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Bernstein results for symmetric minimal surfaces
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Abstract. We prove that there is no entire solution of the symmetric minimal sur-
face equation which is of sublinear growth. This result is extended to parametric
and non-parametric minimizers of the corresponding variational integral.
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1. Introduction

By a well known result of Bernstein [3] every entire classical solution u of the
minimal surface equation

div

 
Du

p
1+ |Du|2

!

= 0

in R2, has to be an affine-linear function. In fact this theorem was shown to hold
up to dimension 7 by Fleming [17], De Giorgi [6], Almgren [1] and J. Simons [27],
while there exist nonlinear entire solutions in Rn, n � 8, as was first discovered by
Bombieri-De Giorgi-Giusti [4]. Many more non-affine examples were constructed
by L. Simon [25].

On the other handMoser [21] proved that every entire solution u of the minimal
surface equation in Rn , n arbitrary, is affine linear, provided |Du|0,Rn is finite, and
it follows from the a priori gradient estimate of Bombieri-De Giorgi-Miranda [5]
that this is already the case if u grows at most linearly, in the sense that

u(x)  C(1+ |x |) for some C > 0 and all x 2 Rn.
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Ecker and Huisken [16] extended Moser’s result by requiring instead of bounded-
ness only sublinear growth of the gradient Du, that is

|Du(x)| = o(|x |) as |x | ! 1.

Optimal results of this type were proved by L. Simon [25,26].
In this paper we consider entire solutions of the symmetric minimal surface

equation (in short: s.m.s.e.)

div

 
Du

p
1+ |Du|2

!

=
↵

u
p
1+ |Du|2

, (⇤)

where ↵ > 0 denotes some positive number. (⇤) is the Euler-equation of the varia-
tional integral

E(u) =
Z
u↵

q
1+ |Du|2 dx,

which, for ↵ = m 2 N and positive u : � ! R+, describes, up to a constant factor,
the area of the rotated graph

Mrot =
n
(x, u(x)!) 2 Rn ⇥ Rm+1; x 2 � ⇢ Rn and ! 2 Sm

o
,

where Sm ⇢ Rm+1 denotes the unit m-sphere, see, e.g., the computation in [13].
A different interpretation for equation (⇤) with ↵ = 1 in the two-dimensional

case was already given by Poisson [23], who considered (⇤) as a model equation
for an ideal heavy surface of constant mass density which is exposed to a vertical
gravitational field. Furthermore, architects consider (⇤) as a model equation for a so
called hanging roof, which is of importance for the constructions of perfect domes
or cupolas, see the discussion in [22] and the literature cited therein.

The symmetric (or singular) minimal surface equation (⇤) is an equation of
mean curvature type, with mean curvature H given by

H(u, Du) =
↵

u
p
1+ |Du|2

,

whence H is a priori not bounded, nor can a solution u of (⇤) be of class C2 in
a neighbourhood of a point x0 with u(x0) = 0. Thus we typically consider either
classical positive solutions, or weak Lipschitz solutions u � 0 of the s.m.s.e. For
the existence of classical solutions of (⇤) with prescribed boundary values we refer
to the papers by Dierkes-Huisken [15] and Dierkes [12].

On the other hand, it is easily checked that the cones

c↵n (x) :=

r
↵

n � 1

⇣
x21 + . . . + x2n

⌘ 1
2

=

r
↵

n � 1
|x |
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are classical solutions of (⇤) onRn � {0} and weak Lipschitz-solutions on all ofRn ,
for every ↵ > 0, n � 2. For a complete classification of these cones concerning
their minimizing properties and for the construction of nonaffine entireC1-solution
asymptotic to these cones, we refer to the papers by Dierkes [7–9].

In view of these remarks the following result is optimal.

Theorem 1.1. There is no entire nonnegative solution u 2 C0,1(Rn) of the sym-
metric minimal surface equation (⇤) satisfying

u(x) = o(|x |) as |x | ! 1.

(Here ↵ > 0, n � 2 are arbitrary).

We also prove a version of Theorem 1.1 for less regular, local minimizers of the
integral E in Rn .

Theorem 1.2. Let ↵ > 0 and u 2 BV 1+↵
+,loc(Rn) be a local minimizer of E in Rn

which is of sublinear growth. Then u ⌘ 0.

Here the class BV 1+↵
+ (�), where � ⇢ Rn is open and ↵ > 0 is defined by

BV 1+↵
+ (�) :=

n
u 2 L1+↵(�) : u � 0 and u1+↵ 2 BV (�)

o
.

It is the natural function space on which the integral

E(u) =
Z

�
u↵

q
1+ |Du|2 dx

can be defined (as a measure) and also minimized, cf. the papers by Bemelmans
and Dierkes [2] and [9]. Note that 12 -Hölder-continuity is the optimal regularity for
minimizers of E(·) that can be expected in general, see the examples by Dierkes [7,
8]. Recently T. Tennstädt [28, 29] proved 1

2 -Hölder-continuity for every minimizer
in dimensions n  6. Again, by the examples constructed in [7, 8] it follows that
Theorem 1.2 is optimal of its type.

Thirdly we prove an analogous result for Caccioppoli sets minimizing the para-
metric energy functional

E(U) =
Z

|xn+1|↵ |D'U | ,

see Sections 3 and 4 for the pertinent definitions.

Theorem 1.3. Let ↵ > 0 and U ⇢ Rn+1 be a Caccioppoli set which locally min-
imizes the integral E(·) in Rn+1 and which is of sublinear growth. Then U is the
half-space {(x, xn+1) 2 Rn ⇥ R ; xn+1  0} or its complement.

Finally we consider certain types of exterior solutions of the s.m.s.e. (⇤) which
possibly vanish on a set of positive measure.
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Theorem 1.4. Let ↵ > 1 and n � 2 be arbitrary. There is no non-trivial non-
negative function u 2 H11,loc(Rn) \ C0(Rn) which solves the symmetric minimal
surface equation (⇤) weakly in Rn � {u = 0}, where the coincidence set {u = 0} is
supposed to be bounded and which is of sublinear growth in the sense that

u(x) = o(|x |) as |x | ! 1.

The examples constructed in [7,8] are of class H1p,loc(Rn)\C0,
1
2 (Rn), for all p < 2,

vanish on ballsBR(0) ⇢ Rn and are of linear growth at infinity. Hence Theorem 1.4
is optimal.

Further Bernstein type results for stable solutions of (⇤) in small dimensions
were proved in [11].

The proofs of Theorems 1.1, 1.2, 1.3 and 1.4 follow from suitable monotonicity
and area estimates given in Sections 3 and 4. The theorems are proved in Section 5.

