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Positive sparse domination of variational Carleson operators

FRANCESCO DI PLINIO, YEN Q. DO AND GENNADY N. URALTSEV

Abstract. Due to its nonlocal nature, the r-variation norm Carleson operator Cr
does not yield to the sparse domination techniques of Lerner [15, 17], Di Plinio
and Lerner [6], Lacey [14]. We overcome this difficulty and prove that the dual
form of Cr can be dominated by a positive sparse form involving L p averages.
Our result strengthens the L p-estimates by Oberlin et al. [18]. As a corollary, we
obtain quantitative weighted norm inequalities improving the results in [8] by Do
and Lacey. Our proof relies on the localized outer L p-embeddings of Di Plinio
and Ou [7] and Uraltsev [19].

Mathematics Subject Classification (2010): 42B20 (primary); 42B25 (sec-
ondary).

1. Introduction and main results

The technique of controlling Calderón-Zygmund singular integrals, which are a
priori non-local, by localized positive sparse operators has recently emerged as
a leading trend in Euclidean Harmonic Analysis. We briefly review the advance-
ments which are most relevant for the present article and postpone further references
to the body of the introduction. The original domination in norm result of [17]
for Calderón-Zygmund operators has since been upgraded to a pointwise positive
sparse domination by Conde and Rey [2] and Lerner and Nazarov [16], and later by
Lacey [14] by means of an inspiring stopping time argument forgoing local mean
oscillation. Lacey’s approach was further clarified in [15], resulting in the follow-
ing principle: if T is a sub-linear operator of weak-type (p, p), and in addition the
maximal operator

f 7! sup
Q⇢R interval

�
�T ( f 1R\3Q)

�
�
L1(Q)

1Q, (1.1)
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embodying the non-locality of T , is of weak-type (s, s), for some 1  p  s < 1,
then T is pointwise dominated by a positive sparse operator involving Ls averages
of f .

The principle (1.1) extends to certain modulated singular integrals. Of interest
for us is the maximal partial Fourier transform

C f (x) = sup
N

�
�
�
�

Z N

1

bf (⇠) ei x⇠d⇠
�
�
�
� ,

also known as Carleson’s operator on the real line. The crux of the matter is that
(1.1) follows for T = C from its representation as a maximally modulated Hilbert
transform, a fact already exploited in the classical weighted norm inequalities for
C by Hunt and Young [13], and in the more recent work [12]. Together with sharp
forms of the Carleson-Hunt theorem near the endpoint p = 1 [5] this allows, as ob-
served by the first author and Lerner in [6], the domination ofC by sparse operators,
and thus leads to sharp weighted norm inequalities for C .

In this article we consider the r-variation norm Carleson operator, which is
defined for Schwartz functions on the real line as

Cr f (x) = sup
N2N

sup
⇠0<···<⇠N

 
NX

j=1

�
�
�
�
�

Z ⇠ j

⇠ j�1

bf (⇠) ei x⇠d⇠

�
�
�
�
�

r!1/r

.

The importance of Cr is revealed by the transference principle, presented in [18,
Appendix B], which shows how r-variational convergence of the Fourier series of
f 2 L p(T;w) for a weight w on the torus T follows from L p(R;w)-estimates
for the sub-linear operator Cr . Values of interest for r are 2 < r < 1. Indeed
the main result of [18] is that in this range, Cr maps into L p whenever p > r 0,
while no L p-estimates hold for variation exponents r  2. Unlike the Carleson
operator, its variation norm counterpart Cr does not have an explicit kernel form
and thus fails to yield to Hunt-Young type techniques. The same essential difficulty
is met in the search for Lq -bounds for the nonlocal maximal function (1.1) when
T = Cr . Therefore, the approach via (1.1) does not seem to be applicable to Cr .
In the series [8, 9], the second author and Lacey circumvented this issue through a
direct proof of Ap-weighted inequalities for Cr and its Walsh analogue, based on
weighted phase plane analysis.

The main result of the present article is that a sparse domination principle for
Cr holds in spite of the difficulties described above. More precisely, we sharply
dominate the dual form to the r-variational Carleson operator Cr by a single posi-
tive sparse form involving L p averages, leading to an effortless strengthening of the
weighted theory of [8]. Our argument abandons (1.1) in favor of a stopping time
construction, relying on the localized Carleson embeddings for suitably modified
wave packet transforms of [7] by the first author and Yumeng Ou, and [19] by the
third author. In particular, our technique requires no a prioriweak-type information
on the operator T . A similar approach was employed by Culiuc, Ou and the first au-
thor in [4] in the proof of a sparse domination principle for the family of modulation
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invariant multi-linear multipliers whose paradigm is the bilinear Hilbert transforms.
Interestingly, unlike [4], our construction of the sparse collection in Section 4 seems
to be the first in literature which does not make any use of dyadic grids.

