Morrey potentials from Campanato classes

LIGUANG LIU AND JIE XIAO

Abstract. This paper shows that under

 $\begin{cases} 0 < \beta, \kappa \le n; \\ -\infty < \lambda \le n; \\ 1 \le p, q < \infty; \\ p^{-1}(n-\beta) < \alpha < \min\left\{n, 1+p^{-1}\kappa\right\}; \\ \lambda = p^{-1}q(\kappa-\alpha p) + n-\beta < \begin{cases} \kappa + \varepsilon \forall \varepsilon > 0 & \text{as } \alpha^{-1}\kappa \le p < \infty \\ \kappa + \varepsilon \forall \varepsilon > 0 & \text{as } 1$

if μ is a nonnegative Radon measure of finite β -variation on \mathbb{R}^n then the Morrey potential class $I_{\alpha}L^{p,\kappa}$ embeds continuously into the Campanato class $\mathcal{L}^{q,\lambda}_{\mu}$, and its converse also holds with μ being admissible.

Mathematics Subject Classification (2010): 31C15 (primary); 42B35, 46E35 (secondary).

1. Introduction

Our starting point is the following classical result on Morrey's inequality under $p \in (n, \infty)$, Poincaré's inequality under p = n, and Sobolev's (or Galiardo-Nirenberg-Sobolev's) inequality under $p \in [1, n)$ which plays an important role in analysis, geometry, mathematical physics, partial differential equations, and other related fields; see, *e.g.*, [9, 14, 15, 19].

Theorem 1.1. Let $u \in C_c^1(\mathbb{R}^n)$, i.e., u is C^1 -smooth with compact support in \mathbb{R}^n . Then

$$\left\| |\nabla u| \right\|_{L^p} \gtrsim \begin{cases} \|u\|_{C^{1-\frac{n}{p}}} \approx \|u\|_{\mathcal{L}^{q,\lambda}} as (p,q) \in (n,\infty) \times [1,\infty) and \lambda = q \left(\frac{n}{p} - 1\right); \\ \|u\|_{BMO} \approx \|u\|_{\mathcal{L}^{q,\lambda}} as (p,q) \in \{n\} \times [1,\infty) and \lambda = q \left(\frac{n}{p} - 1\right); \\ \|u\|_{L^{\frac{pn}{n-p}}} \gtrsim \|u\|_{\mathcal{L}^{q,\lambda}} as (p,q) \in [1,n) \times \left[1,\frac{pn}{n-p}\right] and \lambda = q \left(\frac{n}{p} - 1\right). \end{cases}$$

L. Liu was supported by the National Natural Science Foundation of China (Nos. 11471042 & 11571039); J. Xiao was supported by NSERC of Canada (FOAPAL # 202979463102000).

Received November 11, 2016; accepted May 30, 2017. Published online July 2018.

Here and henceforth, $A \approx B$ means $A \gtrsim B \gtrsim A$; while $A \gtrsim B$ means $A \ge cB$ for a constant c > 0, and

$$\begin{cases} \|f\|_{C^{1-\frac{n}{p}}} = \sup_{x \neq y \text{ in } \mathbb{R}^{n}} |f(x) - f(y)| |x - y|^{\frac{n}{p}-1} \\ \|f\|_{BMO} = \sup_{(x,r) \in \mathbb{R}^{n} \times (0,\infty)} \nu (B(x,r))^{-1} \int_{B(x,r)} |f - f_{B(x,r)}| d\nu; \\ \|f\|_{L^{\frac{pn}{n-p}}} = \left(\int_{\mathbb{R}^{n}} |f|^{\frac{pn}{n-p}} d\nu \right)^{\frac{n-p}{pn}}; \\ \|f\|_{\mathcal{L}^{q,\lambda}} = \sup_{(x,r) \in \mathbb{R}^{n} \times (0,\infty)} \left(r^{\lambda-n} \int_{B(x,r)} |f - f_{B(x,r)}|^{q} d\nu \right)^{1/q}, \end{cases}$$

express the Hölder norm; the John-Nirenberg BMO-norm (*cf.* [10]); the Lebesgue norm; the Campanato norm (*cf.* [7]), respectively, where dv is the *n*-dimensional Lebesgue measure on the Euclidean space \mathbb{R}^n and

$$f_{B(x,r)} = \nu \left(B(x,r) \right)^{-1} \int_{B(x,r)} f \, d\nu$$

is the v-integral mean value of f over B(x, r), the x-centred Euclidean ball with radius r.

Upon utilizing the following formula (cf. [14, page 58])

$$u = \frac{\Gamma\left(\frac{n+1}{2}\right)}{(n-1)\pi^{\frac{n+1}{2}}} I_1 * \left(\sum_{j=1}^n R_j D_j u\right) \quad \text{for all} \quad u \in C_c^1(\mathbb{R}^n),$$

where $\Gamma(\cdot)$ is the standard gamma function, I_1 is the first-order form of the $(0, n) \ni \alpha$ -order Riesz integral

$$I_{\alpha}g(x) = (I_{\alpha} * g)(x) = \int_{\mathbb{R}^n} g(y)|y - z|^{\alpha - n} d\nu(y)$$

(whose I_2g is the Newtonian potential of g generated by the convolution of g with the fundamental gravitation potential in Newton's law of universal gravitation, see Adams [2]);

$$R_j(f) = \lim_{\epsilon \to 0} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \int_{\mathbb{R}^n \setminus B(0,\epsilon)} y_j |y|^{-n-1} f(x-y) \, d\nu(y)$$

is the $\{1, ..., n\} \ni j$ -th Riesz transform of f (where the vector-valued operator $(R_1, ..., R_n)$ is bounded on the Lebesgue $(1, \infty) \ni p$ -space L^p on \mathbb{R}^n , see, *e.g.*, [8,23]), and D_j is the partial derivative with respect to x_j , Theorem 1.1 may be regarded as a consequence of the case ($\alpha = 1, \kappa = n$) of the next result due to Xiao for $\infty > p > \kappa/\alpha$ (*cf.* [24, Theorem 1]); Adams for $p = \kappa/\alpha$ (*cf.* [1, Remark 4.1]); and Adams for 1 (*cf.*[4, Theorem 3.2]), respectively.

