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On Lang’s conjecture for some product-quotient surfaces

JULIEN GRIVAUX, JULIANA RESTREPO VELASQUEZ AND ERWAN ROUSSEAU

Abstract. We prove effective versions of algebraic and analytic Lang’s conjec-
tures for product-quotient surfaces of general type with Pg = 0 and c21 = c2.

Mathematics Subject Classification (2010): 14J29 (primary); 32Q45 (sec-
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1. Introduction

Lang’s conjecture asserts that curves of fixed geometric genus on a surface of gen-
eral type form a bounded family. An effective version of this conjecture can be
stated in the following way:
Conjecture 1.1 (Lang-Vojta). Let S a smooth projective surface of general type.
Then there exist real numbers A, B, and a strict subvariety Z ⇢ S such that, for any
holomorphic map f : C ! S satisfying f (C) * Z , where C is a smooth projective
curve, it holds

deg f (C)  A(2g(C) � 2) + B.

Bogomolov proved this conjecture for minimal surfaces of general type satisfying
c21 � c2 > 0 [8]. He actually proved that such surfaces have big cotangent bundle,
and that the conjecture follows from this fact. Unfortunately, this approach does not
provide effective information about A and B. However, effective results for such
surfaces have been obtained more recently by Miyaoka [17].

On the other hand, the analytic version of Lang’s conjecture is stated as fol-
lows:
Conjecture 1.2 (Green-Griffiths-Lang). Let S be a smooth projective surface of
general type. Then there exists a strict subvariety Z ⇢ S such that for any non
constant holomorphic map f : C ! S,

f (C) ⇢ Z .

The third author is partially supported by the ANR project “FOLIAGE”, ANR-16-CE40-0008.
Received October 28, 2016; accepted in revised form May 1, 2017.
Published online July 2018.



1484 JULIEN GRIVAUX, JULIANA RESTREPO VELASQUEZ AND ERWAN ROUSSEAU

Bogomolov’s result has been generalized to the analytic case by McQuillan in his
proof of this conjecture for minimal surfaces of general type with c21�c2 > 0 given
in [16].

Here, we are interested in product-quotient surfaces, i.e., in the minimal reso-
lutions of quotients X := (C1⇥C2)/G, where C1 and C2 are two smooth projective
curves of respective genera g(C1), g(C2) � 2, and G is a finite group, acting faith-
fully on each of them and diagonally on the product. These surfaces generalize the
so-called Beauville surfaces (the particular case where the group action is free).

The classification of product-quotient surfaces with geometric genus pg = 0
was started by I. Bauer and F. Catanese in [3]; they classified the surfaces X =
(C1 ⇥ C2)/G with G being an abelian group acting freely and pg(X) = 0. Later
in [4], both of them and F. Grunewald, extended this classification to the case of
an arbitrary group G. Not long after, R. Pignatelli joined them, and in [5] they
dropped the assumption that G acts freely on C1 ⇥ C2; they classified product-
quotient surfaces with pg = 0 whose quotient model X has at most canonical
singularities. Finally in [6], I. Bauer and R. Pignatelli dropped any restriction on the
singularities of X and gave a complete classification of product-quotient surfaces
with pg = 0 and c21 > 0. It turns out that all except one are in fact minimal surfaces
(see [6, Tables 1 and 2]).

In this paper, we prove Conjectures 1.1 and 1.2, when S is a product-quotient
surface of general type with geometric genus pg = 0 and c21 � c2 = 0. Note that
pg = 0 implies c21 + c2 = 12, then the condition c21 � c2 = 0 is equivalent to
c21 = c2 = 6. These surfaces are a limit case not covered by Bogomolov’s theorem;
however, they satisfy the criterion given in [20, Theorem 1], which ensures the
bigness of their cotangent bundle.

In order to accomplish this, we start by proving the following result for pro-
duct-quotient surfaces in general.

Theorem 1.3. Let S be a product-quotient surface. If f : C ! S is a holomorphic
map such that f (C) * E , where C is a smooth projective curve and E is the
exceptional divisor on S, then

deg f ⇤(KS � E)  2(2g(C) � 2).

Note that Theorem 1.3 is interesting only when KS � E is positive (ample or big).
In Conjecture 1.1, one can take deg f (C) = deg f ⇤L forL a positive line bundle on
S; hence, provided that the divisor KS � E is big, Theorem 1.3 implies Conjecture
1.1 for the case of product-quotient surfaces. However, it is not known whether
KS � E is ample or even big in general and in view of the conjecture it is foreseen
to be hard to determine.

