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Nori’s fundamental group over a non algebraically closed field

LEI ZHANG

Abstract. Let X be a connected reduced scheme over a field k, and x 2 X (k) be
a k-rational point. M. V. Nori constructed in his Ph.D thesis a fundamental group
scheme ⇡N (X, x) which generalizes A. Grothendieck’s étale fundamental group
⇡ ét1 (X, x) by including infinitesimal covers. However, Nori’s fundamental group
scheme carries little arithmetic information, and it behaves like the étale funda-
mental group only when k is algebraically closed. For example, if X = Spec (k),
then Nori’s fundamental group scheme is always trivial while the étale funda-
mental group ⇡ ét1 (X, x) = Gal(k̄/k). In this paper, we study a slightly modified
version of Nori’s fundamental group scheme: we take x to be a geometric point
instead of a rational point. It is very surprising to the author that this tiny little
modification of Nori’s original definition brings a lot of arithmetic information
and makes the fundamental group scheme more like ⇡ ét1 (X, x). For example,
now if we take X = Spec (k) again, with x̄ 2 X (k̄), then we get a profinite group
scheme ⇡N (k/k, x̄) over k which admits Gal(k̄/k) as a (pro-constant) quotient
of its. Thus not only the Galois extensions, but also the purely inseparable ex-
tensions of k are encoded into ⇡N (k/k, x̄). We call ⇡N (k/k, x̄) the Nori-Galois
group of k. We also studied the fundamental sequence which relates the Nori-
Galois group to the geometric fundamental group. It turns out that the expected
fundamental exact sequence is always a complex and exact on the right, but fails
to be exact in the middle and on the left. Then we give conditions to determine
when the exactness holds.

Mathematics Subject Classification (2010): 14F35 (primary), 14G17, 14H30,
14A15, 14L15, 14D23 (secondary).

1. Introduction

Let X be a connected scheme, x 2 X (k̄) be a geometric point. Let ECov(X) be the
category of finite étale covers of X . Then we have a fibre functor F from ECov(X)
to the category of finite sets by sending any finite étale cover f : Y ! X to its fibres
f �1(x). In [16, Exposé V] A. Grothendieck proved that ECov(X) together with the
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fibre functor F forms a Galois category. Then he defined the étale fundamental
group ⇡ ét1 (X, x) := Aut(F) to be the group of automorphisms of F . This is a
profinite group, i.e. a topological group of the form lim

 �i2I
Gi where I is a small

cofiltered category and Gi is a finite group for each i 2 I . This profinite group
classifies all torsors under finite groups, in particular when G is a finite Abelian
group we have H1ét(X,G) = Homcont(⇡ ét1 (X, x),G). If X = Spec (k) and x 2
X (k̄) corresponds to the field extension k ✓ k̄, then I can be chosen as the set of
finite Galois sub-extensions of k ✓ k̄, and for each i = (k ✓ K ) 2 I , then Gi :=
Gal(K/k), so ⇡ ét1 (X, x) = lim

 �i2I
Gi is just the absolute Galois group Gal(k̄/k).

Let X be a proper reduced connected scheme over a field k, and x 2 X (k)
be a rational point. In [19, Part I, Chapter I] M. V. Nori constructed a full sub-
category EFin(X) ✓ Vec(X) of the category of vector bundles on X . Objects
in EFin(X) are called essentially finite vector bundles. He proved that EFin(X)
with the fibre functor ! from EFin(X) to the category of finite dimensional vec-
tor spaces sending V 7! V |x is a Tannakian category over k. Then he defined
⇡N (X, x) := Aut⌦(!) to be the group of k-linear tensor automorphisms of !. This
is a profinite k-group scheme which classifies all k-pointed torsors over X under
finite k-group schemes. In particular when G is a finite Abelian k-group scheme
we have H1fppf(X,G) = Homgrp.sch(⇡N1 (X, x),G). However, in this construction
the properness assumption is vital, it does not apply to non-proper schemes. To
remedy this M. V. Nori introduced in [19, Part I, Chapter II] another construction.
For any reduced connected scheme X over a field k with a rational point x 2 X (k),
let N (X/k, x) be the category of torsors under finite k�group schemes with a fixed
k-point lying over x . Then Nori defined ⇡N (X, x) := lim

 �i2N (X/k,x) Gi , where Gi

is the finite group scheme corresponding to the pointed torsor i . It is not hard to
prove that this definition coincides with the Tannakian one (see [19, Part I, Chapter
I, Proposition 3.11] and Proposition 4.1 for an explanation).

There is a comparison between Grothendieck’s fundamental group and Nori’s
fundamental group scheme: if X is a connected reduced scheme over an alge-
braically closed field k with a rational point x 2 X (k), then ⇡N (X, x)(k) ⇠=
⇡ ét1 (X, x) as topological groups, where ⇡N (X, x)(k) is equipped with the Zariski
topology. This means that over an algebraically closed field, Nori’s fundamen-
tal group scheme is a generalization of Grothendieck’s étale fundamental group.
However, when the base field is not algebraically closed, Nori’s definition is quite
different from Grothendieck’s:

(1) If X = Spec (k), then Nori’s fundamental group scheme is always trivial while
the étale fundamental group is ⇡ ét1 (X, x) = Gal(k̄/k);

(2) In [19, Part I, Chapter II, Proposition 5] Nori proved that the fundamental group
scheme satisfies base change by separable field extensions. But this does not
hold for the étale fundamental group. Take the projective space for example, if
we see ⇡ ét1 (PnQ) as a profinite group scheme over Q, then we have

⇡ ét1 (PnQ)⇥Q Q̄ = Gal(Q̄/Q)⇥Q Q̄ 6= {1} = ⇡ ét1 (PQ̄);
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(3) By [19, Chapter II, Proposition 4], ⇡N (X, x1) and ⇡N (X, x2) differ by an inner
twist for different rational points x1, x2 2 X (k), and they only become isomor-
phic after base change to k̄.

The first two properties reveals that Nori’s fundamental group scheme is in some
sense a geometric fundamental group, i.e., it is better designed for schemes over
an algebraically closed field. In this paper, we are going to study an arithmetic
variant of this fundamental group scheme which brings it closer to ⇡ ét1 . In Nori’s
second definition of the fundamental group scheme, instead of taking a rational
point x 2 X (k), we take a geometric point x̄ 2 X (k̄). It is really surprising that
this tiny little modification makes the fundamental group scheme contain extremely
rich arithmetic information.

To simplify the study we first split the fundamental group scheme into several
different parts and study each of them. Let N (X/k, x̄) be as before, except that x
is now replaced by a geometric point x̄ , and denote ⇡N (X/k, x̄) the group scheme
lim
 �i2N (X/k,x̄) Gi . Let Iét(X/k, x̄) (respectively Ico(X/k, x̄) and Ilc(X/k, x̄)) be
the full subcategory of N (X/k, x̄) consisting of those pointed torsors whose group
schemes are étale (respectively constant, local), and the corresponding fundamental
group is denoted by ⇡ E (X/k, x̄) (respectively ⇡G(X/k, x̄) and ⇡ L(X/k, x̄)). Then
according to Proposition 4.8, we have the following canonical surjections:

⇡ E (X/k, x̄) // // ⇡G(X/k, x̄)

⇡N (X/k, x̄)
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⇡ L(X/k, x̄)

⇡N (X/k, x̄) // // ⇡ E (X/k, x̄)⇥k ⇡ L(X/k, x̄) .

In fact, ⇡G(X/k, x̄) is nothing but a “group scheme version” of ⇡ ét1 (X, x̄) (see
Remark 4.6 (ii)). Although ⇡ E (X/k, x̄) and ⇡ ét1 (X, x̄) are all fundamental
groups classifying étale coverings they are indeed largely different. For example
⇡ ét1 (Spec (R), x̄) = Gal(C/R) = Z/2Z and the universal cover of Spec (R) under
⇡ ét1 (Spec (R), x̄) is Spec (C), while we have

Theorem 1.1 (SeeTheorem4.17).LetR be the field of real numbers, x̄ :Spec(C)!
Spec (R) be the morphism corresponding to the natural inclusion R ⇢ C. Then

⇡N (R/R, x̄) = ⇡ E (R/R, x̄) = lim
 �
n2N+

µn,R

is an infiniteR-group scheme, and the universal cover corresponding to ⇡ E(R/R,x̄)
is a non-Noetherian affine scheme with infinitely many connected components.
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Although the so defined fundamental group scheme is quite complicated, it
does behave well as an arithmetic fundamental group scheme.

Proposition 1.2 (See Subsection 4.3). Let X = Spec (k) be a field, x̄ 2 X (k̄) be
the geometric point k ✓ k̄. Then:

(i) ⇡ L(k/k, x̄) = {1} and ⇡N (k/k, x̄) = ⇡ E (k/k, x̄), when k is a perfect field;
(ii) ⇡ E (k/k, x̄) = {1} and ⇡N (k/k, x̄) = ⇡ L(k/k, x̄), when k is a separably

closed field;
(iii) ⇡N (X/k, x̄) = ⇡ E (X/k, x̄) = ⇡ L(X/k, x̄) = {1}, when X is An

k̄ with k a
field of characteristic 0 or X is Pnk̄ with k a field of arbitrary characteristic.

In [22] you can find an interesting application of Proposition 1.2.
The following is an analogue of [16, Exposé X, Corollaire 1.8, page 204]:

Proposition 1.3 (See Proposition 4.26). Let X be a geometrically connected
proper separable scheme over a field k, and k ✓ l ✓ l 0 be a sequence of field
extensions, where l and l 0 are algebraically closed fields. Let x̄ : Spec (l 0)! X be
a geometric point. Then the following natural map

⇡ l
0

l : ⇡ E (X ⇥k l 0/k, x̄) �! ⇡ E (X ⇥k l/k, x̄)

is an isomorphism of k-group schemes.

By contrast ⇡ L(X/k, x̄) (hence also ⇡N (X/k, x̄)) doesn’t satisfy base change by
algebraically closed field extensions. This can be deduced from a famous coun-
terexample by Mehta and Subramanian in [17] which was used to show that base
change by algebraically closed field extensions fails for Nori’s original definition
(see Remark 4.27 for details).

The following theorem shows that the arithmetic fundamental group scheme
we are considering here deserves the name fundamental group.

Proposition 1.4 (See Proposition 4.24). Let X be any connected reduced scheme
over k and let x̄1 : Spec (l̄1)! X and x̄2 : Spec (l̄2)! X be two geometric points
of X . Then there are (non-canonical) isomorphisms between the following k-group
schemes:

⇡ E (X/k, x̄1) ⇠= ⇡ E (X/k, x̄2) (i)
⇡ L(X/k, x̄1) ⇠= ⇡ L(X/k, x̄2) (ii)
⇡N (X/k, x̄1) ⇠= ⇡N (X/k, x̄2). (iii)

A very powerful tool to understand arithmetic fundamental groups is the so called
fundamental exact sequence which relates the geometric part (the geometric funda-
mental group) to the arithmetic part (the Galois group). Unlike the fundamental ex-
act sequence for ⇡ ét1 in [16, Exposé IX, Théorème 6.1], ours is exact only in certain
cases. Nonetheless it does provide some valuable information about the arithmetic
fundamental group, e.g., it follows immediately from the following theorem that
our arithmetic fundamental group will never satisfy base change by separable field
extensions if k 6= ksep.



NORI’S FUNDAMENTAL GROUP OVER A NON ALGEBRAICALLY CLOSED FIELD 1353

Theorem 1.5 (See Section 5). Let X be a geometrically connected scheme which
is separable over a field k and let x̄ 2 X (k̄) be a geometric point, then there is a
complex of k-group schemes

1! ⇡ I (X̄/k, x̄)! ⇡ I (X/k, x̄)! ⇡ I (k/k, x̄)! 1 (1.1)

where I = N , L or E . This sequence is always exact on the right, not always exact
on the left Proposition 5.11, and is exact in the middle if and only if for any object
(P,G, p) 2 I (X/k, x̄) both of the following conditions are satisfied:

(i) If (P,G, p) is saturated, then the image of the composition of the natural ho-
momorphisms

⇡ I (X̄/k, x̄)! ⇡ I (X/k, x̄) ⇣ G

is a normal subgroup of G;
(ii) Whenever the pull-back of (P,G, p) along X̄ ! X is trivial there is an object

(Q, H, q) 2 I (k/k, x̄) whose pull-back along X ! Spec (k) is isomorphic to
(P,G, p).

Moreover, condition (i) holds for triples (P,G, p) where G is étale and P is con-
nected Proposition 5.7 or G is local and k is perfect Proposition 5.11. But as the
Example 5.8 shows, (i) fails when P is not connected while G is still étale. The
condition (ii) holds when k is perfect or X is proper or G is étale Proposition 5.6,
but fails Example 5.5 when k is not perfect, X is not proper and G is not étale.

Here, I think the state of the art is the counterexample 5.8. In fact the normality
problem as in (i) is always very difficult in the study of the homotopy sequence of
fundamental groups. For example, in [24] an essential part of the proof is devoted
to the normality problem, and it is also the key issue in [11]. Here we give a very
delicate example to show that the normality condition breaks in many cases. Any
way, if one only restricts to the Abelian quotient ⇡Nab of the whole fundamental
group scheme ⇡N then one gets an exact sequence as long as condition (ii) holds.

The following is another special case in which (i) and (ii) hold.

Corollary 1.6 (See 5.4). If either X = An
k were k is a field of characteristic 0 or X

is a complete normal rational variety over an arbitrary field k, then the canonical
map

⇡N (X/k, x̄)! ⇡N (k/k, x̄)

is an isomorphism. In other words, any finite flat torsor over X descends uniquely
to k.

Aswewill see in Subsection 4.5, there are two geometric fundamental group schemes
corresponding to this arithmetic fundamental group scheme. Here is the fundamen-
tal sequence with respect to the other geometric fundamental group scheme.



1354 LEI ZHANG

Theorem 1.7 (See Section 6). Let X be a geometrically connected separable scheme
over a field k and x̄ 2 X (k̄) be a geometric point, then there is a natural sequence
of k̄-group schemes

1! ⇡ I (X̄/k̄, x̄)! ⇡ I (X/k, x̄)⇥k k̄ ! ⇡ I (k/k, x̄)⇥k k̄ ! 1. (1.2)

It is a complex, always exact on the right, exact on the left when k is perfect and X
is q.s. and q.c., but it is in general not exact in the middle for I = N , E, L .