Theorem 1.2. Let $L^{p,\kappa}$ be the $(0,\infty) \times (-\infty,\infty) \ni (p,\kappa)$ -Morrey space of all ν -measurable functions f on \mathbb{R}^n with

$$\|f\|_{L^{p,\kappa}} = \sup_{(x,r)\in\mathbb{R}^n\times(0,\infty)} \left(r^{\kappa-n}\int_{B(x,r)} |f|^p \,d\nu\right)^{\frac{1}{p}} < \infty.$$

If

$$\begin{cases}
1
(†)$$

then

$$I_{\alpha}L^{p,\kappa} \subseteq \begin{cases} C^{\alpha-\frac{\kappa}{p}} = \mathcal{L}^{q,\lambda} & \text{as } p > \kappa/\alpha \text{ and } q \ge 1 \\ \text{BMO} = \mathcal{L}^{q,\lambda} & \text{as } p = \kappa/\alpha \text{ and } q \ge 1 \\ L^{\frac{p\kappa}{\kappa-\alpha p},\kappa} \subset \mathcal{L}^{q,\lambda} & \text{as } p < \kappa/\alpha \text{ and } q \ge 1 \\ \text{and } \lambda = q\left(\frac{\kappa}{p} - \alpha\right); \end{cases}$$

Of course, the above linkage from the space $\mathcal{L}^{q,\lambda}$ to the three space: $C^{\alpha-\frac{n}{p}}$, BMO and $L^{\frac{p\kappa}{\kappa-\alpha p},\kappa}$ is known (*cf.*, *e.g.*, [18,22,24]). Recently, in [12] (*cf.* [3,5,6,25] for some relevant information) we established such a fundamental restriction principle that if $L^{q,\lambda}_{\mu}$ stands for the (q, λ) -Morrey space (based on a given nonnegative Radon measure μ on \mathbb{R}^n) comprising all μ -measurable functions f on \mathbb{R}^n with

$$\|f\|_{L^{q,\lambda}_{\mu}} = \sup_{(x,r)\in\mathbb{R}^n\times(0,\infty)} \left(r^{\lambda-n}\int_{B(x,r)} |f|^q \,d\mu\right)^{1/q} < \infty$$

then $I_{\alpha}: L^{p,\kappa} \to L^{q,\lambda}_{\mu}$ is continuous when and only when μ is of finite β -variation on \mathbb{R}^n , *i.e.*,

$$\|\|\mu\|\|_{\beta} = \sup_{(x,r)\in\mathbb{R}^n\times(0,\infty)} \mu(B(x,r))r^{-\beta} < \infty$$

under

$$\begin{cases} 0 < \alpha < n; \\ 0 < \lambda \le \kappa \le n; \\ 1 < p < \frac{\kappa}{\alpha}; \\ n - \alpha p < \beta \le n; \\ 0 < q = \frac{p(\beta + \lambda - n)}{\kappa - \alpha p}, \end{cases}$$
(††)

. .

and we left the corresponding restriction problem for $\infty > p \ge \kappa/\alpha$ open. Yet, through introducing the μ -based Campanato space $\mathcal{L}^{q,\lambda}_{\mu}$ (under $(q,\lambda) \in (0,\infty) \times (-\infty,\infty)$) of all μ -measurable functions f on \mathbb{R}^n with

$$\|f\|_{\mathcal{L}^{q,\lambda}_{\mu}} = \sup_{(x,r)\in\mathbb{R}^n\times(0,\infty)} \left(r^{\lambda-n} \int_{B(x,r)} |f(y) - f_{B(x,r),\mu}|^q \, d\mu(y)\right)^{\frac{1}{q}} < \infty$$

where

$$f_{B(x,r),\mu} = \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f \, d\mu,$$

and observing Nakai's classification of $\mathcal{L}^{q,\lambda}_{\mu}$ as seen below (*cf.* [17]), if μ is Ahlfors β -regular for some $\beta \in (0, n]$, namely,

$$\mu(B(x,r)) \approx r^{\beta}$$
 for all $(x,r) \in \mathbb{R}^n \times (0,\infty)$,

and $(q, \lambda) \in [1, \infty) \times (0, n]$, then:

- As $\beta + \lambda > n$, $\mathcal{L}^{q,\lambda}_{\mu}$ contains $L^{q,\lambda}_{\mu}$;
- As $\beta + \lambda = n$, the space $\mathcal{L}^{q,\lambda}_{\mu}$ is just the μ -based space of functions with bounded variation, denoted by BMO μ , which consists of all μ -measurable functions f in \mathbb{R}^n , obeying

$$\|f\|_{BMO_{\mu}} = \sup_{(x,r)\in\mathbb{R}^{n}\times(0,\infty)} r^{-\beta} \int_{B(x,r)} \left|f(y) - f_{B(x,r),\mu}\right| d\mu(y) < \infty;$$

• As $n - q < \beta + \lambda < n$, the space $\mathcal{L}^{q,\lambda}_{\mu}$ coincides with $\mathcal{C}^{(n-\lambda-\beta)/q}$.

We recognize that it is possible to settle the previously-mentioned open problem. Below is a natural outcome (unifying and improving both (†) and (††)) which is regarded as a principle of taking the Morrey potential space $I_{\alpha}L^{p,\kappa}$ from the Campanato space $\mathcal{L}^{q,\lambda}_{\mu}$, thereby generalizing and improving Theorems 1.2 and 1.1.