We then restrict ourselves to the particular case where S is a product-quotient
surface of general type with geometric genus pg = 0 and c21 = 6. In this case we
prove that KS � E is big and we obtain Conjecture 1.1. We also give an alternative
proof for the bigness of �S , producing explicit symmetric tensors on S coming
from KS � E , which allows us to control rational curves on it. More precisely we
prove the following theorem.
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Theorem 1.4. Let S be a product-quotient surface of general type such that
pg(S) = 0. If c1(S)2 = 6, then the following facts hold

(1) The line bundle KS � E and the cotangent bundle �S are big;
(2) For any non constant holomorphic map f : P1 ! S,

f
�
P1

�
⇢ E [ B(KS � E),

where E is the exceptional divisor on the resolution S and B(KS � E) is the
stable base locus of KS � E .

Finally, our approach also lets us control elliptic and more generally, entire curves
on S. More precisely, we prove Conjecture 1.2 in our context.

Theorem 1.5. Let S be a product-quotient surface of general type such that
pg(S) = 0. If c1(S)2 = 6, then for any non constant holomorphic map f : C ! S,

f (C) ⇢ E [ B+(KS � E),

where E is the exceptional divisor on the resolution S and B+(KS � E) is the
augmented base locus of KS � E .

At this point one may ask if the methods used to prove Theorems 1.4 and 1.5 could
be extended to more general product-quotient surfaces than the single family with
c21 = c2. It turns out that as c21 gets smaller than c2, the problem of determining
whether KS � E is big gets more difficult. In fact, our approach still works for the
case c21 = 5 and c2 = 7 but not for c21  4.

2. Preliminaries

In this section we are going to recall some definitions and results that will be used
throughout this paper.

2.1. Product-quotient surfaces

Definition 2.1. A product-quotient surface S is the minimal resolution of the singu-
larities of a quotient X := (C1⇥C2)/G, whereC1 andC2 are two smooth projective
curves of respective genera g(C1), g(C2) � 2, and G is a finite group, acting faith-
fully on each of them and diagonally on the product. The surface X := (C1⇥C2)/G
is called the quotient model of S [6].
Let S be a product-quotient surface. Let ' : S ! X be the resolution morphism
of the singularities of X := (C1 ⇥ C2)/G, and let p1 : X ! C1/G and p2 :
X ! C2/G be the two natural projections. Let us define �1 : S ! C1/G and
�2 : S ! C2/G to be the compositions p1 � ' and p2 � ' respectively. Thus, we
have the following commutative diagram encoding all this information:



1486 JULIEN GRIVAUX, JULIANA RESTREPO VELASQUEZ AND ERWAN ROUSSEAU

S

X :=(C1×C2)/G

C1/G C2/G

σ1

ϕ

σ2

p1 p2

The surface X := (C1 ⇥C2)/G has a finite number of singularities, since there are
finitely many points on C1 ⇥ C2 with non trivial stabilizer. Moreover, since G is
finite, the stabilizers are cyclic groups [12, III 7.7] and so, the singularities of X are
cyclic quotient singularities. Thus, if (x, y) 2 C1 ⇥ C2 with non trivial stabilizer
H(x,y), then, around the singularity (x, y) 2 X := (C1 ⇥ C2)/G, X is analytically
isomorphic to the quotient C2/(Z/nZ), where n = |H(x,y)| and the action of the
cyclic group Z/nZ on C2 is defined by ⇠(z1, z2) = (⇠ z1, ⇠az2), where n and a
are coprime integers such that 1  a  n � 1 and ⇠ = exp( 2⇡ in ) is a chosen
primitive n-th root of unity. In this case, the cyclic quotient singularity is called
singularity of type 1n (1, a). Note that singular points of type

1
n (1, a) are also of type

1
n (1, a

0) where a0 is the multiplicative inverse of a in (Z/nZ)⇤ (see [2, III]).
The exceptional fiber of a cyclic quotient singularity of X of type 1

n (1, a) on
the the minimal resolution S, is a Hizerbruch-Jung string (H-J string), that is to say,
a connected union L =

Pl
i=0 Zi of smooth rationals curves Z1, . . . , Zl with self-

intersection numbers less or equal than�2, and ordered linearly so that Zi Zi+1 = 1
for all i and Zi Z j = 0 if |i � j | � 2 (see [2, III Theorem 5.4]) and [13]. Then, the
exceptional divisor E on the minimal resolution S is the connected union of disjoint
H-J strings each of them being the fiber of each singularity of X := (C1 ⇥ C2)/G.

The self-intersection numbers Z2i = �bi are given by the formula

n
a

= b1 �
1

b2 �
1

· · · �
1
bl

Slightly abusing and side notation, we denote the right of the previous formula by
[b1, · · · , bl ].

Moreover,
n
a

= [b1, · · · , bl ] if and only if
n
a0

= [bl , · · · , b1].

Note that for cyclic quotient singularities of type 1
n (1, n � 1) we have that all the

curves Zi have self-intersection equal to �2. These singularities are then a par-
ticular case of canonical surface singularities (the latter are also known as du Val
singularities or rational double points).
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On the other hand, Serrano’s paper [21, Proposition 2.2] tells us that the irreg-
ularity of S, defined by q(S) := h1(S,OS), is given by the formula:

q(S) = g(C1/G) + g(C2/G).