2. Preliminaries

We here consider quite generally integer multiplicity n-rectifiable varifolds v =
v(M,2) inRn+1 (in the sense of Allard and Simon [24]), briefly integer n-varifolds,
that is, modulo n-dimensional Hausdorff-measure zero, a countably n-rectifiable
Hn-measurable subset M of Rn+1 together with an integer valued positive and lo-
cally integrable function2 on M . Associated to the varifold v is the Radon measure
µv := Hn ¬

2, i.e. µv(A) =
R
A 2 dHn =

R
A\M 2 dHn for any Hn measurable

set A ⇢ Rn+1, where we have put 2 ⌘ 0 outside of M . In particular we have
in mind varifolds (with multiplicity 2 = 1) given by the reduced boundary @⇤E
of a Caccioppoli set E ⇢ Rn+1. Recall that E ⇢ U ⇢ Rn+1, U open, is a
set of locally finite perimeter (or Caccioppoli set) in U , if E is Ln+1-measurable
and if the characteristic function 'E of E has locally finite bounded variation in
U, 'E 2 BVloc(U). If E ⇢ Rn+1 has locally finite perimeter in U ⇢ Rn+1

there is a Radon measure µE = |D'E | on U and a |D'E | measurable function
⌫ = (⌫1, . . . , ⌫n+1) (the generalized inward unit normal) with k⌫(x)k = 1 for
|D'E | a. e. x 2 U and such that for every g = (g1, . . . , gn+1) 2 C1c (U, Rn+1) we
have

Z

E\U
div g dLn+1 = �

Z

U
(g · ⌫)|D'E |

= �
Z

U
g · D'E ,

D'E denoting the vector measure ⌫|D'E |. Furthermore the reduced boundary @⇤E
of a Caccioppoli set E is given by

@⇤E =

(

x 2 U ; lim
⇢!0

R
B⇢(x) ⌫|D'E |
R
B⇢(x) |D'E |

exists and has length equal to 1

)

.
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In particular we have |D'E | = |D'E |
¬
@⇤E = Hn ¬

@⇤E, @⇤E is countably
n-rectifiable and each point x 2 @⇤E has an approximate tangent space Tx with
multiplicity 1 given by

Tx =
n
y 2 Rn+1; y · ⌫E (x) = 0

o
, where ⌫E (x) := lim

⇢!0

R
B⇢(x) ⌫|D'E |
R
B⇢(x) |D'E |

,

see [19] and [24] for more discussion and proofs.
Now let v = v(M,2) be a rectifiable n-varifold in an open set U ⇢ Rn+1 and

consider the functional

E↵(M) =
Z

M
|xn+1|↵ dµv ,↵ > 0.

The first variation can be computed, e.g., as in Simon [10, 24]; for convenience we
sketch the proof.

To this end consider a one parameter family 8t , �1  t  1, of diffeomor-
phisms of U ⇢ Rn+1 with the following properties,

i) 8t (x) = 8(t, x) 2 C2 ((�1, 1) ⇥U,U);
ii) 80 ⌘ I d|U ;
iii) 8t (x) = x for all t 2 [�1, 1] and every x 2 U � K for some compact set

K ⇢ U .

Put X (x) := @8
@t (t, x)|t=0 2 C1c (U, Rn+1) to denote the initial velocity vector for

8(t, x) and let 8t#v denote the image varifold 8t#v = v
�
8t (M),2 � 8�1

t
�
. The

general area-formula ([24]) yields

E↵ (8t#(v
¬
K )) =

Z

M\K
|9n+1

t |↵ J9t · 2dHn,

where we have put 9t := 8t|M\K , K compact, K ⇢ U and J9t denotes the Jaco-
bian of 9t . By definition the first variation is given by

�E↵(v, X) :=
d
dt
E↵

�
8t#(v

¬
K )

�
|t=0 .

Proposition 2.1. Let v = v(M,2) be an integer n-rectifiable varifold, 8t (x) =
8(t, x) and X (x) = @

@t8(t, x)|t=0 be as above. Suppose either M ⇢ Rn ⇥ R+,
with R+ := {t > 0}, or ↵ > 1, then the first variation of E↵ is given by

�E↵(v) =
Z

M\K
|xn+1|↵

 

divM X (x) + ↵
Xn+1(x)
xn+1

!

dµv,

where Xn+1denotes the (n+1)-st component of the vector field X=(X1, . . . ,Xn+1).
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Proof. For convenience we sketch the argument and refer to [10,24] and [14, Chap-
ter 3.2] for more detailed calculations. By standard arguments one finds for the
Jacobian J9t the development

J9t = 1+ t divM X +O
�
t2
�
, also

�
�
�9n+1

t (x)
�
�
�
↵

= |xn+1|↵
(

1+ ↵ t
Xn+1(x)
xn+1

+O
�
t2
�
)

.

The first variation formula now follows by computing the coefficient of t in the
product |9n+1

t (x)|↵ · J9t .

Definition 2.2. The varifold v = v(M,2) is called stationary in an open set U ⇢
Rn+1, if

Z

M
|xn+1|↵

 

divM X (x) + ↵
Xn+1(x)
xn+1

!

dµv = 0 (2.1)

holds for all vector fields X (x) =
�
X1(x), . . . , Xn+1(x)

�
2 C1c (U, Rn+1).

Remark 2.3. Here we either assume ↵ > 1 or M ⇢ Rn ⇥ R+ (or M ⇢ Rn ⇥ R�,
with R� = {t < 0}).

Proposition 2.4. Let M ⇢ Rn+1 be a C2-hypersurface and U ⇢ Rn+1 be an open
set, such that M \ U 6= ;, and @M \ U = ; and Hn(M \ K ) < 1 for each
compact set K ⇢ U . Then M is stationary in U if and only if the mean curvature
H = H(x), x 2 M\U, with respect to the unit normal ⌫ = (⌫1, . . . , ⌫n+1) = ⌫(x)
satisfies the Euler equation

|xn+1|↵H(x) = ↵|xn+1|↵
⌫n+1
xn+1

. (2.2)

Remarks 2.5.

i) Clearly, if M ⇢ Rn ⇥ R+, (2) is equivalent to H(x) = ↵
⌫n+1
xn+1 , for all x 2 M,

and also, if M = graph(u) for some positive function u : � ! R+, to the
symmetric minimal surface equation

div

 
Du

p
1+ |Du|2

!