In the end we apply our discussions to construct a possibly smaller subset
SectionN⇠(k, X) of the full set of section classes of the fundamental exact sequence
of the étale fundamental group. In fact this subset contains all the geometric sec-
tions, i.e., those sections which come from the rational points of X . Thus if one
expect that there is a one-to-one correspondence between the rational points and
the section classes, then a priori one should expect a one-to-one correspondence
between the rational points and SectionN⇠(k, X). Therefore, we formulate this pos-
sibly weaker version of the section Conjecture 7.4. Indeed this formulation has
an advantage when one deals with the problem in characteristic p > 0 (see Re-
mark 7.5).

ACKNOWLEDGEMENTS. I would like to express my deepest gratitude to my Ph.D
advisor Hélène Esnault for leading me into this beautiful ⇡1 world, supporting my
career and influencing me with her work. I thank my friend Jilong Tong for a lot
of extremely constructive discussions. I also thank M. Romagny, A. Vistoli, G.
Zalamansky for their interest and helpful discussions, and O. Wittenberg for some
very useful comments on the last section of this paper.

2. Notation and conventions

(i) We always use k to denote a field, k̄ to denote a chosen algebraic closure;
(ii) Let f : S0 ! S be a morphism of schemes, X 0 be a scheme over S0. We say

X 0 possess an S-form if there is a scheme X over S whose pull-back along f
is isomorphic to X 0;

(iii) When X is a scheme over k, we use X̄ to denote X ⇥k k̄. If k ✓ K is a field
extension we use XK to denote X⇥k K . Sometimes we also use X̄ (respectively
XK ) to denote something over k̄ (respectively K ) which does not necessarily
possess a k-form X . This depends on the situation we are in;

(iv) Let X ⇥S Y be a fibred product of schemes. We use pr1 to denote the first
projection X ⇥S Y ! X and pr2 to denote the second projection;

(v) Let G be a group scheme over k. In this note, a G-torsor over a k-scheme X is
an X-scheme P equipped with a right action ⇢ : P ⇥k G ! P , where ⇢ is a
morphism of X-schemes which induces an isomorphism pr1⇥⇢ : P ⇥k G !
P⇥X P . Moreover we require that the structure map P ! X of the X-scheme
P is faithfully flat and quasi-compact;
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(vi) Let X be a scheme. We use Xred to denote the reduced closed subscheme
structure of X ;

(vii) Let f : X ! S be a morphism of schemes. We call f separable [16, Exposé
X, Définition 1.1] if it is flat and all its geometric fibres are reduced. A k-
scheme X is called separable if and only if its structure map is separable;

(viii) Let G be a group scheme over k and H ✓ G be a subgroup scheme. We
say that H ✓ G is a normal subgroup scheme if for any k-scheme T , then
H(T )✓G(T ) is a normal subgroup. Note that H ✓G is normal if and only if
H̄ ✓ Ḡ is normal;

(ix) Let f : X ! Y be a morphism of schemes. We say f is surjective if for each
morphism y : Spec (k) ! Y the fibred product of y with f is a non-empty
scheme. If f : X ! Y is a morphism of group schemes, then we say f is
surjective when f is surjective as a morphism of FPQC-sheaves of groups. In
the case when X,Y are affine group schemes over k, then f is surjective if and
only if the corresponding map of Hopf-algebras is injective;

(x) Let S0 ! S be a Galois cover, i.e., a connected finite étale cover which is a
torsor under its own automorphism group AutS(S0). Let ⇡ 0 : X 0 ! S0 be a
morphism of schemes. A twisted action of AutS(S0) on X 0 is a group homo-
morphism f : AutS(S0) ! Aut(X 0), where Aut(X 0) is the group of scheme
automorphisms of X 0, such that for any � 2 AutS(S0) the following diagram

X 0
f (� )

//

⇡ 0

✏✏

X 0

⇡ 0

✏✏

S0
�

// S0

is commutative. By Grothendieck’s general descent theory [3, 6.2, Example B,
page 139], there is an equivalence of categories between the category of affine
S0-schemes equipped with a twisted action from AutS(S0) and the category of
affine S-schemes. We often refer to this as Galois descent;

(xi) Here is another version of Galois descent. Let k ✓ K be a finite Galois ex-
tension. There is an equivalence of categories between the category of finite
abstract groups equipped with a continuous action from Gal(k̄/k) (respectively
an action from Gal(K/k)) via group automorphisms and the category of finite
étale k-group schemes (respectively k-group schemes whose pull-back to K
are finite constant). [2, 3.25-3.26].

3. The arithmetic Nori’s fundamental group

Let X be a reduced connected scheme over a field k and x : S! X be a morphism
of k-schemes with S non-empty.
Definition 3.1. Consider the triples (P,G, p) where G is a finite group scheme
over k, then P is a G-torsor over X and p : S ! P is a k-morphism lifting
x : S ! X . A morphism from (P1,G1, p1) to (P2,G2, p2) is a pair (s, t) where
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t : G1 ! G2 is a k-group scheme homomorphism, s : P1 ! P2 is an X-scheme
morphism which intertwines the group action and sends p1 7! p2. We denote the
category consisting of such triples by N (X/k, x).
Definition 3.2 ([1, Exposé I, Définition 2.7]). A category I is called cofiltered if
it satisfies the following three conditions:
(i) It is non-empty;
(ii) For any objects i, j 2 I , there exists an object k 2 I and two arrows k ! i

and k ! j ;
(iii) For any two morphisms

j
a

''

b
77 i

there exists a morphism c : k ! j satisfying a � c = b � c.
Remark 3.3. The category N (X/k, x) has finite fibred products and a final object
(X, {1}, x), so in particular it is cofiltered. The proof is due to M.V.Nori. Consid-
ering the importance of the fact to our construction, we would like to reproduce his
proof in our settings.
Proposition 3.4 ([19, Chapter II, Proposition 1 andProposition 2]).Fibred prod-
ucts exist in N (X/k, x).
Proof. We have to show that given any two morphisms

(�i , hi ) : (Pi ,Gi , pi )! (Q,G, q) 2 N (X/k, x)

where i = 1, 2, the triple (P1 ⇥Q P2,G1 ⇥G G2, p1 ⇥q p2) is again an object in
N (X/k, x).

The action of G1 on P1 (respectively G2 on P2) induces a morphism of k-
schemes

� : (P1 ⇥Q P2)⇥k (G1 ⇥G G2)! (P1 ⇥Q P2)⇥X (P1 ⇥Q P2)

(x1, x2)⇥ (g1, g2) 7! (x1, x2)⇥ (x1g1, x2g2).
By a purely abstract nonsense argument, we see that the induced morphism is an
isomorphism. Now the problem is to show that the projection � : P1 ⇥Q P2 ! X
is FPQC.

Let Y be the quotient of P1 ⇥Q P2 by G1 ⇥G G2,

' : P1 ⇥Q P2! Y

be the quotient map. Then there is a unique morphism of schemes i : Y ! X
through which the projection � factors. Consider the following commutative dia-
gram:

(P1 ⇥Q P2)⇥k (G1 ⇥G G2) �
//

⇠=
//

'�pr1
✏✏

(P1 ⇥Q P2)⇥X (P1 ⇥Q P2)

'⇥'
✏✏

Y 1
// Y ⇥X Y.
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As i : Y ! X is finite, 1 is of finite presentation [14, 1.4.3.1, page 231]. Since '
is finite faithfully flat [7, Exposé V, Théorème 4.1, page 259] then ' � pr1, '⇥', �
are all finite and faithfully flat. So1 is also faithfully flat. But1 is already a closed
immersion, so it has to be an isomorphism. Hence the finite morphism i : Y ! X
is a monomorphism [15, 17.2.6] in the category of schemes. Thus it has to be a
closed immersion [15, 18.12.6]. Now look at the following diagram

P1 ⇥Q P2 � �
//

'
✏✏

✏✏

P1 ⇥X P2

 
✏✏

✏✏

Y i
// X.

Since P1 ⇥Q P2 is the fibre of the neutral element of G under the following map

P1 ⇥X P2
(�1⇥�2)����! Q ⇥X Q

⇠=
�! Q ⇥k G

pr2��! G,

P1 ⇥Q P2 ✓ P1 ⇥X P2 must be both open and closed as a sub topological space
(but not as a subscheme). The map  is finite flat and of finite presentation, so the
underlying topological space of the scheme Y , as the image of P1 ⇥Q P2 under  ,
is both open and closed in X . Since P1 ⇥Q P2 admits a morphism from a non-
empty scheme S, it must be non-empty as well. Thus Y 6= ?. Combining this with
the condition that X is connected and reduced we conclude that i : Y ! X is an
isomorphism. Now � = i � ' is finite locally free and surjective, so in particular
FPQC.

Remark 3.5. (i) Proposition 3.4 implies that N (X/k, x) is cofiltered1. Indeed,
conditions (i), (ii) of Definition 3.2 are directly checked. For (iii), suppose we
have two maps a, b : j ! i as in Definition 3.2, then we could make the following
cartesian diagram

k c
//

✏✏

j

a⇥b
✏✏

i 1
// i ⇥ i

where 1 stands for the diagonal map. The map c in the diagram is precisely what
we are looking for.

(ii) It is rather important that we require S 6= ;, otherwise the category is not
cofiltered. For example, let us take X = Spec (k) to be a field, Q = (Z/2Z)k be the
trivial torsor under the constant group scheme (Z/2Z)k and P1 = P2 = Spec (k) be
the trivial torsor under the trivial k-group scheme {1} and �i : Pi ! Q (i = 1, 2) be
two maps sending Pi to the two different points of Q. If the category was cofiltered,

1 This was suggested to us by Jilong Tong. We were using a non-standard notion of cofilteredness
in the earlier version. We thank him for this suggestion.
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then there should be two morphisms of torsors  i : P ! Pi (i = 1, 2) which
equalize �1 and �2. But P1 ⇥Q P2 = ;, so this can not happen.

(iii) In Proposition 3.4 the reducedness and connectedness assumptions are
actually quite important. For example, we could take X := ↵p,k where k is a field of
characteristic p and Q := X⇥k ↵p,k the trivial ↵p,k-torsor over X , P1 = P2 = X is
the trivial torsor over X under the trivial group scheme {1}. Let �1 : P1! Q be the
diagonal map X ! X ⇥k ↵p,k = X ⇥k X , and let �2 : P2! Q be the map id⇥ 0 :
X ! X ⇥k ↵p,k . Then P1 ⇥Q P2 = Spec (k) and the projection P1 ⇥Q P2 ! X
is just the embedding of the identity point 0 : Spec (k) ,! ↵p,k which certainly can
not be flat. Now let us equip X with a geometric point x : Spec (k̄)! Spec (k) 0

�!
X = ↵p,k , then there are unique lifts p1 2 P1(k̄), p2 2 P2(k̄) and q 2 Q(k̄) of x .
If we had a triple (T, H, t) 2 N (X/k, x) and a commutative diagram

(T, H, t) //

✏✏

(P1, {1}, p1)

(�1,0)
✏✏

(P2, {1}, p2)
(�2,0)

// (Q,↵p,k, q)

then the structure map T ! X of the X-scheme T would factor through 0 :
Spec (k) ! X = ↵p,k because Spec (k) = P1 ⇥Q P2. Then T ! X can not
be faithfully flat, but this contradicts to the assumption that T is a torsor over X .
Thus N (X/k, x) is not cofiltered. If X is allowed to be non-connected, then take
any scheme Y , and let X := Y

`
Y and P1 = P2 = X be trivial {1}-torsors,

Q = X
`
X be a trivial (Z/2Z)k-torsor. Now set x = p1 = p2 : S ! Y ✓ X and

q : S ! Y ✓ X ✓ Q. Let �1 : (Pi , {1}, pi ) ! (Q, (Z/2Z)k, q) (i = 1, 2) be
open embeddings so that P1 ⇥Q P2 = Y . If we had a triple (T, H, t) 2 N (X/k, x)
and a commutative diagram

(T, H, t) //

✏✏

(P1, {1}, p1)

(�1,0)
✏✏

(P2, {1}, p2)
(�2,0)

// (Q, (Z/2Z)k, q)

then the structure map T ! X of the X-scheme would factor through Y ( X .
Therefore, T is flat but not faithfully flat over X , a contradiction. So N (X/k, x)
can not be cofiltered.

(iv) In Proposition 3.4, if G1 and G2 are étale then � is automatically FPQC
[16, Exposé I, Corollaire 4.8, page 4] even when X is non-reduced. However, con-
nectedness is still vital.
Definition 3.6. Let X be a reduced connected scheme over a field k and x : S! X
be a morphism of k-schemes with S non-empty and let I (X/k, x) ✓ N (X/k, x) be
a cofiltered full subcategory. The forgetful functor i := (Pi ,Gi , pi ) 7�! Gi from
I (X/k, x) to the category of k-group schemes defines a small cofiltered projective
system of finite k-group schemes. We define the arithmetic Nori fundamental group
scheme ⇡ I (X/k, x) to be ⇡ I (X/k, x) := lim

 �i2I (X/k,x) Gi .



NORI’S FUNDAMENTAL GROUP OVER A NON ALGEBRAICALLY CLOSED FIELD 1359

4. First properties of ⇡ I (X/k, x)

4.1. The universal cover

As in [19, Chapter II, Proposition 2] we can define the universal cover for our fun-
damental group scheme.

Proposition 4.1. Let X be a connected reduced scheme over a field k, x : S ! X
be a morphism of k-schemes with S non-empty and let I (X/k, x) ✓ N (X/k, x) be
a cofiltered full subcategory. Then there exists a triple (fXx ,⇡ I (X/k, x), x̃), where
fXx is a ⇡ I (X/k, x)-torsor over X , x̃ : S ! fXx is an S-point of fXx lying above x ,
which satisfies that for any (P,G, p) 2 I (X/k, x) there exists a unique morphism

(�, h) : (fXx ,⇡ I (X/k, x), x̃)! (P,G, p),

where h : ⇡ I (X/k, x)! G is homomorphism of k-group schemes and � : fXx !
P is a morphism of X-schemes which sends x̃ to p and intertwines the group ac-
tions.