Now, if S is of general type, then q(S)  pg(S). Therefore, we have that S is a
product-quotient surface of general type with pg = 0 if and only if �(OS) = 1 and
C1/G ⇠= C2/G ⇠= P1. Moreover, using Noether’s formula we see that the condition
pg = 0 also implies that c21 + c2 = 12.

Thanks to the work that I. Bauer, F. Catanese, F. Grunewald and R. Pignatelli,
started and carried through in [3–6], we have a complete classification of product-
quotient surfaces of general type with geometric genus pg = 0 and c21 > 0. More-
over, they proved that there are exactly 73 irreducible families of surfaces of this
kind, and all but one of them, are in fact minimal surfaces; more precisely they
proved the following result.

Theorem 2.2 ([6], Theorems 4.8, 5.1). The following facts hold:

(1) Minimal product-quotient surfaces of general type with pg = 0 form exactly
72 irreducible families;

(2) There is exactly one product-quotient surface with K 2S > 0 which is non mini-
mal. It is called fake Godeaux surface. It has K 2S = 1 and its minimal model
has K 2 = 3.

The irreducible families mentioned in the first part of this theorem, are listed in [6,
Tables 1, 2].

2.2. Isotrivial fibrations

Definition 2.3. A fibration is a surjective morphism from a smooth projective sur-
face into a smooth curve, with connected fibers. A fibration is called isotrivial fibra-
tion, if all its smooth fibers are mutually isomorphic. A surface is called isotrivial
surface if it admits an isotrivial fibration.

A product-quotient surface S is an example of an isotrivial surface: it admits two
natural isotrivial fibrations �1 : S ! C1/G and �2 : S ! C2/G whose smooth
fibers are all isomorphic to C2 and C1 respectively. In literature, product-quotient
surfaces are also called standard isotrivial surfaces.

In Serrano’s paper [21] it is proved that any isotrivial surface is birationally
equivalent to a standard one, more precisely, if � : Z ! C is isotrivial, then there
exist a quotient (C1 ⇥ C2)/G where C1 is isomorphic to the general fiber of � and
G is a finite group, acting faithfully on C1 and C2 and diagonally on the product;
such that Z is birational to (C1 ⇥ C2)/G, the curve C is isomorphic to C2/G, and
the following diagram commutes:
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Z (C1×C2)/G

C C2/G

∼

γ p2

∼

We also find in Serrano’s paper a description of the singular fibers that can arise in
a standard isotrivial surface, i.e., the possible singular fibers of its natural fibrations.
Namely:
Theorem 2.4 ([21], Theorem 2.1 ). Let S a standard isotrivial surface and let con-
sider the fibration �2 : S ! C2/G. Let y 2 C2 and Hy its stabilizer. If F is the
fiber of �2 over y 2 C2/G, then:

(1) The reduced structure of F is the union of an irreducible smooth curve Y ,
called the central component of F , and either none or at least two mutually
disjoint H-J strings, each one meeting Y at one point. These strings are in
one-to-one correspondence with the branch points of C1 ! C1/Hy;

(2) The central component Y is isomorphic to C1/Hy and it has multiplicity equal
to |Hy| in F . The intersection of a string with Y is transversal, and it takes
place at only one of the end components of the string;

(3) If L =
Pn

i=1 Zi is a H-J string on F and Y 0 is the central component of the
fiber of �1 : S ! C1/G over �1(L), then L meets Y 0 and Y at opposite ends,
i.e., either Z1Y = ZnY 0 = 1 or ZnY = Z1Y 0 = 1.

If F contains exactly r H-J strings L1, · · · , Lr , where each Li is the resolution
of a cyclic quotient singularity of type 1

ni (1, ai ), then we know that the central
component Y satisfies

Y 2 = �
rX

i=1

ai
ni

(2.1)

[18, Proposition 2.8]. The previous theorem holds as well for the fibration �1.
Finally, Serrano’s paper also provides an expression for the canonical bundle

of a standard isotrivial surface in terms of the fibers of the two natural fibrations.
Namely, we have the following.
Theorem 2.5 ([21], Theorem 4.1). Let S be a standard isotrivial surface with as-
sociated fibrations �1 : S ! C1/G and �2 : S ! C2/G. Let {ni Ni }i2I and
{m jMj } j2J denote the components of all singular fibers of �1 and �2 respectively,
with their multiplicities attached. Finally, let {Zt }t2T be the set of curves contracted
to points by �1 ⇥ �2, i.e, the exceptional locus on S. Then we have

KS = � ⇤
1 (KC1/G) + � ⇤

2 (KC2/G) +
X

i2I
(ni � 1)Ni +

X

j2J
(mi � 1)Mi +

X

t2T
Zt .