=
↵

u
p
1+ |Du|2

. (2.3)

On the other hand, given a stationary C2 hypersurface M ⇢ Rn ⇥ R and
a point y0 := (ŷ0, 0) 2 M , given ŷ0 2 Rn with the property that every ball
B"(y0) ⇢ Rn+1, with " > 0 contains points y" 2 M\B"(y0)with (y")n+1 6= 0
then we can conclude that

lim
"!0

✓
↵ ⌫n+1(y")

yn+1"

◆
= H(y0) exists;
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in particular ⌫n+1(y0) = 0. Hence M intersects the coordinate plane {xn+1 =
0} vertically at y0 and can be written locally near y0 as a graph x1 = f (x2, . . .,
xn+1) say (which satisfies some singular elliptic p.d.e.);

ii) The coordinate plane {xn+1 = 0} satisfies (2.2) (with ↵ > 1) but is not a
solution of (2.3);

iii) There are Lipschitz hypersurface solutions of (2.2) given by the union of any
vertical half-plane and the corresponding half-plane of the coordinate plane
{xn+1 = 0};

iv) There exist (Lipschitz-)continuous piecewise C2-hypersurfaces which areHn-
a. e. solutions of (2.2) (for ↵ > 1), namely the union of an n-ball BR(0) ⇢
Rn ⇥ {0} and a C2-hypersurface in Rn ⇥ R+ with boundary @BR(0) given by
the graph of a particular 12 -Hölder continuous function u : Rn � BR(0) !
R+ [ {0}. See the work of Dierkes [7].

Proof of Proposition 2.4. Suppose M ⇢ Rn+1 is stationary in U and let X (x) :=
⇠(x) ·⌫(x), where ⇠ 2 C1c (U, R) is arbitrary and ⌫ is some unit normal on M . Then
divM X = ⇠ divM ⌫ = �⇠H and hence (2.2) follows from (2.1) and a standard
device. On the other hand, if M 2 C2 satisfies (2.2) and X 2 C1c (U, Rn+1) is given
arbitrarily, we decompose X = X?+X> into its normal part X? = (X ·⌫) ⌫ and the
tangential part X> 2 TxM respectively and compute divM X? = (X · ⌫) divM ⌫ =
�H(X · ⌫). Therefore we have

|xn+1|↵ divM X? = �|xn+1|↵ H(X · ⌫) = �↵|xn+1|↵
⌫n+1
xn+1

(X · ⌫) (2.4)

by (2.2). Furthermore we find

|xn+1|↵ divM X> = divM
⇣
|xn+1|↵X>

⌘
� rM

�
|xn+1|↵

�
X>

= divM
n
|xn+1|↵X>

o
� ↵

|xn+1|↵

xn+1

⇣
rMxn+1 · X>

⌘

= divM
n
|xn+1|↵X>

o
� ↵

|xn+1|↵

xn+1
Xn+1

+ ↵
|xn+1|↵

xn+1
⌫n+1 (X · ⌫)

(2.5)

where we have used the relation

rMxn+1 · X> = (en+1�(en+1 ·⌫)⌫) · X>

= (en+1�(en+1 ·⌫)⌫) · X

=Xn+1 � ⌫n+1(X · ⌫),
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denoting by en+1 the vector (0, . . . , 0, 1) 2 Rn+1. Concluding we finally obtain
from (4) and (5) the identity

|xn+1|↵
 

divM X + ↵
Xn+1(x)
xn+1

!

= divM
n
|xn+1|↵X>

o
� ↵

|xn+1|↵

xn+1
Xn+1 + ↵

|xn+1|↵

xn+1
⌫n+1(X · ⌫)

� ↵
|xn+1|↵

xn+1
⌫n+1(X · ⌫) + ↵

|xn+1|↵Xn+1

xn+1
= divM

n
|xn+1|↵X>

o
.

Hence (2.1) follows from the divergence theorem since X> has compact support
on M .

Proposition 2.6. Let u 2 C0,1(Rn) be a weak nonnegative solution of the symmet-
ric minimal surface equation (⇤) in Rn with ↵ > 0. Then M = graph(u) ⇢ Rn+1

is stationary in Rn+1, i.e.

Z

M
x↵
n+1

(

divM X (x) + ↵
Xn+1(x)
xn+1

)

dHn(x) = 0

holds for all vector fields X = (X1, . . . , Xn+1) 2 C1c (Rn+1, Rn+1).

Remark 2.7. Note that here it is not assumed ↵ > 1 although the level set {u = 0}
might be nonempty. In fact we show existence of the integral in this case, even if
↵ 2 (0, 1].

Proof. Since M = {(x, u(x)) 2 Rn ⇥ R} is the Lipschitz image of Rn it is count-
ably n-rectifiable and by Schauder theory we have u 2 C1 ({u > 0}). Whence the
mean curvature of M \ Rn ⇥ {t > 0} is simply

H(x) = ↵
⌫n+1
xn+1

=
↵

u
p
1+ |Du|2

, x = (x1, . . . , xn+1)

and by Proposition 2.4 it follows that M is stationary in Rn ⇥ {t > 0}, i.e., we have
the relation

Z

M
x↵
n+1

(

divM X + ↵
Xn+1

xn+1

)

dHn(x) = 0 (2.6)

for all vector fields X 2 C1c (Rn⇥{t > 0}, Rn+1) (and, clearly, for all X 2 C1c (Rn⇥
{t 6= 0}, Rn+1) since u � 0).



BERNSTEIN RESULTS FOR SYMMETRIC MINIMAL SURFACES 1293

By assumption u 2 C0,1(Rn) = H11,loc(Rn) is a solution of the equation

Z

Rn

(
Du D'

p
1+ |Du|2

+
↵'

u
p
1+ |Du|2

)

dx = 0

for all ' 2 C1c (Rn), and |Du| 2 L1,loc(Rn) together with a standard test function
argument implies that

1
u

2 L1,loc(Rn), whence also Ln ({u = 0}) = Hn ({u = 0}) = 0.

For " > 0 consider a smooth cutoff function ⌘" : R ! R given by the conditions
⌘"(t) = 1, for |t | � 3", with ⌘"(t) = 0, for |t |  " and 0  ⌘"  1, with |⌘0

"(t)| 
1
" for all t , hence ⌘" ! 1 a.e. as " ! 0. Furthermore let X 2 C1c (Rn+1, Rn+1)

be an arbitrary vector field and suppose supp X ⇢ BR(0) ⇢ Rn+1. The truncated
vector field X"(x) := ⌘"(xn+1) · X (x) is admissible in (2.6) and since

divM X"(x) = ⌘"(xn+1) divM X + X (x) · ⌘0
"(xn+1) · rMxn+1,

we get the relation
Z

M\BR
x↵
n+1

⇢
⌘"(xn+1) divM X + X (x)⌘0

"(xn+1)rMxn+1

+ ↵
Xn+1(x)
xn+1

⌘"(xn+1)

)

dHn(x) = 0

for every " > 0. The second integral can be estimated as follows
�
�
�
�

Z

M\BR
x↵
n+1⌘

0
"(xn+1)X (x) · rMxn+1 dHn(x)

