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Morrey potentials from Campanato classes

LIGUANG LIU AND JIE X1AO

Abstract. This paper shows that under
0< B,k <n;

—00 < A <n;

1 <p,q <o

p_l(n —-B)<a< min{n, 1 —|—p_11<};
1

kK+eVe>0 asa” 'k < p<oo
r=p~lgk—ap) +n—B<{k+e¥e>0 asl<p<alk
P 3 [ Ul : P PPV

n—o
if i is a nonnegative Radon measure of finite B-variation on R” then the Morrey

potential class Iy L?>* embeds continuously into the Campanato class Eq’)”, and
its converse also holds with u being admissible.

Mathematics Subject Classification (2010): 31C15 (primary); 42B35, 46E35
(secondary).

1. Introduction

Our starting point is the following classical result on Morrey’s inequality under p €
(n, 00), Poincaré’s inequality under p = n, and Sobolev’s (or Galiardo-Nirenberg-
Sobolev’s) inequality under p € [1, n) which plays an important role in analysis,
geometry, mathematical physics, partial differential equations, and other related
fields; see, e.g., [9,14,15,19].

Theorem 1.1. Let u € C)(R"), i.e., u is C'-smooth with compact support in R".
Then

el i ~ el o as (p @) € (1, 00) x [1,.00) and 2= (% ~1);

I1Vul|,, 23 lullBMo ~ llull ca as (p.q) €{n} x [1,00)  and k=q (%—1);

lull o 2 Nl o as (p @) €Dl m) x [172%] and 2= (4 ~1).

n—p
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Here and henceforth, A ~ B means A 2 B 2 A; while A 2 B means A > ¢B for
a constant ¢ > 0, and

Ifla-n = sup 1F &) — FO)lx — y|7 "

x#y in R”
—1
I fllBMO = sup v(B(x,r)) Joier | f = B ldy;
(x,r)eR" x(0,00)
o T
10 e = (S 11177 V) 7
1/q
1fllgor = sup (P ) 1 = franliav) "

(x,r)eR" x(0,00)

express the Holder norm; the John-Nirenberg BMO-norm (cf. [10]); the Lebesgue
norm; the Campanato norm (cf. [7]), respectively, where dv is the n-dimensional
Lebesgue measure on the Euclidean space R” and

fBaer) = V(B(x,r))_I/B( )de

is the v-integral mean value of f over B(x,r), the x-centred Euclidean ball with
radius r.
Upon utilizing the following formula (cf. [14, page 58])

ntl
uz(iz)ﬁll*(ZRDL) forall u e CLR"),

(I’l — I)JTT j=1

where I'(+) is the standard gamma function, /; is the first-order form of the (0, n) >
a-order Riesz integral

Ig(x) = (I % 8)(x) = /Rn gy —z|“ " dv(y)

(whose I>g is the Newtonian potential of g generated by the convolution of g with
the fundamental gravitation potential in Newton’s law of universal gravitation, see
Adams [2]);

T 2

(%) a1
R;j(f) = lim = yilyl f&x—=y)dv(y)
e—0 R\ B(0,¢)

is the {1,...,n} > j-th Riesz transform of f (where the vector-valued operator
(R1, ..., Ry) is bounded on the Lebesgue (1, 0c0) > p-space L on R”, see, e.g.,
[8,23]), and D; is the partial derivative with respect to x;, Theorem 1.1 may be
regarded as a consequence of the case (@ = 1, k = n) of the next result due to Xiao
for oo > p > «/a (cf. [24, Theorem 1]); Adams for p = «/« (cf. [1, Remark 4.1]);
and Adams for 1 < p < k/a (cf. [4, Theorem 3.2]), respectively.
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Theorem 1.2. Let LP* be the (0, 00) x (—00, 00) > (p, k)-Morrey space of all
v-measurable functions f on R" with

1
P
I fllrs = sup <r"_” / |f|”dv) <.
(x,r)eR” x (0,00) B(x,r)

If
1 < p < oo;
1 <g <oo;
0<k<n; +)
Q(%—W)SK;
0<a<min{n,1+%},
then
COr = LI as p>k/a and g>1 andk:q(%—a);
I,LP*C { BMO = L9* as p=k/a and g >1 andk:q(%—a);

=l A pr —

Li=ar™ C L9" as p<k/a and q € [1, K_ap] and A=gq (% —a) .

