR : x| = Rand — [s|oo,Bg < Xnt+1 < ISloo, B}
denotes the vertical wall and
Dy = {(x, xn41) € R" x Rt |x] < R, Xpp1 = £[5|oo.B4 }

denote the top and bottom of the cylinder dCg respectively. We find the estimate

f ben1 A Hy = / a1 [“d Ho + f n1 YA H,
aCk D}uDy Zr

@n —1 o 1+a
R" s
1 +a | |OO,BR

=< 2wnR"|S|go,3R +
whence, by virtue of (4.6) also
R /C 1 [1DgE] < cln, o) { R1s1% g, + R ls1 25 1
R

Finally, by assumption M = 0*E C {(x, xp+1) € R" x R; —s(x) < x541 < s(x)},
whence M N Br(0) C Cg and together with (4.6) and (4.2) we conclude

lim R""‘/ |xp411%DoEg| = 0. O]
Br(0)

R—o00

The proof of the following Proposition is standard, see, e.g., [18, Chapter 16].
For convenience we give the argument in some detail.

Proposition 43. Let u € H Il (R" — K), with K C R" compact, be a weak

1,loc

nonnegative solution of the s.m.s.e. (2.3) in (R" — K) and let K C Bg,(0) C R".
Then for every p > Ro + 1 the following area estimate holds:

o n o o
[t < ot g 00t -
MNB,(0)

where M := graph U|B,—Bgy+i and |u|p, o denotes the L ,-norm of u on 2.
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Proof. Choose p > Ry + 1 and some cut-off function n € C? o1 (R™ — K) with the
properties

I, if Ro+1=<1Ix[<p

for p < |x| < 2p.

X) =
T =00, if Jxl < Ry or x| > 2p,
and such that a.e.
1 for Ro <|x|<Rp+1
[Dn| < {0 for Rp+1<|x|<p
1
]

Put ¢ :=n - u,, where u, denotes the truncated function

u on {0<u<p}
Up i=
p on {u>p}
Then it holds a.e.
Du on {0 <u < p}
Du, =
0 on {u=p}

and ¢ € ﬁll (B2, — K) satisfies Do = Dn - u, + nDu, a.e. Upon substitution of
¢ and Dg into the weak formulation of (2.3)

Du Dy o
+ dx =0
Ri—K \/1+|Dul>  uy/1+ |Du|?

we arrive at

/ Du Dnu, n Du Du,n " anu, d 0
X =

Boy—Br, | V1 +|Dul> 1+ [Dul>  uy/1+ |Dul?

Since Du, =0on {u > p}a.e. we find

2
|Dul|n dx — Du Dnu,

e dx = — ————Ldx
/UBZn—BRo)”{Mp} V1+|Dul? Bay—Bry v/ 1 + |Dul?

. / " s
Ba,~Bg, uy/1+ |Dul?

In particular, because of n = 1,if Ro+1 < |x| < p,withO <p <landu,u, >0
we obtain

Dul? u,|Dul||D
/ [Du| plDul | nldx
(

- <
By—Bry+)NMu<p} /1 4 | Du? By,~Bg, /1 + |Du|?
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and hence

up|Dul|Dn|
V14 |Dul>dx < LB, — Bry+1) + P dx
P Byy—B, /1+ |Dul?

/<BP—BRO+.)m{u<p}

u,|Dul||D
+/ ol Dul | Dn| dx.
BR()+1_BR0 vV 1 =+ |Dl/l|2

Using 0 < u, <wu,and 0 < u, < p, with |Dpn| < %on {p < |x] < 2p} and
|IDn| < 1lon{Ry < |x| < Ry + 1} we find

/ \/ 14+ |Dul?dx
Bp—Bgry+1)N{u<p}

5 En(Bp - BR0+1) + LH(B2)O - Bp) + |M|I,BR0+|—BRO

<c (n)pn + |u|1aBRO+l*BR0'

Thus we have

W\ T IDuP dx < i, 5, gy [e1 000" + Il 5, -5, |

and in particular, with M = graphu,— Bry+1» it holds

/<BP—BR0+1>m{u<p}

o n o o
| M e i 5,y 00,y -y O
MNB,(0)

5. Proofs

In this section we prove the four main theorems.

Proof of Theorem 1.1. Suppose on the contrary to the statement of Theorem 1.1,
there is a Lipschitz-solution # > 0 of the s.m.s.e. () which satisfies the growth
condition

u(x) =o(lx|) as |x| — oo.

By Propositions 2.6 and 3.1, especially formula (3.6) applied to M =graph(u), with
dpu=dH, and £ =0 € R""! we get forall0 < 0 < p < oo the inequality

o_”_“/ Xy dH" < ,0_"_0‘/ Xy dH".
B, (0)NM B,()NM

Since L£" ({u = 0}) = 0 there is some oy > 0 with

—n—o o n
o / xn+1d'H > 0.
Boy M
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However, according to Proposition 4.3 we must have

lim ,o_"_“/ Xy dH" =0,
B,NM

pP—> 00
an obvious contradiction. O

Proof of Theorem 1.2. Letu € B Viﬁgc (R™) be a local minimum of the variational
integral ’

E:/‘u‘)‘\/l-i—lDul2 for a >0

in the class BVf”"(Q), with Q C R” arbitrary. Then we have u € B Vjoc(R") (in
factu € Hl1 loc (R™) according to Tennstidt [28]) and the subgraph

U:= {(x,t) e R < u(x)}

has locally finite perimeter in R”T!. By [2, Theorem 10], the subgraph U locally
minimizes

5(U)=/Ixn+1|°‘|D§0U|

in R"*!. (In fact, in the paper [2] only the case « = 1 is considered, however the
generalization to arbitrary o > 0 is straightforward!.) Now we are in the situation
described in Proposition 3.5 with minimizing set U and arbitrary open set Q2 C
R+ For£ =0and 0 < o < p < oo arbitrary we get

o‘"“"/ X 11%1 Doy < p‘"‘“/ [xn+11% Doy
B, B, (0)

By virtue of Proposition 4.1 and by letting p — oo we finally arrive at

/ |Xp11% Doy | =0
B (0)

for every o > 0, hence dU = {x,+; = 0}. O

Proof of Theorem 1.3. Theorem 1.3 follows from Propositions 3.5 and 4.1 analo-
gously to the proof to Theorem 1.2. O

Proof of Theorem 1.4. Suppose on the contrary to the statement of Theorem 1.4,
that there is a non-trivial u € Hll’10C (R™)NCO(R™) which solves the s.m.s.e. weakly
in R” — {u = 0} and which is of sublinear growth. By Proposition 3’ M = graph(u)
is stationary in R"*!. Proposition 3.1, formula (3.6) with £ = 0, Proposition 4.3,
and the assumption of sublinear growth imply that

U”“/ Xy dH, =0
By (O)NM
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for every o > 0 and M = graph(u) C R"*!; whence we had u = 0 on R”. This
contradiction concludes the proof of Theorem 1.4. O
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