�
�
�
�

 sup
M\BR

|X |
Z

M\BR\{"xn+13"}
x↵
n+1 ·

1
"
dHn(x)

 3 sup
M\BR

|X |
Z

M\BR\{"xn+13"}
x↵�1
n+1 dH

n(x)

 3kXk0,BR

Z

BR(0)\{0u3"}
u↵�1

q
1+ |Du|2 dx

 3kXk0,BR
n
1+ kDuk20,BR

o 1
2
ku�1k1,BR · (3")↵ ! 0, as " ! 0,

since u�1 2 L1,loc(Rn).
Observe in particular that the function x↵�1

n+1 is integrable with respect to the
n-dimensional Hausdorff-measure over M \ BR for all ↵ � 0. In addition, since
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⌘"(xn+1) ! 1 holdsHn-a.e. on M \ BR (recallHn({u = 0}) = 0), we infer from
Lebesgue’s dominated convergence theorem that

Z

M\BR
x↵
n+1⌘"(xn+1) divM X (x) dHn(x) !

Z

M\BR
x↵
n+1 divM X (x) dHn(x)

and
Z

M\BR
↵ x↵�1

n+1 X
n+1(x)⌘"(xn+1) dHn(x) !

Z

M\BR
x↵�1
n+1 X

n+1(x) dHn(x)

both as " ! 0. In conclusion we have

Z

M\BR
x↵
n+1

(

divM X (x) + ↵
Xn+1(x)
xn+1

)

dHn(x) = 0

for arbitrary X 2 C1c (Rn+1, Rn+1) compactly supported in the ball BR(0) ⇢
Rn+1.

Similarly we prove for ↵ > 1.

Proposition 2.60. Let ↵ > 1 and u : Rn ! R+
0 = {t � 0}, with u 2 H11,loc(Rn) \

C0(Rn), be a weak solution of the s.m.s.e. (⇤) inRn�{u = 0}. Then M := graph(u)
is stationary in Rn+1.

Remarks 2.8.
i) Here we have in mind exterior solutions of (2.3) in (Rn��), where� ⇢ Rn is
bounded and open, which in addition satisfy u = 0 on �. Recall that there are
even minima u for E of this type, where� = BR(0) is a ball and u 2 C1(Rn�

BR(0) \ C0,
1
2 (Rn) \ H1p,loc(Rn), for all p < 2, see [8]. Recently, Tennstädt

[28, 29] proved that every local minimizer u of E is of class H11,loc \ C0,
1
2 , if

n  6;
ii) It was recently shown by Tennstädt [28, 30] that, for minimizing functions u,
the zero set {u = 0} has locally finite perimeter and is locally mean convex.

Proof. By assumption the set {u > 0} is open and classical regularity theory im-
plies u 2 C2 ({u > 0}). Furthermore u 2 H11,loc(Rn) ⇢ BVloc(Rn), whence the
subgraph U := {(x, t) 2 Rn ⇥ R : t < u(x)} has locally finite perimeter given byR p

1+ |Du|2 dx and M = @⇤U = graph(u) is n-rectifiable. Invoking Proposi-
tion 2.4 we obtain that M = graph(u) is stationary in Rn ⇥ {t 6= 0} ⇢ Rn+1 and
a similar argument as the one given in the proof of Proposition 2.6, using that now
↵ > 1 is assumed, finishes the proof.
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3. Monotonicity formulae

We here give two versions of the monotonicity formula; namely one for stationary
varifolds and – somewhat differently – another formula for minimizing boundaries.

First assume that v = v(M,2) is stationary in U ⇢ Rn+1, i.e. we have the
identity

Z

M
|xn+1|↵

 

divM X (x) + ↵
Xn+1(x)
xn+1

!

dHn(x) = 0

for all differentiable vector fields X = (X1, . . . , Xn+1) with compact support inU .
We choose the standard test function X (x) := � (r)(x � ⇠), where ⇠ 2 U is fixed,
r := |x � ⇠ | and � 2 C1(R) with � 0(t)  0, for all t 2 R, and � (t) = 1 for t  ⇢

2 ,
and � (t) = 0 for t � ⇢ and B⇢(⇠) ⇢ U . Standard calculations (see [14,24]) yield

divM X (x) = divM (� (r)(x � ⇠)) = � (r) divM(x�⇠)+� 0(r)rMr ·(x�⇠) (3.1)

and since

rMr = rM |x � ⇠ | =
(x � ⇠)>

|x � ⇠ |

we have

rMr(x � ⇠)=r
(x � ⇠)>

|x � ⇠ |

(x � ⇠)>

|x � ⇠ |
=r

"

1�

✓
(x � ⇠)?

|x � ⇠ |

◆2#

=r
h
1�

�
�Dr?

�
�2
i
,

where Dr = (x�⇠)
|x�⇠ | denotes the gradient of r .

Furthermore

divM(x � ⇠) =
n+1X

j=1
e j ·rM

�
x j � ⇠ j

�
=

n+1X

j=1
e j e>j

=
n+1X

j=1
e j

�
e j � e?j

�
= (n + 1) �

n+1X

j=1

�
e?j

�2

= (n + 1) �
n+1X

j=1

⇥
(⌫ e j ) · ⌫

⇤2
= (n + 1) � 1

= n,

(3.2)

since e j = e>j + e?j and ⌫ e j = ⌫ j = ⌫ e?j , with e1, . . . , en+1 denoting the standard
basis of Rn+1. By (3.1), (3.2) and the first variation formula we find

divM X = n� (r) + � 0(r) r
⇣
1�

�
�Dr?

�
�2
⌘
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whence

n
Z

M
|xn+1|↵� (r) dµv +

Z

M
|xn+1|↵� 0(r) r

⇣
1�

�
�Dr?

�
�2
⌘
dµv

+ ↵

Z

M
|xn+1|↵x�1

n+1� (r)(xn+1 � ⇠n+1) dµv = 0,

or

(n + ↵)

Z

M
|xn+1|↵� (r) dµv +

Z

M
|xn+1|↵r� 0(r) dµv

= ↵

Z

M
|xn+1|↵x�1

n+1� (r)⇠n+1dµv +
Z

M
|xn+1|↵� 0(r) r

�
�
�Dr?

�
�
�
2
dµv.