Of course, the above linkage from the space £9°* to the three space: C ai%, BMO
PK

and L=<r"" is known (cf., e.g., [18,22,24]). Recently, in [12] (cf. [3,5,6,25] for

some relevant information) we established such a fundamental restriction principle

that if Lz’A stands for the (g, A)-Morrey space (based on a given nonnegative Radon
measure u on R™) comprising all u-measurable functions f on R” with

1/q
Ifll,e» =  sup (r*‘” / |f|%m) <0
" (x,r)eR" x (0,00) B(x,r)

then I : LP* — L,q,j'\ is continuous when and only when u is of finite 8-variation
onR” je.,

Nwlllp = sup w(Bx,r)rf < oo
(x,r)eR”x(0,00)
under

0<ua<n;
O0< A<k <mn;
l<p<gs (1)
n—ap <p=<mn;
0<gq= p(B+r—n)

Kk—ap
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and we left the corresponding restriction problem for oo > p > k/« open. Yet,

through introducing the p-based Campanato space EZ’A (under (g, A) € (0, 00) x
(—00, 00)) of all pu-measurable functions f on R" with

L

q
IFN g = sup (r“’/ I = feerul? du(y)> <00
" (x,r)eR" x(0,00) B(x,r)
where |
fBGrw = —p fdu,

,u(B(x, r)) B(x,r)

and observing Nakai’s classification of E?,«’A as seen below (cf. [17]), if u is Ahlfors
B-regular for some 8 € (0, n], namely,

w(B(x,r) =~ P forall (x,r) € R" x (0, 00),
and (g, A) € [1, 0o) x (0, n], then:

e AsB+ A > n, EZ’)‘ contains Lz’k;

e As f+A = n,the space EZ’A is just the p-based space of functions with bounded
variation, denoted by BMO ,,, which consists of all u-measurable functions f
in R”, obeying

Il fllB™MO, = sup rf /( : FO) = [BGr)pu|din(y) < 005
B(x,r

(x,r)eR” x(0,00)

e Asn—¢g < 8+ A < n, the space [,Z’A coincides with C"=*=A)/4q

We recognize that it is possible to settle the previously-mentioned open problem.
Below is a natural outcome (unifying and improving both (1) and (§7)) which is
regarded as a principle of taking the Morrey potential space I, L?-* from the Cam-

panato space E‘M, thereby generalizing and improving Theorems 1.2 and 1.1.

Theorem 1.3. Let u be a non-negative Radon measure on R" and

0< B,k <n;
—00<A<n
1<p, g <o0;
p_l(n—,B) <o <min{n,1+p_1/(};
k+eVe>0 asa” 'k < p < o0

r=plgk —ap)+n—B < 3k+eVe>0 asl <p<alk

K+ 7(”_'{),!(1;0‘_’3) asl=p<ale
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The following facts hold:

) Ifllliplllp < oo, then Iy : LP* — EZ’A is continuous;

(ii) Conversely, if 1, : LP* — ,CZ’A is continuous, then |||u|llg < oo under
one more condition that p is admissible, namely pw(B1) =~ w(B) for any two
balls By, By C R" with the same radius r > 0 and their Euclidean distance
dist (By, By) = 2r.

In accordance with [14, Theorem 1.94 ] saying that if

_ _ 1
(Inr=1) 790" a5 1 e 0,271
rd as r €271, 00),

1/q
(/ Iul"du) < [1vul
Rn

we see that the extra hypothesis in Theorem 1.3(ii) that p is admissible is natural.
Evidently, any Ahlfors g-regular measure and any translation invariant Radon mea-
sure are admissible. Moreover, any doubling Radon measure is admissible, in fact
if w is a doubling measure on R”, i.e., u(2B) < w(B) for any ball B and its double
size 2B, then choosing B] = B(x,r), and By = B(y,r) and dist(B1, By) = 2r
gives

g>n & u(Bx,r)S {

then

o forall ueCHRY),

|x —y| =4r and w(Bi) < u(B(y.8r)) S u(Ba)

and hence u(B1) = u(B>), as required.

In order to provide a simpler and better application of the case @ = 1 of (717)
in Theorem 1.3 to the regularity of a solution to the p-Laplace equation with a
Radon measure-valued being on right hand side, for an open set 2 of R”, denote by
WLP(Q) the space of functions f such that

1
p p
I fllwrr =1 lLr@ + IIVfIILP(Q)=</QIf|P dV> + </Q|Vf|l’ dv) <oo.