The fibrations �1 : S ! C1/G and �2 : S ! C2/G can be thought as foliations
F1 and F2 on S, such that Serrano’s formula can be written as follows:

KS = N ⇤
F1 ⌦N ⇤

F2 ⌦OS(E), (2.2)
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where N ⇤
F1 and N

⇤
F2 are the respective conormal line bundles, and E is the excep-

tional divisor on S (see [9, page 30]).

3. Proof of Theorem 1.3

The purpose of this section is to prove Theorem 1.3. Let us begin by recalling
some basic facts that will be used. Let S be a product-quotient surface, C a smooth
projective curve and f : C ! S a holomorphic map such that f (C) * E . The
differential map d f : TC(� log f �1E) ! TS(� log E) induces a lifting f[1] : C !
P(TS(� log E)). Thus we get the following diagram:

P(TS(−logE))

C

π
f[1]

f
S

Moreover, we have that ⇡⇤OP(TS(� log E))(1) ' �S(log E). On the other hand,
recall that for each foliation F on S, we have the logarithmic exact sequence

0 N ∗
F (E) ΩS(logE) ΩF (logE) 0

and we can also define the divisor Z := P(TF (� log E)) on P(TS(� log E)).

Lemma 3.1. Let F be a foliation on S, C a smooth projective curve and f : C !
S a holomorphic map such that f (C) * E . If f is not tangent to F , then

deg f ⇤N ⇤
F (E)  2g(C) � 2+ N1(E),

where N1(E) is the number of points on f �1(E) counted without multiplicities.

Proof. For the sake of simplicity we denote by O(1) the line bundle

OP(TS(� log E))(1).

Let us consider the exact sequence

0 O(1)− [Z] O(1) O(1)|Z 0

Now, taking the push-forwards we get

0 π∗(O(1)− [Z]) ΩS(log E) ΩF (log E) 0

and thus we obtain ⇡⇤(O(1) � [Z ]) ' N ⇤
F (E). On the other hand, since f is not

tangent to F then f[1](C) * Z , thus f[1](C).Z � 0 and hence deg f ⇤
[1][Z ] � 0.

Therefore,
deg f ⇤N ⇤

F (E)  deg f ⇤
[1]O(1).
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Moreover, the differential map

d f : TC
⇣
� f �1(E)

⌘
�! f ⇤

[1]O(�1)

defines a non zero section of the line bundle f ⇤
[1]O(�1) ⌦ KC( f �1(E)) implying

that this line bundle is effective. Then,

deg f ⇤
[1]O(1)  deg KC

⇣
f �1(E)

⌘
= 2g(C) � 2+ N1(E).

Let us recall that S admits two natural isotrivial fibrations �1 : S ! C1/G and
�2 : S ! C2/G that can be thought as foliations F1 and F2 on S.

Theorem 3.2. Let S be a product-quotient surface. If f : C ! S is a holomorphic
map such that f (C) * E , with C a smooth projective curve and E the exceptional
divisor on S, then

deg f ⇤(KS � E)  2(2g(C) � 2).

Proof. First, let us suppose that f is not tangent to any of the foliations F1, F2.
Then by Lemma 3.1 we have that for i = 1, 2

deg f ⇤N ⇤
Fi (E)  2g(C) � 2+ N1(E).

Using Serrano’s formula for the canonical bundle (see (2.2)), we get that

deg f ⇤(KS + E) =
2X

i=1
deg f ⇤N ⇤

Fi (E)

 2(2g(C) � 2+ N1(E))

= 2(2g(C) � 2) + 2N1(E).

Therefore,
deg f ⇤(KS � E)  2(2g(C) � 2).

Now, we suppose that f is tangent to one of the foliations, let us say to F1, then
f (C) is contained in a fiber F of �1 : S ! C1/G. Let us denote by deg f the
degree of f : C ! f (C).

If F is a smooth fiber we know that it is isomorphic to the curve C2, and then,

deg f ⇤(KS � E) = (deg f )(KS � E).C2 = (deg f )KC2 .C2  KC .C = 2g(C)�2.

If F is a singular fiber, f (C) must be contained in the central component Y of the
reduced structure of F and hence,

deg f ⇤(KS � E) = (deg f )(KS � E).Y = (deg f )
⇣
KY .Y �

�
Y.E + Y 2

�⌘
.
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When F does not contain any H-J string we have Y 2 = 0 and Y.E = 0; thus,

deg f ⇤(KS � E) = (deg f )KY .Y  KC .C = 2g(C) � 2.

On the other hand, when F contains exactly r H-J strings, L1, · · · , Lr , where each
Li is the resolution of a cyclic quotient singularity of type 1

ni (1, ai ), we have that

Y.E + Y 2 = r �
rX

i=1

ai
ni

� 0

(see formula (2.1)) and thus,

deg f ⇤(KS � E)  (deg f )KY .Y  KC .C = 2g(C) � 2.