(3.3)

Now we take � (r) := 8
� r

⇢

�
with 8 2 C1(R) satisfying 8(t) = 1 if t  1

2 , and
8(t) = 0 if t � 1, as well as 0  8(t)  1 and 80(t)  0 for all t 2 R. Then

r� 0(r) = r80
✓
r
⇢

◆
1
⇢

= �⇢
@

@⇢
8

✓
r
⇢

◆

and (3.3) yields

(n + ↵)

Z

M
|xn+1|↵8

✓
r
⇢

◆
dµv � ⇢

Z

M
|xn+1|↵

@

@⇢
8

✓
r
⇢

◆
dµv

= ↵

Z

M
|xn+1|↵x�1

n+18

✓
r
⇢

◆
⇠n+1dµv � ⇢

Z

M
|xn+1|↵

@

@⇢
8

✓
r
⇢

◆ �
�
�Dr?

�
�
�
2
dµv.

Defining

I (⇢) :=
Z

M
|xn+1|↵8

✓
r
⇢

◆
dµv

L(⇢) :=
Z

M
|xn+1|↵x�1

n+1⇠n+18

✓
r
⇢

◆
dµv

J (⇢) :=
Z

M
|xn+1|↵8

✓
r
⇢

◆ �
�
�Dr?

�
�
�
2
dµv

we infer the equation

(n + ↵)I (⇢) � ⇢ I 0(⇢) = ↵L(⇢) � ⇢ J 0(⇢)

and since

d
d⇢

h
⇢�(n+↵) I (⇢)

i
= �(n + ↵)⇢�(n+↵+1) I (⇢) + ⇢�(n+↵) I 0(⇢)

= �⇢�(n+↵+1) ⇥(n + ↵)I � ⇢ I 0
⇤
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this implies the differential equation

d
d⇢

⇣
⇢�(n+↵) I (⇢)

⌘
= ⇢�(n+↵) J 0(⇢) � ↵⇢�(n+↵+1)L(⇢).

Integration between 0 < � < ⇢ yields

⇢�(n+↵) I (⇢) � ��(n+↵) I (� ) =
Z ⇢

�
⌧�n�↵ J 0(⌧ ) d⌧ � ↵

Z ⇢

�
⌧�n�↵�1L(⌧ ) d⌧

and upon partial integration of the first integral, then letting 8 tend to the charac-
teristic function of the interval (�1, 1) and finally applying Fubini’s theorem, we
conclude the monotonicity formula

⇢�(n+↵)

Z

B⇢(⇠)
|xn+1|↵dµv � ��(n+↵)

Z

B� (⇠)
|xn+1|↵dµv

=
Z

B⇢�B� (⇠)
|xn+1|↵

�
�Dr?

�
�2

rn+↵
dµv�

↵⇠n+1
n + ↵

Z

B⇢

|xn+1|↵

xn+1


1

rn+↵
�

�
1

⇢n+↵

�
dµv

(3.4)

where r� := max(r, � ).
In particular, if ⇠n+1 = 0 we have the identity

��(n+↵)

Z

B� (⇠)
|xn+1|↵dµv = ⇢�(n+↵)

Z

B⇢(⇠)
|xn+1|↵dµv

�
Z

B⇢�B�

|xn+1|↵
�
�Dr?

�
�2

rn+↵
dµv

(3.5)

and the inequality

��(n+↵)

Z

B� (⇠)
|xn+1|↵dµv  ⇢�(n+↵)

Z

B⇢(⇠)
|xn+1|↵dµv, (3.6)

holding true for all 0 < �  ⇢ with B⇢(⇠) ⇢ U .
We have thus proved

Proposition 3.1. Suppose v = v(M,2) is stationary in U ⇢ Rn+1 and B⇢(⇠) b
U . Then we have the monotonicity formula (3.4), and if ⇠ = (⇠1, . . . , ⇠n, 0) both
formulae (3.5) or (3.6) hold true.

Remark 3.2. In general we assume ↵ > 1 in the definition of stationarity; how-
ever if M = graph u, where u � 0 is some Lipschitz-solution of the s.m.s.e. (⇤)
then, because of Proposition 2.6, ↵ > 0 is sufficient in this case. In particular we
then also have the monotonicity formulae for all ↵ > 0 and M = graph of a Lips-
chitz solution u. Similarly, if v is given by the reduced boundary of a minimizing
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set E ⇢ Rn+1, then we conclude a monotonicity formula for all ↵ > 0 directly
from the minimizing property of v, rather then first differentiating the functional
as in Proposition 2.1, see Proposition 3.5. To show this we consider n-rectifiable
varifolds v = v(M,2) given by the reduced boundary @⇤E of a Caccioppoli set
E ⇢ Rn+1 which locally minimizes the functional

E(U) =
Z

|xn+1|↵ |D'U |, for ↵ > 0,

in Rn+1, i.e., we have
Z

�
|xn+1|↵ |D'E | 

Z

�
|xn+1|↵ |D'F |

for any bounded open set � ⇢ Rn+1 and all sets F ⇢ Rn+1 with locally finite
perimeter such that F1E b �. In other words, if we introduce the quantities
N = N(E,�) by

N(E,�) := inf
⇢Z

�
|xn+1|↵|D'F |; F has finite perimeter in � and F1E b �

�

and the indicator function 9 = 9(E,�) by

9(E,�) :=
Z

�
|xn+1|↵|D'E | � N(E,�),

we consider E ⇢ Rn+1, so that

9(E,�) = 0 for all open sets � ⇢ Rn+1.

The following result immediately implies the monotonicity formula for minimizing
boundaries, see also Giusti [19, Lemma 5.8] for a similar estimate.

Proposition 3.3. Let E ⇢ Rn+1 have finite perimeter in a ball BR(0) ⇢ Rn+1.
Then for all balls B� (0) ⇢ B⇢(0) b BR(0) we have the estimate

 Z

B⇢�B�

|xn+1|↵
|x · D'E |

|x |n+↵+1

!2
 2

 Z

B⇢�B�

|xn+1|↵
|D'E |

|x |n+↵

!

·

⇢
(n + ↵)

Z ⇢

�
r�n�↵�19(E, Br ) dr + ⇢�n�↵

Z

B⇢

|xn+1|↵|D'E |

� ��n�↵

Z

B�

|xn+1|↵|D'E |

�

where ↵ > 0 and B� = B� (0), B⇢ = B⇢(0).
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Remark 3.4. The same result holds for arbitrary balls B� b B⇢(⇠) ⇢ BR(0) with
center ⇠ = (⇠1, . . . , ⇠n, 0) lying on the coordinate hyperplane {xn+1 = 0}.

Proof of Proposition 3.3. Let �"
E be a mollification of the characteristic function

'E with the properties
Z

Br

�
�'E � �"

E
�
� dHn ! 0, as " ! 0,

Z

Br
|xn+1|↵

�
�D�"

E
�
� dx !

Z

Br
|xn+1|↵|D'E |, as " ! 0

(3.7)

for almost all r 2 [0, R], (see [20, Theorem 12.3]).
Define

'EBr (x) :=

8
<

:
'E

✓
r
x
|x |

◆
, if |x |  r

'E (x), if |x | > r

and

⌘"
r (x) := �"

E

✓
r
x
|x |

◆
.

