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The eigenvalue problem for the Monge-Ampère operator
on general bounded convex domains

NAM Q. LE

Abstract. In this paper, we study the eigenvalue problem for the Monge-Ampère
operator on general bounded convex domains. We prove the existence, unique-
ness and variational characterization of the Monge-Ampère eigenvalue. The con-
vex Monge-Ampère eigenfunctions are shown to be unique up to positive mul-
tiplicative constants. Our results are the singular counterpart of previous results
by P-L. Lions and K. Tso in the smooth, uniformly convex setting. Moreover, we
prove the stability of the Monge-Ampère eigenvalue with respect to the Hausdorff
convergence of the domains. This stability property makes it possible to inves-
tigate the Brunn-Minkowski, isoperimetric and reverse isoperimetric inequalities
for the Monge-Ampère eigenvalue in their full generality. We also discuss re-
lated existence and regularity results for a class of degenerate Monge-Ampère
equations.

Mathematics Subject Classification (2010): 47A75 (primary); 49R50, 35J70,
35J96 (secondary).

1. Introduction and statement of the main result

1.1. The Monge-Ampère eigenvalue problem

The eigenvalue problem for the Monge-Ampère operator det D2u on smooth, open,
bounded and uniformly convex domains � in Rn (n � 2) was first investigated
by Lions [16]. He showed that there exist a unique positive constant � = �(�)
and a unique (up to positive multiplicative constants) nonzero convex function u 2
C1,1(�)\C1(�) solving the eigenvalue problem for the Monge-Ampère operator
det D2u: (

det D2u = �|u|n in �

u = 0 on @�.
(1.1)
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Lions [16] also gave an interesting stochastic interpretation for �(�). A variational
characterization of � was found by Tso [20] who discovered that for sufficiently
smooth, open, bounded, and uniformly convex domains �

�(�) = inf

(R
�(�u) det D2u dx
R
�(�u)n+1 dx

: u 2 C0,1(�) \ C2(�),

u is nonzero, convex in �, u = 0 on @�

)

.

(1.2)

All of the above features of � suggest the well-known properties of the first eigen-
value of the Laplace operator. As such, �(�) is called the Monge-Ampère eigen-
value of �. The nonzero convex functions u solving (1.1) are called the Monge-
Ampère eigenfunctions. Despite the degeneracy of the right hand side of (1.1)
near the boundary, the Monge-Ampère eigenfunctions also have the same global
smoothness feature as the first eigenfunctions of the Laplace operator. The fact that
u 2 C1(�) when � is smooth and uniformly convex was recently proved by the
author and Savin [15].

A full generalization of the results by Lions and Tso to the k-Hessian operator
(1  k  n) was carried out by Wang [21]. Recall that the Monge-Ampère opera-
tor is the n-Hessian operator while the Laplace operator is the 1-Hessian operator.
Wang studied the first eigenvalue together with its variational characterization for
the k-Hessian operator.

Using the variational characterization (1.2) of the Monge-Ampère eigenvalue,
Salani [17] proved a Brunn-Minkowski inequality for �(·) by showing that �� 1

2n (·)
(which is positively homogeneous of degree 1) is concave in the class of C2+ do-
mains in Rn endowed with the Minkowski addition. Here, a domain � in Rn

belongs to the class C2+ if it is an open bounded uniformly convex set with C2

boundary. More precisely, Salani proved that if �0 and �1 are C2+ domains in Rn

then

�(�↵)�
1
2n � (1� ↵)�(�0)

� 1
2n + ↵�(�1)

� 1
2n for all ↵ 2 [0, 1], (1.3)

where �↵ denotes the Minkowski linear combination of �0 and �1:

�↵ = (1� ↵)�0 + ↵�1 = {(1� ↵)x0 + ↵x1 : x0 2 �0, x1 2 �1} . (1.4)

Recall that the original form of the Brunn-Minkowski inequality (see, for example,
[19, Theorem 7.1.1]) involves volumes of convex bodies, that is, compact convex
sets with non-empty interior. It states that for convex bodies K0 and K1 in Rn , we
have for all ↵ 2 [0, 1] that

|K↵|
1
n � (1� ↵)|K0|

1
n + ↵|K1|

1
n . (1.5)

Note that only convexity is required for K0 and K1 in (1.5) and no further regulari-
ties on @K0 and @K1 are necessary.
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It is thus a natural question to ask if (1.3) also holds for general open bounded
convex domains. This question was raised by Salani [17, page 85]. In order to
answer this question, we need to develop a theory of the Monge-Ampère eigenvalue
for general open bounded convex domains. This is the main goal of the present
work. We prove the existence, uniqueness and variational characterization of the
Monge-Ampère eigenvalue. The convex Monge-Ampère eigenfunctions are shown
to be unique up to positive multiplicative constants. Our results are the singular
counterpart of previous results by Lions and Tso mentioned above in the smooth,
uniformly convex setting. Moreover, we prove the stability of the Monge-Ampère
eigenvalue with respect to the Hausdorff convergence of the domains.

Unless otherwise indicated, bounded open convex domains�⇢Rn are through-
out assumed to have non-empty interior. Our main result states as follows.

Theorem 1.1 (The Monge-Ampère eigenvalue problem). Let � be a bounded
open convex domain in Rn . Define the constant � = �[�] via the variational
formula:

�[�] = inf

(R
�(�u) det D2u dx
R
�(�u)n+1 dx

: u 2 C(�),

u is convex, nonzero in �, u = 0 on @�

)

.

(1.6)

Then, the following facts hold:

(i) We have the estimates

c(n)|�|�2  �[�]  C(n)|�|�2 (1.7)

for some geometric constants c(n),C(n) depending only on the dimension n;
(ii) There exists a nonzero convex solution u 2 C0,�(�)\C1(�) for all � 2 (0, 1)

to the eigenvalue problem
(
det D2u = �|u|n in �,

u = 0 on @�.
(1.8)

Thus the infimum in (1.6) is achieved;
(iii) The eigenvalue-eigenfunction pair (�, u) to (1.8) is unique in the following

sense: if the pair (3, v) satisfies det D2v = 3|v|n in � where 3 > 0 is a
positive constant and v 2 C(�) is convex, nonzero with v = 0 on @�, then
3 = � and v = mu for some positive constant m;

(iv) The function �[·] is stable with respect to the Hausdorff convergence of the
domains: if {�m}1m=1 ⇢ Rn is a sequence of open bounded convex domains
that converges in the Hausdorff distance to an open bounded convex domain
�, then limm!1 �[�m] = �[�].
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The proof of Theorem 1.1 will be given in Section 5. In Subsection 1.3, we will
comment on its proof.

When u is merely a convex function, det D2u dx is interpreted as the Monge-
Ampère measure associated with u. Basic facts concerning the Monge-Ampère
measure and the Monge-Ampère equation will be recalled in Section 2.

Remark 1.2.

(i) Once Theorem 1.1 is proved, we find that for smooth, open, bounded and uni-
formly convex domains � in Rn,

�(�) = �[�];

(ii) We call �[�] defined in Theorem 1.1 the Monge-Ampère eigenvalue of the
domain �, and nonzero convex functions u 2 C(�) solving (1.8) the Monge-
Ampère eigenfunctions of the domain �.

As it turns out, the theoryof theMonge-Ampère eigenvalue on general open bounded
convex domains together with its stability property in Theorem 1.1 allows us to
study the maximum and minimum problem for the Monge-Ampère eigenvalue of
open bounded convex sets under a volume constraint. In this extremal problem, the
extremal sets are shown to exist but could potentially be non-strictly convex. We
will discuss this problem in the next section.

1.2. The Brunn-Minkowski, isoperimetric
and reverse isoperimetric inequalities

Using the stability with respect to the Hausdorff convergence of the Monge-Ampère
eigenvalue, Salani’s Brunn-Minkowski inequality (1.3) immediately extends to
bounded convex domains.

Theorem 1.3 (The Brunn-Minkowski inequality). If�0 and�1 are openbounded
convex domains in Rn and ↵ 2 [0, 1], then

� [(1� ↵)�0 + ↵�1]�
1
2n � (1� ↵)�[�0]

� 1
2n + ↵�[�1]

� 1
2n .

We will give a proof of Theorem 1.3 in Section 6.
In view of the estimates (1.7), a very natural problem concerning the Monge-

Ampère eigenvalue is to determine, among open bounded convex sets having a
fixed volume, those with the largest or smallest Monge-Ampère eigenvalue. The
following theorem is concerned with the maximum and minimum of the Monge-
Ampère eigenvalue. We call a set K centrally symmetric if �x 2 K whenever
x 2 K .
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Theorem 1.4. The following facts hold:

(i) (Maximum of the Monge-Ampère eigenvalue) Among all bounded open con-
vex sets in Rn having a fixed positive volume, the ball has the largest Monge-
Ampère eigenvalue. That is, if � is a bounded open convex domain and let
B(�) be a ball having the same volume as �, then

�[�]  �[B(�)] =
|B1|2�(B1)

|�|2
; (1.9)

(ii) (Minimum of the Monge-Ampère eigenvalue) Among all bounded open convex
sets � in Rn having a fixed positive volume, there exists a convex S with the
smallest Monge-Ampère eigenvalue:

�[�] � �[S] for all convex � with |�| = |S|; (1.10)

(iii) (Minimum of the Monge-Ampère eigenvalue among centrally symmetric con-
vex sets) Among all centrally symmetric bounded open convex sets � in Rn

having a fixed positive volume, there exists a centrally symmetric convex K
with the smallest Monge-Ampère eigenvalue:

�[�] � �[K ] for all centrally symmetric convex � with |�| = |K |. (1.11)

The proof of Theorem 1.4 will be given in Section 6.
When the domain � is smooth and uniformly convex, Theorem 1.4 (i) is due

to Brandolini-Nitsch-Trombetti [3, Theorem 3.2].
Following the terminology in [3], we call (1.9) the isoperimetric inequality for

the Monge-Ampère eigenvalue. It is then reasonable to call (1.10) and (1.11) the re-
verse isoperimetric inequalities for the Monge-Ampère eigenvalue. In choosing this
terminology, we are partially motivated by Ball’s reverse isoperimetric inequality
for the classical area functional [2] which states that modulo affine transformations,
among all convex bodies in Rn , the n-dimensional regular simplex has largest sur-
face area for a given volume, while among centrally symmetric convex bodies, the
n-dimensional cube is extremal.

It would be interesting to determine the extremal convex sets in Theorem 1.4
(ii) and (iii). In view of the reverse isoperimetric inequality due to Ball [2], we
have the following conjecture on the possible candidate for the minimum of the
Monge-Ampère eigenvalue.
Conjecture 1.5.

(i) Among all bounded open convex sets inRn having a fixed positive volume, the
n-dimensional regular simplex (that is the interior of the convex hull of (n+1)
equally spaced points in Rn) has the smallest Monge-Ampère eigenvalue;

(ii) Among all open bounded centrally symmetric convex sets in Rn having a
fixed positive volume, the n-dimensional cube has the smallest Monge-Ampère
eigenvalue.
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By the affine invariant property of the Monge-Ampère eigenvalue (see Proposition
5.8), the images of extremal sets in Theorem 1.4 and Conjecture 1.5 under volume
preserving affine transformations are also extremal sets.