Proof. Consider the following functors

FX : I (X/k, x)! Aff(X), (P,G, p) 7! P

Fk : I (X/k, x)! Grsch(k), (P,G, p) 7! G,

where Aff(X) denotes the category of affine schemes over X , and Grsch(k) denotes
the category of finite group schemes over k. Now we get a triple

⇣
fXx ,⇡ I (X/k, x), x̃

⌘
:=

0

@ lim
 �

i2I (X/k,x)
FX (i), lim

 �
i2I (X/k,x)

Fk(i), x̃

1

A ,

which has the property that for any i := (P,G, p) 2 I (X/k, x) there is a morphism

(�i , hi ) :
⇣
fXx ,⇡ I (X/k, x), x̃

⌘
! (P,G, p)

defined by the projection to the index i 2 I (X/k, x). If there is another morphism

(�, h) :
⇣
fXx ,⇡ I (X/k, x), x̃

⌘
! (P,G, p)

then using the finiteness of G and the assumption that I (X/k, x) is cofiltered we
find an index i 0 2 I (X/k, x) and a commutative diagram:

�fXx ,⇡ I (X/k, x), x̃
�

(�,h)

((

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

(�i 0 ,hi 0 )

vv

vvl

l

l

l

l

l

l

l

l

l

l

l

l

(P 0,G 0, p0)
(',g)

// (P,G, p)
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where ⇡ I (X/k, x) ⇣ G 0 is surjective and (�i 0, hi 0) is the standard projection as-
sociated to the index i 0. However by the very definition of a projective limit, we
know that (', g) � (�i 0, hi 0) = (�i , hi ). Thus (�i , hi ) = (�, h). This completes the
proof.

Corollary 4.2. Let Homgrp.sch (⇡N (X/k, x),�) be the category whose objects are
finite k-group schemes equipped with k-group scheme homomorphisms from
⇡N (X/k, x), and whose morphisms are k-group scheme homomorphisms which
are compatible with the homomorphisms from ⇡N (X/k, x). Then there is an equiv-
alence of categories

Homgrp.sch
⇣
⇡N (X/k, x),�

⌘ ⇠=
�! N (X/k, x).

A similar statement holds if one replaces N (X/k, x) by some smaller cofiltered
subcategory.

Proof. Given a k-group scheme homomorphism f : ⇡N (X/k, x) ! G, we get a
contracted product

⇣
fXx ⇥

⇡N (X/k,x)
f G,G, x̃

⌘
2 N (X/k, x).

In this way we get a functor

Homgrp.sch
⇣
⇡N (X/k, x),�

⌘ ⇠=
�! N (X/k, x).

The quasi-inverse of this functor is given by Proposition 4.1.

Definition 4.3. Let X be a reduced connected scheme over a field k and x : S! X
be a morphism of k-schemes with S non-empty and let I (X/k, x) ✓ N (X/k, x)
be a cofiltered full subcategory. We call a triple (P,G, p) 2 I (X/k, x) an I -
saturated2 object if the corresponding projection map ⇡ I (X/k, x)! G is surjec-
tive.

Lemma 4.4. Let X be a reduced connected scheme over a field k and x : S ! X
be a morphism of k-schemes with S 6= ;, and let I (X/k, x) ✓ N (X/k, x) be a
cofiltered full subcategory. Then the full subcategory of I (X/k, x) consisting of I -
saturated objects is cofinal in I (X/k, x), i.e. for any object (P,G, p) 2 I (X/k, x)
there is a morphism

(Q, H, q)! (P,G, p) 2 I (X/k, x),

where (Q, H, q) is an I -saturated object. So when we study projective limits in-
dexed by I (X/k, x) we can restrict ourselves to this smaller category of I -saturated
objects.

2 The terminology saturated is taken from [11]. We also used it in [23]. In [19] such objects are
called reduced.
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Proof. Given a triple (P,G,p)2 I (X/k,x)we get a homomorphism ⇡ I (X/k, x)!
G. Since ⇡ I (X/k, x) and G are affine group schemes, there is a unique decompo-
sition

⇡ I (X/k, x) ⇣ H ✓ G.

By Corollary 4.2 we have a morphism (Q, H, q) ✓ (P,G, p) 2 I (X/k, x),
where (Q, H, q) corresponds to the surjection ⇡ I (X/k, x) ⇣ H . This finishes
the proof.

4.2. Relations among ⇡N, ⇡ L, ⇡ E, ⇡G

Definition 4.5. There are various choices of I (X/k, x) ✓ N (X/k, x). We will list
some of them which will be frequently used in the rest of this paper.

(i) ⇡N (X/k, x) := ⇡ I (X/k, x) when I (X/k, x) = N (X/k, x);
(ii) ⇡ E (X/k, x) := ⇡ I (X/k, x) when I (X/k, x) = Iét(X/k, x) is the subcate-

gory consisting of triples (P,G, p) where G is an étale group scheme over
k;

(iii) ⇡G(X/k, x) := ⇡ I (X/k, x) when I (X/k, x) = Ico(X/k, x) is the subcate-
gory consisting of triples (P,G, p) where G is a constant group scheme over
k;

(iv) ⇡ L(X/k, x) := ⇡ I (X/k, x) when I (X/k, x) = Ilc(X/k, x) is the subcate-
gory consisting of triples (P,G, p) where G is a local (i.e., connected) group
scheme.

Remark 4.6. (i) As we have seen in Remark 3.5 (iv), ⇡ E (X/k, x) can be defined
without the assumption that X is reduced.

(ii) When x : S! X is taken to be a geometric point in X (k̄) then ⇡G(X/k, x)
is a profinite affine group scheme whose group of k-points is just Grothendieck’s
étale fundamental group ⇡ ét1 (X, x). The only difference between ⇡ ét1 (X, x) and
⇡G(X/k, x) is that ⇡ ét1 (X, x) is a projective limit of finite groups, where the limit
is taken in the category of topological groups in which each finite group has the
discrete topology while ⇡G(X/k, x) is a projective limit of finite groups, where the
limit is taken in the category of affine group schemes in which each finite group is
regarded as a constant group scheme over k. In other words, ⇡G(X/k, x) is none
other than a linearisation of ⇡ ét1 (X, x).

Lemma 4.7. Let I1 ✓ I2 ✓ N (X/k, x) be two cofiltered full subcategories and
(P,G, p) be an object in I1. If for any embedding

(Q, H, q) ,! (P,G, p) 2 I2

(i.e. H ✓ G is a subgroup), (P,G, p) 2 I1 implies (Q, H, q) 2 I1, then we have a
surjection

⇡ I2(X/k, x) ⇣ ⇡ I1(X/k, x).
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Proof. Let (P,G, p) 2 I1 be an I1-saturated object. Then we can take the image
of the composition

⇡ I2(X/k, x)! ⇡ I1(X/k, x) ⇣ G

and denote it by H . By Corollary 4.2 we get an inclusion (Q, H, q) ,! (P,G, p) 2
I2. So by the assumption this inclusion lives in I1. This implies that the surjection
⇡ I1(X/k, x) ⇣ G factors through H ,! G. Thus H = G. This concludes the
proof.

Proposition 4.8. The following natural k-group scheme homomorphisms

(i) ⇡N (X/k, x) ⇣ ⇡ E (X/k, x) ⇣ ⇡G(X/k, x);
(ii) ⇡N (X/k, x) ⇣ ⇡ L(X/k, x);
(iii) ⇡N (X/k, x) ⇣ ⇡ E (X/k, x)⇥k ⇡ L(X/k, x)

are all surjections.

Proof. In the view of Lemma 4.7, only the last statement needs to be explained.
For this, we take in Lemma 4.7 I2 := N (X/k, x) and I1 to be the triples (P,G, p)
whose group G is isomorphic to a direct product of an étale k-group scheme and a
local k-group scheme, i.e., G = G0 ⇥k G ét. Now suppose H ✓ G is a subgroup
scheme. Then the connected-étale sequence for H splits because Hred ✓ Gred =
G ét ) Hred = Hét. But since G ét acts trivially on G0 and the action of Hét on
H0 is compatible with that of G ét on G0, Hét must act trivially on H0, or in other
words, H = H0 ⇥k Hét.

Example 4.9. Here we want to point out that all the above surjections are, in gen-
eral, not isomorphisms.
(i). Consider ⇡ EG : ⇡ E (X/k, x) ⇣ ⇡G(X/k, x). Let us take X = Spec (k) =
Spec (Q) where x̄ : Spec (Q̄)! Spec (Q) is the natural field extension. Let ↵ 2 Q
and n 2 N\{0}, and suppose xn�↵ has no root inQ, then P := Spec (Q[x]/(xn�
↵)) is a non-trivial µn-torsor overQ. Choosing any point p 2 P(Q̄), we get a triple
(P, µn, p) 2 N (X/k, x̄). Let ' : ⇡ E (X/k, x̄) ! µn be the homomorphism cor-
responding to (P, µn, p) as in Corollary 4.2. If the map ⇡ EG was an isomorphism,
then there should be a k-group scheme homomorphism � : ⇡G(X/k, x̄)! µn sat-
isfying � � ⇡ EG = '. But since ⇡G(X/k, x̄) is a cofiltered projective limit of finite
constant group schemes, there must be a factorization

H

�

✏✏

⇡G(X/k, x̄)

66

66

n

n

n

n

n

n

n

n

n

� ((

P

P

P

P

P

P

P

P

µn,

where H is a constant group scheme. However, when n is a prime number, µn is a
Q-scheme of two connected components. Thus the fact that P is a non-trivial torsor
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would imply that ' is surjective, and so is �. Therefore, the map � : H ! µn is
surjective, and hence µn has to be a constant group scheme. But this is not the case
when n > 2.
(ii). Consider ⇡NE : ⇡N (X/k, x) ⇣ ⇡ E (X/k, x). If it were an isomorphism then
any torsor with local group scheme will be dominated by an étale torsor, then the
local torsor has to be trivial. Hence any non-trivial local torsor gives a counterex-
ample. Yet we would like to point out that if X = Spec (k) where k is perfect, and
x̄ : Spec (k̄)! Spec (k) is the natural field extension, then ⇡NE is an isomorphism
(see Proposition 4.11). But if k is not perfect and char(k) = p, one can choose
↵ 2 k̄ such that ↵ /2 k but ↵ p 2 k. Thus the field extension k ✓ k(↵) is a non-trivial
µp-torsor.
(iii). Consider ⇡NL : ⇡N (X/k, x) ⇣ ⇡ L(X/k, x). As in (ii) any non-trivial étale
torsor provides a counterexample. And also (iii) is implied by (iv).
(iv). Consider ⇡N (X/k, x) ⇣ ⇡ E (X/k, x) ⇥k ⇡ L(X/k, x). There is a perfect
counterexample in [12, Remark 4.3].

4.3. The Nori-Galois group of a field

Definition 4.10. Let k be a field, x̄ be the map Spec (k̄)! Spec (k) corresponding
to the natural field extension k ✓ k̄. We call ⇡N (k/k, x̄) the Nori-Galois group
of k.
Proposition 4.11. Let k be a perfect field, x̄ : Spec (k̄)! Spec (k) be the natural
field extension k ✓ k̄. Then the canonical surjection

⇡NE : ⇡N (k/k, x̄) �! ⇡ E (k/k, x̄)

is an isomorphism.

Proof. Let (P,G, p) 2 N (k/k, x̄) be an object. Then there is a canonical isomor-
phism P⇥k G ⇠= P⇥k P. Let Pred be the reduced closed subscheme of P and Gred
be the reduced closed subscheme of G. As k is perfect,

Pred ⇥k Gred ✓ P ⇥k G and Pred ⇥k Pred ✓ P ⇥k P

are the unique reduced closed subschemes of the underlying spaces. This induces a
diagram

Pred ⇥k Gred //

✏✏

Pred ⇥k Pred

✏✏

P ⇥k G
⇠=

// P ⇥k P

in which the upper horizontal arrow is an isomorphism. But Gred is étale, as k is
perfect. Therefore, we get a morphism

(Pred,Gred, p) ✓ (P,G, p) 2 N (k/k, x̄)

where (Pred,Gred, p) 2 Iét(k/k, x). Hence Iét(k/k, x) is cofinal inside N (k/k, x).
Thus ⇡NE is an isomorphism.
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Corollary 4.12. Assumptions and notation being as in Proposition 4.11, we have

⇡ L(k/k, x̄) = {1}.

Proof. Let (P,G, p) 2 Ilc(k/k, x̄) be an object. Then, as in the proof of Proposi-
tion 4.11, we see that there is an imbedding

(Pred,Gred, p) ✓ (P,G, p) 2 N (k/k, x̄).

But since G is connected, (Pred,Gred, p) is just the trivial triple. This finishes the
proof.

Proposition 4.13. Let k be a separably closed field, and x̄ : Spec (k̄) ! Spec (k)
be the natural field extension. Then we have

⇡ E (k/k, x̄) = {1},

and the canonical surjection

⇡NL : ⇡N (k/k, x̄) �! ⇡ L(k/k, x̄)

is an isomorphism.

Proof. Let (P,G, p) 2 N (k/k, x̄) be an object, G ét be the maximal étale quotient
of G. Then the quotient map h : G ⇣ G ét induces, by Corollary 4.2, a triple
(Pét,G ét, p) 2 Iét(k/k, x̄) and a morphism

(�, h) : (P,G, p) ⇣ (Pét,G ét, p) 2 N (k/k, x̄).

Since Pét is an étale scheme over a separably closed field, every point of Pét is a
k-rational point. This means that Pét is a trivial G ét-torsor, and hence ⇡ E (k/k, x̄) =
{1}. Now we can pull back the map � : P ! Pét along the k-rational point
p 2 Pét(k). Then we get a triple (P0,G0, p) 2 Ilc(k/k, x̄) and a morphism

(P0,G0, p) ,! (P,G, p) 2 N (k/k, x̄).

This means that Ilc(k/k, x̄) is cofinal inside N (k/k, x̄). By the same argument as
in Proposition 4.11, we see that ⇡NL is an isomorphism.

Proposition 4.14. Let k be a field, X be a complete normal rational variety over k̄
and x : S! X be any morphism with S connected and non-empty. Then we have

⇡N (X/k, x) = ⇡ E (X/k, x) = ⇡ L(X/k, x) = ⇡G(X/k, x) = {1}.
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Proof. Let (P,G, p) 2 N (X/k, x) be an object. Then by [19, Chapter II, Corol-
lary, page 93] P is a trivial G-torsor, i.e., P ⇠= X ⇥k G. Since S is connected,
it is mapped to a connected component Q of X ⇥k G via p : S ! P . As
X ⇥k G ⇠= X ⇥k̄ Ḡ, the composition

Qred ✓ Q ✓ X ⇥k G ! X

must be an isomorphism, thus the map p factors through a section of the structure
map P ! X . This means that there is a unique morphism

(X, {1}, x)! (P,G, p) 2 N (X/k, x).