First observe that
Z

Br
|⌘"
r � 'EBr | dx =

Z r

0

Z

@B⇢

|⌘"
r � 'EBr | dH

n d⇢

=
Z r

0

⇣⇢

r

⌘n Z

@Br
|⌘"
r � 'EBr | dH

nd⇢

=
r

n + 1

Z

@Br
|�"
E � '| dHn ! 0

(3.8)

as " ! 0 for almost all r 2 [0, R] whence by lower semicontinuity also
Z

Br
|xn+1|↵|D'E | � 9(E, Br ) 

Z

Br
|xn+1|↵

�
�D'EBr

�
�

 lim inf
"!0

Z

Br
|xn+1|↵

�
�D⌘"

r
�
� dx .

(3.9)

From the definition of ⌘"
r we compute

D⌘"
r (x) = r

0

@
D�"

E

⇣
r x

|x |

⌘

|x |
�

⇣
D�"

E (r x
|x | ) · x

⌘

|x |3
· x

1

A
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and therefore
Z

Br
|xn+1|↵

�
�D⌘"

r
�
� dx

= r
Z

Br
|xn+1|↵

(

|x |�2
�
�
�
�D�"

E

✓
r
x
|x |

◆��
�
�

2
� |x |�4

✓
x · D�"

E

✓
r
x
|x |

◆◆2)
1
2

dx

=r
Z r

0

Z

@B⌧

|xn+1|↵|x |�1
�
�
�
�D�"

E

✓
r
x
|x |

◆��
�
� ·

8
><

>:
1�

⇣
x · D�"

E

⇣
r x

|x |

⌘⌘2

|x |2|D�"
E

⇣
r x

|x |

⌘
|2

9
>=

>;

1
2

dHnd⌧.

Using the transformation x = ⌧
r y we find

Z

Br
|xn+1|↵|D⌘"

r | dx

=r
Z r

0

Z

@Br
|yn+1|↵|y|�1

⇣⌧

r

⌘↵�1�
�D�"

E (y)
�
�
(

1�
�
y · D�"

E (y)
�2

|y|2|D�"
E (y)|2

) 1
2⇣⌧

r

⌘n
dHnd⌧

r
Z r

0

⇣⌧

r

⌘n+↵�1Z

@Br
|xn+1|↵r�1��D�"

E
�
�
(

1�
�
x · D�"

E (x)
�2

|x |2|D�"
E (x)|2

) 1
2

dHn d⌧


r

n + ↵

Z

@Br
|xn+1|↵|D�"

E (x)|

(

1�
1
2

�
x · D�"

E (x)
�2

|x |2|D�"
E (x)|2

)

dHn.

(3.10)

Now multiply (3.9) by r�n�↵�1, integrate over r from � to ⇢ and then employ
(3.10) to obtain

Z ⇢

�
r�n�↵�1

✓Z

Br
|xn+1|↵|D'E | � 9(E, Br )

◆
dr

 lim inf
"!0

Z ⇢

�
r�n�↵�1

Z

Br
|xn+1|↵

�
�D⌘"

r
�
� dx dr

 lim inf
"!0

⇢
1

n + ↵

Z ⇢

�
r�n�↵

Z

@Br
|xn+1|↵

�
�D�"

E (x)
�
� dHn dr

�
1

2(n + ↵)

Z ⇢

�
r�n�↵

Z

@Br
|xn+1|↵

�
x · D�"

E (x)
�2

|x |2|D�"
E (x)|

dHn dr

)

=
1

n+↵
lim inf

"!0

(

⇢�n�↵

Z

B⇢

|xn+1|↵|D�"
E (x)| dx � ��n�↵

Z

B�

|xn+1|↵
�
�D�"

E (x)
�
� dx

+ (n + ↵)

Z ⇢

�
r�n�↵�1

Z

Br
|xn+1|↵|D�"

E (x)| dx dr

�
1
2

Z ⇢

�
r�n�↵

Z

@Br
|xn+1|↵

�
x · D�"

E (x)
�2

|x |2|D�"
E (x)|

dHn dr

)

,
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where in the last step we have used an integration by parts. Rearranging terms we
get

lim sup
"!0

1
2(n + ↵)

Z

B⇢�B�

|xn+1|↵
�
x · D�"

E (x)
�2

|x |n+↵+2
�
�D�"

E (x)
�
� dx

 �
Z ⇢

�
r�n�↵�1

Z

Br
|xn+1|↵|D'E | dr +

Z ⇢

�
r�n�↵�19(Br ) dr

+
1

(n + ↵)
lim inf

"!0

⇢
⇢�n�↵

Z

B⇢

|xn+1|↵
�
�D�"

E (x)
�
� dx

� ��n�↵

Z

B�

|xn+1|↵|D�"
E (x)| dx

+(n+↵)

Z ⇢

�
r�n�↵�1

Z

Br
|xn+1|↵|D�"

E (x)| dx dr
�
.

(3.11)

On the other hand we apply Schwarz’ inequality to obtain
 Z

B⇢�B�

|xn+1|↵
�
�x · D�"

E (x)
�
�

|x |n+↵+1 dx

!2



 Z

B⇢�B�

|xn+1|↵
�
�D�"

E (x)
�
�

|x |n+↵
dx

! Z

B⇢�B�

|xn+1|↵
�
x · D�"

E (x)
�2

|x |n+↵+2
�
�D�"

E (x)
�
� dx

!

and estimate the second factor with the help of (3.11). This yields the inequality

lim sup
"!0

 Z

B⇢�B�

|xn+1|↵
�
�D�"

E (x) · x
�
�

|x |n+↵+1 dx

!2

 lim sup
"!0

2(n + ↵)

Z

B⇢�B�

|xn+1|↵
�
�D�"

E (x)
�
�

|x |n+↵
dx

⇥

⇢
�

Z ⇢

�
r�n�↵�1

Z

Br
|xn+1|↵|D'E | dr

+
Z ⇢

�
r�n�↵�19(E, Br ) dr

+
1

(n + ↵)
lim inf

"!0


⇢�n�↵

Z

B⇢

|xn+1|↵
�
�D�"

E (x)
�
� dx

� ��n�↵

Z

B�

|xn+1|↵
�
�D�"

E (x)
�
� dx

+(n + ↵)

Z ⇢

�
r�n�↵�1

Z

Br
|xn+1|↵

�
�D�"

E (x)
�
� dx dr

��
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which in turn, using the approximation (3.7), proves the final estimate
 Z

B⇢�B�

|xn+1|↵
|D'E · x |
|x |n+↵+1

!2
 2

 Z

B⇢�B�

|xn+1|↵
|D'E |

|x |n+↵

!