4. Product-quotient surfaces with pg = 0 and c21 = c2

In this section, we are going to study product-quotient surfaces of general type with
geometric genus Pg = 0 and c21� c2 = 0. Recall that Pg = 0 implies c21+ c2 = 12,
then the last condition is equivalent to c21 = 6.

This kind of surfaces form exactly 8 irreducible families and we have a com-
plete description of their quotient models. In the following table we summarize
some information that might be useful.

c21(S) Singularities of X G |G| g(C1) g(C2)
Number of
irreducible
families

6 Two of type 12 (1, 1)

Z2 ⇥ D4 16 3 7 1
Z2 ⇥ S4 48 19 3 1

A5 60 4 16 1
Z2 ⇥ S5 240 19 11 1
PSL(2, 7) 168 19 8 2

A6 360 19 16 2

For even more information see [6, Table 1].
Let S be a product-quotient surface and let us suppose that S is of general type

with Pg(S) = 0 and c21 = 6. We recall the following commutative diagram:

S

X:=(C1×C2)/G

C1/G=P1

σ1

ϕ
σ2

p1 p2
∼ C2/G=P1∼
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Theorem 2.2 tells us that S is minimal and since S is of general type we get that
KS is nef. However, in this particular case we can prove that KS if nef by other
means, thus obtaining another argument for the minimality of S. Namely, we know
that the quotient model X of S has only cyclic quotient singularities of type 12 (1, 1);
since these singularities are canonical we have KS = '⇤KX , additionally KX is nef
because KC1⇥C2 is ample, therefore KS is nef and so S is minimal.

Since the singularities of X are of type 12 (1, 1), we have that around them, X
is analytically isomorphic to the quotient C2/(Z/2Z), where the action of Z/2Z on
C2 is given by (z1, z2) ! (�z1,�z2). This quotient is an affine subvariety of C3,
with coordinates u = z21, v = z1z2, w = z22, defined by the equation uw = v2 [19,
Proposition-Definition 1.1, Example 1.2]. Moreover, if µ1, µ2 are local coordinates
on S, the resolution morphism ' is locally given by

'(µ1, µ2) =
�
u = µ1, v = µ1µ2, w = µ1µ

2
2
�

(4.1)

[19, Example 3.1]. Therefore, we have the following relations between the local
coordinates z1, z2 and µ1, µ2:

(
z1 = µ

1/2
1

z2 = µ
1/2
1 µ2.

(4.2)

On the other hand, the exceptional fiber of a cyclic quotient singularity 1
2 (1, 1) on

the minimal resolution S, is a H-J string formed by only one smooth rational curve
with self-intersection number equal to�2. Using the local coordinates µ1, µ2 on S
we see that it is given by the set of points (µ1, µ2) such that µ1 = 0.

We denote by E the exceptional divisor on the minimal resolution S of X .
Since X has only two cyclic quotient singularities of type 1

2 (1, 1), then E is the
disjoint union of two rational curves with self-intersection number equal to �2.
Moreover, E is locally defined by the equation µ1 = 0.

5. Proofs of Theorems 1.4 and 1.5

In this section we are going to prove Theorems 1.4 and 1.5. From now on, S will
be a product-quotient surface of general type such that pg(S) = 0 and c1(S)2 = 6,
X := (C1 ⇥ C2)/G its quotient model and E the exceptional divisor.

5.1. Bigness of the cotangent bundle

We denote by 3 the set of points of C1 ⇥ C2 with non trivial stabilizer. Recall that
3 is a finite set.

Let us first describe a natural way to produce sections of S2m�X , from sections
of K⌦m

S using the following diagram:
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C1×C2 S

X:=(C1×C2)/G

p ϕ

Let ! be a section ofK⌦m
S . The pushforward '⇤ of ! is a section ofK⌦m

X defined on
the regular part of X , that can be lifted by the pullback p⇤ to a section of (K⌦m

C1⇥C2)
G

defined outside of 3. However, since codimC1⇥C23 = 2, this section uniquely
extends to a section defined on C1 ⇥ C2 . Moreover, the canonical isomorphism
between KC1⇥C2 and �⇤

1�C1 ⌦ �⇤
2�C2 where �1 : C1 ⌦ C2 ! C1 and �2 : C1 ⌦

C2 ! C2 are the projections, allows us to identify the sections of (K⌦m
C1⇥C2)

G with
sections of (S2m�C1⇥C2)

G . Therefore, we get a section of (S2m�C1⇥C2)
G which

descend by p⇤ to a section of S2m�X defined on the regular part of X . We denote
this section by 2(!).

Let us denote by 0(!) the pullback of2(!) by '⇤. Note that 0(!) is, a priori,
a section of S2m�S defined outside of the exceptional divisor E .