We believe that intrinsic sparse domination can prove useful in the study of
other classes of multi-linear operators lying way beyond the scope of Calderón-
Zygmund theory, such as the iterated Fourier integrals of [10] and the sub-dyadic
multipliers of [1].

To formulate our main theorem, we recall the notation

h f iI,p :=

✓
1
|I |

Z
| f |p dx

◆ 1
p
, 1  p < 1,

where I ⇢ R is any interval, and the notion of a sparse collection of intervals. We
say that the countable collection of intervals I 2 S is ⌘-sparse for some 0 < ⌘  1
if there exists a choice of measurable sets {EI : I 2 S} such that

EI ⇢ I, |EI | � ⌘|I |, EI \ EJ = ? 8I, J 2 S, I 6= J.

Theorem 1.1. Let 2 < r < 1 and p > r 0. Given f, g 2 C1
0 (R) there exists a

sparse collection S = S( f, g, p) and an absolute constant K = K (p) such that

|hCr f, gi|  K (p)
X

I2S
|I |h f iI,phgiI,1. (1.2)

A corollary of Theorem 1.1 is that Cr extends to a bounded sub-linear operator on
Lq(R) whenever q > r 0. As a matter of fact, let us fix q 2 (r 0,1], and choose
p 2 (r 0, q). Denoting by

Mp f (x) = sup
I3x

h f iI,p

the p-th Hardy-Littlewood maximal function, the estimate of Theorem 1.1 and the
fact that S is sparse yields

|hCr f, gi| .
X

I2S
|EI |h f iI,phgiI,1  hMp f,M1gi

. kMp f kqkM1gkq 0 . k f kqkgkq 0 .

Bounds on Lq for Cr were first proved in [18], where it is also shown that the
restriction q > r 0 is necessary, whence no sparse domination of the type occurring
in Theorem 1.1 will hold for p < r 0. We can thus claim that Theorem 1.1 is sharp,
short of the endpoint p = r 0. In fact, sparse domination as in (1.2) also entails
Cr : L p(R) ! L p,1(R). Such an estimate is currently unknown for p = r 0.

However, Theorem 1.1 yields much more precise information than mere Lq -
boundedness. In particular, we obtain precisely quantified weighted norm inequali-
ties for Cr . Recall the definition of the At constant of a locally integrable nonnega-
tive function w as

[w]At :=

8
<

:

sup
I⇢R

hwiI,1
⌦
w

1
1�t

↵t�1
I,1 1 < t < 1

inf
�
A : Mw(x)  Aw(x) for a.e. x

 
t = 1.
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Theorem 1.2. Let 2 < r < 1 and q > r 0 be fixed. Then

(i) there exists K : [1, q
r 0 ) ! (0,1) nondecreasing such that

kCrkLq (R;w)!Lq (R;w)  K (t)[w]
max

n
1, t

q(t�1)

o

At ;

(ii) there exists a positive increasing functionQ such that for t = q
r 0

kCrkLq (R;w)!Lq (R;w)  Q
�
[w]At

�
. (1.3)

We omit the standard deduction of Theorem 1.2 from Theorem 1.1, which follows
along lines analogous to the proofs of [4, Theorem 3] and [16, Theorem 17.1].
Estimate (i) of Theorem 1.2 yields in particular that

w 2 At =) kCrkLq (R;w)!Lq (R;w) < 1 8r > max
n
2, q

q�t

o
,

an improvement over [8, Theorem1.2], where Lq(R;w) boundedness is only shown
for variation exponents r > max

n
2t, qt

q�t

o
when w 2 At . Fixing r instead, part

(ii) of Theorem 1.2 is sharp in the sense that t = q
r 0 is the largest exponent such

that an estimate of the type of (1.3) is allowed to hold. Indeed, if (1.3) were true
for any q = q0 2 (r 0,1) and some t = q0

s with s < r 0, a version of the Rubio
de Francia extrapolation theorem (see for instance [3, Theorem 3.9]) would yield
that Cr maps Lq into itself for all q 2 (s,1), contradicting the already mentioned
counterexample from [18].