For results related to Theorem 1.4 (ii) and (iii) and Conjecture 1.5 for the case
of the Laplacian eigenvalue, see [4] and the references therein. In this case, the
complete solution is only available in dimensions n = 2 for axisymmetric extremal
sets; see [4, Proposition 10 and Theorem 12].

1.3. On the proof of Theorem 1.1 and related results

Let us say a few words about the proof of Theorem 1.1 to be presented in Section 5.
The bounds on � in (1.7) are based on standard techniques in the Monge-Ampère
equation. They will be proved in Lemma 3.1 and Corollary 3.2.

Next, we describe how to solve (1.8) for � = �[�] defined by (1.6). We
construct, as in Tso [20], a nonzero convex solution u 2 C(�) of (1.8) as a limit,
when p % n of nonzero convex solutions to the degenerate Monge-Ampère equa-
tions

(
det D2u = �|u|p in �

u = 0 on @�.
(1.12)

This class of equations was studied by Tso [20] for smooth, bounded, and uniformly
convex domains and Hartenstine [14] for bounded and strictly convex domains. It
turns out that we can obtain the same qualitative results for the above equations as
in [14, 20] for general bounded convex domains; see Theorem 4.2. It is interesting
to note that the above equations with � being a polytope also arise naturally in
Donaldson’s analysis of the Abreu equation [10] in complex geometry. We will
discuss all these in Section 4.

The proof of the global almost Lipschitz property of the Monge-Ampère eigen-
functions in Proposition 5.3, that is, u 2 C0,�(�) for all � 2 (0, 1), is based on an
iteration argument using the maximum principle. Interestingly, our argument also
shows that when� is a general open bounded convex domain, nonzero convex solu-
tions to (1.12) are globally almost Lipschitz for all n� 2  p 6= n (see Proposition
5.4) but it does not indicate whether the same conclusion holds for p 2 [0, n � 2)
when n � 3. On the other hand, when � is an open bounded domain with uni-
formly convex smooth boundary, nonzero convex solutions to (1.12) are globally
smooth as the Monge-Ampère eigenfunctions exactly when p is a positive integer,
regardless whether it is less than n � 2 or not. For reader’s convenience, we state
here an optimal global regularity result which complements [15, Theorem 1.4] on
the global smoothness of the Monge-Ampère eigenfunctions.

Theorem 1.6 (see Theorem 5.5). Let � be an open bounded domain with uni-
formly convex smooth boundary. Let p > 0 and p 6= n. Assume that u 2 C(�) is a
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nonzero convex solution of
(
det D2u = |u|p in �

u = 0 on @�.

The following facts hold:

(i) If p is a positive integer then u 2 C1(�);
(ii) If p is a not an integer then u 2 C2+[p],�(�) for some � = �(n, p) 2 (0, 1)

but u 62 C3+[p](�). Here, [p] denotes the greatest integer not exceeding p.

Another way to construct nonzero convex solutions to (1.8) with � replaced by a
(possible different) positive constant 3 is by approximation. We approximate �
by a sequence of open, bounded, smooth and uniformly convex domains {�m} in
Rn that converges to � in the Hausdorff distance. For each m, we take um 2
C1,1(�m) \ C1(�m) with kumkL1(�m) = 1 to be a convex eigenfunction of the
Monge-Ampère operator on �m :

(
det D2um = �(�m)|um |n in �m
um = 0 on @�m .

We then let m ! 1 to obtain a nonzero convex solution to (1.8) with � replaced
by 3 = limm!1 �(�m); see Proposition 5.2.

Thus, there arises naturally the question of the uniqueness of the eigenvalue
and eigenfunctions for the Monge-Ampère operator on general open bounded con-
vex domains. This uniqueness issue is the main difficulty in the proof of Theorem
1.1. The proof of uniqueness in [16] (see also [21]) uses crucially the Lipschitz
property of the eigenfunctions. This is possible when � is smooth and uniformly
convex. In our situation, the eigenfunctions are not Lipschitz in general and we need
new arguments. The proof of the uniqueness of the Monge-Ampère eigenvalue in
Step 1 of Proposition 5.6 is a simple application of the key estimate in Proposition
1.7 which is a form of nonlinear integration by parts.

Proposition 1.7 (Nonlinear integration by parts). Let� be a bounded open con-
vex domain in Rn . Suppose that u, v 2 C(�) \C5(�) are strictly convex functions
in � with u = v = 0 on @� and that there is a constant M > 0 such that

Z

�

�
det D2u

� 1
n
�
det D2v

� n�1
n dx  M, and

Z

�
det D2v dx  M. (1.13)

Then Z

�
|u| det D2v dx �

Z

�
|v|

�
det D2u

� 1
n
�
det D2v

� n�1
n dx . (1.14)
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We will prove Proposition 1.7 in Subsection 3.2.
The proof of the uniqueness of the Monge-Ampère eigenfunctions up to pos-

itive multiplicative constants in Step 2 of Proposition 5.6 relies on a delicate ap-
plication of Proposition 1.7 in its full strength. This application uses crucially the
global almost Lipschitz property of the eigenfunctions in Proposition 5.3 which
gives, among other things, an important integrability property of the eigenfunctions
and their Hessians as stated in the following lemma.

Lemma 1.8 (see Lemma 5.7). Let � be a bounded open convex domain in Rn .
Suppose that u, v 2 C(�) are nonzero convex eigenfunctions to (1.8). Then, there
exists a constant C = C(n,�) depending only n and � so that

Z

�
1u|v|n�1 dx  CkukL1(�)kvkn�1L1(�).

Finally, the stability of the Monge-Ampère eigenvalue with respect to the Hausdorff
convergence of the domains follows from the approximability and uniqueness of the
Monge-Ampère eigenvalue.

Throughout the paper, the dimension n � 2 of Rn is fixed. The open ball
centered at the origin with radius r is denoted by Br . We use c(n),C(n) to denote
positive constants depending only on n. We think of c and C as being small and
large constants, respectively. We denote the volume (or Lebesgue measure) and
diameter of a set K in Rn by |K | and diam K , respectively. The distance function
to a closed set 0 is denoted by dist (·,0). The dependence of various constants also
on other parameters like p, diam�, |�| will be denoted by c(p, diam�, |�|), or
C(p, diam�, |�|), etc.

The rest of the paper is organized as follows. In Section 2, we recall basic
facts on the Monge-Ampère equation. In Section 3, we present various estimates
related to the Monge-Ampère operators and degenerate Monge-Ampère equations.
Then we give the proof of Proposition 1.7. In Section 4, we study solutions to the
degenerate Monge-Ampère equations and their minimality with respect to certain
Monge-Ampère functional. We prove Theorem 1.1 in Section 5. Theorems 1.3 and
1.4 will be proved in Section 6. In Section 7, we prove Theorem 1.6 restated as
Theorem 5.5.

2. Preliminaries on the Monge-Ampère equation

In this section, we recall basic facts on the Monge-Ampère equation. We refer the
reader to the books by Gutiérrez [12] and Figalli [11] for more details.

Let � be an open convex domain of Rn . We define the subdifferential of a
convex function u : � ! R at x 2 � by

@u(x) :=
�
p 2 Rn : u(y) � u(x) + p · (y � x) for all y 2 �

 
.
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Definition 2.1 (The Monge-Ampère measure). Let u : � ! R be a convex func-
tion. Given E ⇢ �, we define

@u(E) =
[

x2E
@u(x).

Let
Mu(E) = |@u(E)|.

Then (see [12, Theorem 1.1.13]), Mu : S ! R [ {1} is a measure, finite on
compact sets where S is the Borel � -algebra defined by

S = {E ⇢ � : @u(E) is Lebesgue measurable}.

Mu is called the Monge-Ampère measure associated with the convex function u.
If u 2 C2(�), then we can show using a change of variables that Mu =

det D2u(x) dx in �.
Definition 2.2 (Aleksandrov solutions). Given an open convex set � and a Borel
measure µ on �, a convex function u : � ! R is called an Aleksandrov solution
to the Monge-Ampère equation

det D2u = µ,

if µ = Mu as Borel measures.
When µ = f dx we will simply say that u solves

det D2u = f.

In what follows, by a slight abuse of notation, we will use det D2u to denote the
Monge-Ampère measure Mu for a general convex function u. Thus, for all Borel
set E ⇢ �, Z

E
det D2u dx = Mu(E) = |@u(E)|

and Z

E
|u| det D2u dx =

Z

E
|u|dMu.

The basic existence and uniqueness result for solutions to the Dirichlet problem
with zero boundary data is given in the following (see [12, Theorem 1.6.2], [13,
Theorem 1] and [11, Theorem 2.13]):

Theorem 2.3 (The Dirichlet problem). Let � be a bounded open convex domain
in Rn , and let µ be a nonnegative Borel measure in �. Then there exists a unique
convex function u 2 C(�) that is an Aleksandrov solution of

(
det D2u = µ in �

u = 0 on @�.
(2.1)
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We note that in [12, Theorem 1.6.2], the domain � in Theorem 2.3 was required
to be strictly convex. However, the strict convexity of � can be removed for the
Dirichlet problem with zero boundary data as shown in [13, Theorem 1] and [11,
Theorem 2.13].

The following is the celebrated Aleksandrov’s maximum principle (see [11,
Theorem 2.8] and [12, Theorem 1.4.2]):

Theorem 2.4 (Aleksandrov’s maximum principle). Let � ⇢ Rn be an open,
bounded and convex domain. Let u 2 C(�) be a convex function. If u = 0 on
@�, then

|u(x)|n  C(n)(diam�)n�1dist(x, @�)

Z

�
det D2u dx for all x 2 �.

We will also use the following comparison principle; see [11, Theorem 2.10] and
[12, Theorem 1.4.6].

Lemma 2.5 (Comparison principle). Let � ⇢ Rn be an open, bounded and con-
vex domain. Let u, v 2 C(�) be convex functions. If u � v on @� and in the sense
of Monge-Ampère measures

det D2u  det D2v in �,

then u � v in �.

We have the following compactness of solutions to the Monge-Ampère equation;
see [11, Corollary 2.12] and [12, Lemma 5.3.1].

Theorem 2.6 (Compactness of solutions to the Monge-Ampère equation). Let
{�k}1k=1 ⇢ Rn be a sequence of open bounded convex domains that converges to
an open bounded convex domain � in the Hausdorff distance. Let {µk}1k=1 be a se-
quence of nonnegative Borel measures with supk µk(�k) < 1 and which weakly⇤
converges to a Borel measure µ. For each k, let uk 2 C(�k) be the convex Alek-
sandrov solution of (

det D2uk = µk in �k
uk = 0 on @�k .

Then uk converges locally uniformly in � to the convex Aleksandrov solution of
(
det D2u = µ in �

u = 0 on @�.