The symbol Wllof (£2) stands for the collection of v-measurable functions f on
R” such that f € W!P(Q) for any open bounded set Q; € Q. And, the sym-
bol C§°(€2) represents the collection of functions with infinite differentiability and

compact support in €2.

Corollary 1.4. Let

O<t<l<n
1
= Pg=eo (1)

max{0, n — p} < B <n
A=n—B—qrt<k=pl—1)<n.
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Suppose that the Radon measure  is supported in a bounded open set Q@ C R" and
ue Wll(;f(Q) is a weak solution of the u-based p-Laplace equation —A pu = [ in
the sense of:

/|Vu|p_2Vu-V¢dv=/¢du forall ¢ € C§(R).
Q Q

IFlllllp < 0o and ulgng =0, then u € L.

The rest of this paper is organized as follows: Section 2 comprises four technical
lemmas; Section 3 is devoted to verifying Theorem 1.3 and its Corollary 1.4.

2. Four Lemmas

We now state and prove the four of rementioned technical lemmas.

Lemma 2.1. Let (g, A) € [1, o00) x (—00, n] and p be a nonnegative Radon mea-
sure on R". Then

1/q

2 NSl ga< sup inf (r*‘" f |F () —el? du(y)> <Ifl g
B (x,r)eRm X (0,00) ¢ER B(x,r) G

I o To

see the first inequality, for any (x,r) € R" x (0, 00) and ¢ € R, the Minkowski

inequality and the Holder inequality imply

1/q
(/ [f(y) — fB(x,r),p.|q dﬂ(}’))
B(x,r)

1/q
s(/B ( )If(y)—cl"du(y)) + (B, ) le = oyl

Proof. Note that the second inequality follows from the definition of | -

and
(B, I e = feerul

= (w(B(x,r)4 (f(y) —o) du(y)’

u(B(x,r)) B(x,r)

1/q
5(/ If(y)—rrlqdu(y)) ,
B(x,r)

which leads to

1/q
Ifllpes = sup (r“’ / 1f () — fB<x.r>,u|‘1du<y>>
" B(x,r)

(x,r)eR”" x(0,00)

1/q
<2 sup inf (rk_"/ | f(y) —cl? du(y)> -
B(x,r)

(x,r)eR" x (0,00) CER
This concludes the proof of Lemma 2.1. O



MORREY POTENTIALS FROM CAMPANATO CLASSES 1509

Lemma 2.2. Let (p, o, k) € [1,00) x (0, n) x (0, n]. The following facts hold:

(1) If max{0, n — ap} < B < n and u is a nonnegative Radon measure on R"
with |||illlg < oo, then

/ L (f 1)l di S PP Pl 1| f Lo
B(x,r)

forall (x,r, f) € R" x (0, 00) x LP*,;
(i) If0 < x < ap, then

esssup |1y (f 180 @ S r* /P || fllLos forall (x,r, f)€R" x (0, 00) x LP*¥.

z€B(x,r)
Proof. See [6, Theorem 3.1] and its argument. ]

Lemma 2.3. Let
O<a<n

1<p,g<o0
O<k,B<n
B+ap>n
p>k/a.

If u is a nonnegative Radon measure on R" with |||u|llg < oo and f € LP* is
supported on a ball B(x,r), then

f o f19dp S rPTe Pay gl £k forall (x,r) € R" x (0, 00).
B(x,r)

Proof. Denote by ¢’ the dual exponent of g, i.e., 1/g +1/q¢' = 1 and 1’ = o0.
Since pa > k and B + ap > n, there exists a pair (1, o) such that

a1, a2 € (0,n)
-2 @
o= +q,
B+aip>n
ap > K.

Indeed, if we choose € > 0 small enough such that

,3+ozp—n}

€ < min {n —«,
(g—Dp
and define
a2
) =a+e€ and a1=Q<05—_/>’
q
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then it is easy to verify that the pair (o, o) fulfills all above requirements. Apply-
ing the Holder inequality, we see that for all y € B(x,r),

Ilaf(y)li/ _@I
Rre |y —z|"7¢

1/q 1/q'
< ([ LZ)'_(IV(Z)) (/ LZ)'_(Z\)(Z))
R |y —z|"™* R |y —z|"7*2

= (1l £190) " (Rl 1) ™

dv(z)

which together with Lemma 2.2 yields

q/q
f Lo f1dp < < / Ial(lfl)(y)du(y)> ( sup 1a2<|f|>(y>)
B(x,r) B(x,r) yEB(x,r)

< rirer s PP ) g1 11

~ PP g1 £ e

This ends the proof of Lemma 2.3. O

Lemma 2.4. Let 1 be a nonnegative Radon measure on R". If u is admissible and
f e LY with (g, 1) € [1, 00) x R, then

1/q
(rk—" /B |f(x)—fBZ,M|4du(x>) SISl gy

holds for any two balls B| and By with the same radius r and dist (B, By) = 2r.