·

⇢
(n + ↵)

Z ⇢

�
r�n�↵�19(E, Br ) dr + ⇢�n�↵

Z

B⇢

|xn+1|↵|D'E |

� ��n�↵

Z

B�

|xn+1|↵
�
�D'E

�
�
�
.

Proposition 3.3 immediately implies the monotonicity formula for minimizing
boundaries.
Proposition 3.5. Let ↵ > 0 and suppose E ⇢ Rn+1 is a Caccioppoli set which
locally minimizes E in � ⇢ Rn+1, i.e. 9(E,�) = 0. Then we have the inequality

��n�↵

Z

B�

|xn+1|↵|D'E |  ⇢�n�↵

Z

B⇢

|xn+1|↵|D'E |

for all balls B� = B� (⇠) ⇢ B⇢ = B⇢(⇠) b �, where ⇠ = (⇠1, . . . , ⇠n, 0) 2
Rn ⇥ {0} is arbitrary.

4. Area growth

Here we suppose that E ⇢ Rn+1 has locally finite perimeter inRn+1 and minimizes

E(U) =
Z

|xn+1|↵|D'U | for ↵ > 0

locally in Rn+1 among Caccioppoli sets, i.e. the indicator function

9(E,�) = 0

for all open sets � ⇢ Rn+1. We say that E has sublinear growth, if there exists
some nonnegative measurable function s : Rn ! R+ such that M = @⇤E fulfills

M ⇢ {(x, xn+1) 2 Rn ⇥ R : �s(x)  xn+1  s(x)} (4.1)

and

lim
R!1

|s|1,BR(0)
R

= 0. (4.2)

Here BR(0) ⇢ Rn denotes the n-ball with center at 0 2 Rn and |s|1,BR stands for
the sup-norm of s on BR . Analogously a function u 2 BVloc(Rn) is of sublinear
growth, if the subgraph

U := {(x, t) 2 Rn ⇥ R : t < u(x)}

has sublinear growth.
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Proposition 4.1. Let E ⇢ Rn+1 be a Caccioppoli set which locally minimizes E in
Rn+1 for some ↵ > 0 and suppose M = @⇤E is of sublinear growth. Then we have

lim
R!1

R�n�↵

Z

BR(0)
|xn+1|↵|D'E | = 0 for BR(0) ⇢ Rn+1.

Remark 4.2. Proposition 4.1 is sharp as one sees by considering the cones

C↵
n :=

⇢
(x, xn+1) 2 Rn ⇥ R : 0 < xn+1 <

r
↵

n � 1
kxk

�

which are of linear growth and minimize

E =
Z

|xn+1|↵|D'U |,

if, for example, n = 2 and ↵ � 6 say, see [7, 8] for more details. Also, one easily
computes Z

BR(0)
|xn+1|↵

�
�D'C↵

n

�
� = c(n,↵)Rn+↵

for some constant c(n,↵) > 0.

Proof. Define the cylinder

CR :=
�
(x, xn+1) 2 Rn ⇥ R : |x | < R and � |s|1,BR < xn+1 < |s|1,BR

 

where s : Rn ! R+ is some dominance function with the properties (4.1) and
(4.2). The minimum property of E implies for any " > 0

E(E,CR+") : =
Z

CR+"

|xn+1|↵|D'E | 
Z

CR+"

|xn+1|↵
�
�
�D'E�CR

�
�
�

= E
�
E � CR,CR+"

�
(4.3)

and the trace formula for BV -functions yields for almost all R, and " > 0

E
�
E � CR,CR+"

�
= E

�
E,CR+" � CR

�
+

Z

@CR\E
|xn+1|↵dHn (4.4)

and similarly also

E(E,CR+") 
Z

CR+"

|xn+1|↵
�
�
�D'E[CR

�
�
�

= E
�
E [ CR,CR+"

�

= E
�
E,CR+" � CR

�
+

Z

@CR\(Rn+1�E)
|xn+1|↵dHn.

(4.5)
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Formulae (4.3), (4.4) and (4.5) imply the estimate

E(E,CR+") =
Z

CR+"

|xn+1|↵|D'E |

 E
�
E,CR+" � CR

�

+min
⇢Z

@CR\E
|xn+1|↵dHn,

Z

@CR\(Rn+1�E)
|xn+1|↵dHn

�

which in turn yields for almost all R > 0, as " ! 0

E(E,CR)  min
⇢Z

@CR\E
|xn+1|↵dHn,

Z

@CR\(Rn+1�E)
|xn+1|↵dHn

�
. (4.6)

We put @CR = ZR [ D+
R [ D�

R , where

ZR :=
�
(x, xn+1) 2 Rn ⇥ R : |x | = R and � |s|1,BR  xn+1  |s|1,BR

 

denotes the vertical wall and

D±
R :=

�
(x, xn+1) 2 Rn ⇥ R : |x |  R, xn+1 = ±|s|1,BR

 

denote the top and bottom of the cylinder @CR respectively. We find the estimate
Z

@CR
|xn+1|↵dHn =

Z

D+
R[D�

R

|xn+1|↵dHn +
Z

ZR
|xn+1|↵dHn

 2!n Rn|s|↵1,BR +
!n

1+ ↵
Rn�1|s|1+↵

1,BR

whence, by virtue of (4.6) also

R�n�↵

Z

CR
|xn+1|↵|D'E |  c(n,↵)

n
R�↵|s|↵1,BR + R�↵�1|s|1+↵

1,BR

o
.

Finally, by assumption M = @⇤E ⇢ {(x, xn+1) 2 Rn ⇥ R;�s(x) < xn+1 < s(x)},
whence M \ BR(0) ⇢ CR and together with (4.6) and (4.2) we conclude

lim
R!1

R�n�↵

Z

BR(0)
|xn+1|↵|D'E | = 0.

The proof of the following Proposition is standard, see, e.g., [18, Chapter 16].
For convenience we give the argument in some detail.

Proposition 4.3. Let u 2 H11,loc(Rn � K ), with K ⇢ Rn compact, be a weak
nonnegative solution of the s.m.s.e. (2.3) in (Rn � K ) and let K ⇢ BR0(0) ⇢ Rn .
Then for every ⇢ > R0 + 1 the following area estimate holds:

Z

M\B⇢(0)
x↵
n+1dHn  c(n)⇢n|u|↵1,B⇢�BR0+1

+ |u|↵1,B⇢�BR0+1
|u|1,BR0+1�BR0 ,

where M := graph u|B⇢�BR0+1 and |u|p,� denotes the L p-norm of u on �.
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Proof. Choose ⇢ > R0 + 1 and some cut-off function ⌘ 2 C0,1c (Rn � K ) with the
properties

⌘(x) =

(
1, if R0 + 1  |x |  ⇢

0, if |x |  R0 or |x | � 2⇢,

and such that a.e.

|D⌘| 

8
><

>:

1 for R0  |x |  R0 + 1
0 for R0 + 1 < |x | < ⇢
1
⇢ for ⇢  |x |  2⇢ .