We turn to further comments on the proof and on the structure of the paper.
In the upcoming Section 2 we reduce the bilinear form estimate (1.2) to an anal-
ogous statement for a bilinear form involving integrals over the upper-three space
of symmetry parameters for the Carleson operator of a wave packet transforms of
f and a variational-truncated wave packet transform of g. The natural framework
for L p-boundedness of such forms, the L p-theory of outer measures, has been de-
veloped by the second author and Thiele in [11]. In Section 3, we recall the basics
of this theory as well as the localized Carleson embeddings of [7] and [19]. These
will come to fruition in Section 4, where we give the proof of Theorem 1.1. A sig-
nificant challenge in the course of the proof is the treatment of the nonlocal (tail)
components, which are handled via novel ad-hoc embedding theorems incorporat-
ing the fast decay of the wave packet coefficients away from the support of the input
functions.

ACKNOWLEDGEMENTS. This work was initiated and continued during G. Uralt-
sev’s visit to the Brown University and University of Virginia Mathematics De-
partments, whose hospitality is gratefully acknowledged. The authors would like
to thank Amalia Culiuc, Michael Lacey, Ben Krause and Yumeng Ou for useful
conversations about sparse domination principles.
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2. Reduction to wave packet transforms

In this section we reduce the inequality (1.2) to an analogous statement involving
wave packet transforms. Throughout this section, the variation exponent r 2 (2,1)
is fixed, and we take f, g 2 C1

0 (R). First of all we linearize the variation norm
appearing in Cr . Begin by observing that the map

(x, ⇠) 7!
Z ⇠

�1

bf (⇣ ) ei x⇣d⇣

is uniformly continuous. By duality and standard considerations

Cr f (x) = sup
N

sup
4⇢R,#4N

sup
k{a j }k`r 0 1

NX

j=1
a j

Z ⇠ j

⇠ j�1

bf (⇣ ) ei x⇣d⇣.

Therefore, (1.2) will be a consequence of the estimate

3E⇠ ,Ea( f, g) :=
Z

R
g(x)

 
NX

j=1
a j (x)

Z ⇠ j (x)

⇠ j�1(x)
bf (⇣ ) ei x⇣ d⇣

!

dx

 K (p)
X

I2S
|I |h f iI,phgiI,1,

(2.1)

with right-hand side independent of N 2 N, 4 ⇢ R, #4  N , and of the mea-
surable 4N+1-valued function E⇠(x) = {⇠ j (x)} with ⇠0(x) < · · · < ⇠N (x), and
CN+1-valued Ea(x) = {a j (x)} with kEa(x)k`r 0 = 1.

The next step is to uniformly dominate the form 3E⇠ ,Ea( f, g) by an outer form
involving wave packet transforms of f and g; in the terminology of [11], embedding
maps into the upper 3-space

(u, t, ⌘) 2 X = R ⇥ R+ ⇥ R.

The parameters ⇠, Ea will enter the definition of the embedding map for g. We
introduce the wave packets

 t,⌘(x) := t�1ei⌘z  
⇣ x
t

⌘
, ⌘ 2 R, t 2 (0,1),

where  is a real valued, even Schwartz function with frequency support of width
b containing the origin. The wave packet transform of f is thus defined, as in [11],
by

F( f )(u, t, ⌘) =
�
� f ⇤  t,⌘(u)

�
�, (u, t, ⌘) 2 X. (2.2)

For our fixed choice of E⇠ , Ea we introduce the modified wave packet transform of g
that is dual to (2.2) for the sake of bounding the left hand side of (2.1). Following
[19, Equation (1.14)], it is given by

A(g)(u,t,⌘) :=sup
9

�
�
�
�
�

Z

R
g(x)

NX

j=1
a j (x)9

⇠ j (x),⇠ j+1(x)
t,⌘ (x�u) dx

�
�
�
�
�
, (u,t,⌘)2X, (2.3)
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with supremum being taken over all choices of truncated wave packets9⇠�, ⇠+
t,⌘ , that

for each t, ⌘ 2 R+ ⇥ R are functions in S(R) parameterized by ⇠�, ⇠+ 2 4. We
summarize the basic defining properties of the truncated wave packets in Remark
2.3 below, and we refer to [19] for a precise definition.

The duality of the embeddings (2.2) and (2.3) is a consequence of the following
wave packet domination Lemma. We refer to [19] for the proof.

Lemma 2.1 (Wave packet domination). Let f, g, 4, E⇠ , Ea be as above and con-
sider the bilinear form defined on the wave packets transforms, given by

BE⇠ ,Ea( f, g) :=
Z

X
F( f )(u, t, ⌘)A(g)(u, t, ⌘) dudtd⌘. (2.4)

Then
3E⇠ ,Ea( f, g) . BE⇠ ,Ea

�
F( f ), A(g)

�

with uniform implied constant.