Theorem 1.3. Let μ be a non-negative Radon measure on \mathbb{R}^n and

$$\begin{cases} 0 < \beta, \kappa \le n; \\ -\infty < \lambda \le n \\ 1 \le p, q < \infty; \\ p^{-1}(n-\beta) < \alpha < \min\left\{n, 1+p^{-1}\kappa\right\}; \\ \lambda = p^{-1}q(\kappa-\alpha p) + n - \beta < \begin{cases} \kappa + \varepsilon \forall \varepsilon > 0 & as \alpha^{-1}\kappa \le p < \infty \\ \kappa + \varepsilon \forall \varepsilon > 0 & as 1$$

The following facts hold:

- (i) If $|||\mu|||_{\beta} < \infty$, then $I_{\alpha} : L^{p,\kappa} \to \mathcal{L}^{q,\lambda}_{\mu}$ is continuous;
- (ii) Conversely, if $I_{\alpha} : L^{p,\kappa} \to \mathcal{L}^{q,\lambda}_{\mu}$ is continuous, then $|||\mu|||_{\beta} < \infty$ under one more condition that μ is admissible, namely $\mu(B_1) \approx \mu(B_2)$ for any two balls $B_1, B_2 \subset \mathbb{R}^n$ with the same radius r > 0 and their Euclidean distance dist $(B_1, B_2) = 2r$.

In accordance with [14, Theorem 1.94] saying that if

$$q > n \quad \& \quad \mu(B(x,r)) \lesssim \begin{cases} \left(\ln r^{-1}\right)^{-q(1-n^{-1})} \text{ as } r \in (0, 2^{-1}) \\ r^{q} \text{ as } r \in [2^{-1}, \infty), \end{cases}$$

then

$$\left(\int_{\mathbb{R}^n} |u|^q \, d\mu\right)^{1/q} \lesssim \left\| |\nabla u| \right\|_{L^n} \quad \text{for all} \quad u \in C^1_c(\mathbb{R}^n),$$

we see that the extra hypothesis in Theorem 1.3(ii) that μ is admissible is natural. Evidently, any Ahlfors β -regular measure and any translation invariant Radon measure are admissible. Moreover, any doubling Radon measure is admissible, in fact if μ is a doubling measure on \mathbb{R}^n , *i.e.*, $\mu(2B) \leq \mu(B)$ for any ball *B* and its double size 2*B*, then choosing $B_1 = B(x, r)$, and $B_2 = B(y, r)$ and dist $(B_1, B_2) = 2r$ gives

$$|x-y| = 4r$$
 and $\mu(B_1) \le \mu(B(y, 8r)) \lesssim \mu(B_2)$

and hence $\mu(B_1) \approx \mu(B_2)$, as required.

In order to provide a simpler and better application of the case $\alpha = 1$ of $(\dagger \dagger \dagger \dagger)$ in Theorem 1.3 to the regularity of a solution to the *p*-Laplace equation with a Radon measure-valued being on right hand side, for an open set Ω of \mathbb{R}^n , denote by $W^{1,p}(\Omega)$ the space of functions *f* such that

$$\|f\|_{W^{1,p}(\Omega)} = \|f\|_{L^{p}(\Omega)} + \|\nabla f\|_{L^{p}(\Omega)} = \left(\int_{\Omega} |f|^{p} \, d\nu\right)^{\frac{1}{p}} + \left(\int_{\Omega} |\nabla f|^{p} \, d\nu\right)^{\frac{1}{p}} < \infty.$$

The symbol $W_{\text{loc}}^{1,p}(\Omega)$ stands for the collection of ν -measurable functions f on \mathbb{R}^n such that $f \in W^{1,p}(\Omega_1)$ for any open bounded set $\Omega_1 \subseteq \Omega$. And, the symbol $C_0^{\infty}(\Omega)$ represents the collection of functions with infinite differentiability and compact support in Ω .

Corollary 1.4. Let

$$\begin{cases} 0 < \tau < 1 < n \\ 1 < p, q < \infty \\ \max\{0, n - p\} < \beta \le n \\ \lambda = n - \beta - q\tau \le \kappa = p(1 - \tau) < n. \end{cases}$$
(††††)

Suppose that the Radon measure μ is supported in a bounded open set $\Omega \subset \mathbb{R}^n$ and $u \in W^{1,p}_{loc}(\Omega)$ is a weak solution of the μ -based p-Laplace equation $-\Delta_p u = \mu$ in the sense of:

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \phi \, d\nu = \int_{\Omega} \phi \, d\mu \quad \text{for all} \quad \phi \in C_0^{\infty}(\Omega).$$

If $|||\mu|||_{\beta} < \infty$ and $u|_{\mathbb{R}^n \setminus \Omega} = 0$, then $u \in \mathcal{L}^{q,\lambda}_{\mu}$.

The rest of this paper is organized as follows: Section 2 comprises four technical lemmas; Section 3 is devoted to verifying Theorem 1.3 and its Corollary 1.4.

2. Four Lemmas

We now state and prove the four of rementioned technical lemmas.