Put ' := ⌘ · u⇢ , where u⇢ denotes the truncated function

u⇢ :=

(
u on {0  u < ⇢}
⇢ on {u � ⇢}.

Then it holds a.e.

Du⇢ :=

(
Du on {0  u < ⇢}
0 on {u � ⇢},

and ' 2 H̊11 (B2⇢ � K ) satisfies D' = D⌘ · u⇢ + ⌘Du⇢ a. e. Upon substitution of
' and D' into the weak formulation of (2.3)

Z

Rn�K

 
Du D'

p
1+ |Du|2

+
↵'

u
p
1+ |Du|2

!

dx = 0

we arrive at
Z

B2⇢�BR0

(
Du D⌘ u⇢p
1+ |Du|2

+
Du Du⇢⌘

p
1+ |Du|2

+
↵⌘u⇢

u
p
1+ |Du|2

)

dx = 0.

Since Du⇢ = 0 on {u � ⇢} a.e. we find
Z

(B2⇢�BR0 )\{u<⇢}

|Du|2⌘
p
1+ |Du|2

dx = �
Z

B2⇢�BR0

Du D⌘ u⇢p
1+ |Du|2

dx

� ↵

Z

B2⇢�BR0

u⇢⌘

u
p
1+ |Du|2

dx .

In particular, because of ⌘ = 1, if R0+ 1  |x |  ⇢, with 0  ⌘  1 and u, u⇢ � 0
we obtain

Z

(B⇢�BR0+1)\{u<⇢}

|Du|2
p
1+ |Du|2


Z

B2⇢�BR0

u⇢ |Du| |D⌘|
p
1+ |Du|2

dx
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and hence
Z

(B⇢�BR0+1)\{u<⇢}

q
1+ |Du|2 dx  Ln(B⇢ � BR0+1) +

Z

B2⇢�B⇢

u⇢ |Du| |D⌘|
p
1+ |Du|2

dx

+
Z

BR0+1�BR0

u⇢ |Du| |D⌘|
p
1+ |Du|2

dx .

Using 0  u⇢  u, and 0  u⇢  ⇢, with |D⌘|  1
⇢ on {⇢  |x |  2⇢} and

|D⌘|  1 on {R0  |x |  R0 + 1} we find
Z

(B⇢�BR0+1)\{u<⇢}

q
1+ |Du|2 dx

 Ln(B⇢ � BR0+1) + Ln(B2⇢ � B⇢) + |u|1,BR0+1�BR0
 c1(n)⇢n + |u|1,BR0+1�BR0 .

Thus we have
Z

(B⇢�BR0+1)\{u<⇢}
u↵

q
1+|Du|2 dx |u|↵1,B⇢�BR0+1

n
c1(n)⇢n + |u|1,BR0+1�BR0

o

and in particular, with M = graph u|B⇢�BR0+1 , it holds
Z

M\B⇢(0)
x↵
n+1dHnc1(n)⇢n|u|↵1,B⇢�BR0+1

+|u|↵1,B⇢�BR0+1
|u|1,BR0+1�BR0 .

5. Proofs

In this section we prove the four main theorems.

Proof of Theorem 1.1. Suppose on the contrary to the statement of Theorem 1.1,
there is a Lipschitz-solution u � 0 of the s.m.s.e. (⇤) which satisfies the growth
condition

u(x) = o(|x |) as |x | ! 1.

By Propositions2.6 and3.1, especially formula (3.6) applied to M=graph(u), with
dµ= dHn and ⇠ = 0 2 Rn+1 we get for all 0 < � < ⇢ < 1 the inequality

��n�↵

Z

B� (0)\M
x↵
n+1dHn  ⇢�n�↵

Z

B⇢(0)\M
x↵
n+1dHn.

Since Ln ({u = 0}) = 0 there is some �0 > 0 with

��n�↵
0

Z

B�0\M
x↵
n+1dHn > 0.
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However, according to Proposition 4.3 we must have

lim
⇢!1

⇢�n�↵

Z

B⇢\M
x↵
n+1dHn = 0,

an obvious contradiction.

Proof of Theorem 1.2. Let u 2 BV 1+↵
+,loc(Rn) be a local minimum of the variational

integral

E =
Z
u↵

q
1+ |Du|2 for ↵ > 0

in the class BV 1+↵
+ (�), with � ⇢ Rn arbitrary. Then we have u 2 BVloc(Rn) (in

fact u 2 H11,loc(Rn) according to Tennstädt [28]) and the subgraph

U :=
n
(x, t) 2 Rn+1; t < u(x)

o

has locally finite perimeter in Rn+1. By [2, Theorem 10], the subgraph U locally
minimizes

E(U) =
Z

|xn+1|↵|D'U |

in Rn+1. (In fact, in the paper [2] only the case ↵ = 1 is considered, however the
generalization to arbitrary ↵ > 0 is straightforward!.) Now we are in the situation
described in Proposition 3.5 with minimizing set U and arbitrary open set � ⇢
Rn+1. For ⇠ = 0 and 0 < � < ⇢ < 1 arbitrary we get

��n�↵

Z

B⇢

|xn+1|↵|D'U |  ⇢�n�↵

Z

B⇢(0)
|xn+1|↵|D'U |.

By virtue of Proposition 4.1 and by letting ⇢ ! 1 we finally arrive at
Z

B� (0)
|xn+1|↵|D'U | = 0

for every � > 0, hence @U = {xn+1 = 0}.

Proof of Theorem 1.3. Theorem 1.3 follows from Propositions 3.5 and 4.1 analo-
gously to the proof to Theorem 1.2.

Proof of Theorem 1.4. Suppose on the contrary to the statement of Theorem 1.4,
that there is a non-trivial u 2 H11,loc(Rn)\C0(Rn)which solves the s.m.s.e. weakly
inRn�{u = 0} and which is of sublinear growth. By Proposition 30 M = graph(u)
is stationary in Rn+1. Proposition 3.1, formula (3.6) with ⇠ = 0, Proposition 4.3,
and the assumption of sublinear growth imply that

��n�↵

Z

B� (0)\M
x↵
n+1dHn = 0
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for every � > 0 and M = graph(u) ⇢ Rn+1; whence we had u = 0 on Rn . This
contradiction concludes the proof of Theorem 1.4.
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