If we start with global sections of K⌦m
S , this process is summarized in the

following commutative diagram:

H0(S,K⊗m
S ) H0(Xreg,K⊗m

X ) H0((C1 × C2) − Λ,K⊗m
C1×C2

)G

H0(C1 × C2,K⊗m
C1×C2

)G

H0(C1 × C2,Ω⊗m
C1

⊗ Ω⊗m
C2

)G

H0(S − E,S2mΩS) H0(Xreg,S2mΩX) H0(C1 × C2,S2mΩC1×C2)G

ϕ∗

Γ Θ

p∗

ϕ∗ p∗

The following proposition ensures that taking global sections of K⌦m
S vanishing

along E , at least with multiplicity m, is a sufficient condition to obtain global sec-
tions of S2m�S .

Proposition 5.1. If ! is a global section of O(m(KS � E)), then 0(!) naturally
extends to a well-defined global section of S2m�S .

Proof. Let ! 2 H0(S,O(m(KS � E))). Following the previous diagram, we get
2(!) 2 H0(X reg,S2m�X ). By definition, the corresponding section on C1 ⇥ C2
can be written locally, let us say around a fixed point, as

a(z1, z2)dz1mdz2m .
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Using the change of coordinates z1 = µ
1/2
1 and z2 = µ

1/2
1 µ2 given by ' at singular

points of X (see Formulas (4.1) and (4.2)), we get that the pullback by '⇤ of 2(!),
which is nothing else than 0(!), can be written locally as

mX

j=0

✓
m
j

◆
µ
m� j
2 (a � ')(µ1, µ2)

22m� jµ
m� j
1

dµ
2m� j
1 dµ

j
2

and it naturally extends to a well-defined global section of S2m�S , since a � '
vanishes along E at least with multiplicity m.

The two following theorems constitute the proof of the first part of Theo-
rem 1.4.

Theorem 5.2. The line bundle O(KS � E) is big.

Proof. We know the canonical bundle KS is nef and big. Then, as a consequence
of Riemman-Roch theorem for surfaces and Mumford vanishing theorem [2, VI
Theorem 12.1], we get that for any m > 1

h0
�
S,K⌦m

S
�

=
m2 � m
2

c1(S)2 + �(OS).

Now, we have that c1(S)2 = 6 and �(OS) = 1, then we obtain

h0
�
S,K⌦m

S
�

= 3m2 + 3m + 1.

On the other hand, let ! be a section ofK⌦m
S . The corresponding section onC1⇥C2

can be written locally, around a fixed point, as

a(z1, z2)(dz1 ^ dz2)m,

where a is a holomorphic function defined as

a(z1, z2) =
X

i, j
ai j zi1z

j
2 .

Using the change of coordinates z1 = µ
1/2
1 and z2 = µ

1/2
1 µ2 given by ' at singular

points of X , we see that ! vanishes along E , at least with multiplicity m if ai, j = 0,
for every i, j such that i + j < 2m, and this gives us, 1 + 2 + · · · + 2m sufficient
conditions. However, the section is invariant by the action of G, which means that
around a singular point, a(z1, z2) is invariant by the action of its stabilizer H ' Z2,
therefore ai j = 0 for all i, j such that i + j is odd; thus, we just need to consider
half of the conditions. Finally, since these conditions are given around one singular
point, we have to multiply them by the number of singularities.
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Thus, for any m we have that

h0(S,O(m(KS � E))) � h0
�
S,K⌦m

S
�
�
2(1+ 2+ · · · + 2m)

2
=

�
3m2 � 3m + 1

�
�

�
2m2 + m

�

= m2 � 4m + 1.

Note for any 0 < C < 1, we have that m2 � 4m + 1 � Cm2 for m large enough.
Therefore,

h0(S,O(m(KS � E))) � Cm2

for m large enough, which means that O(KS � E) is big [15, Lemma 2.2.3].

Theorem 5.3. The cotangent bundle �S is big.

Proof. For the sake of simplicity, we are going to use the same notation to refer to
a divisor and its associated line bundle.

In order to prove that �S is big, we show that the line bundle OP(TS)(1) is
big, which is equivalent to see thatOP(TS)(k) is linearly equivalent to the sum of an
ample divisor and an effective divisor, for a k large enough [15, Corollary 2.2.7].

Theorem 5.2 tells us that O(KS � E) is big, then there exists an ample line
bundle A and a positive integer m such that

H0
�
S,O(m(KS � E)) ⌦ A�1� 6= 0

and hence
H0

�
S,S2m�S ⌦ A�1� 6= 0.

However, S2m�S ' ⇡⇤OP(TS)(2m) where ⇡ : P(TS) ! S is the projective bundle
associated to the tangent bundle TS , and so we obtain that

H0
�
P(�S),OP(TS)(2m) ⌦ ⇡⇤A�1� 6= 0,

which means that OP(TS)(2m) � ⇡⇤A is an effective divisor.
On the other hand, since O(1) is relatively ample [15, Proposition 1.2.7], we

know that there exists a large enough positive integer l such thatOP(TS)(1) + l⇡⇤A
is an ample divisor on P(TS).