We will use the following fact, which is a consequence of John’s lemma (see also
[11, Lemma A.13], [12, Theorem 1.8.2] and [19, Theorem 10.12.2]).
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Lemma 2.7 (John’s lemma). Let � be an open, bounded and convex set in Rn

with nonempty interior. Then there exists an affine transformation T : Rn ! Rn

with det T = 1 (such a transformation is called unimodular) such that

BR ⇢ T (�) ⇢ BnR for some R > 0.

We call an open convex set � normalized if it satisfies BR ⇢ � ⇢ BnR for some
R > 0.

Finally, we will use the following simple interior regularity result whose proof
we include for reader’s convenience.

Proposition 2.8. Let 0  p < 1 and let � be an open, bounded convex set in Rn

with nonempty interior. Assume that u 2 C(�) is a nonzero convex Aleksandrov
solution to the Dirichlet problem

(
det D2u = |u|p in �

u = 0 on @�.

Then u is strictly convex in � and u 2 C1(�).

We recall that a convex function u on an open bounded convex domain � is said to
be strictly convex in �, if for any x 2 � and p 2 @u(x),

u(z) > u(x) + p · (z � x) for all z 2 �\{x},

that is, any supporting hyperplane to u touches its graph at only one point.

Proof. Let M = kukL1(�). For each " 2 (0,M), let�(") = {x 2 � : u(x)  �"}.
Since u 2 C(�) is convex, the set �(") is convex with nonempty interior. Let us
denote �0 = �(") for brevity.

Since " p  det D2u = |u|p  Mp in �0 and u = �" on @�0, the function u
is strictly convex in �0 by the localization theorem of Caffarelli [5] (see also [12,
Corollary 5.2.2] and [11, Theorem 4.10]). Thus, by Caffarelli’s C1,↵ estimates [7]
(see also [12, Theorem 5.4.8] and [11, Theorem 4.20]), u 2 C1,↵loc (�0) for some
↵ 2 (0, 1) depending only on n, p, " and M . Now, using Caffarelli’s C2,↵ estimates
[6], we have u 2 C2,↵loc (�0). In the interior of �0, the equation det D2u = |u|p

now becomes uniformly elliptic with C2,↵ right hand side. By a simple bootstrap
argument, we have u 2 C1

loc(�
0). Since " 2 (0,M) is arbitrary, we conclude

u 2 C1(�) and u is strictly convex in �.

3. Estimates

3.1. Estimates for the Monge-Ampère eigenvalue

In this subsection, we establish various estimates that will give the optimal bounds
(up to a bounded constant depending only on the dimension) from below and above
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for �[·] defined by (1.6) on general open bounded convex domains. These estimates
equally apply to the Monge-Ampère eigenvalue �(·) of open, bounded, smooth, and
uniformly convex domains as defined in (1.1).

Lemma 3.1. Let � be an open, bounded convex domain in Rn . Let p � 0. The
following estimates hold:

(i) Let u 2 C(�) be a convex function in� with u = 0 on @�, and kukL1(�) = 1.
Then

c(n, p)|�| 
Z

�
|u|p dx  |�|

and Z

�
(�u) det D2u dx � c(n)|�|�1;

(ii) There exists a convex function u 2 C(�) \ C1(�) with u = 0 on @�, and
kukL1(�) = 1 such that

Z

�
(�u) det D2u dx  C(n)|�|�1.

If � is open, bounded, smooth, and uniformly convex then we can choose u to
additionally satisfy u 2 C0,1(�);

(iii) Let M > 0 be a positive constant. Assume that u 2 C(�) is a nonzero convex
Aleksandrov solution to the Dirichlet problem

(
det D2u = M|u|p in �

u = 0 on @�.

Then
c(n, p)|�|�2  Mkukp�nL1(�)  C(n, p)|�|�2.

Proof. Under the unimodular affine transformations T : Rn ! Rn with det T = 1:

� ! T (�), u(x) ! u
⇣
T�1x

⌘
,

both the equation det D2u = M|u|p, and the quantities
Z

�
|u|p dx,

Z

�
(�u) det D2u dx, kukL1(�) and |�|

are unchanged. Thus, by John’s lemma (Lemma 2.7) we can assume that � is
normalized, that is

BR ⇢ � ⇢ BnR for some R > 0.
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(i) Let u 2 C(�) be a convex function in � with u = 0 on @�, and kukL1(�) = 1.
Then clearly, Z

�
|u|p dx  |�|.

Assume that u(x0) = �1 where x0 2 �. Then for any x 2 �, the ray x0x intersects
@� at z. We have x = ↵x0 + (1 � ↵)z for some ↵ 2 [0, 1]. By the convexity of u
and u = 0 on @�, we have

u(x)  ↵u(x0) + (1� ↵)u(z) = �↵.

It follows from � ⇢ BnR that for all x 2 �, we have

|u(x)| � ↵ =
|x � z|
|x0 � z|

�
dist (x, @�)

diam�
� c(n)R�1dist (x, @�).

Then, using BR ⇢ � and |�|  C(n)Rn , we get
Z

BR/2

|u|pdx�c(n, p)R�p
Z

BR/2

dist p(x, @�) dx

�c(n, p)R�p
Z

BR/2

dist p(x, @BR)dx�c(n, p)Rn�c(n, p)|�|.
(3.1)

Thus Z

�
|u|p dx �

Z

BR/2

|u|p dx � c(n, p)|�|.

Next, let
�0 = {x 2 � : u(x)  �1/2}.

Applying the Aleksandrov maximum principle (Theorem 2.4) to u + 1
2 on �0, and

noting that ku + 1
2kL1(�

0
) = 1

2 , we find

1
2

 C(n)diam�0
✓Z

�0
det D2u dx

◆1/n
 C(n)R

✓Z

�0
det D2u dx

◆1/n
.

Hence
Z

�
(�u) det D2u dx �

Z

�0
(�u) det D2u dx �

1
2

Z

�0
det D2u dx

� c(n)R�n � c(n)|�|�1.

(ii) Let v 2 C(�) be the convex Aleksandrov solution to
8
<

:
det D2v =

1
R2n

in �

v = 0 on @�.
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This solution exists and is unique by Theorem 2.3. Clearly, v 2 C1(�). If � is
smooth, open, bounded and uniformly convex then v 2 C0,1(�). We can see this
by constructing an explicit barrier or by recalling the classical result of Caffarelli-
Nirenberg-Spruck [8, Theorem 1].

We will now show that
kvkL1(�) �

1
2
. (3.2)

Indeed, let
w(x) =

1
2R2

⇣
|x |2 � R2

⌘
.

Then det D2w = 1
R2n = det D2v in � and, since � � BR , and w � 0 = v on @�.

By the comparison principle (Lemma 2.5) we find that v  w in �. In particular,
v(0)  w(0) = �1

2 . It follows that

kvkL1(�) = �min
�

v � �v(0) �
1
2
.

Let u = ↵v where ↵ = 1
kvkL1(�)

 2, by (3.2). Then u 2 C(�) is convex, u = 0
on @� with kukL1(�) = 1 and we have
Z

�
(�u) det D2u dx 

Z

�
det D2u dx  2n

Z

�
det D2v dx =

2n|�|

R2n
 C(n)|�|�1.

Thus the function u satisfies the conclusion of part (ii).
(iii) Let ↵ = kukL1(�) > 0 and v = u/↵. Then, by Proposition 2.8, v 2 C(�) \
C1(�) with v = 0 on @�, and kvkL1(�) = 1. Furthermore, v satisfies

det D2v = M↵ p�n|v|p in �. (3.3)

To estimate M↵ p�n from below, we multiply both sides of the above equation by
|v| = �v, integrate over � and then using (i) to obtain the desired lower bound for
M↵ p�n:

M↵ p�n =

R
� |v| det D2v dx
R
� |v|p+1 dx

� c(n, p)|�|�2.

Now, by (3.3), we estimate from above the quantity

M↵ p�n =

R
BR/2

det D2v dx
R
BR/2

|v|p dx
. (3.4)

Recall that BR ⇢ � ⇢ BnR . The convexity of v and the fact that v = 0 on @� give
for x 2 BR/2

|Dv(x)| 
|v(x)|

dist (x,�)


kvkL1(�)

dist (x,�)
 C(n)R�1.
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Hence
Z

BR/2

det D2v dx = |Dv(BR/2)|  C(n)R�n  C(n)|�|�1. (3.5)

Applying (3.1) to v, we have
Z

BR/2

|v|p dx � c(n, p)|�|. (3.6)

Combining (3.4), (3.5) and (3.6), we obtain the desired upper bound for M↵ p�n:

M↵ p�n  C(n, p)|�|�2.

Corollary 3.2. The following facts hold:

(i) Let� be an open, bounded, smooth and uniformly convex domain in Rn . Then
for the Monge-Ampère eigenvalue �(�) of (1.1), we have

c(n)|�|�2  �(�)  C(n)|�|�2;

(ii) Let � be an open, bounded convex domain in Rn . Then for �[�] defined by
(1.6), we have

c(n)|�|�2  �[�]  C(n)|�|�2.

Proof. We note that (i) follows from Lemma 3.1 (iii) in the special case of p = n
and M = �(�). On the other hand, using the definition of �[�] in (1.6), we find
that (ii) follows from Lemma 3.1 (i, ii) in the special case p = n + 1.

3.2. Integral estimates

In this subsection, we will prove Proposition 1.7. We start with the following inte-
gral estimate on an open, bounded, smooth, and uniformly convex domain in Rn .

Lemma 3.3. Let � be an open, bounded, smooth, and uniformly convex domain in
Rn . Suppose that u, v 2 C1,1(�) \C4(�) are convex functions with u = v = 0 on
@�. Then

Z

�
|u| det D2v dx �

Z

�
|v|(det D2u)

1
n
⇣
det D2v

⌘ n�1
n dx .

Proof. Let V = (V i j ) be the cofactor matrix of the Hessian matrix D2v = (vi j ). If
D2v is positive definite then V = (det D2v)(D2v)�1.We always have n det D2v =
V i jvi j where the summation convention is understood. Moreover, V 2 C2(�)

because v 2 C4(�). Since V is divergence-free, that is,

@i V i j ⌘
nX

i=1
@i V i j = 0 where @i =

@

@xi
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for all j = 1, · · · , n; we also have

n det D2v = @i

⇣
V i jv j

⌘
.

For � > 0 small, let �� := {x 2 � : dist (x, @�) > �}. Then �� is also a open
smooth domain. Denote by ⌫ = (⌫1, · · · , ⌫n) the unit outer normal vector field on
@�� . Integrating by parts twice, we obtain
Z

��

(�u)n det D2v dx =
Z

��

(�u)@i
⇣
V i jv j

⌘
dx

=
Z

��

ui V i jv j dx �
Z

@��

u⌫i V i jv j

=
Z

��

ui@ j
⇣
V i jv

⌘
dx �

Z

@��

u⌫i V i jv j

=
Z

��

�ui j V i jv dx �
Z

@��

u⌫i V i jv j +
Z

@��

ui⌫ j V i jv.