Lemma 2.1. Let $(q, \lambda) \in [1, \infty) \times (-\infty, n]$ and μ be a nonnegative Radon measure on \mathbb{R}^n . Then

$$2^{-1} \|f\|_{\mathcal{L}^{q,\lambda}_{\mu}} \leq \sup_{(x,r)\in\mathbb{R}^n\times(0,\infty)} \inf_{c\in\mathbb{R}} \left(r^{\lambda-n} \int_{B(x,r)} |f(y)-c|^q \, d\mu(y) \right)^{1/q} \leq \|f\|_{\mathcal{L}^{q,\lambda}_{\mu}}.$$

Proof. Note that the second inequality follows from the definition of $\|\cdot\|_{\mathcal{L}^{q,\lambda}_{\mu}}$. To see the first inequality, for any $(x, r) \in \mathbb{R}^n \times (0, \infty)$ and $c \in \mathbb{R}$, the Minkowski inequality and the Hölder inequality imply

$$\left(\int_{B(x,r)} |f(y) - f_{B(x,r),\mu}|^{q} d\mu(y)\right)^{1/q} \le \left(\int_{B(x,r)} |f(y) - c|^{q} d\mu(y)\right)^{1/q} + \left(\mu(B(x,r))\right)^{1/q} |c - f_{B(x,r),\mu}|$$

and

$$\begin{split} &(\mu(B(x,r)))^{1/q} \left| c - f_{B(x,r),\mu} \right| \\ &= (\mu(B(x,r)))^{1/q} \left| \frac{1}{\mu(B(x,r))} \int_{B(x,r)} (f(y) - c) \, d\mu(y) \right| \\ &\leq \left(\int_{B(x,r)} |f(y) - c|^q \, d\mu(y) \right)^{1/q}, \end{split}$$

which leads to

$$\|f\|_{\mathcal{L}^{q,\lambda}_{\mu}} = \sup_{(x,r)\in\mathbb{R}^{n}\times(0,\infty)} \left(r^{\lambda-n} \int_{B(x,r)} |f(y) - f_{B(x,r),\mu}|^{q} d\mu(y)\right)^{1/q}$$

$$\leq 2 \sup_{(x,r)\in\mathbb{R}^{n}\times(0,\infty)} \inf_{c\in\mathbb{R}} \left(r^{\lambda-n} \int_{B(x,r)} |f(y) - c|^{q} d\mu(y)\right)^{1/q}.$$

This concludes the proof of Lemma 2.1.

1 /

Lemma 2.2. Let $(p, \alpha, \kappa) \in [1, \infty) \times (0, n) \times (0, n]$. The following facts hold:

(i) If $\max\{0, n - \alpha p\} < \beta \le n$ and μ is a nonnegative Radon measure on \mathbb{R}^n with $\||\mu\||_{\beta} < \infty$, then

$$\int_{B(x,r)} |I_{\alpha}(f1_{B(x,r)})| d\mu \lesssim r^{\beta + \alpha - \kappa/p} ||\mu||_{\beta} ||f||_{L^{p,\kappa}}$$

for all $(x, r, f) \in \mathbb{R}^n \times (0, \infty) \times L^{p,\kappa};$

(ii) If $0 < \kappa < \alpha p$, then

 $\operatorname{esssup}_{z \in B(x,r)} |I_{\alpha}(f 1_{B(x,r)})(z)| \lesssim r^{\alpha - \kappa/p} \|f\|_{L^{p,\kappa}} \text{ for all } (x,r,f) \in \mathbb{R}^n \times (0,\infty) \times L^{p,\kappa}.$

Proof. See [6, Theorem 3.1] and its argument.

Lemma 2.3. Let

$$\begin{cases} 0 < \alpha < n \\ 1 \le p, \ q < \infty \\ 0 < \kappa, \ \beta \le n \\ \beta + \alpha p > n \\ p \ge \kappa / \alpha. \end{cases}$$

If μ is a nonnegative Radon measure on \mathbb{R}^n with $|||\mu|||_{\beta} < \infty$ and $f \in L^{p,\kappa}$ is supported on a ball B(x, r), then

$$\int_{B(x,r)} |I_{\alpha}f|^q d\mu \lesssim r^{\beta + (\alpha - \kappa/p)q} |||\mu|||_{\beta} ||f||_{L^{p,\kappa}}^q \text{ for all } (x,r) \in \mathbb{R}^n \times (0,\infty).$$

Proof. Denote by q' the dual exponent of q, *i.e.*, 1/q + 1/q' = 1 and $1' = \infty$. Since $p\alpha \ge \kappa$ and $\beta + \alpha p > n$, there exists a pair (α_1, α_2) such that

$$\begin{cases} \alpha_1, \ \alpha_2 \in (0, n) \\ \alpha = \frac{\alpha_1}{q} + \frac{\alpha_2}{q'} \\ \beta + \alpha_1 p > n \\ \alpha_2 p > \kappa. \end{cases}$$

Indeed, if we choose $\epsilon > 0$ small enough such that

$$\epsilon < \min\left\{n-\alpha, \ \frac{\beta+\alpha p-n}{(q-1)p}\right\}$$

and define

$$\alpha_2 = \alpha + \epsilon$$
 and $\alpha_1 = q\left(\alpha - \frac{\alpha_2}{q'}\right)$,

then it is easy to verify that the pair (α_1, α_2) fulfills all above requirements. Applying the Hölder inequality, we see that for all $y \in B(x, r)$,

$$\begin{aligned} |I_{\alpha}f(y)| &\leq \int_{\mathbb{R}^{n}} \frac{|f(z)|}{|y-z|^{n-\alpha}} d\nu(z) \\ &\leq \left(\int_{\mathbb{R}^{n}} \frac{|f(z)|}{|y-z|^{n-\alpha_{1}}} d\nu(z) \right)^{1/q} \left(\int_{\mathbb{R}^{n}} \frac{|f(z)|}{|y-z|^{n-\alpha_{2}}} d\nu(z) \right)^{1/q'} \\ &= \left(I_{\alpha_{1}} |f|(y) \right)^{1/q} \left(I_{\alpha_{2}} |f|(y) \right)^{1/q'}, \end{aligned}$$

which together with Lemma 2.2 yields

$$\begin{split} \int_{B(x,r)} |I_{\alpha}f|^{q} d\mu &\leq \left(\int_{B(x,r)} I_{\alpha_{1}}(|f|)(y)d\mu(y) \right) \left(\sup_{y \in B(x,r)} I_{\alpha_{2}}(|f|)(y) \right)^{q/q'} \\ &\lesssim r^{\beta + \alpha_{1} - \kappa/p + (\alpha_{2} - \kappa/p)q/q'} ||\mu||_{\beta} ||f||_{L^{p,\kappa}}^{q} \\ &\approx r^{\beta + (\alpha - \kappa/p)q} ||\mu||_{\beta} ||f||_{L^{p,\kappa}}^{q}. \end{split}$$

This ends the proof of Lemma 2.3.