Therefore (X, {1}, x) is a cofinal object in N (X/k, x). By Definition 3.6,
⇡N (X/k, x) = {1}.

Remark 4.15. The connectedness assumption on S in the above proposition is
quite important. Otherwise, we could take P := X

`
X to be the trivial torsor

under G := (Z/2Z)k with S = P and x : P = S ! X to be the natural pro-
jection, and p : P ! P to be the identity. In this way, there is no morphism
(X, {1}, x)! (P,G, p) 2 N (X/k, x). Thus the homomorphism ⇡N (X/k, x)!
(Z/2Z)k corresponding to (P, (Z/2Z)k, p) is surjective. Therefore ⇡N (X/k, x) is
not trivial.

Proposition 4.16. Let k be a field of characteristic 0 and let X := An
k̄ with n 2 N+

and let x : S ! X be any morphism with S connected and non-empty. Then we
have

⇡N (X/k, x) = ⇡ E (X/k, x) = ⇡ L(X/k, x) = ⇡G(X/k, x) = {1}.

Proof. The point is that in this case any finite torsor over X is étale and any étale
torsor over X is trivial. We repeat the argument of Proposition 4.14.

4.4. The étale piece of the arithmetic fundamental group scheme

Theorem 4.17. Let R be the field of real numbers, x̄ : Spec (C) ! Spec (R) be
the morphism corresponding to the natural inclusion R ⇢ C. Then

⇡ E (R/R, x̄) = lim
 �
n2N+

µn,R

is an infiniteR-group scheme, and the universal cover corresponding to ⇡E(R/R,x̄)
is a non-Noetherian affine scheme with infinitely many connected components.

Proof. Let (P,G, p) 2 Iét(R/R, x̄). Then P(C) is a principal homogeneous space
under G(C). By Galois descent, there is an action of Gal(C/R) = h� i on P(C)
via set-theoretical automorphisms and an action of Gal(C/R) = h� i on G(C) via
group automorphisms such that these two actions are compatible. Let � (p) = pa
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for some a 2 G(C) and let n 2 N+ denote the order of a. Then for any b 2 G(C)
it holds � (pb) = � (p)� (b) = pa� (b). But � 2 = id is trivial, so pb = � 2(pb) =
� (pa� (b)) = � (p)� (a)b = pa� (a)b. Thus a� (a) = e is trivial, so � (a) = a�1.
Let Qn(C) ✓ P(C) be the subset {pai |i 2 N} and Hn(C) ✓ G(C) be the subgroup
hai. These substructures are clearly stable under the Gal(C/R)-actions, so they
descend to R, i.e., we have a subobject

(Qn, Hn, p) ✓ (P,G, p) 2 Iét(R/R, x̄),

where the set ofC-points of Qn is Qn(C) and the group ofC-points of Hn is Hn(C).
Let

(Pn,µn,R,pn) := (Spec (R[x]/(xn+1)),Spec (R[x]/(xn�1)), e�
⇡ i
n )2 Iét(R/R, x̄)

where the action of µn,R on Pn is defined simply by multiplying a n�th root of
unity by a root of xn +1 = 0 in C and e� ⇡ in is the n-th root cos(�⇡ in )+ i sin(�⇡ in ).
By sending a 7! e

2⇡ i
n we get an isomorphism h : Hn ⇠= µn,R = Spec (R[x]/(xn �

1)). By sending p 7! e�
⇡ i
n we get an isomorphism of R-schemes � : Qn ⇠=

Spec (R[x]/(xn+1))which is compatible with h under the actions. This means that
the full subcategory of Iét(R/R, x̄) consisting of objects of the form (Pn, µn,R, pn)
is cofinal.

On the other hand, the triple (Pn, µn,R, pn) is Iét-saturated. If we have a sub-
object

(Q, H, p) ✓ (Pn, µn,R, pn) 2 Iét(R/R, x̄)

then pn = p 2 Q(C) implies that e
⇡ i
n 2 Q(C) for Q(C) should always contain the

Gal(C/R)-orbit, i.e., the complex conjugation, of p = pn = e�
⇡ i
n . Therefore, by

the equation
pne

2⇡ i
n = e�

⇡ i
n · e

2⇡ i
n = e

⇡ i
n

we have e
2⇡ i
n 2 H(C). Since H(C) contains the generator of the n-th cyclic group

µn,R(C), we have H(C) = µn,R(C). Or equivalently, H = µn,R and Q = Pn .
Thus (Pn, µn,R, pn) is an Iét-saturated object.

Now if m, n 2 N+ and m|n, then we can define a ”raise to n
m -power” map

(Pn, µn,R, pn)! (Pm, µm,R, pm)

by sending x 7! x
n
m in the affine coordinate ring. This defines a projective sys-

tem in Iét(R/R, x̄). By taking projective limit in the category of affine schemes
(respectively group schemes) over R, we get a triple

 

lim
 �
n2N+

Pn, lim �
n2N+

µn,R, p̃

!

.
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Let (eXx̄ ,⇡ E (R/R, x̄), x̃) be the universal triple defined in Proposition 4.1. Then
by the universality, we get a morphism

⇣
eXx̄ ,⇡ E (R/R, x̄

⌘
, x̃) �!

 

lim
 �
n2N+

Pn, lim �
n2N+

µn,R, p̃

!

which is indeed an isomorphism because of the fact that {(Pn, µn,R, pn)|n 2 N+}
is cofinal and saturated in Iét(R/R, x̄). This proves that ⇡ E (R/R, x̄) is infinite
and also that eXx̄ has infinitely many connected components. Since eXx̄ is affine,
it must be quasi-compact. But then the connected components of eXx̄ can not be
open, otherwise there should be finitely many of them. Therefore eXx̄ is not Noethe-
rian.

Proposition 4.18. Let k be field whose Galois group Gal(k̄/k) admits Z/ lZ as a
quotient for some prime number l > 3. Let X = Spec (k) and x̄ : Spec (k̄)! X be
a geometric point. Then ⇡ E (k/k, x̄) is a non-commutative k-group scheme.

Proof. Let k ✓ K ✓ k̄ a finite Galois subextension so that Gal(K/k) = h� i ⇠=
Z/ lZ. Let GK := (Z/ lZ⇥Z/ lZ)o hbi, where hbi ⇠= Z/ lZ acts on Z/ lZ⇥Z/ lZ
by

b 7�!

✓
1 1
0 1

◆
.

We define an action of Gal(K/k) on GK by letting � (z) = z for all z 2 Z/ lZ ⇥
Z/ lZ and � (b) =

✓
0
1

◆
b. This action corresponds, by Galois descent, to a k-group

scheme G which is a k-form of the K -group scheme GK .
The constant K -group scheme GK can be written as

GK :=
a

i2GK

Yi

where Yi = Spec (K ). GK acts on itself by right translations, i.e., for any j 2 GK
then j acts on Yi by the identity map Spec (K ) = Yi ! Yi j = Spec (K ). Now we
define a twisted action of Gal(K/k) on the K -scheme GK . We define the action of
� on Yi to be the morphism ⌧ in the following commutative diagram

Yi
⌧

// Yb� (i)

Spec (K )
t�

// Spec (K )

where t� is the map obtained by applying the functor Spec (�) to the field auto-
morphism � : K ! K . We have the following compatibility between the action
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of Gal(K/k) on the K -group scheme GK and that on the K -scheme GK , i.e., the
diagram

Yi
j

//

⌧

✏✏

Yi j

⌧

✏✏

Yb� (i)
� ( j)

// Yb� (i j)

is commutative for any j 2 GK . By Galois descent, the K -scheme GK descends
to a k-scheme P and there is an action of G on P which makes P a G-torsor over
k. Picking p 2 Ye(k̄) to be the inclusion K ✓ k̄, we get an object (P,G, p) 2
Iét(k/k, x̄). This object induces a k-homomorphism

� : ⇡ E (k/k, x̄) �! G.

Let N ✓ G be the image. Then we get a subobject (Q, N , p) ✓ (P,G, p). As p 2
Q implies Ye ✓ QK ) Yb = � (Ye) ✓ QK which gives b 2 NK ✓ GK . However
NK ✓ GK is stable under the Galois action, so � (b) =

� 0
1
�
b 2 NK implies

� 0
1
�
2

NK giving
� 1
1
�

= b
� 0
1
�
bl�1 2 NK . Thus NK = GK for

�� 1
1
�
,
� 0
1
�
, b

 
generates

GK . Therefore � is surjective. Then ⇡ E (k/k, x̄) must be non-commutative for
G is.

Remark 4.19. The point of the assumption l > 3 is that one needs the action of � l
on GK to be trivial, i.e. one needs that b� (b)� 2(b) · · · � l�1(b) to be trivial in GK .
For this one needs

12 + 22 + 32 + · · · + (l � 1)2 =
1
6
(l � 1)l(2l � 1)

to be divisible by l. This fact holds true only when the prime number l is greater
than 3.
Example 4.20. The notion of ⇡ ét1 (X, x) is absolute, i.e., it has no reference to the
base field, so X could even be a scheme of mixed characteristic. The notion of
⇡N (X, x) in [19] depends only on the base field where X is defined. However,
the fundamental group we are considering here depends also on the field where the
group structure is defined.

By a theorem of Serre-Lang, it is known that for X/k̄ an Abelian variety
⇡ ét1 (X,0)= lim

 �n2N+X[n](k̄), or more generally, Nori proved in [20] that ⇡N (X,0)=
lim
 �n2N+ X[n]. Since our fundamental group is a generalization of [19], we still have
⇡N (X/k̄, 0) = ⇡N (X, 0) = lim

 �n2N+ X[n]. However, if we see X as a scheme over
k via X ! Spec (k̄) ! Spec (k) then we really get something different. In this
example we take an Abelian variety X over C and view it as a scheme over R, then
show that ⇡N (X/R, 0) is non-commutative.

Let A be an Abelian variety over k := R with K := C and x̄ 2 AK (K ). Take
any Galois cover Y ! AK with Galois group Z/2Z. Let GK := haio hbi, where
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hai ⇠= Z/nZ for n � 3 2 N+ and hbi ⇠= Z/2Z acts on hai by b(z) = z�1 for
all z 2 hai. We define an action of Gal(K/k) on GK by letting � (z) = z�1 for
all z 2 hai and � (b) = ab. Then there is a k-form G of the K -group scheme GK
which corresponds to this action.

Let HK ⇢ GK denote the subgroup hai, and let

PK :=
a

i2HK

Yi

where Yi = Y . Now we define an action of GK on PK . Given any g 2 GK , we can
write it uniquely as g = br j , where r 2 {0, 1} and j 2 HK , then the action of g on
Yi is defined to be the morphism ⌧ in the following commutative diagram

Yi
⌧

// Yb2�r (i) j

Y br
// Y

where br is the map defined by the non-trivial AK -automorphism of Y if r = 1, the
identity if r = 0. In this way, PK becomes a GK -torsor over AK . Now viewing GK
as a constant K -group scheme we get a morphism

⇢ : PK ⇥Spec (K ) GK �! PK

defined by the above action. Composing ⇢ with the following isomorphism

PK ⇥Spec (K ) (Spec (K )⇥Spec (k) G)
⇠=
�! PK ⇥Spec (K ) GK

we get an action of G on PK which makes PK a G-torsor over AK . Picking any
k-morphism p : Spec (K ) ! Ye = Y (where e 2 HK is the identity element)
over x̄ , we get an object (PK ,G, p) 2 Iét(AK /k, x̄). This object induces a k-
homomorphism

� : ⇡ E (AK /k, x̄) �! G.

Let N ✓ G be the image. Then we get a subobject (Q, N , p) ✓ (PK ,G, p). As
p 2 Q then Ye ✓ Q. Thus b 2 NK ✓ GK (because Ye ✓ PK is a torsor under
hbi ✓ GK ). But NK ✓ GK is stable under the Galois action, so � (b) = ab 2
NK implies a 2 NK which gives NK = GK . Therefore � is surjective. Then
⇡N (AK /k, x̄) = ⇡ E (AK /k, x̄) must be non-commutative for G is.

4.5. Comparison of the Geometric Fundamental Groups

Let X be a separable geometrically connected scheme over a field k, and x̄ :
Spec (k̄) ,! X be a geometric point. Associated to the arithmetic fundamental
group scheme ⇡N (X/k, x̄), there are two geometric fundamental group schemes
⇡N (X̄/k, x̄) and ⇡N (X̄/k̄, x̄), the latter being the classical Nori fundamental group.
We would like to understand the relation between these two.
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Proposition 4.21. Notations and assumptions being as above, if X is moreover
quasi-compact and quasi-separated, and if k is perfect, then for I := N , E,G, L
there is an embedding

� IX/k : ⇡ I (X̄/k̄, x̄) ,! ⇡ I (X̄/k, x̄)⇥k k̄

of k̄�group schemes whose composition with the functorial map

� : ⇡ I (X̄/k, x̄)⇥k k̄ ! ⇡ I (X/k, x̄)⇥k k̄

is also an embedding.

Proof. Given (P,G, p) 2 I (X̄/k, x̄), (P,G ⇥k k̄, p) is naturally an object in
I (X̄/k̄, x̄). This way we get a functor F which makes the following diagram 2-
commutative

I (X̄/k, x̄) F
//

'
&&

M

M

M

M

M

M

M

M

M

M

I (X̄/k̄, x̄)

 
xxr

r

r

r

r

r

r

r

r

r

Grsch(k̄)

where ' sends (P,G, p) 7! G ⇥k k̄, and  is the forgetful functor. In this way we
get the homomorphism

� IX/k : ⇡ I (X̄/k̄, x̄) = lim
 �

i2I (X̄/k̄,x̄)

 (i) �! lim
 �

i2I (X̄/k,x̄)

'(i) = ⇡ I (X̄/k, x̄)⇥k k̄

by the universality of the limit. Now it is enough to show that � � � IX/k is an
embedding.

Since X is q.c. and q.s. and k is perfect, any saturated triple (P,G, p) 2
I (X̄/k̄, x̄) is defined over some X ⇥k l, where l is a finite separable extension of k.
The Weil restriction ResX⇥kl/X (P) is then a torsor under Resl/k(G) over X [3, 7.6,
Theorem 4 and Proposition 5], and there are canonical adjunction maps

� : ResX⇥kl/X (P)⇥k k̄ ! P and h : Resl/k(G)⇥k k̄ ! G,

where � has to be surjective since P is a connected scheme. By choosing a k̄-point
q in the fibre of p 2 P(k̄) we get a morphism

(�, h) : (ResX⇥kl/X (P)⇥k k̄,Resl/k(G)⇥k k̄, q)! (P,G, p) 2 I (X̄/k̄, x̄).