Letting � ! 0, using u = v = 0 on @� and u, v 2 C1,1(�), we get
Z

�
(�u)n det D2v dx =

Z

�
�ui j V i jv dx . (3.7)

Using the matrix inequality

trace (AB) � n(det A)1/n(det B)1/n for A, B symmetric � 0,

and noting that det V = (det D2v)n�1, we get

ui j V i j = trace (D2uV ) � n(det D2u)1/n(det V )1/n = n(det D2u)
1
n (det D2v)

n�1
n .

Recalling (3.7) and the fact that u, v < 0 in�, we obtain the desired inequality.

The extension of Lemma 3.3 to general open bounded convex domains as
stated in Proposition 1.7 will be crucial in proving the uniqueness of the Monge-
Ampère eigenvalue and Monge-Ampère eigenfunctions up to positive multiplica-
tive constants on general open bounded convex domains.

We are now ready to prove Proposition 1.7.

Proof of Proposition 1.7. Let {�m} ⇢ � be a sequence of open, bounded, smooth
and uniformly convex domains in � that converges to � in the Hausdorff distance.
Since u 2 C5(�), we have det D2u 2 C3(�). For each m, the Dirichlet problem

(
det D2um = det D2u in �m
um = 0 on @�m
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has a unique solution um 2 C4+↵(�m) for all ↵ 2 (0, 1) by the classical result of
Caffarelli-Nirenberg-Spruck [8]; see [8, Theorem 1 and Remark 2].

Similarly, for each m, the Dirichlet problem
(
det D2vm = det D2v in �m
vm = 0 on @�m

has a unique solution vm 2 C4+↵(�m) for all ↵ 2 (0, 1).
Applying Lemma 3.3 to um, vm and �m , we have

Z

�m

|um | det D2vm dx �
Z

�m

|vm |
�
det D2um

� 1
n
�
det D2vm

� n�1
n dx .

It follows that
Z

�m

|um | det D2v dx �
Z

�m

|vm |
�
det D2u

� 1
n
�
det D2v

� n�1
n dx . (3.8)

We will let m ! 1 in (3.8) to obtain (1.14). To see this, we first show that
Z

�m

|vm |
⇣
det D2u

⌘ 1
n
⇣
det D2v

⌘ n�1
n dx

!
Z

�
|v|

⇣
det D2u

⌘ 1
n
⇣
det D2v

⌘ n�1
n dx when m ! 1.

(3.9)

Note that
Z

�
|v|

⇣
det D2u

⌘1
n
⇣
det D2v

⌘n�1
n dx�

Z

�m

|vm |
⇣
det D2u

⌘ 1
n
⇣
det D2v

⌘ n�1
n dx

=
Z

�\�m

|v|(det D2u)
1
n (det D2v)

n�1
n dx

+
Z

�m

[|v| � |vm |](det D2u)
1
n (det D2v)

n�1
n dx ⌘ Am + Bm .

(3.10)

We will show that Am and Bm tend to 0 when m ! 1. Indeed, since v 2 C(�),
and v = 0 on @�, and �m converges to � in the Hausdorff distance, we have

kvkL1(�\�m) ! 0 when m ! 1. (3.11)

Therefore, from (3.11) and the bound
R
�(det D2u)

1
n (det D2v)

n�1
n dx  M , we find

that Am goes to 0 when m ! 1.
To show that Bm goes to 0 when m ! 1, it suffices to show that

kv � vmkL1(�m) ! 0.
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Note that, on @�m ,

�kv � vmkL1(@�m) + vm  v  kv � vmkL1(@�m) + vm .

In �m , we have

det D2v = det D2
�
vm ± kv � vmkL1(@�m)

�
.

Thus, by the comparison principle (Lemma 2.5) we have in �m that

�kv � vmkL1(@�m) + vm  v  kv � vmkL1(@�m) + vm .

It follows that

kv � vmkL1(�m)  kv � vmkL1(@�m) = kvkL1(@�m) ! 0 when m ! 1

by (3.11). Consequently, (3.9) holds.
Similarly, we also have

Z

�m

|um | det D2v dx !
Z

�
|u| det D2v dx when m ! 1. (3.12)

Hence, using (3.9) and (3.12), we can let m ! 1 in (3.8) to obtain the desired
inequality (1.14).

4. Monge-Ampère equations with degenerate right hand side

4.1. An extension of Tso’s theorem

Let � be an open, bounded convex domain in Rn . For p � 0 and � > 0, consider
the functional

Jp,�(u,�) =
1

n + 1

Z

�
(�u) det D2u dx �

�

p + 1

Z

�
(�u)p+1 dx (4.1)

over all convex functions u 2 C(�) with u = 0 on @�.
When the domain � is clear from the context, we can write Jp,�(u) for

Jp,�(u,�).
We recall the following theorem due to Tso [20, Corollary 4.2 and Theorem E].

Theorem 4.1 (Tso’s theorem). Let � be an open, bounded, smooth and uniformly
convex domain in Rn . Then, for each 0  p 6= n, there exists a nonzero convex
solution u 2 C0,1(�) \ C1(�) to the Dirichlet problem

(
det D2u = |u|p in �

u = 0 on @�.

Moreover, if 0  p < n then the nonzero convex function u is unique and it mini-
mizes the functional Jp,1(u,�) over all convex functions u 2 C(�) \ C2(�) with
u = 0 on @� and having positive definite Hessian D2u in �.
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When 0  p < n, Theorem 4.1 was extended by Hartenstine [14, Theorem 3.1] to
the case where the domain� is only assumed to be bounded and strictly convex. In
the following theorem, we further extend Theorem 4.1 to case where the domain �
is only assumed to be bounded and convex. Our extension works for all p.

Theorem 4.2. Let � be an open, bounded convex domain in Rn . Then, for each
0  p 6= n, there exists a nonzero convex Aleksandrov solution u 2 C(�)\C1(�)
to the Dirichlet problem

(
det D2u = |u|p in �

u = 0 on @�.
(4.2)

Moreover, if 0  p < n then the nonzero convex function u is unique and it mini-
mizes the functional

Jp,1(u,�) =
1

n + 1

Z

�
(�u) det D2u dx �

1
p + 1

Z

�
(�u)p+1 dx

over all convex functions u 2 C(�) with u = 0 on @�.

Remark 4.3. The conclusions of Theorem 4.2 remain unchanged if we replace 1
by � > 0 in the functional Jp,1(·,�) and the equation det D2u = |u|p is replaced
by det D2u = �|u|p.
For reader’s convenience, we include below a simple proof of Theorem 4.2 for
general open bounded convex domains �. Our proof adapts arguments from [14].

We start with following compactness result.

Proposition 4.4. Let 0  p 6= n. Let� be an open, bounded convex domain inRn .
Let {�m} be a sequence of open, bounded, smooth and uniformly convex domains in
Rn that converges to � in the Hausdorff distance. For each m, consider a nonzero
convex solution um 2 C0,1(�m) \ C1(�m) to

(
det D2um = |um |p in �m
um = 0 on @�m .

(4.3)

Then up to extracting a subsequence, {um} converges uniformly on compact sub-
sets of � to a nonzero convex Aleksandrov solution u 2 C(�) \ C1(�) of (4.2).
Furthermore, Jp,1(um,�m) ! Jp,1(u,�).

Proof. By Lemma 3.1(iii), we have

c(n, p)|�m |
2

n�p  kumkL1(�m)  C(n, p)|�m |
2

n�p . (4.4)
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Applying the Aleksandrov maximum principle (Theorem 2.4) to the solution um of
(4.3), and using the bound (4.4), we find

|um(x)|n  C(n)(diam�m)n�1dist (x, @�m)

Z

�m

det D2um dx

 C(n, p, diam�m, |�m |)dist (x, @�m) for all x 2 �m .

(4.5)

Due to the convergence of �m to � in the Hausdorff distance, the sequence
{C(n, p, diam�m, |�m |)} is bounded by a constant C(n, p,�) independent of m.
Now, combining (4.5) with um = 0 on @�m , we find that {um} is uniformly C0,

1
n at

the boundary:

|um(x) � um(y)|  C(n, p,�)|x � y|
1
n for all x 2 �m, and all y 2 @�m .

From the convexity of um , we find that the functions um have uniformly bounded
global C0,

1
n norm on�m . By the Arzela-Ascoli theorem, there exists a subsequence

of {um}, still denoted by {um}, that converges locally uniformly to a convex function
u on �. The compactness theorem of the Monge-Ampère equation, Theorem 2.6,
then gives that the function u is actually an Aleksandrov solution of (4.2). The
estimates (4.4) show that u 6⌘ 0. By Proposition 2.8, u 2 C1(�).

Because um and u solve (4.3) and (4.2), respectively, we have

Jp,1(um,�m) =
p � n

(n + 1)(p + 1)

Z

�m

|um |p+1 dx and

Jp,1(u,�) =
p � n

(n + 1)(p + 1)

Z

�
|u|p+1 dx .

Since it is easy to see that
Z

�m

|um |p+1 dx !
Z

�
|u|p+1 dx,

the convergence Jp,1(um,�m) ! Jp,1(u,�) follows.

Next, we prove a uniqueness result for (4.2) when 0  p < n which follows
from the interior regularity of its solutions and a rescaling argument.

Proposition 4.5. Let � be an open, bounded convex domain in Rn . Let p 2 [0, n).
Then there is a unique nonzero convex Aleksandrov solution u 2 C(�) to (4.2).

Proof. Let u 2 C(�) be a nonzero convex solution to (4.2) whose exsitence is
guaranteed by Proposition 4.4. We show that it is unique. By Proposition 2.8,
u 2 C1(�) and u is strictly convex in�. The uniqueness of u follows as in Tso [20,
Proposition 4.1]. Since our setting is slightly different, we include the proof for
reader’s convenience. Suppose we have two nonzero convex solutions u and v to
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(4.2) with u � v being positive somewhere in �. By translation of coordinates, we
can assume that x0 = 0 2 � satisfies u(0) � v(0) = maxx2�(u � v)(x) = � > 0.
For 1 < 3  2, consider for x 2 �, u3(x) = u(x/3) and

⌘3(x) = v(x)/u3(x).

If dist (x, @�) ! 0, then ⌘3(x) ! 0. Note that u, v < 0 in � and hence

⌘3(0) = v(0)/u(0) = [u(0) � �]/u(0) � 1+ " for some " > 0.

Therefore, the function ⌘3 attains its maximum value at x3 2 � with ⌘3(x3) �
1+ ". At x = x3, using u, v 2 C1(�),

�
D2⌘3(x3)

�
 0 and u3(x3)  0, we can

compute
D2v = ⌘3D2u3 + D2⌘3u3 � ⌘3D2u3.

It follows that

|v(x3)|p = det D2v(x3) � ⌘n3 det D
2u3(x3) = ⌘n33�2n det D2u(x3/3)

= ⌘n33�2n|u(x3/3)|p.

Using the maximality of ⌘3 at x3, we find

1 � ⌘n33�2n [|u(x3/3)|/|v(x3)|]p = ⌘
n�p
3 (x3)3�2n � (1+ ")n�p3�2n.