Proof. By the Minkowski inequality, we see

1/q
(r)‘_”/;} | f(x) — fByul? du(x))
N 1/q A 1/q
< (r o = faal? du(x)) + (T BD) e = foaul.
1

Clearly, the first term in the right hand side of the above inequality is bounded by
I £1I . Thus, it suffices to consider the second term in the right hand side of the
i
above inequality.
Since B; and B; have the same radius r and dist (B, By) = 2r, we may
choose B as the ball with the same center as that of B; but of radius 57, so that both
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By and B; are contained in B. Meanwhile, the fact that  is admissible gives us
that £ (B1) ~ u(B>). Applying these facts and the Holder inequality, we deduce

|fBl,u - fBz,ul
|fB1,l/- - fB,[L' + |fB,u - fBz,u|

1
@/Bl'f(x)_f&“'d“(xwf (B)/ £ () = ful dux)

IA

IA

1/q

1 1/q 1
5( 2 B,'f (- fsulqdum) (s [ 17—l duo)

g Ve I , 1/q

. 1/q
”(mB)/ ) = faul du(x)) ,

so that

1/q
) =t ([0 = ot )] S0

as desired. This completes the argument for Lemma 2 4. O

3. Proofs of Theorem 1.3 and Corollary 1.4

Proof of Theorem 1.3(i) . Suppose that () holds. Assuming |||u|l|s < oo, we
shall prove

1
e fll g S ”“L'”’B/q”f”Lp‘K forall f e LP*

according to two cases as seen below.

Casel < p<kfa.lf p>1,theni <«k,i.e.,
A=p gk —ap)+n—pB <k+e forall ¢ >0,

and hence (f§7) indicates that [12, Theorem 1.1] and the Holder inequality can be
used to derive

1
Mo fll por S Mafllor S |I|M|||,3/q||f||mk VfeLPt.
wn wn
But, if p = 1, then

k:n—,B+q(K—a)<K+(n—ot)71(n—/c)(n—a—,8),
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and hence, it suffices to prove that for any given ball B(x, r) there exists a constant
¢ such that

1/q
(r’“q(”) /B ( )|1af(y>—c|‘fdu(y>> Sl N . &

To this end, we split f = f1 + f> through f1 = flpx 4r) and fo = flrm\ B(x,4r)-
In order to deal with f], we are partially motivated by the idea of proving [16,
Lemma 9]. More precisely: for any y € B(x,r) we use Minkowski’s inequality,
[21,(24.6)]and B > g(n — @) > (n — ) > O to obtain

(), (er) aue)

1/q
SfB( 4)If(z,)I(/B( 5)|y—z|q(a—ﬂ)du(y)> dv(2)
s (uw(B@ )\ i w(BG.5m)\ "
TANE (/ ( s ) 7T e | PO

5r dt 1/q
< / £ ()] ( / |||u|||ﬂrﬁ—q<"—“>—+|||u|||ﬂrﬁ—q<"—“>) dv(z)
B(x,4r) 0 !

1/q

1/g Eya—
Sl el e,

thereby reaching

1/q
B _ 1
<r ptqc—a) /B( )|Iaf1(y)|q a’u(y)) S M 1 F e
X,r

Next, choosing
1

c=—
w(B(x,r)) B(x,r)

since < 1+ «/p = 1+ k we find that the forthcoming control of I, f> in “case
00 > p > k/a” actually shows

|la fo(y) = cl? v
</ e du () S el e
B(x,r)

rB—qlk—a)

Iaf2 dl‘Lv

and so that (%) follows.