Using the above Lemma, we see that inequality (2.1) and thus Theorem 1.1
will follow from the bounds of the next proposition.

Proposition 2.2. Let p > r 0 be fixed. For all compactly supported f, g 2 L1(R)
there exist a sparse collection S = S( f, g, p) and an absolute constant K = K (p)
such that

sup
N

sup
#4N

sup
E⇠ ,Ea

BE⇠ ,Ea( f, g)  K (p)
X

I2S
|I |h f iI,phgiI,1, (2.5)

where E⇠ , Ea range over 4N+1, CN+1-valued functions as above.

We now make a brief digression to justify definitions (2.2) and (2.3) of the
wave packet transforms and the result of Lemma 2.1. Consider the term

Z ⇠ j (x)

⇠ j�1(x)
bf (⌘)eix⌘d⌘

appearing in (2.1) and let us think for a moment of ⇠ j�1(x) = ⇠� and ⇠ j (x) = ⇠+
as frozen. Then the following representation holds for the multiplier 1(⇠�,⇠+)(⇣ ):

1(⇠�,⇠+)(⇣ ) =
Z

R+⇥R
b9⇠�,⇠+
t,⌘ (⇣ ) dtd⌘, (2.6)

where9⇠�,⇠+
t,⌘ are truncated wave packets. Choosing a � 2 S(R) such thatb�t,⌘(⇣ )=

1 whenever b9⇠�,⇠+
t,⌘ (⇣ ) 6= 0 for any ⇠� < ⇠+ 2 R, we obtain the pointwise identity

Z ⇠ j (x)

⇠ j�1(x)
bf (⇣ )eix⇣d⇣ =

Z

X
f ⇤ �t,⌘(u)9

⇠ j�1(x),⇠ j (x)
t,⌘ (x � u)dudtd⌘.

The results of Lemma 2.1 follow by Fubini and the triangle inequality.
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We briefly illustrate identity (2.6), for a more careful discussion we refer to [19,
Section 3]. Start by choosing  2 S(R) with b non-negative and supported on a
ball of radius b/2, and let � 2 C1

0 (R) be a non-negative bump function supported
on [d � ✏, d + ✏] with d > b and ✏ ⌧ b. Suppose formally that ⇠+ = +1 so
that, up to a suitable normalization of � , a Littlewood-Paley type decomposition
centered at ⇠� of the multiplier 1(⇠�,+1) gives

1(⇠�,+1)(⇣ ) =
Z

R+⇥R
b (t (⇣ � ⌘))�(t (⌘ � ⇠�))dtd⌘.

A similar expression holds if ⇠� = �1 and ⇠+ 2 R. We choose truncated wave
packets so that

9
⇠�,⇠+
t,⌘ (x) :=  t,⌘(x)�(t (⌘ � ⇠�)) t (⌘ � ⇠�) ⌧ t (⇠+ � ⌘)

9
⇠�,⇠+
t,⌘ (x) :=  t,⌘(x)�(t (⇠+ � ⌘)) t (⌘ � ⇠�) � t (⇠+ � ⌘)

9
⇠�,⇠+
t,⌘ (x) := 0 ⌘ /2 (⇠�, ⇠+).

Finally if t (⌘ � ⇠�) ⇡ t (⇠+ � ⌘) then 9⇠�,⇠+
t,⌘ is chosen to appropriately model the

transition between the above regimes and justifies identity (2.6).
Remark 2.3. In general we call a function 9⇠�,⇠+

t,⌘ 2 S(R) parameterized by ⇠� <
⇠+ 2 R a truncated wave-packet adapted to t, ⌘ 2 R+ ⇥ R if

e�i⌘t z t9⇠�,⇠+
t,⌘ (t x), t�1@⇠�

⇣
e�i⌘t z t9⇠�,⇠+

t,⌘ (t x)
⌘
, t�1@⇠+

⇣
e�i⌘t z t9⇠�,⇠+

t,⌘ (t x)
⌘

are uniformly bounded in S(R) as functions of x . Furthermore we require that
b9⇠�,⇠+
t,⌘ be supported on (⌘ � t�1b, ⌘ + t�1b) for some b > 0. Finally, for some

constants d, d 0, d 00 > 0 and ✏ > 0 it must hold that

9
⇠�,⇠+
t,⌘ 6= 0 only if

(
t (⌘ � ⇠�) 2 (d � ✏, d + ✏)

t (⇠+ � ⌘) > d 0 > 0

@⇠+9
⇠�,⇠+
t,⌘ = 0 if t (⇠+ � ⌘) > d 00 > d 0 > 0.