Lemma 2.4. Let μ be a nonnegative Radon measure on \mathbb{R}^n . If μ is admissible and $f \in \mathcal{L}^{q,\lambda}_{\mu}$ with $(q, \lambda) \in [1, \infty) \times \mathbb{R}$, then

$$\left(r^{\lambda-n}\int_{B_1}|f(x)-f_{B_2,\mu}|^q\,d\mu(x)\right)^{1/q}\lesssim \|f\|_{\mathcal{L}^{q,\lambda}_{\mu}}$$

holds for any two balls B_1 and B_2 with the same radius r and dist $(B_1, B_2) = 2r$.

Proof. By the Minkowski inequality, we see

$$\left(r^{\lambda - n} \int_{B_1} |f(x) - f_{B_2,\mu}|^q \, d\mu(x) \right)^{1/q}$$

$$\leq \left(r^{\lambda - n} \int_{B_1} |f(x) - f_{B_1,\mu}|^q \, d\mu(x) \right)^{1/q} + \left(r^{\lambda - n} \mu(B_1) \right)^{1/q} |f_{B_1,\mu} - f_{B_2,\mu}|.$$

Clearly, the first term in the right hand side of the above inequality is bounded by $\|f\|_{\mathcal{L}^{q,\lambda}_{\mu}}$. Thus, it suffices to consider the second term in the right hand side of the above inequality.

Since B_1 and B_2 have the same radius r and dist $(B_1, B_2) = 2r$, we may choose B as the ball with the same center as that of B_1 but of radius 5r, so that both

 B_1 and B_2 are contained in B. Meanwhile, the fact that μ is admissible gives us that $\mu(B_1) \approx \mu(B_2)$. Applying these facts and the Hölder inequality, we deduce

$$\begin{split} &|f_{B_{1},\mu} - f_{B_{2},\mu}| \\ &\leq |f_{B_{1},\mu} - f_{B,\mu}| + |f_{B,\mu} - f_{B_{2},\mu}| \\ &\leq \frac{1}{\mu(B_{1})} \int_{B_{1}} |f(x) - f_{B,\mu}| \, d\mu(x) + \frac{1}{\mu(B_{2})} \int_{B_{2}} |f(x) - f_{B,\mu}| \, d\mu(x) \\ &\leq \left(\frac{1}{\mu(B_{1})} \int_{B_{1}} |f(x) - f_{B,\mu}|^{q} \, d\mu(x)\right)^{1/q} + \left(\frac{1}{\mu(B_{2})} \int_{B_{2}} |f(x) - f_{B,\mu}|^{q} \, d\mu(x)\right)^{1/q} \\ &\leq \left(\frac{1}{\mu(B_{1})} \int_{B} |f(x) - f_{B,\mu}|^{q} \, d\mu(x)\right)^{1/q} + \left(\frac{1}{\mu(B_{2})} \int_{B} |f(x) - f_{B,\mu}|^{q} \, d\mu(x)\right)^{1/q} \\ &\approx \left(\frac{1}{\mu(B_{1})} \int_{B} |f(x) - f_{B,\mu}|^{q} \, d\mu(x)\right)^{1/q}, \end{split}$$

so that

$$(r^{\lambda-n}\mu(B_1))^{1/q} |f_{B_1,\mu}-f_{B_2,\mu}| \lesssim (r^{\lambda-n}\int_B |f(x)-f_{B,\mu}|^q d\mu(x))^{1/q} \lesssim ||f||_{\mathcal{L}^{q,\lambda}_{\mu}},$$

as desired. This completes the argument for Lemma 2.4.

Proof of Theorem 1.3(i). Suppose that $(\dagger \dagger \dagger \dagger)$ holds. Assuming $|||\mu|||_{\beta} < \infty$, we shall prove

$$\|I_{\alpha}f\|_{\mathcal{L}^{q,\lambda}_{\mu}} \lesssim \||\mu\||_{\beta}^{1/q} \|f\|_{L^{p,\kappa}} \text{ for all } f \in L^{p,\kappa}$$

according to two cases as seen below.

Case $1 \le p < \kappa/\alpha$. If p > 1, then $\lambda \le \kappa$, *i.e.*,

$$\lambda = p^{-1}q(\kappa - \alpha p) + n - \beta < \kappa + \varepsilon \text{ for all } \varepsilon > 0,$$

and hence $(\dagger\dagger\dagger\dagger)$ indicates that [12, Theorem 1.1] and the Hölder inequality can be used to derive

$$\|I_{\alpha}f\|_{\mathcal{L}^{q,\lambda}_{\mu}} \lesssim \|I_{\alpha}f\|_{L^{q,\lambda}_{\mu}} \lesssim \||\mu\||_{\beta}^{1/q} \|f\|_{L^{p,\kappa}} \quad \forall f \in L^{p,\kappa}.$$

But, if p = 1, then

$$\lambda = n - \beta + q(\kappa - \alpha) < \kappa + (n - \alpha)^{-1}(n - \kappa)(n - \alpha - \beta),$$

and hence, it suffices to prove that for any given ball B(x, r) there exists a constant c such that

$$\left(r^{-\beta+q(\kappa-\alpha)}\int_{B(x,r)}|I_{\alpha}f(y)-c|^{q}\,d\mu(y)\right)^{1/q} \lesssim \||\mu\||_{\beta}^{1/q}\|f\|_{L^{1,\kappa}}.$$
 (‡)