Case o0 > p > k/a. According to Lemma 2.1 and A < «, i.e.,

Ar=n—B+qk/p—a)<k+e¢e forall ¢ >0,
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it is enough to prove that for an arbitrary ball B(x, ) there exists a constant ¢ such
that

1/q
(r"“q(”“’—“) / o f () = cl? du(y)> Sl flleee. G
B(x,r)
To validate (%), we write

f=ha+rf
J1 = f1B@4ar
f2 = fIrRm\B(x,4r)-

Note that Lemma 2.3 gives us that

I, q 1/q
(/B de)) Sl Al s

(x r)rﬁ—q(K/p—a)

(£%%)
S Ml 1S o,

Again, selecting
1

C = — I fzd,LL,
w(Bx, 1) Jpur)

we utilize the mean value theorem to derive that if y € B(x, r) then

o f2(y) — ¢l
1
< -
~ u(B(x,r)) B(x,r)

1
Q=R . . a—n d d
= M(B(X,r))/B(x,r)/”\B(x,4r) Iy = wl 2= wl|1f Wl dv(w) du@

1 o
< 7f f ly—zl sup [E—w|* " f(w)|dv(w)du(z)
W(B(x,7)) JBx,r)JR\B(x,4r) =ty (1-0:

1 —n—1
- _ _wlen d d
w(B(x,r)) /I;(x,r) /”\B(x,4r) [y = ]l = wl |7 ) dvw) din2)

< r/ Ix — w1 £ (w)] dv(w).
R"\ B(x,4r)

o f2(y) = T f2(D) dju(2)

2
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Since the Holder inequality and o < 1 4 «/p imply

/ Ix — w|* " £ (w)| dv(w)
R\ B(x,4r)

o0

lx — w|* " £ (w)| dv(w)

=2 -/Zkrglx—w<2k+1r

o0
~Yy e | £ )] dv(w)
=2 2kr <|x—w|<2k+1r

1/p
If(w)l”dv(w)>

sy enet (et |
k=2 2

Kr<|x—w|<2k+1y

[e.8]
S @ TP f L
k=2

S re IR I f e,

~

it follows that

[ () — | S P fllLrs
and thus

ILf llLpox

I —cld 14 Br) o
</ Mdﬂ(y)> < KB < ”f“Lpl S GEED
ey PP e N T T

Combining (% %) and (f % £ %) yields (£%). This concludes the proof of Theorem
1.33%1). O

Proof of Theorem 1.3(ii). Assume that I, : LP* — EZ’A is continuous. This
assumption gives

e f1l . SUfllies forall  f e LPF.

Moreover, suppose that o is admissible. Given a ball B(x,r) with x € R" and
r € (0,00), let é = B(x,r) and B = B(%,r) such that |x — | = 4r. In other
words, dist (B, B) = 2r. Next, we let xg be the point on the line that connecting x
and x, with |[xg — x| = 5r and |xg — X| = 9r. Denote by By the ball with center xg
and radius 5. It is easy to verify that if fy = 1, then

fo € LP* with || follLre S r/P.
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Because p is admissible, Lemma 2 4 yields

1/q
(M—” Mo fo(y) — <1afo>g,u|"du<y>) S Mo foll g < W follLrse S 7P
B

Note that for any y € fi’, with z € B and w € By, we have

r 13r
[y = wl = Iy = x| +lx = ol + [xo —w| <r+5r 45 = =
and
N - r 15r
lz—w|>|Xx—x0|l —|lz—X|—|x0o—w|>%9 —1r — - = —,
2 2
so that

13 o—n 15 oa—n
_ o—n __ _ a—n - -~ N a—n
ly —wl lz —wl _<(2) (2) )r .

This in turn implies that for any y € B,

1
|Iaf0()’)_(]af0)1§’“|:‘ﬁ‘/§ (Ia fo(y) — 1o fo(2)) d(z)
1
— _ —wlT r—wl¥ M) d d
M(B)/é< Bo(ly w] lz—w|®™") V(w)) n(z)

(B )7
(B

Consequently, we get

1/q -
ez (r” / o fo(y) = Ua f0) ., 17 du@)) Z rirea=mia gy,
B

whence reaching
u(B(x,r)) = u(B) < ri*/p=0tea=n — F
via
A=n—PB+q/p—a.
This validates ||| i1 ||| s <0o.Whence completing the argument for Theorem1.3(ii). [

Proof of Corollary 1.4. According to the argument for [11, Theorem 1.14] (see also
[20, Theorem 5.8]), we have |Vu| € LP*. This, along with the representation
formula for u in terms of (R, ..., R,) (which is bounded on LP-P(1=) according
to [13, Theorem 6.1(b)]) presented in Section 1 and Theorem 1.3 under ({77),

implies u € L4, O
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