This means that for any surjective k̄-homomorphism ⇡ I (X̄/k̄, x̄) ⇣ G we can find
a k-group scheme H (namely Resl/k(G)) and a homomorphism ⇡ I (X/k) ! H
with a commutative diagram

⇡ I (X̄/k̄, x̄) // //

�

&&

L

L

L

L

L

L

L

L

L

L

G

H ⇥k k̄

<<

<<

y

y

y

y

y

y

y

y

y
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where � is the natural composition ⇡ I (X̄/k̄, x̄) ✓
�! ⇡ I (X/k) ⇥k k̄ ! H ⇥k k̄.

Thus ✓ induces a surjection of the Hopf-algebras, and is therefore a closed embed-
ding.

Proposition 4.22. If X is a connected scheme over any field k with a geometric
point x̄ 2 X (k̄), and if X is also a k̄-scheme (e.g., X = Y ⇥k k̄ for some k-scheme
Y ), then the embedding

� EX/k̄/k : ⇡G(X/k, x̄)⇥k k̄ = ⇡G(X/k̄, x̄) = ⇡ E (X/k̄, x̄) ,! ⇡ E (X/k, x̄)⇥k k̄

of k̄�group schemes is a section of the quotient map

⇡ EG ⇥k k̄ : ⇡ E (X/k, x̄)⇥k k̄ ⇣ ⇡G(X/k, x̄)⇥k k̄.

Proof. Given (P,G, p) 2 Iét(X/k, x̄), let G 0 be the abstract group associated
to G ⇥k k̄. Viewing G 0 as a constant group scheme over k, we get an object
(P,G 0, p) 2 Ico(X/k, x̄). In this way we get a functor which makes the following
diagram 2-commutative

Iét(X/k, x̄) F
//

'
&&

N

N

N

N

N

N

N

N

N

N

Ico(X/k, x̄)

 
xxp

p

p

p

p

p

p

p

p

p

p

Grsch(k̄)

where ' is the functor (P,G,p) 7! G⇥k k̄, and is the functor sending (P,G,p) to
G regarded as a group scheme over k̄. Moreover if i : Ico(X/k, x̄) �! Iét(X/k, x̄)
is the inclusion, then F � i is the identity. This provides the desired section
� EX/k̄/k .

Remark 4.23. We have seen from Example 4.20 that both �NX/k and �
E
X/k̄/k are

not, in general, isomorphisms.

4.6. The geometric base point

Proposition 4.24. Let X be any connected reduced scheme over k and let x̄1 :
Spec (l̄1)! X and x̄2 : Spec (l̄2) ! X be two geometric points of X . Then there
are isomorphisms between the following k-group schemes:

⇡ E (X/k, x̄1) ⇠= ⇡ E (X/k, x̄2) (i)

⇡ L(X/k, x̄1) ⇠= ⇡ L(X/k, x̄2) (ii)

⇡N (X/k, x̄1) ⇠= ⇡N (X/k, x̄2). (iii)
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Proof. Let us first examine (i). Let Iét(X/k) be the category of pairs (P,G), where
P is a torsor over X under a finite étale k-group scheme G and let Ecov(X) be the
category of finite étale covers of X . Consider the following functors

Iét(X/k) F
// Ecov(X)

Fx̄1
--

Fx̄2
11

((Sets))

where F is the forgetful functor (forgetting the group) and Fx̄1, Fx̄2 are the fibre
functors induced by x̄1, x̄2. The category Iét(X/k, x̄1) is just the opposite category
of representable presheaves over the presheaf Fx̄1 � F on Iét(X/k)o, i.e., its objects
are pairs (A, a) where A 2 Iét(X/k) and a : A ! Fx̄1 � F is a morphism of
presheaves on Iét(X/k)o. But from [16, Exposé V, Corollaire 5.7, page 107], there
is an isomorphism of functors Fx̄1 ⇠= Fx̄2 , hence an isomorphism Fx̄1 �F ⇠= Fx̄2 �F .
Therefore we get an equivalence Iét(X/k, x̄1) ⇠= Iét(X/k, x̄2) which is compatible
with the forgetful functors to Iét(X/k). This gives the isomorphism (i).

For (ii) we set Ilc(X/k) to be the category of pairs (P,G), where P is a torsor
over X under a finite local k-group scheme G. Since P ! X is radiciel [13,
Proposition 3.7.1], every geometric point of X lifts uniquely to P . Thus we get
canonical isomorphisms of categories Ilc(X/k, x̄1)

⇠=
�! Ilc(X/k)

⇠=
 � Ilc(X/k, x̄2)

by forgetting the prescribed point on the torsor. So ⇡ L(X/k, x̄1) ⇠= ⇡ L(X/k, x̄2)
as desired.

Finally we consider the sequence

N (X/k)
q

// Iét(X/k) F
// Ecov(X)

Fx̄1
--

Fx̄2
11

((Sets))

where N (X/k) the category of pairs (P,G) in which G is a finite k-group scheme,
P is a torsor over X under G, and q is the the functor sending any pair (P,G) to its
étale quotient (Pét,G ét). Now replacing Iét(X/k) by N (X/k) and F by F � q we
can do the same argument as that in the proof of (i) to get the isomorphism (iii).

Remark 4.25. From the proof of (ii) we see that actually in the definition of ⇡ L
the base point is not necessary, as for any two different base points x̄1, x̄2 of X , the
isomorphism ⇡ L(X/k, x̄1)

⇠=
�! ⇡ L(X/k, x̄2) is canonical.

4.7. Base change

Proposition 4.26. Let X be a geometrically connected proper separable scheme
over a field k and k ✓ l ✓ l 0 be a sequence of field extensions, where l and l 0 are
algebraically closed fields. Let x̄ : Spec (l 0) ! X be a geometric point. Then the
following natural map

⇡ l
0

l : ⇡ E (X ⇥k l 0/k, x̄) �! ⇡ E (X ⇥k l/k, x̄)

is an isomorphism of k-group schemes.
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Proof. Let Y 0 ! X ⇥k l 0 be a G 0-torsor with a fixed point Spec (l 0) ! Y 0 lying
over x̄ . By [16, Exposé X, Corollaire 1.7],

⇡ ét1 (X ⇥k l 0, x̄) ⇠= ⇡ ét1 (X ⇥k l, x̄).

Thus by [16, Exposé V,Théorème 4.1], the base change functor �⇥l l 0 induces an
equivalence of categories between the categories of finite étale covers ECov(X⇥k l)
and ECov(X ⇥k l 0). Thus there is a finite étale cover Y ! X ⇥k l such that
Y ⇥l l 0 = Y 0. Now from the full faithfulness of �⇥l l 0 and the fact that G ⇥k l and
G ⇥k l 0 are constant group schemes, the action

(Y ⇥l l 0)⇥l 0 (G ⇥k l 0) = Y ⇥l l 0 ⇥k G = Y 0 ⇥k G ! Y 0 = Y ⇥l l 0

descends to an action Y ⇥k G ! Y and makes Y a G-torsor. This means that the
pull back functor

Fll 0 : Iét(X ⇥k l/k, x̄)! Iét(X ⇥k l 0/k, x̄)

is essentially surjective. But by the fully faithfulness of�⇥l l 0 the pull back functor
Fll 0 is also fully faithful. Hence F

l
l 0 is an equivalence, and therefore the canonical

morphism ⇡ l 0l is an isomorphism.

Remark 4.27. Unfortunately the similar statement for ⇡ L is false. This is due to
an example by V. Mehta and S. Subramanian. Let X be an integral projective curve
over k = k̄ of characteristic p > 0 with at least one cuspidal singularity. Let
x 2 X (k) be a rational point, and k ( l be an extension of algebraically closed
fields. We have the following commutative diagram

⇡ L(X ⇥k l/ l, x) //

))

R

R

R

R

R

R

R

R

R

R

R

R

R

⇡ L(X ⇥k l/k, x)⇥k l

⇡ lk⇥iduuk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

⇡ L(X/k, x)⇥k l

with canonical morphisms. In [17, Section 3], Mehta and Subramanian constructed
a homomorphism � : ⇡ L(X ⇥k l/ l, x)! µp,l which does not come from a homo-
morphism ⇡ L(X/k, x) ! µp,k by base change. If ⇡ lk was an isomorphism, then
� does not come from a homomorphism ⇡ L(X ⇥k l/k, x) ! µp,k . But this is
a contradiction, since any µp,l -torsor over X ⇥k l comes from a µp,k-torsor over
X ⇥k l.

4.8. The étale universal cover

In this subsection we want to emphasize a big difference between ⇡ E (X/k, x) and
⇡G(X/k, x) (or ⇡ ét1 (X, x)) via comparing their universal covers. The following
statement is well known in the literature.
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Theorem 4.28. Let X be a connected Noetherian scheme, x 2 X (Spec (k̄)) be
any geometric point. Then the universal cover eXx corresponding to ⇡ ét1 (X, x) is
connected.

The major reason behind this phenomenon is the following:

Proposition 4.29. If X is a locally Noetherian connected scheme, and x 2
X (Spec (k̄)) is any geometric point, then for any triple (P,G, p) 2 Ico(X, x) the
corresponding map ⇡ ét1 (X, x)! G is surjective if and only if P is connected.

However for universal covers under ⇡ E, they are usually highly non-connected.
We have seen some examples in Subsection 4.4 which are caused by complicated
structures of the étale group schemes. Here is another example which is caused by
the choice of the point on the torsor.
Example 4.30. Let X = Spec (Q) and x̄ : Q ✓ Q̄. Consider a prime number
p > 2. Then µp ⇠= Spec (Q)

`
Spec (K ) as a scheme, where K is the p-th cy-

clotomic field. Let (µp, µp, q) be the trivial µp-torsor equipped with the point
q : Spec (Q̄)! Spec (K ). Obviously µp is not connected, but the unique map

(�, h) : (fXx ,⇡ E (X/k, x̄), x̃)! (µp, µp, q)

can not be trivial on h, for otherwise (�, h) would factor through the trivial triple
(X, {1}, x̄), and then q has to be the trivial point Spec (Q̄) ! Spec (Q). But if h
is non-trivial then it has to be surjective. Therefore (µp, µp, q) is saturated but not
connected. Since h is surjective, � must be faithfully flat. But µp is not connected
so fXx can not be either.

Proof of Proposition 4.29. ”)” If P was not connected then we can take the con-
nected component Q ( P containing p. Let H ( G be the stabilizer of Q, then
(Q, H, p) ( (P,G, p). Therefore we have a factorization ⇡ ét1 (X, x) ! H ( G
which contradicts to the assumption that ⇡ ét1 (X, x) ! G is surjective. ”(” Sup-
pose ⇡ ét1 (X, x) ! G factorizes as ⇡ ét1 (X, x) ! H ✓ G. Then we would have an
embedding (Q, H, p) ✓ (P,G, p). But Q ✓ P is finite étale, so it’s both open and
closed. Therefore Q = P for Q 6= ;. Hence H = G.

Proof of Theorem 4.28. Let I ✓ Ico(X, x) be the full subcategory consisting of
saturated objects. By Lemma 4.4, the category I is cofiltered. Then eXx = lim

 �i2I
Pi ,

where i = (Pi ,Gi , pi ) 2 I . Because of the above Fact, these Pi are connected. The
scheme eXx is connected if and only if H0(eXx ,OeXx ) has no non-trivial idempotents.
Since X is quasi-compact and lim

�!
is an exact functor we know that

H0
⇣
eXx ,OeXx

⌘
= lim
�!
i2I

H0(Pi ,OPi ).

As each Pi is connected, there is no non-trivial idempotent in H0(Pi ,OPi ) ✓
H0(eXx ,OeXx ), hence there is no non-trivial idempotent in H

0(eXx ,OeXx ).
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5. The first fundamental sequence

5.1. The General Case

Proposition 5.1. Let X be a geometrically connected separable scheme over a field
k, and x̄ : Spec (k̄) ,! X be a geometric point. Then the natural k-group scheme
homomorphism

⇡ I (X/k, x̄)! ⇡ I (k/k, x̄)

is surjective for I = E,G, N , L .

Proof. Suppose that we have an object (l,G, t) 2 I (k/k) and that we have a mor-
phism

(�, i) : (Q, H, s)! (l ⇥k X,G, t) 2 I (X/k),

where the group homomorphism i : H ! G is a closed embedding. Then we have
a section in the category of X-schemes

X = Q/H ,! (l ⇥k X)/H = (l/H)⇥k X.

As l/H is finite over k, its connected components are single points. Let x 2 l/H
be the image of t 2 l under the projection l ! l/H . Since X is connected, reduced
and � sends s 7! t , the map

X ,! (l/H)⇥k X
pr1��! l/H

factors through x : Spec ((x)) ,! l/H where (x) is the residue field of x . Hence
X is a scheme over (x). But X is geometrically connected and geometrically
reduced over k, so the extension k ✓ (x) has to be trivial, i.e., k = (x). In other
words, x is a k-rational point of l/H . Now pull back the projection map l ! l/H
along x : Spec (k)! l/H , we get a map (q, H, t)! (l,G, t) 2 I (k/k) in which
the group homomorphism is the embedding i : H ,! G. In particular if the map
⇡ I (k/k, x̄)! G corresponding to (l,G, t) is surjective, then the composition

⇡ I (X/k, x̄)! ⇡ I (k/k, x̄) ⇣ G

has to be surjective too. This means precisely that ⇡ I (X/k, x̄) ! ⇡ I (k/k, x̄) is
surjective.

Proposition 5.2. Let X be a geometrically connected separable scheme over a field
k, and x̄ : Spec (k̄) ,! X be a geometric point. Then the natural sequence of k-
group schemes

1! ⇡ I (X̄/k, x̄)! ⇡ I (X/k, x̄)! ⇡ I (k/k, x̄)! 1 (5.1)

is a complex, and it is exact in the middle if and only if the following two conditions
are satisfied.
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(i) For any I -saturated object (P,G, p) 2 I (X/k, x̄), the image of the composition
of the natural homomorphisms

⇡ I (X̄/k, x̄)! ⇡ I (X/k, x̄) ⇣ G

is a normal subgroup of G;
(ii) Whenever there is an object (P,G, p) 2 I (X/k, x̄) whose pull-back along

X̄ ! X is trivial then there is an object (Q, H, q) 2 I (k/k, x̄) whose pull-
back along X ! Spec (k) is isomorphic to (P,G, p).