Letting 3 & 1, using p < n and " > 0, we obtain a contradiction. Thus u must
be the unique nonzero convex solution to (4.2) and the proof of the proposition is
complete.

We recall the following approximation lemmas; see [14, Lemmas 3.1 and 3.2].

Lemma 4.6. Let p 2 [0, n). Let � be an open, bounded uniformly convex domain
and let u 2 C(�) be a convex function with u = 0 on @� such that Jp,1(u,�) < 1.

Then for any " > 0, there exists a convex function v 2 C(�) \ C2(�) with v = 0
on @� and positive-definite Hessian such that |Jp,1(v,�) � Jp,1(u,�)| < ".

Lemma 4.7. Let p 2 [0, n). Let � be an open, bounded convex domain, and sup-
pose v 2 C(�) is a convex function with v = 0 on @� satisfying Jp,1(v,�) < 1.
Let {�m} be a sequence of open, bounded, smooth and uniformly convex domains
inRn , satisfying�k � �k+1 � � for all k, and such that�m converges to� in the
Hausdorff distance. Then for every " > 0, there exist an m and a convex function
w 2 C(�m) with w = 0 on @�m such that |Jp,1(v,�) � Jp,1(w,�m)| < ".

Now, we can give a proof of Theorem 4.2.
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Proof of Theorem 4.2. Fix 0  p 6= n. Let {�m} be a sequence of open, bounded,
smooth and uniformly convex domains in Rn , satisfying �k � �k+1 � � for all
k, and such that �m converges to � in the Hausdorff distance. Let um and u be as
in Proposition 4.4. Then, u 2 C(�) \ C1(�) is a nonzero convex Aleksandrov
solution to the Dirichlet problem (4.2). From the uniqueness result in Proposition
4.5 for the case 0  p < n, it remains to show that if 0  p < n then u minimizes
Jp,1(·,�) over all convex functions w 2 C(�) with w = 0 on @�.

Indeed, for each m, the nonzero convex solution um to (4.3), as given by [20,
Corollary 4.2], is the minimizer of Jp,1(·,�m) over all functions v 2 C(�m) \
C2(�m) satisfying v = 0 on @�m and whose Hessian is positive definite at all
points in �m . By Lemma 4.6, we find that um is also the minimizer of Jp,1(·,�m)

over all functions w 2 C(�m) satisfying w = 0 on @�m .
We use the above fact together with the convergence Jp,1(um,�m) !

Jp,1(u,�) proved in Proposition 4.4 to establish the minimality of u. Suppose
that this is not the case. Then there exists a convex function v 2 C(�) with v = 0
on @� such that " := Jp,1(u,�) � Jp,1(v,�) > 0. Then, for sufficiently large
k, we must have |Jp,1(uk,�k) � Jp,1(u,�)| < "/3 and also by Lemma 4.7, for
k large enough, there is a convex function vk 2 C(�k) with vk = 0 on @�k such
that |Jp,1(v,�) � Jp,1(vk,�k)| < "/3. It follows that there exists k such that
Jp,1(vk,�k) < Jp,1(uk,�k)� "/3. This contradicts the minimality property of uk .
The proof of the theorem is complete.

4.2. Degenerate Monge-Ampère equations and Abreu’s equation

We digress a bit in this subsection to discuss another context where the degenerate
Monge-Ampère equations (4.2) appear. It turns that (4.2) also appear in the analysis
of the Abreu equation. The Abreu equation [1] is a fourth order fully nonlinear
partial differential equation of the form

Ui jwi j = � f, w =
h
det D2u

i�1
in �, (4.6)

where u is a locally uniformly convex function defined in � ⇢ Rn , and U = (Ui j )
is the matrix of cofactors of the Hessian matrix D2u of u.

When� is the interior of a bounded polytope (that is the intersection of finitely
many closed half-spaces), equation (4.6) arises in the study of the existence of con-
stant scalar curvature Kähler metrics for toric varieties [9] in complex geometry
and the function f corresponds to the scalar curvature of toric varieties. In this
case, det D2u blows up, or equivalently, the inverse of the Hessian determinant w
vanishes, near the boundary @�. In obtaining (essentially sharp) blow up rate of
det D2u near the boundary @�, Donaldson [10, Theorem 5] uses the maximum
principle and an interesting Monge-Ampère differential inequality concerning neg-
ative convex functions R on � with

lim
dist (x,@�)!0

R(x)
dist (x, @�)

= �1, and det D2R � |R|n�1.
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This study leads to (4.2) with p = n � 1 on open bounded convex polytopes;
see [10, page 123].

5. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by proving Propositions 5.1, 5.3, 5.6 and 5.8.

5.1. Existence of the Monge-Ampère eigenfunctions

The existence of nonzero convex solutions to (1.8) with � = �[�] defined by (1.6)
follows from the following proposition.

Proposition 5.1. Let � be an open bounded convex domain in Rn . Let � = �[�]
be defined by (1.6). Then (1.7) holds and there exists a nonzero convex solution
u 2 C(�) \ C1(�) to (1.8).

Proof. By Corollary 3.2, we have (1.7). For the existence of nonzero convex so-
lutions to (1.8), we argue as in Tso [20, Corollary 4.3]. For each 0  p < n, by
Theorem 4.2, there exists a unique nonzero convex solution u p 2 C(�) \ C1(�)
to (

det D2u = �|u|p in �

u = 0 on @�.

Moreover, u p minimizes the functional Jp,�(·) = Jp,�(·,�), defined by (4.1), over
all convex functions u 2 C(�) with u = 0 on @�. Our proof, however, does not
use the uniqueness property of u p.

We will bound ku pkL1(�) uniformly (in p) from above and below. Then, we
can argue as in Proposition 4.4 to show that, up to extracting a subsequence, {u p}
converges, as p % n, uniformly on compact subsets of � to a nonzero convex
solution u 2 C(�) \ C1(�) of (1.8).

Step 1 (Bound kupkL1(�) from above). Let ↵p = ku pkL1(�) and vp = u p/↵p.
Then vp 2 C(�) \ C1(�) is convex with vp = 0 on @� and kvpkL1(�) = 1.
From the equation for u p, we deduce that

↵
n�p
p det D2vp = �|vp|

p in �.

Multiplying both sides by |vp| and integrating over �, we get

↵p =

"
�
R
� |vp|p+1 dxR

� |vp| det D2vp dx

# 1
n�p

. (5.1)

It follows that

Jp,�(u p) = Jp,�(↵pvp) = �↵
p+1
p kvpk

p+1
L p+1(�)

(p � n)(n + 1)�1(p + 1)�1. (5.2)
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By the Hölder inequality, we have
Z

�
|vp|

p+1 dx = kvpk
p+1
L p+1(�)

 kvpk
p+1
Ln+1(�)

|�|
n�p
n+1 .

Thus, using (5.1), the definition of � in (1.6) and Lemma 3.1, we find

↵p 

"
�
R
� |vp|n+1 dxR

� |vp| det D2vp dx

# 1
n�p  |�|

R
� |vp|n+1 dx

� 1
n+1




|�|

R
� |vp|n+1 dx

� 1
n+1

 C(n).

Step 2 (Bound kupkL1(�) from below). This step uses the minimality property
of u p with respect to the functional Jp,�(·,�) over all convex functions w 2 C(�)
with w = 0 on @�. We will use

Jp,�(u p)  Jp,�(↵v)

for a special positive number ↵ and a convex function v 2 C(�) with v = 0 on @�
and kvkL1(�) = 1. Motivated by the calculation in Step 1, once v is determined,
we can choose

↵ =

"
�
R
� |v|p+1 dx

R
� |v| det D2v dx

# 1
n�p

.

Since kvkL1(�) = 1,

↵ �

"
�
R
� |v|n+1 dx

R
� |v| det D2v dx

# 1
n�p

.

By the definition of � in (1.6), we can choose a convex function v 2 C(�) with
v = 0 on @� and kvkL1(�) = 1 so that ↵ � 1

2 . Then kvkp+1L p+1(�)
� kvkn+1Ln+1(�)

� A
where

A := inf
⇢Z

�
|u|n+1 dx :u is convex in �, u 2 C(�), u = 0 on @�, kukL1(�) =1

�

and the minimality of u p now leads to

Jp,�(u p)  Jp,�(↵v) = �↵ p+1kvkp+1L p+1(�)
(n + 1)�1(p + 1)�1(p � n)

 �2�p�1A(n + 1)�1(p + 1)�1(p � n) < 0.
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Recalling (5.2), we have for ↵p = ku pkL1(�) and kvpkL1(�) = 1,

�↵
p+1
p kvpk

p+1
L p+1(�)

(p � n)(n + 1)�1(p + 1)�1

 �2�p�1A(n + 1)�1(p + 1)�1(p � n) < 0.

Hence, using kvpkL p+1(�)  |�|
1
p+1 which follows from kvpkL1(�) = 1, and then

invoking Lemma 3.1, we obtain

ku pkL1(�) = ↵p � 2�1A
1
p+1 kvpk

�1
L p+1(�)

� 2�1A
1
p+1 |�|�

1
p+1

� 2�1[c(n)]
1
p+1 � 2�1[c(n)]

1
n+1 .

We have established the uniform bound for ku pkL1(�) from above and below, and
thus completed the proof of the proposition.

The following proposition gives another way to construct, via approximation,
nonzero convex solutions to (1.8) with � replaced by a (possible different) positive
constant 3.

Proposition 5.2. Let � be an open bounded convex domain in Rn . Let {�m} be
a sequence of open, bounded, smooth and uniformly convex domains in Rn that
converges to � in the Hausdorff distance. For each m, we take um 2 C1,1(�m) \
C1(�m)with kumkL1(�m) = 1 to be a nonzero convex eigenfunction of theMonge-
Ampère operator on �m:

(
det D2um = �(�m)|um |n in �m
um = 0 on @�m .

Then we can find a subsequence of {m}1m=1, still denoted by {m}1m=1, such that

lim
m!1

�(�m) = 3 > 0

and {um} converges uniformly on compact subsets of� to a nonzero convex solution
of (

det D2u = 3|u|n in �,

u = 0 on @�.
(5.3)

Proof. By Corollary 3.2, we have the estimates

c(n)|�m |�2  �(�m)  C(n)|�m |�2.

Thus, the sequence {�(�m)} is uniformly bounded from above and below. Thus,
up to extracting a subsequence, {�(�m)} converges to a positive constant 3 > 0.
Since kumkL1(�m) = 1, we can argue as in Proposition 4.4 to show that, up to
extracting a subsequence further, {um} converges uniformly on compact subsets of
� to a nonzero convex solution of (5.3).
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5.2. Global almost Lipschitz property of the Monge-Ampère eigenfunctions

In this subsection, we prove that the Monge-Ampère eigenfunctions in Proposition
5.1 are almost Lipschitz globally, that is u 2 C0,�(�) for all � 2 (0, 1).