(2.7)

3. Localized outer-L p embeddings

We now turn to the description of the analytic tools which we rely on in the proof
of estimate (1.2). We work in the framework of outer measure spaces [11], see
also [4,7]. In particular, we define a distinguished collection of subsets of the upper
3-space X which we refer to as tents above the time-frequency loci (I, ⇠) where I
is an interval of center c(I ) and length |I |, and ⇠ 2 R:

T(I, ⇠) := T`(I, ⇠) [ To(I, ⇠);
To(I, ⇠) :=

�
(u, t, ⌘) : t⌘ � t⇠ 2 2o, t < |I |, |u � c(I )| < |I | � t

 
;

T`(I, ⇠) :=
�
(u, t, ⌘) : t⌘ � t⇠ 2 2 \2o, t < |I |, |u � c(I )| < |I | � t

 
,
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where 2o = [��,�+], 2 = [↵�,↵+] are two geometric parameter intervals such
that 0 2 2o ⇢ 2. The specific values of the parameters do not matter. What is im-
portant is that given the geometric parameters of the wave packets appearing in (2.2)
and (2.3) there exists a choice of parameters of the tents such that the statements
of the subsequent discussion hold. For example it must hold that (�b, b) ⇢ 2o

where b is the parameter that governs the frequency support of  t,⌘ and 9
⇠�,⇠+
t,⌘ .

For a complete discussion see [19, Section 2]. As usual, we denote by µ the outer
measure generated by countable coverings by tents T(I, ⇠), I ⇢ R, ⇠ 2 R via the
pre-measure T(I, ⇠) 7! |I |.

Let s be a size [11], i.e., a family of quasi-norms indexed by tents T, defined
on Borel functions F : X ! C. The corresponding outer-L p space on (X, µ) is
defined by the quasi-norm

kFkL p(s) :=

✓
p
Z 1

0
�p�1µ(s(F) > �) d�

◆ 1
p
, 0 < p < 1,

µ(s(F) > �) := inf
n
µ(E) : E ⇢ X, sup

T
s
�
F1X\E

�
(T)  �

o
,

where the supremum on the right is taken over all tents T = T(I, ⇠). We will work
with outer L p spaces based on the sizes

se(F)(T) :=

✓
1
|I |

Z

T`
|F(u, t, ⌘)|2 dudtd⌘

◆ 1
2

+ sup
(u,t,⌘)2T

|F(u, t, ⌘)|,

sm(A)(T) :=

✓
1
|I |

Z

T
|A(u, t, ⌘)|2 dudtd⌘

◆ 1
2

+
1
|I |

Z

To
|A(u, t, ⌘)| dudtd⌘,

which are related to the two embeddings (2.2) and (2.3) respectively. The dual
relation of the sizes se, sm is given by the fact that for any two Borel functions
F, A : X ! C there holds

Z

T
|F(u, t, ⌘)A(u, t, ⌘)| dudtd⌘  2s`(F)(T)so(A)(T).

The abstract outer Hölder inequality [11, Proposition 3.4] and Radon-Nikodym type
bounds [11, Proposition 3.6] yield

Z

T
|F(u, t, ⌘)A(u, t, ⌘)| dudtd⌘ . kFkL� (s`)kAkL⌧ (so) (3.1)

whenever 1  �, ⌧  1 are Hölder dual exponents i.e., 1� + 1
⌧ = 1.

The nature of the wave packet transforms f 7! F( f ), g 7! A(g) defined by
(2.2), (2.3) is heavily exploited in the stopping-type outer L p-embedding theorems
below. We state the embedding theorems after some necessary definitions. It is
convenient to use the notation

T(I ) := {(u, t, ⌘) : t < |I |, |u � c(I )| < |I | � t, ⌘ 2 R}
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for the set of the upper 3-space associated to the usual spatial tent over I . Given an
open set E ⇢ R we associate to it the subset of T(E) ⇢ X given by

T(E) =
[

I⇢E
T(I ), (3.2)

where the union is taken over all intervals I ⇢ E .
The first stopping embedding theorem, a reformulation of a result first obtained

in [7], deals with the wave packet transform f 7! F( f ) of (2.2).

Proposition 3.1. Let 1 < p < 2, � 2 (p0,1), then there exists K > 0 such that
the following holds. For all f 2 L ploc(R), all intervals Q, and all c 2 (0, 1) there
exists an open set U f,p,Q satisfying

�
�U f,p,Q

�
�  c|Q|,

such that �
�
�F( f 13Q)1T(Q)\T(U f,p,Q)

�
�
�
L� (se)

 K |Q|
1
� h f i3Q,p. (3.3)

The embedding theorem we use to treat the variationally truncated wave packet
transform g 7! A(g) of (2.3) stems from the main result of [19].