To this end, we split $f = f_1 + f_2$ through $f_1 = f \mathbf{1}_{B(x,4r)}$ and $f_2 = f \mathbf{1}_{\mathbb{R}^n \setminus B(x,4r)}$. In order to deal with f_1 , we are partially motivated by the idea of proving [16, Lemma 9]. More precisely: for any $y \in B(x, r)$ we use Minkowski's inequality, [21, (2.4.6)] and $\beta > q(n - \alpha) \ge (n - \alpha) > 0$ to obtain

$$\begin{split} & \left(\int_{B(x,r)} \left(I_{\alpha} f_{1}(y) \right)^{q} d\mu(y) \right)^{1/q} \\ \leq & \int_{B(x,4r)} |f(z)| \left(\int_{B(z,5r)} |y-z|^{q(\alpha-n)} d\mu(y) \right)^{1/q} d\nu(z) \\ \lesssim & \int_{B(x,4r)} |f(z)| \left(\int_{0}^{5r} \left(\frac{\mu(B(z,t))}{t^{q(n-\alpha)}} \right) \frac{dt}{t} + \frac{\mu(B(z,5r))}{(5r)^{q(n-\alpha)}} \right)^{1/q} d\nu(z) \\ \lesssim & \int_{B(x,4r)} |f(z)| \left(\int_{0}^{5r} |\|\mu\|\|_{\beta} t^{\beta-q(n-\alpha)} \frac{dt}{t} + |\|\mu\|\|_{\beta} r^{\beta-q(n-\alpha)} \right)^{1/q} d\nu(z) \\ \lesssim & \|\|\mu\|\|_{\beta}^{1/q} r^{\frac{\beta}{q} + \alpha - \kappa} \|f\|_{L^{1,\kappa}}, \end{split}$$

thereby reaching

$$\left(r^{-\beta+q(\kappa-\alpha)}\int_{B(x,r)}|I_{\alpha}f_{1}(y)|^{q}\,d\mu(y)\right)^{1/q} \lesssim \|\|\mu\|\|_{\beta}^{1/q}\|f\|_{L^{1,\kappa}}.$$

Next, choosing

$$c = \frac{1}{\mu(B(x,r))} \int_{B(x,r)} I_{\alpha} f_2 d\mu,$$

since $\alpha < 1 + \kappa/p = 1 + \kappa$ we find that the forthcoming control of $I_{\alpha} f_2$ in "case $\infty > p \ge \kappa/\alpha$ " actually shows

$$\left(\int_{B(x,r)} \frac{|I_{\alpha} f_2(y) - c|^q}{r^{\beta - q(\kappa - \alpha)}} d\mu(y)\right)^{1/q} \lesssim \||\mu\||_{\beta}^{1/q} \|f\|_{L^{1,\kappa}},$$

and so that (‡) follows.

Case $\infty > p \ge \kappa/\alpha$. According to Lemma 2.1 and $\lambda \le \kappa$, *i.e.*,

$$\lambda = n - \beta + q(\kappa/p - \alpha) < \kappa + \varepsilon$$
 for all $\varepsilon > 0$,

it is enough to prove that for an arbitrary ball B(x, r) there exists a constant c such that

$$\left(r^{-\beta+q(\kappa/p-\alpha)}\int_{B(x,r)}|I_{\alpha}f(y)-c|^{q}\,d\mu(y)\right)^{1/q} \lesssim \||\mu\||_{\beta}^{1/q}\|f\|_{L^{p,\kappa}}.$$
 (‡‡)

To validate (‡‡), we write

$$\begin{cases} f = f_1 + f_2 \\ f_1 = f \, \mathbf{1}_{B(x,4r)} \\ f_2 = f \, \mathbf{1}_{\mathbb{R}^n \setminus B(x,4r)}. \end{cases}$$

Note that Lemma 2.3 gives us that

$$\left(\int_{B(x,r)} \frac{|I_{\alpha} f_{1}(y)|^{q}}{r^{\beta-q(\kappa/p-\alpha)}} d\mu(y)\right)^{1/q} \lesssim ||\mu||_{\beta}^{1/q} ||f_{1}||_{L^{p,\kappa}} \lesssim ||\mu||_{\beta}^{1/q} ||f||_{L^{p,\kappa}}.$$
(‡ ‡ ‡)

Again, selecting

$$c = \frac{1}{\mu(B(x,r))} \int_{B(x,r)} I_{\alpha} f_2 d\mu,$$

we utilize the mean value theorem to derive that if $y \in B(x, r)$ then

$$\begin{split} &|I_{\alpha}f_{2}(y)-c| \\ &\leq \frac{1}{\mu(B(x,r))} \int_{B(x,r)} |I_{\alpha}f_{2}(y)-I_{\alpha}f_{2}(z)| \, d\mu(z) \\ &\leq \frac{1}{\mu(B(x,r))} \int_{B(x,r)} \int_{\mathbb{R}^{n} \setminus B(x,4r)} ||y-w|^{\alpha-n} - |z-w|^{\alpha-n} ||f(w)| \, d\nu(w) \, d\mu(z) \\ &\leq \frac{1}{\mu(B(x,r))} \int_{B(x,r)} \int_{\mathbb{R}^{n} \setminus B(x,4r)} |y-z| \sup_{\substack{\xi = \theta + (1-\theta)z \\ \theta \in (0,1)}} |\xi-w|^{\alpha-n-1} |f(w)| \, d\nu(w) \, d\mu(z) \\ &\approx \frac{1}{\mu(B(x,r))} \int_{B(x,r)} \int_{\mathbb{R}^{n} \setminus B(x,4r)} |y-z| |x-w|^{\alpha-n-1} |f(w)| \, d\nu(w) \, d\mu(z) \\ &\lesssim r \int_{\mathbb{R}^{n} \setminus B(x,4r)} |x-w|^{\alpha-n-1} |f(w)| \, d\nu(w). \end{split}$$