Proposition 5.3. Let � be an open bounded convex domain in Rn . Let u 2 C(�)
be a nonzero convex eigenfunction of (1.8) with � = �[�] defined by (1.6). Then,
for all � 2 (0, 1), we have u 2 C0,�(�) and the estimate

|u(x)|  C(n,�, diam�)[dist(x, @�)]�kukL1(�) for all x 2 �. (5.4)

Proof. By the convexity of u, the global regularity u 2 C0,�(�) for all � 2 (0, 1)
follows from the boundary estimate (5.4). It remains to establish this estimate.
Without loss of generality, we can assume that kukL1(�) = 1.

Let x⇤ be an arbitrary point in �. By translation and rotation of coordinates,
we can assume that we have the following geometric setting: the origin 0 of Rn

lies on @�, the xn-axis points inward �, x⇤ lies on the xn-axis, and the minimum
distance to the boundary of � from x⇤ is achieved at the origin. We denote a point
x = (x1, · · · , xn) 2 Rn by (x 0, xn) where x 0 = (x1, · · · , xn�1).

To prove (5.4), it suffices to prove that for all x 2 �, we have

|u(x)|  C(n,↵, diam�)x↵
n for all ↵ 2 (0, 1). (5.5)

First, we prove a weaker bound

|u(x)|  C(n, diam�)x
2

n+1
n for all x 2 �. (5.6)

Indeed, motivated by [5, Lemma 1], let us consider, for ↵ 2 (0, 1) and x 2 �,

�↵(x) = x↵
n

⇣
|x 0|2 � C↵

⌘
where C↵ =

1+ 2[diam�]2

↵(1� ↵)
. (5.7)

Then, denoting the second partial derivative operator @2

@xi @x j by Di j , we have

Di j�↵ = 2x↵
n �i j for i, j  n � 1

Din�↵ = 2↵xi x↵�1
n

Dnn�↵ = ↵(↵ � 1)
⇣
|x 0|2 � C↵

⌘
x↵�2
n .

Here, �i j = 1 if i = j and �i j = 0 if i 6= j . We can compute for all x 2 �,

det D2�↵(x) = 2n�1xn↵�2
n

h
↵(1� ↵)C↵ �

�
↵2 + ↵

�
|x 0|2

i
� 2n�1xn↵�2

n .

Therefore, �↵ is convex in � with

det D2�↵(x) � xn↵�2
n in � and �↵  0 on @�. (5.8)
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To prove (5.6), we choose ↵ = 2
n+1 in (5.7) and then use (5.8) to obtain a convex

function � = � 2
n+1

2 C(�) satisfying the Monge-Ampère inequality

det D2� � [diam�]�
2

n+1 in �

while �  0 on @�. Hence, with

C⇤ =
⇣
�[�][diam�]

2
n+1

⌘1/n
,

we have

det D2(C⇤�) = [C⇤]n det D2� � �[�] � �[�]|u|n = det D2u in �,

while on @�, u = 0 � C⇤�. By the comparison principle, Lemma 2.5, we have
u � C⇤� 2

n+1
in �. Therefore

|u|  �C⇤� 2
n+1

in �.

In particular, from the choice of C 2
n+1

in (5.7), the bounds on � given by Corollary
3.2, we find that (5.6) now follows from the following estimates:

|u(x)| = |u(x 0, xn)|  �C⇤� 2
n+1

(x 0, xn)  C⇤C 2
n+1

x
2

n+1
n for all x 2 �.

Next, we improve the estimate (5.6) by iteration. The key argument is the following.
Claim. If for some � 2 (0, 1) we have

|u(x)|  C(n,�, diam�)x�
n for all x 2 �, (5.9)

then for all x 2 �,

|u(x)|  C(n,↵, diam�)x↵
n for any � < ↵ < min

⇢
� +

2
n
, 1

�
. (5.10)

From this claim, we can increase the exponent of xn in the upper bound for |u| by
at least 1n if it is less than 1� 1

n . Thus, from (5.6), we obtain the desired bound (5.5)
after at most (n � 1) iterations.

It remains to prove the claim. Suppose we have (5.9) for � < 1. If � < ↵ <

min{� + 2
n , 1}, then for Ĉ = Ĉ(n,�,↵, diam�) large, we have

|u(x)|  C(n,�, diam�)x�
n < Ĉ�� 1

n x
n↵�2
n

n in �. (5.11)

Denote by (Ui j ) = (det D2u)(D2u)�1 the cofactor matrix of the Hessian matrix
D2u = (ui j ). Then

detU =
�
det D2u

�n�1 and Ui jui j = n det D2u = n�|u|n.

Using (5.8), (5.11) and the matrix inequality

trace (AB) � n(det A)1/n(det B)1/n for A, B symmetric � 0,
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we find that

Ui j (Ĉ�↵)i j � nĈ
�
det D2u

� n�1
n
�
det D2�↵

� 1
n � nĈ�

n�1
n |u|n�1x

n↵�2
n

n

> n�|u|n = n det D2u = Ui jui j in �.
(5.12)

Now, the maximum principle for the operator Ui j@i j applied to u and Ĉ�↵ gives

u � Ĉ�↵ in �.

It follows that

|u(x)| = |u|(x 0, xn)  �Ĉ�↵(x 0, xn)  ĈC↵x↵
n for all x 2 �.

This gives (5.10) and the claim is proved. The proof of the proposition is com-
plete.

Inspecting (5.12), we find that it also holds if we replace u by a solution v to
(4.2) where n�2  p 6= n and ↵ is required to satisfy � < ↵ < min{�p+2

n , 1}. This
combined with the upper bound for |v| in Lemma 3.1(iii) gives the almost Lipschitz
property of v. We state this as a proposition.

Proposition 5.4. Let � be an open bounded convex domain in Rn and n � 2 
p 6= n. Let v 2 C(�) be a nonzero convex solution of

det D2v = |v|p in �, and v = 0 on @�.

Then, for all � 2 (0, 1), we have v 2 C0,�(�) and the estimate

|v(x)|  C(n, p,�, diam�)[dist(x, @�)]� for all x 2 �.

It would be interesting to see if the conclusions of Proposition 5.4 still hold for
p 2 [0, n � 2) when n � 3 and � is a general open bounded convex domain
in Rn . On the other hand, when � is a bounded domain with uniformly convex
smooth boundary, nonzero convex solutions to (4.2) share the same global smooth-
ness property as the Monge-Ampère eigenfunctions exactly when p is a positive
integer, regardless whether it is less than n � 2 or not. More precisely, we have the
following theorem.

Theorem 5.5. Let � be an open bounded domain with uniformly convex smooth
boundary. Let p > 0 and p 6= n. Assume that u 2 C(�) is a nonzero convex
solution of (

det D2u = |u|p in �

u = 0 on @�.
(5.13)

The following facts hold:

(i) If p is a positive integer then u 2 C1(�);
(ii) If p is a not an integer then u 2 C2+[p],�(�) for some � = �(n, p) 2 (0, 1) but

u 62 C3+[p](�).Here we use [p] to denote the greatest integer not exceeding p.
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In terms on the number of whole derivatives, the global regularity result in Theo-
rem 5.5 is optimal. The proof of Theorem 5.5, which is a revisit of the proof of the
global smoothness of the Monge-Ampère eigenfunctions in [15, Theorem 1.4], will
be postponed to Section 7.

5.3. Uniqueness of the Monge-Ampère eigenvalue and eigenfunctions

In this subsection, we prove the uniqueness property of the Monge-Ampère eigen-
value and eigenfunctions (up to positive multiplicative constants) to the eigenvalue
problem (1.8).

Proposition 5.6. Let � be an open bounded convex domain in Rn . Suppose that
u, v 2 C(�) are nonzero convex functions in � with u = v = 0 on @�. Suppose
that they satisfy the equations

(
det D2u = �|u|n in �

u = 0 on @�,

and (
det D2v = 3|v|n in �

v = 0 on @�

respectively, for some positive constants � and 3. Then � = 3 and v = mu for
some positive constant m.

Proof. By Proposition 2.8, we have u, v 2 C1(�).
Step 1 (Uniqueness of the eigenvalue: � = 3). We apply Proposition 1.7 to u and
v to obtain

Z

�
3|u||v|n dx =

Z

�
|u| det D2v dx �

Z

�

�
det D2u

� 1
n
�
det D2v

� n�1
n |v| dx

=
Z

�
�
1
n 3

n�1
n |u||v|n dx .

Since |u||v|n > 0 in �, it follows that 3 � �. Similarly, applying Proposition 1.7
to v and u, we obtain � � 3. Therefore, � = 3.
Step 2 (Uniqueness of the eigenfunctions up to positive multiplicative con-
stants: v = mu). In this step, we can use

3 = � = �[�]

as established in Step 1. We can normalize both u and v by multiplying suitable
constants so that

kukL1(�) = kvkL1(�) = 1.
We need to show that u = v. Crucial to our argument is the following integrability
lemma which is the normalized version of Lemma 1.8 stated in the Introduction.
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Lemma 5.7. Let � be an open bounded convex domain in Rn . Suppose that u, v 2
C(�) \ C1(�) are nonzero convex eigenfunctions to (1.8) with kukL1(�) =
kvkL1(�) = 1. Then, there exists a constant C = C(n,�) depending only n and �
so that Z

�
1u|v|n�1 dx  C (5.14)

and
|Du(x)||v(x)|  C(n, diam�)dist

n�1
n+1 (x, @�). (5.15)

We will prove Lemma 5.7 at the end of this section and now continue with our proof
of Step 2. Because u + v is smooth and convex in �, by the arithmetic-geometric
inequality, we have

n
⇣
det D2(u + v)

⌘ 1
n

 1(u + v).

From Lemma 5.7 and Corollary 3.2, we find that
Z

�

⇣
det D2(u+v)

⌘ 1
n
⇣
det D2v

⌘ n�1
n dx

Z

�
�
n�1
n 1(u+v)|v|n�1dxC(n,�). (5.16)

On the other hand, using the matrix inequality

[det(A + B)]
1
n � (det A)

1
n + (det B)

1
n for A, B symmetric, positive definite

with equality if and only if A = cB for some positive constant c, we find that for
all x 2 �

⇣
det D2(u + v)(x)

⌘ 1
n
�
⇣
det D2u(x)

⌘ 1
n
+
⇣
det D2v(x)

⌘ 1
n
=�

1
n |u(x)+v(x)| (5.17)

with equality if and only if D2u(x) = C(x)D2v(x) for some positive constant
C(x).

Due to (5.16), and the inequality
Z

�
det D2v dx =

Z

�
�|v|n dx  �|�|  C(n,�),

we can apply Proposition 1.7 to u + v and v and use (5.17) to obtain
Z

�
|u + v|�|v|n dx =

Z

�
|u + v| det D2v dx

�
Z

�

⇣
det D2(u + v)

⌘ 1
n
⇣
det D2v

⌘ n�1
n

|v| dx

�
Z

�
�
1
n |u + v|�

n�1
n |v|n dx .
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It follows that we must have equality in (5.17) for all x 2 �. Hence, for all x 2 �,

D2u(x) = C(x)D2v(x).