Proof. For the first statement it is enough to see that the pull-back functor

C(k/k, x̄, I )! C(X̄/k, x̄, I )

sends any object in C(k/k, x̄, I ) to a trivial object in C(X̄/k, x̄, I ). But this is
indeed the case, for the pull-back functor I (k/k, x̄)! I (X̄/k, x̄) is trivial.

Now for the second statement. ”)” (i) is clear, because a normal subgroup
is still normal in any quotient. (ii) follows directly from Corollary 4.2. Indeed,
given (P,G, p) 2 I (X/k, x̄), there is a unique morphism � : ⇡ I (X/k, x̄) ! G
corresponding to (P,G, p). The pull-back of (P,G, p) is trivial means that the
composition

⇡ I (X̄/k, x̄)! ⇡ I (X/k, x̄)
�
�! G

is trivial. By the exactness there is a unique map ' : ⇡ I (k/k, x̄)! G making the
diagram

⇡ I (X/k, x̄) //

�
$$

J

J

J

J

J

J

J

J

J

J

⇡ I (k/k, x̄)

'
zz

G

commutative. Therefore, ' defines an object in I (k/k, x̄) whose pull-back is iso-
morphic to (P,G, p).

”(” Let (P,G, p) 2 I (X/k, x̄) be an I -saturated object. By Corollary 4.2, it
corresponds to a k-homomorphism � : ⇡ I (X/k, x̄) ⇣ G. Let H be the image of
the composition

⇡ I (X̄/k, x̄)! ⇡ I (X/k, x̄)
�
�! G.

By (i), H ✓ G is a normal subgroup. Thus we get an object (P/H,G/H, p) 2
I (X/k, x̄). Since the composition

⇡ I (X̄/k, x̄)! ⇡ I (X/k, x̄) �! G ! G/H

is trivial by definition, the pull-back of (P/H,G/H, p) to X̄ is a trivial object. By
(ii), (P/H,G/H, p) descends to an object in I (k/k, x̄), or equivalently, there is a
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commutative diagram

⇡ I (X/k, x̄) //

✏✏

⇡ I (k/k, x̄)

✏✏

G // G/H.

Let N be the image of the kernel of ⇡ I (X/k, x̄)! ⇡ I (k/k, x̄) under the map

� : ⇡ I (X/k, x̄) ⇣ G.

The above diagram implies that N ✓ H and the first statement of this proposition
implies that H ✓ N . Therefore H = N . But since this is valid for all I -saturated
objects, we can conclude the middle exactness.

Remark 5.3. The sequence is in general not exact on the left. See Corollary 5.14
for an example when k is perfect X = A1k and I = L . The example does not
work for ⇡ E . However, one can not use the injectivity for ⇡G (or ⇡ ét1 ) to conclude
the injectivity for ⇡ E either. The injectivity for ⇡G (or ⇡ ét1 ) was deduced from the
theory of Galois closure for Galois covers [16, Exposé V, Section 4, g)]. Any way
we can not find an analogue for ⇡ E .

Corollary 5.4. If either X = An
k with k is a field of characteristic 0 or X is a

complete normal rational variety over an arbitrary field k, then the canonical map

⇡N (X/k, x̄)! ⇡N (k/k, x̄)

is an isomorphism.

Proof. By Propositions 4.14 and 4.16, ⇡N (X̄/k, x̄) = {1}. Then the corollary
follows from Propositions 5.2 and 5.6.

Example 5.5. In this part we would like to give an example to show that the con-
dition (ii) of Proposition 5.2 is not always satisfied.

Let’s just take k = Fp(s, t) (the function field in two variables over Fp), X =
A1k \ {a}, and

P = Spec (A[T ]/(T p � (s + t x p)))

be the µp-torsor over X in a natural way, where A := OX (X) and a 2 A1k is the
closed point determined by the polynomial s+ t x p 2 k[x]. Since P is a local torsor
the base point plays no role. For this reason we are going to omit the base point in
the following discussion. Clearly, the equation

T p � (s + t x p) = 0

has no solution in A, thus P is a non-trivial µp-torsor. Furthermore, P ⇥k k̄ is a
trivial torsor over X̄ , the section being given by the solution of the above equation
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in k̄[x]. But P ! X can not descent to a µp-torsor over Spec (k). In fact, the two
µp-torsors

P0 = Spec (k[T ]/(T p � s)) and P1 = Spec (k[T ]/(T p � s � t))

which are fibres of P ! X at x = 0 and x = 1 respectively, can not be isomorphic.
Suppose there was an isomorphism of torsors

f : k[T ]/(T p � s) �! k[T ]/(T p � s � t)

sending T 7! f (T ), where f (T ) 2 k[T ] is a polynomial of degree less than p.
Let µp = k[Y ]/(Y p � 1), then Autk�grp.sch(µp) = (Z/pZ)⇤, where m 2 (Z/pZ)⇤

stands for Y 7! Ym . Thus we should have a commutative diagram

k[T ]/(T p � s)
f

//

⇢0
✏✏

k[T ]/(T p � s � t)

⇢1
✏✏

k[T ]/(T p � s)⌦k k[Y ]/(Y p � 1)
f⌦m

// k[T ]/(T p � s � t)⌦k k[Y ]/(Y p � 1),

where ⇢0 and ⇢1 are defined by the action of µp on P0 and P1 respectively. Tracing
the image of T in the above diagram, we get f (T )⌦Ym = f (T ⌦Y ). This implies
that f (T ) is a polynomial of the form ↵Tm with ↵ 2 k. Then we should have

f : T p � s 7�! f (T )p � s = ↵ pTmp � s = 0 2 k[T ]/(T p � s � t).

But T p = s + t 2 k[T ]/(T p � s � t). Hence we should have ↵ p(s + t)m � s =
0 2 k ⇢ k[T ]/(T p � s � t). However, this equation can not happen in k because
Fp[s, t] is a UFD.

However, under some conditions (ii) actually holds.

Proposition 5.6. If in Proposition 5.2, one of the following conditions holds,

• The field k is perfect and X is in addition quasi-compact;
• The scheme X is proper;
• The group G is étale,

then condition (ii) holds for N (X/k, x̄).

Proof. The last case will be proved in Lemma 5.10. Let us show the first two. Let
(P,G,p) 2 N (X/k, x̄) be an object whose pull-back to N (X̄/k, x̄) is trivial, i.e.,
there is a morphism

� : (X̄ , {1}, x̄)! (P̄,G, p) 2 N (X̄/k, x̄).

First assume that k is perfect and X is quasi-compact. Let (Pét,G ét,p)2 Iét(X/k,x̄)
be the étale quotient of (P,G, p). Then (P̄ét,G ét, p) is also trivial. Thus by
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Lemma 5.10 there is a triple (Q, H, q) 2 Iét(k/k, x̄) ✓ N (k/k, x̄) such that the
pull-back of (Q, H, q) to X is isomorphic to (Pét,G ét, p). Let n be the order of the
k-group scheme G ét. Then P̄ét can be written as n-copies of X̄ :

P̄ét =
a

i=1,··· ,n
X̄i ,

where X̄i = X̄ . The quotient ⇡ : P ! Pét makes P as G0-torsor over Pét, and we
have a decomposition

P̄ =
a

i=1,··· ,n
P̄i ,

where P̄i is just (⇡ ⇥k k̄)�1(X̄i ). Suppose p 2 P̄1(k̄). Then the map � makes
P̄1 a trivial G0-torsor over X̄1. Since G0 is local and X̄1 is reduced, the closed
embedding (P̄1)red ,! P̄1 composing with the projection P̄1 ! X̄1 has to be an
isomorphism. As G ét(k̄) acts transitively on the components X̄i , for any 1  i  n
there is an element g 2 G ét(k̄) = G(k̄) making the diagram

P̄1
g

//

✏✏

P̄i

✏✏

X̄1
g

// X̄i

commutative. Hence the closed embedding (P̄i )red ,! P̄i composing with the
projection P̄i ! X̄i is also an isomorphism for each i . Therefore the composition
P̄red ,! P̄ ! P̄ét is an isomorphism. But as k is perfect, P̄red = Pred ⇥k k̄. Thus
the composition Pred ,! P ! Pét has to be an isomorphism too. This defines
a section s : Pét ,! P for the projection ⇡ : P ! Pét. The universality of the
reduced closed subscheme structure Pred ✓ P tells us that there is a unique arrow
Pét ⇥k G ét 99K Pét making the following diagram

Pét ⇥k G ét //

✏✏

s⇥i
✏✏

Pét
✏✏

s
✏✏

P ⇥k G
⇢

//

⇡⇥o
✏✏

✏✏

P
⇡

✏✏

✏✏

Pét ⇥k G ét
⇢ét

// Pét

commutative, where i : G ét ✓ G is the inclusion of the reduced subscheme struc-
ture of G, ⇢ét is action of G ét on Pét induced by ⇢, o : G ⇣ G ét is the étale quotient
map. Therefore we obtain a morphism

(Pét,G ét, p)! (P,G, p) 2 N (X/k, x̄).
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In view of the isomorphism (Pét,G ét, p) ⇠= (Q ⇥k X, H, q), we can equip the k-
scheme G with a left action from H via H ⇠= G ét

i
�! G, then the contracted product

Q ⇥H G provides a k-form for the G-torsor P over X . This finishes the proof the
first case.

Now suppose that X is proper. Let f : X ! Spec (k) be the structure mor-
phism, and A be the push-forward of OP to X along P ! X . Then A is a locally
free coherentOX -algebra equipped with a G-action map

⇢ : A �! A⌦k k[G]

which makes the induced map A ⌦OX A
id⌦⇢
���! A ⌦k k[G] into an isomorphism.

Since P̄ is a trivial G-torsor over X̄ , then Ā := A⌦k k̄ is a free OX̄ -module. Yet
X is proper separable and geometrically connected over k, so the adjunction map
f̄ ⇤ f̄⇤Ā ! Ā is an isomorphism. By FPQC-descent, we have that f ⇤ f⇤A ! A
is an isomorphism. Let A := f⇤A = 0(X,OX ). Then the action f⇤⇢ : A !
A ⌦k k[G] makes Spec (A) into a G-torsor whose pull-back to X is precisely P =
Spec (A).

5.2. The étale case

Proposition 5.7. Let X be a Noetherian scheme, which is geometrically connected
over a field k, and let x̄ : Spec (k̄) ,! X and (P,G, p) 2 Iét(X/k, x̄) be a satu-
rated object. Let N be the image of the following composition

⇡ E (X̄/k, x̄)! ⇡ E (X/k, x̄) ⇣ G.

Then we get an embedding (P̄ 0, N , p) ✓ (P̄,G, p) 2 Iét(X̄/k, x̄). If one of the
following conditions is satisfied, then N ✓ G is a normal subgroup scheme:

(i) P , as a scheme, is connected;
(ii) P̄ 0, as a scheme, is connected.

Proof. By [16, Éxposé IX, Théorème 4.10] we may assume that k is a perfect field.
There is a finite Galois subextension k ✓ K of k ✓ k̄ such that GK is constant over
K and the number of connected components of PK is the same as that of P̄ . In
this case the image of ⇡ E (X̄/k, x̄) and ⇡ E (XK /k, x̄) are the same in G, thus it is
enough to show that the image of ⇡ E (XK /k, x̄) in G is normal.

Suppose that we have an Iét-saturated object (P,G, p) 2 Iét(X/k, x̄). Let
Ḡ := G ⇥k K , P̄ := P ⇥k K , P̄0 be the connected component of P̄ containing p.
Let H̄ ✓ Ḡ be the subgroup which fixes P̄0, i.e.,

H̄ :=
�
g 2 Ḡ | P̄0 g = P̄0

 
.

Then N̄ ✓ Ḡ is the smallest subgroup which contains the subset
[

�2Gal(k̄/k)

� (H̄) ✓ Ḡ.
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Let now T be the subset of Ḡ whose elements are those t� which send p 7! � (p)
for some � 2 Gal(K/k). Let M̄ be the smallest subgroup of Ḡ containing T . Since
for any � 2 Gal(K/k) and t⌧ 2 T sending p 7! ⌧ (p) we have t� � � (t⌧ ) = t�⌧ ,
then � (t⌧ ) = t�1� � t�⌧ 2 M̄ and then it follows that � (M̄) ✓ M̄ . Let M̄ N̄ ✓ Ḡ be
the smallest subgroup of Ḡ containing M̄ and N̄ . Let

P̄ 00 :=
[

g2M̄ N̄

(P̄0)g ✓ P̄,

i.e., the M̄ N̄ -orbits of P̄0 in P̄ . Then P̄ 00 is a torsor under M̄ N̄ . Since both P̄ 00 and
M̄ N̄ are stable under the induced Galois action, they both descend to k, i.e., there
exists a k-form MN ✓ G of M̄ N̄ such that P̄ 00 descends to an MN -torsor P 00 ✓ P
over X . Then there is a homomorphism

⇡ E (X/k, x̄)! MN ✓ G.

Since ⇡ E (X/k, x̄)! G is already surjective by the assumption, this immediately
implies that MN = G or equivalently M̄ N̄ = Ḡ.

Next we show that N̄ is a normal subgroup of Ḡ. From the above discussion it
is enough to check m�1 H̄m ✓ N̄ for all m 2 M̄ . If (i) is satisfied, then Gal(K/k)
acts transitively on the connected components of P̄ , so any element g 2 Ḡ can be
written as h � t� , where h 2 H̄ , t� 2 T . If (ii) is satisfied, then H̄ = N̄ . In either
case it is already enough to check t�1� H̄ t� ✓ N̄ for all t� 2 T . From the very
definition of t� we have

� (p)t�1� ht� = (ph)t� = � (p)h0,

where h0 is contained in the stabilizer of � (P0), i.e., � (H). Thus t�ht�1� 2
� (H)✓ N̄ .

Example 5.8. In this part, we would like to construct an example showing that
for a saturated object (P,G, p) 2 Iét(X/k, x̄) which does not satisfy any of the
conditions in Proposition 5.7 the image of the composition

⇡ E (X̄/k, x̄)! ⇡ E (X/k, x̄) ⇣ G

needs not be a normal subgroup of G. If (P,G, p) 2 Ico(X/k, x̄), then the image of
⇡ E (X̄/k, x̄) in G is just the subgroup which fixes of the connected component of P
containing p. Since (P,G, p) is saturated, by Proposition 5.7 and Subsection 4.8
the image is normal. But if G is just finite étale, it could be some unpredictable
form of the constant group scheme G ⇥k k̄. The following examples show that for
certain choices of the twisted forms of G ⇥k k̄, the image could fail to be normal.