Since the Hölder inequality and $\alpha < 1 + \kappa/p$ imply

$$\begin{split} & \int_{\mathbb{R}^n \setminus B(x,4r)} |x - w|^{\alpha - n - 1} |f(w)| \, dv(w) \\ &= \sum_{k=2}^{\infty} \int_{2^k r \le |x - w| < 2^{k + 1} r} |x - w|^{\alpha - n - 1} |f(w)| \, dv(w) \\ &\approx \sum_{k=2}^{\infty} (2^k r)^{\alpha - n - 1} \int_{2^k r \le |x - w| < 2^{k + 1} r} |f(w)| \, dv(w) \\ &\lesssim \sum_{k=2}^{\infty} (2^k r)^{\alpha - 1} \left((2^k r)^{-n} \int_{2^k r \le |x - w| < 2^{k + 1} r} |f(w)|^p \, dv(w) \right)^{1/p} \\ &\lesssim \sum_{k=2}^{\infty} (2^k r)^{\alpha - 1 - \kappa/p} \|f\|_{L^{p,\kappa}} \\ &\lesssim r^{\alpha - 1 - \kappa/p} \|f\|_{L^{p,\kappa}}, \end{split}$$

it follows that

$$|I_{\alpha}f_2(y)-c| \lesssim r^{\alpha-\kappa/p} \|f\|_{L^{p,\kappa}}$$

and thus

$$\left(\int_{B(x,r)} \frac{|I_{\alpha}f_{2}(y) - c|^{q}}{r^{\beta - q(\kappa/p - \alpha)}} d\mu(y)\right)^{1/q} \lesssim \frac{\frac{\|f\|_{L^{p,\kappa}}}{\mu(B(x,r))}^{-1/q}}{r^{\beta/q - (\kappa/p - \alpha) - (\alpha - \kappa/p)}} \lesssim \frac{\|f\|_{L^{p,\kappa}}}{\||\mu\||_{\beta}^{-1/q}}. \quad (\ddagger \ddagger \ddagger)$$

Combining $(\ddagger \ddagger \ddagger)$ and $(\ddagger \ddagger \ddagger)$ yields $(\ddagger \ddagger)$. This concludes the proof of Theorem 1.3(i).

Proof of Theorem 1.3(ii). Assume that $I_{\alpha} : L^{p,\kappa} \to \mathcal{L}^{q,\lambda}_{\mu}$ is continuous. This assumption gives

$$\|I_{\alpha}f\|_{\mathcal{L}^{q,\lambda}_{\mu}} \lesssim \|f\|_{L^{p,\kappa}}$$
 for all $f \in L^{p,\kappa}$.

Moreover, suppose that μ is admissible. Given a ball B(x, r) with $x \in \mathbb{R}^n$ and $r \in (0, \infty)$, let $\check{B} = B(x, r)$ and $\tilde{B} = B(\tilde{x}, r)$ such that $|x - \tilde{x}| = 4r$. In other words, dist $(\check{B}, \tilde{B}) = 2r$. Next, we let x_0 be the point on the line that connecting x and \tilde{x} , with $|x_0 - x| = 5r$ and $|x_0 - \tilde{x}| = 9r$. Denote by B_0 the ball with center x_0 and radius $\frac{r}{2}$. It is easy to verify that if $f_0 = 1_{B_0}$ then

$$f_0 \in L^{p,\kappa}$$
 with $||f_0||_{L^{p,\kappa}} \lesssim r^{\kappa/p}$.

Because μ is admissible, Lemma 2.4 yields

$$\left(r^{\lambda-n}\int_{\breve{B}}|I_{\alpha}f_{0}(y)-(I_{\alpha}f_{0})_{\breve{B},\mu}|^{q}\,d\mu(y)\right)^{1/q}\lesssim\|I_{\alpha}f_{0}\|_{\mathcal{L}^{q,\lambda}_{\mu}}\lesssim\|f_{0}\|_{L^{p,\kappa}}\lesssim r^{\kappa/p}.$$

Note that for any $y \in \check{B}$, with $z \in \check{B}$ and $w \in B_0$, we have

$$|y - w| \le |y - x| + |x - x_0| + |x_0 - w| < r + 5r + \frac{r}{2} = \frac{13r}{2}$$

and

$$|z-w| \ge |\tilde{x}-x_0| - |z-\tilde{x}| - |x_0-w| > 9r - r - \frac{r}{2} = \frac{15r}{2}$$

so that

$$|y-w|^{\alpha-n} - |z-w|^{\alpha-n} \ge \left(\left(\frac{13}{2}\right)^{\alpha-n} - \left(\frac{15}{2}\right)^{\alpha-n} \right) r^{\alpha-n}.$$

This in turn implies that for any $y \in \breve{B}$,

$$\begin{aligned} |I_{\alpha}f_{0}(y) - (I_{\alpha}f_{0})_{\tilde{B},\mu}| &= \left| \frac{1}{\mu(\tilde{B})} \int_{\tilde{B}} \left(I_{\alpha}f_{0}(y) - I_{\alpha}f_{0}(z) \right) d\mu(z) \right| \\ &= \left| \frac{1}{\mu(\tilde{B})} \int_{\tilde{B}} \left(\int_{B_{0}} (|y - w|^{\alpha - n} - |z - w|^{\alpha - n}) d\nu(w) \right) d\mu(z) \right| \\ &\geq \frac{1}{\mu(\tilde{B})} \int_{\tilde{B}} \left(\int_{B_{0}} \left(\left(\left(\frac{13}{2} \right)^{\alpha - n} - \left(\frac{15}{2} \right)^{\alpha - n} \right) r^{\alpha - n} \right) d\nu(w) \right) d\mu(z) \\ &= \left(\left(\frac{13}{2} \right)^{\alpha - n} - \left(\frac{15}{2} \right)^{\alpha - n} \right) r^{\alpha}. \end{aligned}$$