Taking the determinant of both sides, and using (1.8), we find

C(x) =
|u(x)|
|v(x)|

=
u(x)
v(x)

and therefore
D2u(x) =

u(x)
v(x)

D2v(x). (5.18)

Using (5.18) and (5.15), we conclude the proof of Step 2 as follows.
Without loss of generality, we can assume that � contains the origin in its

interior. For any direction e 2 Sn�1 = {x 2 Rn : |x | = 1}, the ray through the
origin in the e direction intersects the boundary @� at x0 and x1. Assume that the
segment from x0 to x1 is given by x0 + te for 0  t  m := |x0x1|. Let us consider
the following non-positive single variable functions on [0,m]:

f (t) = u(x0 + te), f̃ (t) = v(x0 + te).

Then we have

f (0)= f (m)= f̃ (0)= f̃ (m)=0, f 00(t)=D2u(x0+te)e·e, f̃ 00(t)=D2v(x0+te)e·e.

Using (5.18), we find

f 00(t) =
f (t)
f̃ 0(t)

f̃ 00(t)

for all t 2 (0,m). Thus, ( f 0(t) f̃ (t) � f (t) f̃ 0(t))0 = 0 for all t 2 (0,m) and hence

f 0(t) f̃ (t) � f (t) f̃ 0(t) = C

on (0,m) for some constant C .
Using (5.15) and recalling n � 2, we find that when t ! 0, then f 0(t) f̃ (t) !

0 and f (t) f̃ 0(t) ! 0. Thus C = 0. Therefore ( f (t)/ f̃ (t))0 = 0 on (0,m). It
follows that f (t) = c f̃ (t) on (0,m) for some constant c > 0.

Returning to u and v, we find that the ratio u/v is a constant c(e) in the di-
rection e 2 Sn�1. We vary the direction e and use the fact that c(e) = u(0)

v(0) for all
e 2 Sn�1 to conclude that u/v is a positive constant c in �. Since kukL1(�) =
kvkL1(�) = 1, we have c = 1. Therefore u = v.

Proof of Lemma 5.7. For x 2 �, by the convexity of u and the fact that u = 0 on
@�, we have the gradient estimate

|Du(x)| 
|u(x)|

dist (x, @�)
. (5.19)
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Let {�m} ⇢ � be a sequence of smooth, open, bounded and uniformly convex
domains that converges to � in the Hausdorff distance. To prove (5.14), by the
monotone convergence theorem, it suffices to prove that for all m, we have

Z

�m

1u|v|n�1 dx  C(n,�).

For each m, using the interior smoothness of u and v and integrating by parts, we
have

Z

�m

1u|v|n�1 dx =
Z

�m

1u(�v)n�1 dx

=
Z

�m

(n � 1)Du · Dv|v|n�2 dx +
Z

@�m

@u
@⌫

|v|n�1,
(5.20)

where ⌫ is the outer normal unit vector field on @�m .
We show each term on the right hand side of (5.20) is uniformly bounded. Let

us choose � = n
n+1 2 (0, 1) in Proposition 5.3.

Then, for x 2 �, by Proposition 5.3 and the gradient estimate (5.19), we have

|Du(x)||v(x)|  C(n,�, diam�)dist 2��1(x, @�)

 C(n, diam�)dist
n�1
n+1 (x, @�)

(5.21)

and

|Du(x)||Dv(x)||v(x)|n�2  C(n, diam�)dist n��2(x, @�)

 C(n, diam�)dist�
2

n+1 (x, @�).
(5.22)

As a consequence of (5.21), we have (5.15) and furthermore, for all x 2 �,

|Du(x)||v(x)|n�1  |Du(x)||v(x)|  C(n, diam�).

Hence, we can easily see that for all m,
Z

@�m

@u
@⌫

|v|n�1  C(n, diam�).

It remains to show the uniform boundedness of the first term on the right hand side
of (5.20). However, this is easy, since by (5.22), and the fact that�m ⇢ �, we have

Z

�m

Du · Dv|v|n�2 dx 
Z

�
|Du||Dv||v|n�2 dx


Z

�
C(n, diam�)dist�

2
n+1 (x, @�) dx  C(n,�).
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5.4. Stability of the Monge-Ampère eigenvalue

In this subsection, we prove further properties of the Monge-Ampère eigenvalue de-
fined by (1.6). These include its stability with respect to the Hausdorff convergence
of the domains.

Proposition 5.8. The Monge-Ampère eigenvalue, as defined by (1.6), has the fol-
lowing properties:

(i) (Stability with respect to the Hausdorff convergence) Let {�m}1m=1 ⇢ Rn be a
sequence of open bounded convex domains that converges to an open bounded
convex domain �. Then limm!1 �[�m] = �[�];

(ii) (Domain monotonicity) If �1 and �2 are open bounded convex domains such
that �1 ⇢ �2 then �[�2]  �[�1];

(iii) (Affine transformation) Let� be an open bounded convex domain inRn . If T :
Rn ! Rn is an affine transformation on Rn then �[T (�)] = | det T |�2�[�].
In particular:
• (Homogeneity with respect to domain dilations) If t > 0, then �[t�] =
t�2n�[�];

• (Affine invariance) If T : Rn ! Rn is an affine transformation on Rn with
det T = 1, then �[T (�)] = �[�].

Proof. (i) We first consider the case {�m}1m=1 is a sequence of open, smooth,
bounded and uniformly convex domains. In this case, the stability property of the
Monge-Ampère eigenvalue, that is,

lim
m!1

�[�m] = lim
m!1

�(�m) = �[�]

is a consequence of Proposition 5.2 and the uniqueness of the Monge-Ampère
eigenvalue as proved in Proposition 5.6.

For the general open bounded convex domains �m , we approximate each �m
by a sequence of smooth, open, bounded and uniformly convex domains {�km}1k=1
that converges to �m in the Hausdorff distance. Then, as above,

lim
k!1

�(�km) = �[�m].

Now, the conclusion of (i) follows from a standard diagonal argument.
(ii) Suppose that �1 ⇢ �2. Let {�1m} ⇢ �1 be a sequence of open, smooth,

bounded and uniformly convex domains that converges to �1 in the Hausdorff dis-
tance. Let {�2m} � �2 be a sequence of open, smooth, bounded and uniformly
convex domains that converges to �2 in the Hausdorff distance. Then �1m ⇢ �2m
for all m. By [21, Theorem 4.1(iii)], we have �(�2m)  �(�1m) for all m. Letting
m ! 1 and using (i), we find �[�2]  �[�1].

(iii) Let u 2 C(�) with u = 0 on @� be a nonzero convex eigenfunction of the
Monge-Ampère operator on � as given by Proposition 5.1. Then det D2u = �|u|n
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in � where � = �[�]. Suppose T : Rn ! Rn is an affine transformation on Rn .
Then

uT (x) := u(T�1x), x 2 T (�)

satisfies in T (�)
D2uT (x) = (T�1)t D2u(T�1x)T�1

and hence

det D2uT (x) = | det T |�2
⇣
det D2u

⌘ ⇣
T�1x

⌘
= | det T |�2�|u|n

⇣
T�1x

⌘

= �| det T |�2|uT (x)|n.

Therefore, from the uniqueness of the Monge-Ampère eigenvalue, we have

�[T (�)] = | det T |�2�[�].

This proves (iii).
Finally, when applying (iii) to T x = t x with det T = tn (t > 0), we obtain

the homogeneity property with respect to domain dilations of the Monge-Ampère
eigenvalue.

6. Proofs of Theorems 1.3 and 1.4

In this section, we prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. Let�0 and�1 be open bounded convex domains inRn . For
each i = 0, 1, let {�im}1m=1 be a sequence of open, bounded, smooth, and uniformly
convex domain in Rn converging to �i in the Hausdorff distance. We recall the
Minkowski linear combinations of two convex domains as defined by (1.4). Then
for each ↵ 2 [0, 1], the sequence of Minkowski linear combinations {�↵m} of �0m
and �1m converges to �↵ in the Hausdorff distance. For each m, we have by (1.3),

�(�↵m)�
1
2n � (1� ↵)�(�0m)�

1
2n + ↵�(�1m)�

1
2n .

Letting m ! 1 in the above inequality and using the stability with respect to the
Hausdorff convergence of the Monge-Ampère eigenvalue in Theorem 1.1 (iv), we
obtain

�[�↵]�
1
2n � (1� ↵)�[�0]

� 1
2n + ↵�[�1]

� 1
2n .

The theorem is proved.

Proof of Theorem 1.4. (i) Let {�m} be a sequence of open, bounded, smooth, and
uniformly convex domains in Rn converging to � in the Hausdorff distance. For
each m, let B(�m) = Brm be the (open) ball having the same volume as �m . Then,
by Theorem 3.2 in Brandolini-Nitsch-Trombetti [3], we have

�(�m)  �(B(�m)) = �(Brm ). (6.1)
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Since |�m | = |Brm | = rnm |B1| and, �(Brm ) = �(B1)
r2nm

by Proposition 5.8, we have

�(B(�m)) =
�(B1)
r2nm

=
|B1|2�(B1)

|�m |2
. (6.2)

Similarly, if B(�) is the open ball having the same volume as � then

�[B(�)] = �(B(�) =
|B1|2�(B1)

|�|2
. (6.3)

Letting m ! 1 in (6.1), using Theorem 1.1 (iv) on the stability of the Monge-
Ampère eigenvalue with respect to the Hausdorff convergence of the domains, and
recalling (6.2) and (6.3), we obtain (1.9), that is,

�[�]  �[B(�)] =
|B1|2�(B1)

|�|2
.

(ii) Given a fixed volume V > 0, let

�V = inf
�
�[�] : � ⇢ Rn is open, bounded, convex with |�| = V

 
.

Let {�m}1m=1 be a sequence of open bounded convex sets in Rn having volume V
such that

�[�m] ! �V . (6.4)

For each m, by John’s lemma (Lemma 2.7) there exists an affine transformation Tm
of Rn with det Tm = 1 such that

BRm ⇢ Tm(�m) ⇢ BnRm (6.5)

for some Rm > 0. We find

Rnm!n  |�m | = V  nn!n Rnm, !n = |B1|. (6.6)

From (6.5), (6.6) and the Blaschke Selection Theorem (see, for example, [19, The-
orem 1.8.7]), there exists a subsequence of {Tm(�m)}, still denoted by {Tm(�m)},
that converges in the Hausdorff distance to an open bounded convex set S with vol-
ume V . By the stability of the Monge-Ampère eigenvalue in Theorem 1.1(iv), we
have

�[Tm(�m)] ! �[S].

Since �[Tm(�m)] = �[�m] by Proposition 5.8, we find from (6.4) that �[S] = �V .
Thus, the open bounded convex set S has the smallest Monge-Ampère eigenvalue
among all open bounded convex sets � having the same volume V .

(iii) The proof is similar to that of (ii) noting that if �m in (ii) is taken to be
centrally symmetric then Tm(�m) is also centrally symmetric and the limit K of
Tm(�) in the Hausdorff metric is also centrally symmetric.
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7. Proof of Theorem 5.5

Proof of Theorem 5.5. The proof of the theorem is divided into several steps. We
note that, by Proposition 2.8, u 2 C1(�).