Let X be any scheme which is geometrically connected over a field k, and let
Y ! X be a torsor under the constant group scheme (Z/2Z)k with Y geometrically
connected over k. Now we are going to construct a finite Galois field extension
K/k with Galois group M , a torsor P 0K over XK under an abstract group G

0
K which
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contains the XK -scheme YK as a connected component. We will also construct a
twisted action of M on the XK -scheme P 0K and an action of M on the abstract group
G 0K in such a way that these two actions are compatible.

Let n 2 N+ be an even number which is equal to or larger than 2. Let

G 0K = ((ha1i ⇥ ha2i ⇥ ha3i ⇥ ha4i) o (hb1i ⇥ hb2i)) o h⇠i,

where ha1i = ha2i = ha3i = ha4i ⇠= Z/2nZ, hb1i = hb2i = h⇠i ⇠= Z/2Z. The
actions are defined by the following relations.

b1a1 = a2b1 b1a2 = a1b1 b1a3 = a3b1 b1a4 = a4b1

b2a1 = a1b2 b2a2 = a2b2 b2a3 = a4b2 b2a4 = a3b2

⇠b1 = b1⇠ ⇠b2 = an3a
n
4b2⇠ ⇠ai = an+1i ⇠ i = 1, 2, 3, 4.

In addition we can define an action of Z/2Z = {e, � } on G 0K (via group automor-
phisms). The action is given by the following equations.

� (a1) = a3 � (a2) = a4 � (a3) = a1 � (a4) = a2

� (b1) = b2 � (b2) = b1 � (⇠) = an1a
n
3⇠.

Next we construct the G 0K -torsor P
0
K . Let H

0
K ✓ G 0K be the subgroup

(ha1i ⇥ ha2i ⇥ ha3i ⇥ ha4i) o (hb1i ⇥ hb2i) ✓ G 0K

and let
P 0 :=

a

i2H 0K

Yi

be the disjoint union of copies of Y (i.e., Yi = Y ). We define a right action of
G 0K on P

0 in the following way. If j 2 H 0K then the action of j on Yi is defined
by the identity morphism Y = Yi ! Yi j = Y . If j /2 H 0K , then i j is uniquely
written as a product i j = ⇠k with k 2 H 0K . Then the action of j on Yi will be
the morphism Y = Yi ! Yk = Y given by the action of the non-trivial element of
Z/2Z (remember that Y is a Z/2Z-torsor over X). Viewing G 0K as a constant group
scheme over k, one gets a morphism

⇢ : P 0 ⇥k G 0K ! P 0
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over X defining the right action. This action actually defines P 0 as a G 0K -torsor over
X . Indeed, one can take a geometric point x̄ 2 X . Then the fibre of x̄ under the
projection Ye = Y ! X consists of two points. We pick any point in the fibre and
denote it by p. Then the other point is p⇠ . We can also translate p and p⇠ by the
group H 0K . In this way we get all the fibres of x̄ under the projection P

0 ! X . Each
fibre can be written uniquely as pi or p⇠ i for some i 2 H 0K . By the very definition
of the action of G 0K on the set of fibres of x̄ , one sees that the set of all fibres of x̄ is
a principal homogeneous space under G 0K . Hence the X-morphism

P 0 ⇥k G 0K
id⇥⇢
���! P 0 ⇥X P 0

induces an isomorphism at the fibre of x̄ 2 X . Since P 0 ⇥k G 0K and P
0 ⇥X P 0 are all

finite étale X-schemes and X is connected, the morphism id⇥ ⇢ is an isomorphism
by [16, Exposé V, Théorème 4.1]. Therefore P 0 is a G 0K -torsor over X . Moreover,
we would like to introduce two actions on P 0 by Z/2nZ = hui and Z/2Z = hvi re-
spectively. The action of u on a component Yi is defined to be the identity morphism
Y = Yi ! Ya1a3� (i) = Y . Notice that we have a commutative diagram

P 0
g

//

u
✏✏

P 0

u
✏✏

P 0
� (g)

// P 0

(5.2)

for all g 2 G 0K , even when g /2 H 0K . The action of v on a component Yi is defined to
be the identity morphism Y = Yi ! Yb1i = Y . Similarly, we have a commutative
diagram

P 0
g

//

v

✏✏

P 0

v

✏✏

P 0
g

// P 0

(5.3)

for all g 2 G 0K .
Next we would like to construct a finite group M generated by two elements

{x, y} and two group homomorphisms

f : M ! AutX (P 0) and g : M ! Aut(G 0K )

such that f (x) = u, and f (y) = v while g(x) = � , and g(y) = id, where P 0 is
considered as an object in the category of X-schemes and G 0K is considered as an
object in the category of abstract groups. There should be some general procedure
to obtain such M and f , and g, because all the automorphism groups are finite. But
unfortunately the author has to rely on some brutal computational methods. For
simplicity we treat only the case when n = 2. In this case, we first consider the
following equations.

(i) xyx2yx = yxyx2yxy = yx3yx2yx3y;
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(ii) yx2yx2 = x2yx2y;

(iii)
x3yxy = yx3yx

yxyx3 = xyx3y;

(iv)
x3yx3yx2yxy = yx3yx3yx3y = yxyx2yx3yx3

xyxyx2yx3y = yxyxyxy = yx3yx2yxyx;

(v) x3yx2yxyx2y = xyx2yx3yx2y = yx2yx3yx2yx = yx2yxyx2yx3;

(vi) yxyxyxyx = x3yx3yx3yx3y;

(vii) x4 = 1 y2 = 1.

One observes first that the above equations hold in Aut(G 0K ) when one replaces
x by � , y by id, and the same hold in AutX (P 0) when one replaces x by u, y by
v. The former is somewhat clear, the latter needs some computation. To verify
the above equations for u, v, we choose a geometric point x̄ 2 X and a fibre p
of x̄ under Ye = Y ! X , then check whether the actions from both sides of the
equation are agree on p. If so, one could then use (5.2), (5.3) and the compatibility
in Aut(G 0K ) to move p around, through all the fibres of x̄ under P 0K ! XK , and
finally conclude that the actions from both sides of the equation agree on all fibres.
Then the equations for u, v follow from [16, Exposé V, Théorème 4.1]. Here is the
result of the calculations.

(i) uvu2vu(p) = vuvu2vuv(p) = vu3vu2vu3v(p) = p(a3a4)2;

(ii) vu2vu2(p) = u2vu2v(p) = p(a1a2)2;

(iii)
u3vuv = vu3vu(p) = pa33a4b1b2
vuvu3(p) = uvu3v(p) = pa3a34b1b2;

(iv)
u3vu3vu2vuv(p) = vu3vu3vu3v(p) = vuvu2vu3vu3(p) = pa31a

3
3a
2
2a
2
4

uvuvu2vu3v(p) = vuvuvuv(p) = vu3vu2vuvu(p) = pa1a3a22a
2
4;
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(v) vuvuvuvu(p) = u3vu3vu3vu3v(p) = p(a1a2a3a4)2;

(vi)
u3vu2vuvu2v(p) = uvu2vu3vu2v(p)

= vu2vu3vu2vu(p) = vu2vuvu2vu3(p)

= p(a1a2a3a4)2;

(vii) u4(p) = p v2(p) = p.

Let M be the free group generated by x, y modulo the relations (i)-(vii). One can
see without too much difficulty that M is a finite group generated by x, y. Clearly
there are group homomorphisms f : x 7! u, y 7! v and g : x 7! �, y 7! id.

Now let L be any field of any characteristic. Choose an embedding M ✓ Sm
for some m 2 N+, we get a faithful action of M on L(X1, X2, · · · , Xm). Let

K := L(X1, X2, · · · , Xm) k := KM ,

where KM ✓ K denotes the subfield of invariant elements under the action of M .
Then K/k is a finite Galois extension with Galois group M .

Let P 0K := P 0 ⇥k K . Then P 0K is a G
0
K -torsor over XK . We also have an

embedding YK = Ye⇥k K ✓ P 0⇥k K = P 0K . Since the connected cover YK ! XK
comes, via base change from a Galois cover Y ! X over k, it has to be again a
Galois cover. Thus the inclusion AutX (Y ) ✓ AutXK (YK ) has to be an isomorphism.

Now for each element ↵ 2 M we can define a twisted action on P 0K via

P 0K = P 0 ⇥k K
f (↵)⇥↵

// P 0 ⇥k K = P 0K .

By (5.2) and (5.3) this twisted action is compatible with the action of M on G 0K .
Viewing G 0K as a constant group scheme over K and applying Galois descent

we get a k-group scheme G 0k and a right G
0
k-torsor P

0
k over X such that the pull-back

of (P 0k,G
0
k) to K is (P 0K ,G 0K ). Choosing a geometric point x̄ : Spec (K̄ ) ! XK

and a lifting p : Spec (K̄ ) ! Ye ⇥k K ✓ P 0K , we get a triple (P 0k,G
0
k, p) 2

Iét(X/k, x̄). This triple corresponds to a homomorphism ⇡ E (X/k, x̄)! G 0k . Let
G ✓ G 0k be the image, (P,G, p) ✓ (P 0k,G

0
k, p) be the triple in Iét(X/k, x̄) corre-

sponding to ⇡ E (X/k, x̄) ⇣ G ✓ G 0k .
In this case, (P,G, p) is a saturated object by definition, and the pull-back

GK ✓ G 0K is a subgroup stable under the action of M . Since PK ✓ P 0K is a
subscheme containing p 2 Ye⇥k K and is stable under the action of M , PK contains

Ye ⇥k K and Yb1 ⇥k K = y(Ye ⇥k K ) and Ya1a3 ⇥k K = x(Ye ⇥k K ).

As Yb1 = Yeb1 and Ya1a3 = Yea1a3, GK contains ⇠, b1, a1a3. Just like in Proposi-
tion 5.7, we denote by N the image of the homomorphism

⇡N (X̄/k, x̄)! G
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corresponding to the triple (P̄,G, p). Then N̄ is generated by the Gal(k̄/k)-orbit
of {e, ⇠} ✓ GK = Ḡ, or equivalently by the M-orbit of {e, ⇠} ✓ GK , i.e.,

N̄ := {e, ⇠, (a1a3)n, (a1a3)n⇠}.

However, N̄ ✓ Ḡ is not a normal subgroup for b1(a1a3)nb�11 = (a2a3)n /2 N̄ .

Remark 5.9. (i) In the above example, we could take X := A1k and Y ! X to be
the Artin-Schreier cover under F2 if k is of characteristic 2.
(ii) We could also take A to be an Abelian variety over a field l of characteristic
6= 2, then D := A[2] ⇥l l̄ is a constant group scheme of order 22 dim(A). Suppose
A[2] stays as a constant group scheme over l ✓ L ✓ l̄ and D ⇣ Z/2Z is a
surjective homomorphism. Let k := L(X1, X2, · · · , Xm)M be as in the example,
X := A⇥l k. Then we could define the Z/2Z-torsor Y ! X to be the one obtained
by taking the contracted product of the D-torsor X 2·

�! X along D ⇣ Z/2Z.
Clearly Y is geometrically connected over k. In this example k is allowed to be of
any characteristic 6= 2.

Lemma 5.10. Let X be a geometrically connected quasi-compact scheme over a
field k, G be a finite étale group scheme over k, and P be a G-torsor over X . If
P̄ is a trivial G-torsor over X̄ , then there is a G-torsor Q over k whose pull-back
along X ! k is P .

Proof. Let K be an intermediate finite Galois extension of k ✓ k̄ over which GK
becomes a constant group scheme and PK becomes a trivial torsor. Since PK is a
trivial G-torsor over XK , by choosing an XK -section for the projection ⇡ : PK !
XK we get isomorphisms (in the category of XK -schemes)

PK ⇠= XK ⇥k G = XK ⇥K GK =
a

i2GK

XK .

By Galois descent, giving the X-scheme P is equivalent to giving a twisted action
of Gal(K/k) on PK , i.e., a commutative diagram

PK ⇠=
`

i2GK
XK

f (� )
//

⇡

✏✏

`
i2GK

XK ⇠= PK

⇡

✏✏

XK
id⇥�

//

✏✏

XK

✏✏

K �
// K

(*)

for all � 2 Gal(K/k). One observes that, as XK is connected, such a twisted
action on PK ⇠=

`
i2GK

XK is nothing other than a permutation of the connected
components in a twisted manner.
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In the above, we could replace PK by the k-scheme GK =
`

i2GK
Spec (K )

to obtain a commutative diagram

GK =
`

i2GK
Spec (K )

g(� )
//

✏✏

`
i2GK

Spec (K ) = GK

✏✏

K �
// K

for each � 2 Gal(K/k). In other words, we get a twisted action of Gal(K/k) on
GK . This defines a k-form Q for the K -scheme GK .

The X-scheme X ⇥k Q is an X-form of the XK -scheme PK ⇠= XK ⇥K GK =
X⇥k GK . From the very definition of Q we see that the twisted action of Gal(K/k)
on PK corresponding to the two X-forms X ⇥k Q and P are the same. Therefore,
by Galois descent P ⇠= X ⇥k Q as X-schemes. On the other hand the k-form
G of the K -group scheme GK induces an action of Gal(K/k) on GK via group
automorphisms. As P is a G-torsor we have a Gal(K/k)-equivariant isomorphism
PK ⇥K GK ! PK ⇥XK PK . The same argument on the connected components
shows that this map induces a Gal(K/k)-equivariant isomorphism QK ⇥K GK !
QK ⇥K QK . Thus we get the G-torsor Q whose pullback to X is P .

5.3. The infinitesimal case

Proposition 5.11. Let X be a geometrically connected scheme over a perfect field
k. Let x̄ : Spec (k̄)! X be a geometric point. Then the canonical map

⇡ k̄k : ⇡ L(X̄/k, x̄)! ⇡ L(X/k, x̄)

is surjective, but not, in general, an isomorphism.

Proof. Suppose we have a saturated object (P,G, p) 2 Ilc(X/k, x̄). We take the
image of the composition

⇡ L(X̄/k, x̄)! ⇡ L(X/k, x̄)! G,

and denote it by H . By Corollary 4.2 there is (Q̄, H, q) 2 N (X̄/k, x̄) with a
morphism

(Q̄, H, q) ,! (P̄,G, p).