Proposition 3.2. Let ⌧ 2 (r 0,1), then there exists K > 0 such that the following
holds. For all g 2 L1loc(R), all intervals Q and all c 2 (0, 1) there exists an open
set Vg,1,Q satisfying �

�Vg,1,Q
�
�  c|Q|,

such that �
�
�A(g13Q)1T(Q)\T(Vg,1,Q)

�
�
�
L⌧ (sm)

 K |Q|
1
⌧ hgi3Q,1. (3.4)

We stress that the constant K in Proposition 3.2 does not depend on the parameters
Ea, E⇠ ,4, N appearing in the definition (2.3) of the map A.

The two propositions above appear in [19] in a somewhat different form that
uses the notion of iterated outer measure spaces introduced therein. We derive the
statement of Propositions 3.2 by using the weak boundedness on L1(R) of the map
(2.3) of [19, Theorem 1.3]. In particular that result, applied to the function g13Q
for � = cK hgi3Q,1, yields a collection of disjoint open intervals I and

Vg,1,Q :=
[

I2I
I,

�
�Vg,1,Q

�
� 

C|Q|

K
,

so that (3.4) holds as required. We conclude by choosing K � C/c. A similar
procedure can be used to obtain Proposition 3.1 from [19, Theorem. 1.2].

In effect, we have shown that the formulation of the boundedness properties
of the embedding maps (2.2) and (2.3) as expressed in Propositions 3.1 and 3.2
are equivalent to the iterated outer measure formulation of [19]. Furthermore the
use of iterated outer measure L p-norms allowed us to bootstrap the above results
to L ploc(R) generality from an a priori type statement, as illustrated in [19, Sec-
tion 2.1].
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4. Proof of Proposition 2.2

Throughout this proof, the exponent p 2 (r 0,1) is fixed and all the implicit con-
stants are allowed to depend on r, p without explicit mention. Since the lineariza-
tion parameters play no explicit role in the upcoming arguments we omit them from
the notation: assume them fixed and simply write B( f, g) for the form BE⇠ ,Ea( f, g)
defined in (2.4). Given any interval Q, we introduce the localized version

BQ( f, g) :=
Z

T(Q)
F( f )(u, t, ⌘)A(g)(u, t, ⌘) dudtd⌘. (4.1)

4.1. The principal iteration

The main step of the proof of Proposition 2.2 is contained in the following lemma,
which we will apply iteratively.

Lemma 4.1. There exists a positive constant K such that the following holds. Let
f, g 2 L1(R) and compactly supported, and Q ⇢ R be any interval. There exists
a countable collection of disjoint open intervals IQ such that

[

I2IQ
I ⇢ Q,

X

I2IQ
|I |  2�12|Q|, (4.2)

and such that

BQ( f 13Q, g13Q)  K |Q|h f i3Q,phgi3Q,1 +
X

I2IQ
BI ( f 13I , g13I ). (4.3)

The proof of the lemma consists of several steps, which we now address. Notice
that there is no loss in generality with assuming that f, g are supported on 3Q: we
do so for mere notational convenience.

4.1.1. Construction of IQ
Referring to the notation of Section 3, set

E f,Q = U f,p,Q [
n
x 2 R : Mp f (x) > c�1h f i3Q,p

o
,

Eg,Q = Vg,1,Q [
n
x 2 R : M1g(x) > c�1hgi3Q,1

o
,

EQ = Q \
�
E f,Q [ Eg,Q

�
.

Write the open set EQ as the union of a countable collection I 2 IQ of disjoint
open intervals. Then (4.2) holds provided that c is chosen small enough. Also,
necessarily 3I \ EcQ 6= ? if I 2 IQ , so that

inf
x23I

M1 f (x) . h f i3Q,p, inf
x23I

M1g(x) . hgi3Q,1. (4.4)
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For further use we note that, with reference to the notation of Propositions 3.1
and 3.2,

T(Q) \ T(EQ) ⇢ T(Q) \
�
T(U f,p,Q) [ T(Vg,1,Q)

�
. (4.5)

This completes the construction of IQ .
4.1.2. Proof of (4.3)

We begin by using (3.2) to partition the outer integral over T(Q) as

BQ( f, g) 
Z

T(Q)\T(EQ)
F( f )A(g) dudtd⌘ +

X

I2IQ
BI ( f, g). (4.6)

Choosing ⌧ 2 (r 0, p), the dual exponent � = ⌧ 0 2 (p0,1). By virtue of (4.5), we
may apply the outer Hölder inequality (3.1) and the embeddings in Propositions 3.1
and 3.2 to control the first summand in (4.6) by an absolute constant times
�
�
�F( f )1T(Q)\T(U f,p,Q)

�
�
�
L� (s`)

�
�
�A(g)1T(Q)\T(Vg,1,Q)

�
�
�
L⌧ (so)

. |Q|h f i3Q,phgi3Q,1.