Finally, taking k = 2ml + 1 we get

OP(TS)(2ml + 1) = l(OP(TS)(2m) � ⇡⇤A)
| {z }

effective divisor

+OP(TS)(1) + l⇡⇤A
| {z }

ample divisor

and soOP(TS)(1) is big.
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5.2. Rational curves

We already know that �S is big and then, by Bogomolov’s argument, there is only
a finite number of rational curves on S; now we want to get more constraints.

Lemma 5.4. The central component Y of any singular fiber on S, defined in propo-
sition 2.4, is not rational.

Proof. Recall that the only singularities of X are two ordinary double points, i.e.,
two cyclic quotient singularities of type 12 (1, 1). Then, the singular fibers on S are
the union of a central component Y and either none or exactly two mutually disjoint
rational curves (the exceptional divisor E) which correspond to the resolution of
the two singularities.

In the first case we have that Y 2 = 0. In the second case, we use the formula
(2.1) and we obtain that Y 2 = �1. On the other hand, we have that

2g(Y ) � 2 = KY .Y = (KS + Y ).Y = KS.Y + Y 2,

where KS.Y � 0 since KS is nef. Therefore, we obtain in both cases g(Y ) � 1,
which means that Y is not rational.

Now, we are going to prove the second part of Theorem 1.4. We will present
two proofs: the first one is an immediate consequence of Theorem 3.2 and the
second one uses a local argument that will be extended to entire curves in Theo-
rem 5.10.

Definition 5.5. Let D be a divisor on S and let Bs(D) be the base locus of the
linear system |D|. The stable base locus of D is defined as

B(D) :=
\

m>0
Bs(mD).

Theorem 5.6. Let f : P1 ! S be a non constant holomorphic map. Then

f
�
P1

�
⇢ E [ B(KS � E).

First proof. Let us suppose that f (P1) * E . We already know that KS � E is
big (Theorem 5.2), so if f (P1) * B(KS � E), it holds deg f ⇤(KS � E) � 0.
However, from Theorem 3.2 we obtain deg f ⇤(KS � E)  �4, a contradiction.
Thus f (P1) ⇢ B(KS � E) and the proof is complete.

Second proof. Let f : P1 ! S be a non constant holomorphic map. Then, either f
is tangent to one of the foliations F1, F2 given by the fibrations �1, �2 respectively,
or f is not.
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If f is tangent to one of the foliations, let us say to F1, then f (P1) must
be contained in a singular fiber of �1 : S ! C1/G. Otherwise f (P1) would
be contained in a smooth fiber, but smooth fibers are hyperbolic, since they are
isomorphic to C2 and g(C2) � 2, and this is contradiction. Therefore,

f
�
P1

�
⇢ Y [ E,

where Y is the central component and E is the exceptional divisor; however, Lemma
5.4 tells us that g(Y ) � 1 and hence f (P1) ⇢ E .

Now, let us suppose that f is not tangent to any of the foliations and let us
consider the composition bf := ' � f . So we have the following diagram:

P1 S

X := (C1 × C2)/G

f

f̂
ϕ

By Theorem 5.2 there exists a positive integer m0 such that for all m � m0 we
have a non zero section ! 2 H0(S,O(m(KS � E))). Recall the section 2(!) 2
H0(X reg,S2m�X ) obtained via 2; the section bf ⇤2(!) = f ⇤0(!) vanishes be-
cause H0(P1,�n

P1) = 0 for all n. Moreover, since 2(!) is locally written as
a(z1, z2)dz1mdz2m and bf is locally given by bf = (bf1, bf2) = '( f1, f2) where
f1, f2, bf1, bf2 are holomorphic functions, the section bf ⇤2(!) is locally given
as

a
⇣
bf1, bf2

⌘⇣
bf1

0
⌘m⇣

bf2
0
⌘m

= 0.

Thus we obtain that a(bf1, bf2) = (a � ')( f1, f2) = 0 since by hypothesis the other
factors are not always equal to zero. This last equation means that the section !
vanishes on f (P1), but this is true for any section ofO(m(KS � E)), then f (P1) ⇢
Bs(m(KS � E)); besides this is true for all m � m0, therefore f (P1) ⇢ B(KS �
E).

5.3. Entire curves

We have already seen that the central components of singular fibers on S are not
rational, but we do not know yet if they can be elliptic. In the following exam-
ple we will see that, in fact, for any product-quotient surface, the central compo-
nents that do not intersect with the exceptional divisor, have genus bigger than one;
however, in the case where the central components do intersect with the excep-
tional divisor, we give an example of a surface with a central component that is
elliptic.
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Example 5.7. Let S be a quotient-product surface and let us consider the natural
fibration �1 : S ! C1/G and a point x 2 C1/G with non trivial stabilizer Hx .
Recall that the fiber F of �1 over x is the union of a central component Y ' C1/Hx
and either none or at least two mutually disjoint H-J strings which are in one-to-one
correspondence with the branch points of C2 ! C2/Hx .