As H ✓ G is an infinitesimal closed embedding (closed embedding with nilpotent
ideal sheaf), so is Q̄ ✓ P̄ . Now take the quotient by H on both sides. We get a
section:

s̄ : X̄ ⇠= Q̄/H ! P̄/H.

Since the projection P̄ ! P̄/H is faithfully flat, the ideal sheaf of the section
s̄ is contained in the ideal sheaf of the infinitesimal embedding Q̄ ✓ P̄ . Hence
the embedding s̄ : X̄ = Q̄/H ,! P̄/H is also infinitesimal. As X̄ is reduced,
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X̄ = (P̄/H)red is the unique reduced closed subscheme of P̄/H . Because k is
perfect, we have

(P̄/H)red = (P/H)red ⇥k k̄ ,! (P/H)⇥k k̄ = P̄/H.

We have shown that the composition

X̄ = (P̄/H)red ,! P̄/H ! X̄

is an isomorphism, so (P/H)red ! X is also an isomorphism. In this way we get
a section s for the X-scheme P/H . Now we pull back the H -torsor P ! P/H
via s:

Q //

✏✏

X

s
✏✏

P // P/H.

Then we get a triple (Q, H, q) 2 Ilc(X/k, x̄) which dominates (P,G, p). In
other words, the map ⇡ L(X/k, x̄) ! G factors through the embedding H ✓
G. Hence if (P,G, p) is saturated in Ilc(X/k, x̄) then (P̄,G, p) is saturated in
Ilc(X̄/k, x̄). This means that ⇡ k̄k is surjective. For the failure of the injectivity see
Corollary 5.14.

Corollary 5.12. Let X be a geometrically connected scheme over a perfect field k.
Let x̄ : Spec (k̄)! X be a geometric point. The canonical map

⇡ k̄k : ⇡ L(X̄/k, x̄)! ⇡ L(X/k, x̄)

is an isomorphism if and only if for any G-torsor Y ! X̄ with G a finite local
k-group scheme, there exists a G-torsor P over X whose pull-back is isomorphic to
Y as a G-torsor.

Proof. This is an immediate consequence of Corollary 4.2 and Proposition 5.11.

Lemma 5.13. Let X be a scheme over a perfect field k of characteristic p. If
there is a reduced X-scheme Y whose pull-back Ȳ is a torsor over X̄ under an in-
finitesimal k-group scheme G, and if Y 0 is an X-scheme, then any X̄-isomorphism
� : Ȳ 0 ⇠= Ȳ descends to X .

Proof. The claim is true if and only if there is an X�map ' : Y ! Y 0 making the
diagram

Ȳ
�

//

✏✏

Ȳ 0

✏✏

Y
'

// Y 0

.
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commutative, as for fixed ' there is at most one X̄-morphism Ȳ ! Ȳ 0 making the
diagram commutative, so � = ' ⇥k k̄. Now assume X = Spec (A), Y = Spec (B),
Y 0 = Spec (B0). We will show that the image of the composition ◆ : B0 ! B0 ⌦k
k̄ ! B ⌦k k̄ lands on B.

Since Ȳ is a torsor over X̄ under an infinitesimal group scheme, for any x 2
B⌦k k̄, x p

n
2 A⌦k k̄ for n 2 N sufficiently large. This implies that for any x 2 B it

holds x pn 2 A for n 2 N sufficiently large, because A⌦k k̄ \ B = A inside B⌦k k̄.
Conversely, if x 2 B ⌦k k̄ and x p

n
2 A for some n 2 N, then x 2 B. Indeed, as

k is perfect, we can assume x 2 B ⌦k l for some finite separable extension l/k of
degree m. Let l = k(↵) for some primitive element ↵ 2 l. Then x can be uniquely
written as x = s0 + s1⌦ ↵+ s2⌦ ↵2 + · · · + sm�1⌦ ↵m�1 with si 2 B. Since ↵ p

n

is still a primitive element in l, i.e., l = k(↵) = k(↵ pn ) then x pn 2 A implies that
s p

n

i = 0 for all i > 0. As B is reduced, si = 0 for all i > 0, hence x 2 B. Thus
B ✓ B ⌦k k̄ is the subset consisting of elements whose pn-th power is in A.

By the same argument as above, any element x 2 B0 has pn-th power in A.
Hence ◆(B0) ✓ B ⌦k k̄ is contained in B. This completes the proof.

Corollary 5.14. Let k be a perfect but not separably closed field of characteristic
p. If X is a geometrically connected k-scheme which is defined over Fp, and if the
relative Frobenius F : X ! X is a torsor under ↵p,k , then the surjective map

⇡ L(X̄/k, x̄)! ⇡ L(X/k, x̄)

is not an isomorphism.

Proof. Taking any a 2 k̄ \ k we can define a k̄�automorphism of ↵p,k̄ by the
following map of Hopf-algebras: k̄[x]/x p ! k̄[x]/x p sending x 7! ax . This
automorphism of ↵p,k̄ defines a new action of ↵p,k on F̄ : X̄ ! X̄ which makes
X̄ an ↵p,k-torsor over itself. But the new action X̄ ⇥k ↵p,k ! X̄ certainly does
not descend to X ⇥k ↵p,k ! X . However, if ⇡ L(X̄/k, x̄)! ⇡ L(X/k, x̄) was an
isomorphism, then by Corollary 5.12 and Lemma 5.13 the new torsor F̄ : X̄ ! X̄
descends to an ↵p,k-torsor F : X ! X , so the morphism X̄ ⇥k ↵p,k ! X̄ descends
to X ⇥k ↵p,k ! X , a contradiction!

6. The second fundamental sequence

Theorem 6.1. Let X be a geometrically connected separable scheme over a field
k, and x̄ : Spec (k̄) ,! X be a geometric point. Then there is a natural sequence of
k̄-group schemes

1! ⇡ I (X̄/k̄, x̄)! ⇡ I (X/k, x̄)⇥k k̄ ! ⇡ I (k/k, x̄)⇥k k̄ ! 1. (6.1)

It is a complex, always exact on the right, exact on the left if k is perfect and if X is
quasi-compact and quasi-separated, but it is in general not exact in the middle for
I = N , E, L .
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Proof. The homomorphism ✓ : ⇡ I (X̄/k̄, x̄) ! ⇡ I (X/k, x̄) ⇥k k̄ defined and
proved to be injective in Proposition 4.21. The fact that (6.1) is a complex and
that the right map is surjective follows from Proposition 5.2. As the image of ✓
is contained in the image of � the failure of exactness of (6.1) follows from that
of (5.1).

7. Further remarks

Since Nori’s original definition is very geometric, it is hard to adapt some arithmetic
problems arising from the étale fundamental group to Nori’s setting. One of such
arithmetic problems is the section conjecture:

Let X be a smooth projective geometrically connected curve of genus� 2 over
a field k finitely generated over Q. Let x̄ be a geometric point of X . Consider the
fundamental exact sequence.

1! ⇡ ét1 (X̄ , x̄)! ⇡ ét1 (X, x̄) ⇡
�! Gal(k̄/k)! 1. (FES)

Let Section(k, X) be the set of sections of ⇡ , i.e., continous group homomorphisms
from Gal(k̄/k)! ⇡ ét1 (X, x̄)whose composition with ⇡ is the identity of Gal(k̄/k).
In Section(k, X)we define an equivalence relation: two sections f, g are equivalent
if there exists an element a 2 ⇡ ét1 (X̄ , x̄) such that f and g differ by the inner
automorphism of ⇡ ét1 (X, x̄) defined by a. We denote Section⇠(k, X) the set of
sections classes. If X has a rational point y 2 X (k), then we get a section class
y⇤ 2 Section⇠(k, X) by the functoriality of ⇡ ét1 . It can be shown that the so defined
map X (k) ! Section⇠(k, X) is injective. The section classes of the form y⇤ are
called geometric sections.
Conjecture 7.1. (Grothendieck’s section conjecture) All sections in Section⇠(k,X)
are geometric sections.

Since in Nori’s original definition the fundamental group scheme of a field
is trivial, it is not possible to directly reformulate the section conjecture in this
setting. In [9] and [10], H. Esnault and P. H. Hai successfully used the language
of fundamental groupoid scheme to get some arithmetic information from Nori’s
geometric fundamental group scheme, and using this they reformulated the section
conjecture and proved the Packet conjecture. In [4], N. Borne and A. Vistoli greatly
generalized Nori’s definition, and using the language of gerbes they also gave a
reformulation of this conjecture. Here we would like to suggest another thought on
this conjecture.

Lemma 7.2. Let X be a connected reduced scheme over a field k, and x̄ 2 X (k̄).
Then we have a canonical map of sets

1 : SectionN (k, X) �! Section(k, X)

where SectionN (k, X) denotes the set of sections of the canonical surjection
⇡N (X/k, x̄) ⇣ ⇡N (k/k, x̄).
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Proof. Suppose f 2 SectionN (k, X) is a section. Consider the following commu-
tative diagram

⇡N (k/k, x̄)
f

//

⇡NG
✏✏

✏✏

⇡N (X/k, x̄) // //

⇡NG
✏✏

✏✏

⇡N (k/k, x̄)

⇡NG
✏✏

✏✏

⇡G(k/k, x̄)
�

// ⇡G(X/k, x̄) // // ⇡G(k/k, x̄)

where � is obtained by the universality of ⇡N (k/k, x̄)
⇡NG��! ⇡G(k/k, x̄): for any

homomorphism � : ⇡N (k/k, x̄) ! M where M is a pro-constant group scheme,
there is a unique homomorphism � : ⇡G(k/k, x̄) ! M such that � � ⇡NG = �.
Clearly � 2 Section(k, X).

Now denote SectionN⇠(k, X) the image of the following composition:

SectionN (k, X)
1
�! Section(k, X)! Section⇠(k, X).

Then SectionN⇠(k, X) ✓ Section⇠(k, X) becomes a subset.

Lemma 7.3. The subset SectionN⇠(k, X) contains all the geometric sections.

Proof. Let y 2 X (k) be a rational point, and ȳ 2 X (k̄) be the composition of y with
Spec (k̄)! Spec (k). Then we have two fibre functors F̄x̄ , F̄ȳ from the category of
finite étale covers Ecov(X̄) to the category of sets and also the following diagram
of categories.

Ecov(X) //

Fx̄

��

Fȳ

??

Ecov(X̄)

F̄x̄
--

F̄ȳ
11

((Sets))

Now fix an isomorphism F̄x̄
⇠=
�! F̄ȳ , it will then induce an isomorphism � : Fx̄

⇠=
�!Fȳ .

Going through the proof of Proposition 4.24, we get an isomorphism ⇡N(X/k,x̄)
⇠=�
�!

⇡N (X/k, ȳ) which fits into the following commutative diagram.

⇡N (X/k, x̄)

✏✏

✏✏

⇠=�
// ⇡N (X/k, ȳ)

✏✏

✏✏

⇡G(X/k, x̄)
⇠=�

// ⇡G(X/k, ȳ)

This implies immediately that the geometric section y⇤ comes from SectionN⇠(k, X).



1392 LEI ZHANG

Thus SectionN⇠(k, X) is a possibly smaller subset of Section⇠(k, X), and the
section conjecture would immediately imply the following

Conjecture 7.4. If X is a proper smooth and geometrically connected curve of
genus�2 over a field k finitely generated overQ, then all sections in SectionN⇠(k,X)
are geometric sections.

Remark 7.5. The above conjecture could also be formulated in the case when k is
a global field. If k is of characteristic p > 0, there is a little subtlety in the original
formulation of the section conjecture, as there might be closed points in X whose
residue field are non-trivial purely inseparable extensions of k, and such points also
contribute to sections of the fundamental exact sequence (because the Galois group
is insensitive to purely inseparable extensions). Thus in positive characteristic one
may expect a smaller subset of sections which correspond to the rational points. In
this situation, SectionN⇠(k, X)might do this job as the Nori-Galois group is sensitive
to purely inseparable extensions. There is another formulation by F. Pop (see [21,
page 32]), where he extended the set of rational points to all closed points whose
residues fields are purely inseparable.

There is a more general philosophy behind this section conjecture, namely the an
Abelian conjecture,

Conjecture 7.6 (Grothendieck’s an Abelian conjecture). Let k be a field finitely
generated over Q. Let X,Y be two (proper) an Abelian schemes over k, and x̄, ȳ
be geometric points of X and Y . Then the natural map

HomSch/k(X,Y )! HomGal(k)(⇡ ét1 (X, x̄),⇡ ét1 (Y, ȳ))/Inn(⇡ ét1 (Ȳ , ȳ))

is bijective, where ⇡ ét1 (X, x̄) and ⇡ ét1 (Y, ȳ) are viewed as groups over Gal(k) and
the quotient is with respect to the action of ⇡ ét1 (Ȳ , ȳ) on the target via inner auto-
morphisms.

Roughly speaking the conjecture predicts that there is a full subcategory of k-
schemes, i.e., the conjectural an Abelian schemes, which are reconstructible from
their étale fundamental groups. If X is taken to be the base field, then this is more
or less just the section conjecture. In my opinion, Nori’s fundamental group scheme
carries more information than the étale fundamental group, thus a scheme should
be more reconstructible from its fundamental group scheme. To start with, M.
Romagny, G. Zalamansky and I formulated the following conjecture which is an
analogue of the Neukirch-Uchida theorem [18, 12.2.1, page 792] in the purely in-
separable settings.

Conjecture 7.7. Let k = k̄ be an algebraically closed field. Let K/k be a field
extension, and PI(K) be the category of finite purely inseparable extensions of K
whose morphisms are just K -algebra homomorphisms. Let Gr.Schk/⇡ L(K/k) be
the category of k-group schemes over the fixed k-group scheme ⇡ L(K/k), i.e. the
category of k-homomorphisms from some k-group scheme to ⇡ L(K/k). Then the
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canonical contravariant functor

F : PI(K) �! Gr.Schk/⇡ L(K/k)

L/K 7! ⇡ L(L/k)/⇡ L(K/k)

is fully faithful.
Note that since here we only consider torsors under finite infinitesimal group

schemes, by Remark 4.25, the fundamental group schemes are canonically isomor-
phic when we choose different base points. Thus we don’t need the quotient by the
inner automorphisms to erase the effect brought by the choice of the base points.
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Springer-Verlag, 1971.

[14] A. GROTHENDIECK, “EGA IV: Étude locale des schéma et des morphismes de schémas”,
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