Step 1 (u 62 C3+[ p](�) if p is not an integer). We argue by contradiction that
u 62 C3+[p](�) if p is not an integer. Suppose otherwise, then we can write for
x 2 �

|u(x)| = �u(x) = g(x)dist (x, @�)

where the function g is positive (due to (7.1) and (7.2) below) and C2+[p] near the
boundary @�. Note that dist (·,�) is smooth near the boundary @�. By using the
hypothetical assumption u 2 C3+[p](�) and the equation

det D2u = |u|p = gpdist p(x, @�),

we find that the right hand side gpdist p(x, @�) is C1+[p] near the boundary @�.
This is impossible because the function dist p(x, @�) is not C1+[p] near the bound-
ary @�.

We now return to proving higher order regularity results which follow from
revisiting the proof of the global smoothness of the Monge-Ampère eigenfunctions
in [15, Theorem 1.4]. For reader’s convenience, we sketch the arguments here.

Step 2 (u 2 C2,�(�) for all � < min{ p, 2
2+ p }). Let M = kukL1(�) 2 (0,1). As

in the proof of Lemma 3.1, we obtain from the convexity of u that

|u(x)| �
Mdist (x, @�)

diam�
for all x 2 �. (7.1)

Now, we prove that

|u(x)|  C(n, p,�,M)dist (x, @�) for all x 2 �. (7.2)

Let ⇢ be a C2, strictly convex defining function of �, that is � := {x 2 Rn :
⇢(x) < 0}, ⇢ = 0 on @� and D⇢ 6= 0 on @�. Then

D2⇢ � ⌘In and ⇢ � �⌘�1 in �

for some ⌘ > 0 depending only on �. Consider the following function ũ(x) =
µ(e⇢ � 1). From

D2
�
e⇢ � 1

�
= e⇢

⇣
D2⇢ + D⇢ ⌦ D⇢

⌘
� e�⌘�1

⌘In,

we find that ũ is convex and furthermore, for a sufficiently largeµ= µ(n, p,M,�),

det D2ũ � |u|p = det D2u in �.
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Note that ũ = u = 0 on @�. Thus, by the comparison principle, Lemma 2.5, we
have u � ũ in �. Hence |u|  |ũ| and (7.2) follows.

The inequalities (7.1) and (7.2) imply that if x0 2 @� then c  |Du(x0)|  C .
As a consequence, using the smoothness and uniform convexity of @�, we find that
on @� the function u separates quadratically from its tangent plane at each x0 2 @�,
that is,

⇢|x � x0|2  u(x) � u(x0) � Du(x0) · (x � x0)  ⇢�1|x � x0|2 for all x 2 @�

for some positive constant ⇢ = ⇢(n, p,M,�). With this, we can follow the proof
of Savin [18, Theorem 1.3 ] to obtain the global C2(�) regularity of u. Now, write
|u| = gdist (·, @�) with g 2 C0,1(�). Then the conditions of [15, Theorem 1.2] are
satisfies and therefore, we can conclude from this theorem that that u 2 C2,�(�)
for all � < min{p, 2

2+p }.

Step 3 (Transform equation (5.13) into an equivalent equation in the upper
half space). Since u 2 C1(�), it remains to investigate the smoothness of u near
the boundary @�. Assume that 0 2 @� and en = (0, · · · , 0, 1) 2 Rn is the inner
normal of @� at 0. We make the rotation of coordinates

yn = �xn+1, yn+1 = xn, yk = xk (1  k  n � 1).

In the new coordinates, the graph of u near the origin can be represented as yn+1 =
ũ(y) in the upper half-space Rn

+ = {y 2 Rn : yn > 0}. Near the origin, the
boundary @� is given by xn = �(x 0) in the original coordinates. Thus, the boundary
condition for ũ is ũ = � on {yn = 0}. Computing using the Gauss curvature as in
the derivation of equation (5.2) in [15], we find that, locally, for some small r0 > 0
(now relabeling y by x), ũn > c in B+

r0 , and

(
det D2ũ = x pn ũn+2n in B+

r0
ũ = � on {xn = 0} \ Br0 .

(7.3)

In (7.3) and in what follows, we use the notation

B+
r := Br (0) \

�
x = (x1, · · · , xn) 2 Rn : xn > 0

 
.

Since we have already proved u 2 C2,�(�), we have ũ 2 C2,�(B+
r0 ) for some small

� > 0, and ũn > c. It remains to study the higher order regularity of solutions to
(7.3) in a neighborhood of the origin. For simplicity of notation, we relabel ũ from
(7.3) by u.

Next we perform the following partial Legendre transformation to the solutions
of (7.3):

yi = ui (x) (i  n � 1), yn = xn, u⇤(y) = x 0 · rx 0u � u(x). (7.4)
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The function u⇤ is obtained by taking the Legendre transform of u on each slice
xn = constant. Note that (u⇤)⇤ = u. As in [15, equation (5.4)], we find that if u
satisfies (7.3) then u⇤ (which is convex in y0 and concave in yn) satisfies

(
y↵
n (�u⇤

n)
n+2 det D2y0u⇤ + u⇤

nn = 0 in B+
�

u⇤ = �⇤ on {yn = 0} \ B�,
(7.5)

where ↵ = p. Moreover u⇤ 2 C2,�(B+
� ), �u⇤

n > c and �⇤ 2 C1.

Step 4 (Regularity of u⇤ in the non-degenerate directions y0). In order to obtain
the smoothness of u⇤ from (7.5) we establish Schauder estimates for its linearized
equation. We consider linear equations of the form

x↵
n

X

i, jn�1
ai jvi j + vnn = x↵

n f (x) (7.6)

with ai j uniformly elliptic, that is,

�|⇠ |2 
n�1X

i, j=1
ai j (x)⇠i⇠ j  3|⇠ |2

for some positive constants � and 3 and for all ⇠ 2 Rn�1.

Definition 7.1. We define the distance d↵ between 2 points y and z in the upper
half-space by

d↵(y, z) := |y0 � z0| +

�
�
�
�y

2+↵
2

n � z
2+↵
2

n

�
�
�
� .

The relation between d↵ and the Euclidean distance in B
+
1 is as follows:

c|y � z|
2+↵
2  d↵(y, z)  C|y � z|,

d↵(y, z) ⇠ |y � z| if y, z 2 B+
1 \ {xn � 1/4}.

(7.7)

If function w is C� with respect to d↵ (with � 2 (0, 2
2+↵ )) we write w 2 C�

↵ (B+
1 ).

In view of (7.7) we obtain the following relations between the C�
↵ spaces and the

standard C� = C0,� Hölder spaces:

w 2 C�
↵

⇣
B+
1

⌘
) w 2 C�

⇣
B+
1

⌘

w 2 C�
⇣
B+
1

⌘
) w 2 C�

↵

⇣
B+
1

⌘
with � = �

2
2+ ↵

.

We have the following Schauder estimates; see [15, Proposition 5.3].
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Proposition 7.2. Assume that v solves (7.6) in B+
� and v = '(x 0) on {xn = 0} \

B+
� . If ai j , f 2 C�

↵ (B+
� ) with �

2  min{1,↵}
2+↵ , and ' 2 C2,� , then Dv, D2v 2

C�
↵ (B+

�/2).

By repeatedly differentiating (7.6) in the x 0 direction we easily obtain Schauder
estimates for higher derivatives. Below m = (m1, ..,mn�1) denotes a multi-index
with mi nonnegative integers.

Corollary 7.3. If in the proposition above ' 2 Ck+2,� for some integer k � 0 and

Dm
x 0ai j , Dm

x 0 f 2 C�
↵

⇣
B+

�

⌘
for all m with |m|  k,

then
DDm

x 0v, D2Dm
x 0v 2 C�

↵

⇣
B+

�/2

⌘
for all m with |m|  k.

As mentioned right after equation (7.3), it suffices to study higher order regularity
in a neighborhood of the origin for the function u⇤ satisfying (7.5) with ↵ = p,
u⇤ 2 C2,�(B+

� ), �u⇤
n > c and �⇤ 2 C1.

Fix k < n. Then v := u⇤
k = @u⇤

@yk solves the linearized equation

y↵
n

X

i, jn�1
ai jvi j + vnn = y↵

n f (y) in B+
� (7.8)

where

ai j =
�
� u⇤

n
�n+2U⇤i j

y0 , f (y) = (n + 2)
�
� u⇤

n
�n+1u⇤

nk det D
2
y0u⇤

and U⇤
y0 denotes the cofactor matrix of D2y0u⇤.

Since u⇤ 2 C2,�(B+
� )we obtain Du⇤, D2u⇤ 2 C�

↵ (B+
� ) for some small � > 0,

hence ai j , f 2 C�
↵ (B+

� ).
By Proposition 7.2, D2v 2 C�

↵ up to the boundary in B
+
�/2 which in turn im-

plies Dy0ai j , Dy0 f 2 C�
↵ (B+

�/2). Now we may apply Corollary 7.3 and iterate
this argument to obtain that Dm

y0Dl
ynu

⇤ with l 2 {0, 1, 2} are continuous up to the
boundary in B+

�/2 for all multi-indices m � 0.

Step 5 (Regularity of u⇤ in the degenerate directions yn and completion of the
proof). In order to obtain the continuity of these derivatives for larger values of l
we differentiate the equation (7.5) with respect to yn .

Case 1: ↵ = p is a positive integer. Then we can repeatedly differentiate (7.5)
with respect to yn and each derivative Dm

y0Dl
ynu

⇤ with l � 3 can be expressed as
a polynomial involving nonnegative powers of yn and derivatives D

q
y0Ds

ynu
⇤ with
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s < l. Thus u⇤ 2 C1(B+
�/2) by an induction argument. It follows that u 2 C1(�)

as desired.

Case 2: ↵ = p is not a positive integer. Then we can differentiate (7.5) with
respect to yn [p] times and each derivative Dm

y0Dl
ynu

⇤ with 3  l  [p] + 2 can
be expressed as a polynomial involving nonnegative powers of yn and derivatives
Dq
y0Ds

ynu
⇤ with s < l, thus u⇤ 2 C2+[p],� (B+

�/2) by an induction argument. It
follows that u 2 C2+[p],�(�) as desired.
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MONGE-AMPÈRE EIGENVALUE PROBLEM ON GENERAL BOUNDED CONVEX DOMAINS 1559

[19] R. SCHNEIDER, “Convex Bodies: the Brunn-Minkowski Theory”, 2 ed. expanded, ency-
clopedia of Mathematics and its Applications, Vol. 151, Cambridge University Press, Cam-
bridge, 2014.

[20] K. TSO, On a real Monge-Ampère functional, Invent. Math. 101 (1990), 425–448.
[21] X. J. WANG, A class of fully nonlinear elliptic equations and related functionals, Indiana

Univ. Math. J. 43 (1994), 25–54.

Department of Mathematics
Indiana University
831 E 3rd St
Bloomington, IN 47405, USA
nqle@indiana.edu