We turn to the second summand in (4.6), which is less than or equal to
X

I2IQ
BI

�
f 13I , g13I

�
+

X

(a,b)2{in,out}2
(a,b)6=(in,in)

X

I2IQ
BI

�
f 1Ia, g1Ib

�
,

where I in = 3I, I out = 3Q \ 3I . The first term in the above expression appears on
the right hand side of (4.3). We claim that

X

I2IQ
BI

�
f 1Ia, g1Ib

�
. |Q|h f i3Q,phgi3Q,1, (a,b) 6= (in, in), (4.7)

thus leading to the required estimate for (4.3). Assume a = in,b = out for the sake
of definiteness, the other cases being identical. Fix I 2 IQ . We will show that

BI
�
f 1I in, g1Iout

�
. |I |h f i3Q,phgi3Q,1, (4.8)

whence (4.7) follows by summing over I 2 IQ and taking advantage of (4.2).
4.1.3. Proof of (4.8)

We introduce the Carleson box over the interval P:

box(P) =
n
(u, t, ⌘) 2 X : u 2 P, 12 |P|  t < |P|

o
.

Fix I 2 IQ . The root of our argument for (4.8) is the fact that supp g1Iout lies
outside 3I . This leads to the exploitation of the following lemma, whose proof is
given at the end of the paragraph.
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Lemma 4.2. Let P be any interval, h 2 L ploc(R), and ⌧, � as above. There holds

kA(h)1box(P)kL⌧ (sm) . |P|
1
⌧

✓
1+

dist(P, supp h)
|P|

◆�100
inf
x23P

M1h(x), (4.9)

kF(h)1box(P)kL� (se) . |P|
1
�

✓
1+

dist(P, supp h)
|P|

◆�100
inf
x23P

Mph(x). (4.10)

Now let P 2 Pk(I ) be the collection of dyadic subintervals of I with |P| = 2�k |I |.
If P 2 Pk(I ) it holds dist(P, I out) � |I | = 2k |P|. Moreover

X

P2Pk(I )
|P| = |I |, inf

x23P
M1h(x) . 2k inf

x23I
M1h(x),

for all locally integrable h. Since

T(I ) ⇢
1[

k=0

[

P2Pk(I )
box(P),

we obtain, using the outer Hölder inequality (3.1) to pass to the third line, the fol-
lowing chain of inequalities:

BI ( f 1I in, g1Iout) 
X

k�0

X

P2Pk(I )

Z

box(P)
F( f 1I in)A(g1Iout) dudtd⌘


X

k�0

X

P2Pk(I )
kF( f 1I in)1box(P)kL� (se)kA(g1Iout)1box(P)kL⌧ (sm)

.
X

k�0

X

P2Pk(I )
|P|

✓
inf
x23P

Mp f (x)
◆✓

2�99k inf
x23P

Mpg(x)
◆


X

k�0
2�98k

X

P2Pk(I )
|P|

✓
inf
x23I

Mp f (x)
◆✓

inf
x23I

M1g(x)
◆

. |I |
✓
inf
x23I

Mp f (x)
◆✓

inf
x23I

M1g(x)
◆

,

which, by virtue of (4.4), complies with (4.8).

Proof of Lemma 4.2. We show how estimate (4.9) follows from Proposition 3.2.
Then, (4.10) is obtained from Proposition 3.1 in a similar manner. By quasi-
sublinearity and monotonicity of the outer measure L⌧ (sm) norm we have that

kA(h)1box(P)kL⌧ (sm)

 CkA
�
h19P

�
1box(P)kL⌧ (sm) +

1X

k=3
CkkA

�
h13k P\3k�1P

�
1box(P)kL⌧ (sm).

(4.11)
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Applying the embedding bound (3.4) with c = 3�2 and Q = 3P provides us with
Vh,1,3P such that box(P) ⇢ T(9P) \ T(Vh,1,3P), whence

�
�A

�
h19P

�
1box(P)

�
�
L⌧ (sm)

 CK |P|
1
⌧ hhi9P,1  CK |P|

1
⌧ inf
x23P

M1h(x).