In the first case, using the Riemann-Hurwitz formula, we obtain

2g(C1) � 2 = |Hx |(2g(Y ) � 2),

but 2g(C1) � 2 > 0, then g(Y ) � 2.
For the second case, we suppose S belongs to the first family of the table given

in section 3. Since X = (C1 ⇥ C2)/G has only two singularities of type 12 (1, 1),
then C2 ! C2/Hx has two branch points with multiplicity equal to 2. Thus, using
the Riemann-Hurwitz formula, we get

2g(C1) � 2 = |Hx |(2g(Y ) � 1),

but g(C1) = 3, then,
4 = |Hx |(2g(Y ) � 1).

We easily conclude that |Hx | must be equal to 4 and hence g(Y ) = 1.

Now, we recall a well known theorem asserting that entire curves satisfy an alge-
braic differential equation. Namely:

Theorem 5.8 ([10, Corollary 7.9], [14]). If there exists a non zero section s 2
H 0(S,Sm�S ⌦ A�1) with A an ample line bundle and m an integer, then for every
entire curve f : C ! S, it holdds f ⇤s = 0.

Using this, we can follow the same argument used in the second proof of Theorem
5.6 to prove an analogous result for entire curves.

Definition 5.9. Let D be a divisor on S and let Bs(D) be the base locus of the
linear system |D|. The augmented base locus of D is defined as

B+(D) :=
\

m>0
Bs(mD � A)

for any ample divisor A.

Proposition 5.10. Let f : C ! S be a non constant holomorphic map. Then

f (C) ⇢ Y [ E [ B+(KS � E),

where Y is the union of all central components.
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Proof. For any entire curve f : C ! S we also have the following two possibilities:
either f is tangent to one of the foliations F1, F2, or f is not.

In the first case we have again that f (C) must be contained in the singular
fibers because the smooth ones are Brody hyperbolic. Thus, f (C) ⇢ Y [ E .

In the second case, let A be an ample divisor; since KS � E is big (Theorem
5.2), there exists an infinite number of integersm such that H0(S,O(m(Ks�E))⌦
A�1) 6= 0. So, we can consider a non-zero section ! 2 H0(S,O(m(Ks � E)) ⌦
A�1) and via 0 we obtain a nonzero section 0(!) 2 H0(S,S2m�S ⌦ A�1). By
Theorem 5.8, we have that f ⇤0(!) = 0 and then, following the same argument
than in the case of rational curves we obtain f (C) ⇢ B+(Ks � E).

Note that Example 5.7 shows that, a priori, we can not avoid the central com-
ponents because they could be elliptic. However, using Theorem 3.2, we will prove
that elliptic curves are contained in the the augmented base locus of KS � E .

Proposition 5.11. If S is a product-quotient surface of general type such that pg =
0 and c21 = 6, and f : C ! S is a holomorphic map where C is a smooth projective
curve of genus g(C) = 1, then

f (C) ⇢ B+(KS � E).

Proof. Since KS � E is big, then it can be written as the sum of an ample divisor
A and an effective divisor D. Moreover, the augmented base locus can be given in
terms of all these possible sums as

B+(KS � E) =
\

KS�E=A+D
Supp D

[11, Remark 1.3]. Now, if f (C) * B+(KS � E) then there is a D such that
f (C) * D, thus deg f ⇤D � 0 and hence,

deg f ⇤(KS � E) = deg f ⇤A + deg f ⇤D > 0,

but note that f (C) * E , thus from Theorem 3.2 we have that

deg f ⇤(KS � E)  0,

a contradiction. Therefore f (C) ⇢ B+(KS � E).

Finally, as a consequence of Propositions 5.10 and 5.11 we obtain Theorem 1.5.

Theorem 5.12. If S is a product-quotient surface of general type such that pg = 0
and c21 = 6, then for any non constant holomorphic map f : C ! S,

f (C) ⇢ E [ B+(KS � E).
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Proof. From Proposition 5.10 we have that f (C) ⇢ Y[E[B+(KS�E)whereY is
the union of all central components. First, note that we can remove all components
with genus greater than or equal to 2 since they are hyperbolic, and by Lemma 5.4
we know that no component can be rational. Now, by Proposition 5.11, the elliptic
components must be contained in the augmented base locus of KS � E . Therefore,
f (C) ⇢ E [ B+(KS � E).
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CMI, Université d’Aix-Marseille
39, Rue Frédéric Joliot-Curie
13453 Marseille Cedex 13, France
juliana.restrepo-velasquez@univ-amu.fr
erwan.rousseau@univ-amu.fr