Consequently, we get

$$r^{\kappa/p} \gtrsim \left(r^{\lambda-n} \int_{\tilde{B}} |I_{\alpha} f_0(\mathbf{y}) - (I_{\alpha} f_0)_{\tilde{B},\mu}|^q d\mu(\mathbf{y})\right)^{1/q} \gtrsim r^{(\lambda+\alpha q-n)/q} \mu(\tilde{B})^{1/q},$$

whence reaching

$$\mu(B(x,r)) = \mu(\breve{B}) \lesssim r^{q\kappa/p - (\lambda + \alpha q - n)} = r^{\beta},$$

via

$$\lambda = n - \beta + q(\kappa/p - \alpha),$$

This validates $\|\|\mu\|\|_{\beta} < \infty$. Whence completing the argument for Theorem 1.3(ii). \Box

Proof of Corollary 1.4. According to the argument for [11, Theorem 1.14] (see also [20, Theorem 5.8]), we have $|\nabla u| \in L^{p,\kappa}$. This, along with the representation formula for u in terms of (R_1, \ldots, R_n) (which is bounded on $L^{p,p(1-\tau)}$ according to [13, Theorem 6.1(b)]) presented in Section 1 and Theorem 1.3 under $(\dagger \dagger \dagger \dagger \dagger)$, implies $u \in \mathcal{L}_{u}^{q,\lambda}$.

References

- [1] D. R. ADAMS, "Lectures on L^p -Potential Theory", University of Umea, Department of Mathematics, S-90187 Umea, Sweden.
- [2] D. R. ADAMS, Potential and capacity before and after Wiener, In: "Proceedings of the Norbert Wiener Centenary Congress", 1994 (East Lansing, MI, 1994), 63C83, Proc. Sympos. Appl. Math., Vol. 52, Amer. Math. Soc., Providence, RI, 1997.
- [3] D. R. ADAMS, Traces of potentials arising from translation invariant operators, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (3) 25 (1971), 203–217.
- [4] D. R. ADAMS, A note on Riesz potentials, Duke Math. J. 42 (1975), 765–778.
- [5] D. R. ADAMS and J. XIAO, *Morrey potentials and harmonic maps*, Comm. Math. Phys. 308 (2011), 439–456. Erratum: Comm. Math. Phys. 339 (2015), 769–771.
- [6] D. R. ADAMS and J. XIAO, Restrictions of Riesz-Morrey potentials, Ark. Mat. 54 (2016), 201–231.
- [7] S. CAMPANATO, Proprietá di hölderianitá di alcune classi di funzioni, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 175–188.
- [8] J. DUOANDIKOETXEA, "Fourier Analysis", Graduate Studies in Math. Amer. Math. Soc., Vol. 29, 2000.
- [9] M. GIAQUINTA, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems", Annals of Mathematics Studies, Princeton Univ. Press, 1983.
- [10] F. JOHN and L. NIRENBERG, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426.
- [11] T. KILPELÄINEN and X. ZHONG, *Removable set for continuous solutions of quasilinear elliptic equations*, Proc. Amer. Math. Soc. **160** (2001), 1681–1688.
- [12] L. LIU and J. XIAO, *Restricting Riesz-Morrey-Hardy potentials*, J. Differential Equations 262 (2017), 5468–5496.
- [13] F. K. LY, "Riesz Transforms, Function Spaces, and Weighted Estimates for Schrödinger Operators with Non-negative Potentials", PhD thesis, Macquarie University, 2012.
- [14] J. MALÝ and W. P. ZIEMER, "Fine Regularity of Solutions of Elliptic Partial Differential Equations", Mathematical Surveys and Monographs, Vol. 51, Amer. Math. Soc., 1997.
- [15] C. B. MORREY, "Multiple Integrals in the Calculus of Variations", Springer, 1966.
- [16] R. MOSER, An L^p regularity theory for harmonic maps, Trans. Amer. Math. Soc. 367 (2015), 1–30.
- [17] E. NAKAI, *The Campanato, Morrey and Hölder spaces on spaces of homogeneous type*, Studia Math. **176** (2006), 1–19.
- [18] J. PEETRE, On the theory of $\mathcal{L}_{p,\lambda}$ spaces, J. Funct. Anal. 4 (1969), 71–87.
- [19] G. PÓLYA and G. SZEGÖ, "Isoperimetric Inequalities in Mathematical Physics", Princeton Univ. Press, Princeton, 1951.
- [20] A. TUHOLA-KUJANPÄÄ and H. VARPANEN, The p-Laplacian with respect to measures, J. Math. Anal. Appl. 400 (2013), 86–95.
- [21] B. O. TURESSON, "Nonlinear Potential Theory and Weighted Sobolev Spaces", Lecture Notes in Math., Vol. 1736, Springer, 2000.
- [22] J. SERRIN, A remark on the Morrey potential, Contemp. Math. 426 (2007), 307–315.
- [23] E. STEIN, "Singular Integrals and Differentiability Properties of Functions", Princeton Univ. Press, 1970.
- [24] J. XIAO, A new perspective on the Riesz potential, Adv. Nonlinear Anal. 6 (2017), 317–326.

[25] J. XIAO, A trace problem for associate Morrey potentials, Adv. Nonlinear Anal. DOI: 10.1515/anona-2016-0069.

> Department of Mathematics School of Information Renmin University of China Beijing 100872, China liuliguang@ruc.edu.cn

Department of Mathematics and Statistics Memorial University St. John's, NL A1C 5S7, Canada jxiao@mun.ca