Indeed, we chose c in such a way that |Vh,1,3P | < 3�1Q, which guarantees that
T(Vh,1,9P) does not intersect box(P). We claim that, similarly, we have that for
k > 2 and for an arbitrarily large N � 1 there holds

�
�A

�
h13k P\3k�1P

�
1box(P)

�
�
L⌧ (sm)

 CK3�Nk |P|
1
⌧ hhi3k P,1

 CK |P|
1
⌧ 3�Nk inf

x23P
M1h(x).

Let
(u, t, ⌘) 7! 9

⇠�,⇠+
t,⌘ (· � u)

be a choice of truncated wave packets which approximately achieves the supremum
in

A
�
h13k P\3k�1P

�
(u, t, ⌘),

cf. (2.3). Then

e9⇠�,⇠+
t,⌘ (· � u) :=

✓
1+

|(x � u) � c(P)|

|P|

◆2N
9
⇠�,⇠+
t,⌘ (· � u)

are adapted truncated wave packets as well since multiplying by a polynomial does
not change the frequency support of 9⇠�,⇠+

t,⌘ and so the conditions on being trun-
cated wave packets is maintained. Let Ã(h13k P\3k�1P)(u, t, ⌘) be the embedding
obtained by using the wave packets 9̃⇠�,⇠+

t,⌘ (· � u) instead of 9⇠�,⇠+
t,⌘ (· � u). Given

that (u, t, ⌘) 2 box(P) we have that
�
�A(h13k P\3k�1P)(u, t, ⌘)

�
�  C3�2Nk Ã

�
h13k P\3k�1P

�
(u, t, ⌘).

However the bounds (3.4) also hold for Ã with an additional multiplicative constant
that depends at most on N . Applying these bounds with P = 3k�1Q and c = 3�k

we have once again that
�
�
� Ã

�
h13k P\3k�1P

�
1box(P)

�
�
�
L⌧ (sm)

 CK |P|
1
⌧ 3khhi3k P,1.

As long as N is chosen large enough with respect to C > 1 appearing in (4.11),
the above inequality gives the required bound. The decay factor in term of
dist(P, supp h) follows from the fact that the the first k0 terms in (4.11) vanish
if supp h \ 3k0P = ?.
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4.2. The iteration argument

With Lemma 4.1 at hand, we proceed to the proof of Proposition 2.2. Fix f, g 2
L1(R) with compact support. By an application of Fatou’s lemma, it suffices to
prove (2.5) with BQ0 an lieu of B for an arbitrary interval Q0 with supp f, supp g ⇢
Q0. That is, it suffices to construct a sparse collection S such that

BQ0( f, g)  C
X

I2S
|I |h f iI,phgiI,1, (4.12)

provided that the constant C does not depend on Q0. We fix such a Q0. Further-
more, as

BQ0( f, g) = sup
">0

BQ0,"( f, g),

BQ,"( f, g) :=
Z

T(Q)
F( f )(u, t, ⌘)A(g)(u, t, ⌘)1{t>"} dudtd⌘,

it suffices to prove (4.12) with BQ0," replacing BQ0 , with constants uniform in
" > 0. We also notice that Lemma 4.1 holds uniformly, if one replaces all the
instances of BQ in (4.1) with BQ,". From now on we fix " > 0 and drop it from the
notation.

We now perform the following iterative procedure. Set S0 = {Q0}. Suppose
that the collection of open intervals Q 2 Sn has been constructed, and define in-
ductively

Sn+1 =
[

Q2Sn
IQ,

where IQ is obtained as in the Lemma 4.1. It can be seen inductively that

Q 2 Sn =) |Q|  2�12n|Q0|.

We iterate this procedure as long as n  N , where N is taken so that 2�12N |Q0| < "
holds. At that point we stop the iteration and set

S? =
N[

n=0
Sn.

Making use of estimate (4.3) along the iteration of Lemma 4.1 we readily obtain

BQ0( f, g) .
N�1X

n=0

X

Q2Sn
|Q|h f i3Q,phgi3Q,1 +

X

Q2SN

X

I2IQ
BI ( f 13I , g13I )

=
X

Q2S?
|Q|h f i3Q,phgi3Q,1,
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as each term BI , I 2 SN vanishes by the condition on N . Observe that the sets

XQ := Q \

 
[

I2S?:I(Q
I

!

= Q \

0

@
[

I2IQ
I

1

A Q 2 S?

are pairwise disjoint and, from (4.2), that |Q\XQ | � (1� 2�12)|Q| yields that S?
is sparse, and so is S = {3Q : Q 2 S?}. This completes the proof of Proposi-
tion 2.2.
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