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The rectified n-harmonic map flow
with applications to homotopy classes

MIN-CHUN HONG

Abstract. We introduce a rectified n-harmonic map flow from an n-dimensional
closed Riemannian manifold to another closed Riemannian manifold. We prove
existence of a global solution, which is regular except for a finite number of
points, of the rectified n-harmonic map flow and establish an energy identity for
the flow at each singular time. Finally, we present two applications of the recti-
fied n-harmonic map flow to minimizing the n-energy functional and the Dirichlet
energy functional in a homotopy class.

Mathematics Subject Classification (2010): 35K92 (primary); 53C43 (sec-
ondary).

1. Introduction

Let (M, g) be an n-dimensional compact Riemannian manifold without boundary,
and let (N, h) be another m-dimensional compact Riemannian manifold without
boundary (isometrically embedded into RZ). The n-energy functional E, (u; M) of
amapu : (M, g) — (N, h) is defined by

1
E,(u; M) = ;/ |Vul" dv.
M

A map u from M to N is said to be an n-harmonic map if u is a critical point of the
n-energy functional; i.e., it satisfies

div [|W|"—2Vu] VU2 AW) (Vu, Vi) =0 in M, (1.1)

where A is the second fundamental form of N.

The research of the author was supported by the Australian Research Council grant
DP150101275.

Received January 18, 2017; accepted in revised form March 23, 2017.
Published online July 2018.



1250 MIN-CHUN HONG

When n = 2, an n-harmonic map is a harmonic map. The fundamental ques-
tion on harmonic maps, asked by Eells and Sampson [9] (see also [10]), is whether
a given smooth map ug can be deformed to a harmonic map in its homotopy class
[uo]. Eells and Sampson [9] answered the question for the case that the sectional
curvature of N is non-positive by introducing the heat flow for harmonic maps. In
order to solve the Eells-Sampson question, it is very important to establish global
existence of the harmonic map flow. When n = 2, Struwe [27] proved the existence
of a unique global weak solution to the harmonic map flow for an arbitrary closed
target manifold, which is smooth except for a finite set of singularities, where the
flow blows up through a finite number of harmonic maps on S? (called bubbles).
Chang, Ding and Ye [1] constructed an example that the harmonic map flow blows
up at finite time. Ding and Tian [8] established the energy identity of the harmonic
map flow at each blow-up time. Qing and Tian [23] proved that as t — o0, there
is no neck between a limit map u, and bubbles. Therefore, a given map uq can be
deformed into a splitting sum of finite harmonic maps.

When n > 2, Chen and Struwe [4] showed global existence of a weak solution
of the harmonic map flow, in which the weak solution is partially regular and has a
complicated singular set. In general, it is difficult to apply the harmonic map flow to
investigate the Eells-Sampson question. Motivated by the Eells-Simpson question,
it is interesting to ask whether a given map uy € C*°(M, N) can be deformed to an
n-harmonic map in the homotopy class [1g]. Related to this question, Hungerbuhler
[19] investigated the n-harmonic map flow in the following equation:

5
8—”; = div [|W|"—2w] V"2 A) (Vu, Vi), (12)

with initial value ug, and generalized the result of Struwe [27] to prove that there
exists a global weak solution u : M x [0, +00) — N of the n-harmonic map
flow (1.2) such that u € CH*(M x (0, 400)\{Z X Tk},I;:l) for a finite number
of singular times {Tk},f: , and a finite number of singular closed sets ¥y C M
for k = 1,..., L with an integer L, depending only M and up. Chen, Cheung,
Choi, Law [2] constructed an example to show that the n-harmonic map flow (1.2)
blows up at finite time for n = 3. However, it has been an open question whether
the singular set X of the n-harmonic map flow at each singular time 7% is finite.
Without the finiteness of the singular set X, it is difficult to control the loss of the
energy at the singular time 7. In order to overcome this difficulty, we introduce a
rectified n-harmonic map flow in the following equation:

u

(1 —a+ a|Vu|”_2) = div [qu|”_2Vu] Va2 Aw) (Vu, V), (13)

with initial value u(0) = ug with a constant a € [0, 1]. In particular, when a = 0,
the flow (1.3) is the standard n-harmonic map flow. When a = 1, the flow (1.3) is
an evolution equation involving the normalized n-Laplacian (e.g., [5]).
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In this paper, we assume that n > 2. We firstly prove:

Theorem 1.1. For each a € (0, 1], there exists a global weak solution u : M x
[0, +00) — N of (1.3) with initial value ug € WL (M) in which there are finite
times {Tk},f= | and finitely many singular points {x ]k }IJ’.‘= | such that u is regular in

M x (0, -|—oo)\{{xj’k}ljl.‘:1 X Tk},f:1 in the following sense:

L
uc Cloo’g (M x (0, +oo)\ {{xl,k,,. ’xlk,k} % Tk} )

k=1
1,k li k L
Vue Ly, Mx(O,-i—oo)\{{x’--~,x"’}ka}kl .
A . 1,n+1 1,k Ik
st — Ty, u(x, t) strongly converges to u(x, Ty) in W . " (M\{x "% - -, x'&"}).

Theorem 1.1 generalized the result of Struwe [27]. For the proof of Theorem 1.1,
one of key ideas is to obtain an e-regularity estimate by improving the delicate
proof of Hungerbuhler in [19] for the case of a = 0 based on a variant of Moser’s
iteration. Since the term |Vu|"~28,u in the flow (1.3) causes an extra difficulty, we
have to carry out much more complicated analysis to obtain the boundedness of
|Vu| (see Lemma 2.4).

Remark 1.2. It will be very interesting if some can prove that the solution of the
flow (1.3) in Theorem 1.1 is C'** away from singularities.

Secondly, we generalize the result of Ding-Tian [8] from two-dimensional case
to n-dimensional cases and prove:

Theorem 1.3. For each a € (0,1], letu : M x [0, +00) — N be a solution of
(1.3) with initial value ugy in Theorem 1.1. Let Ty be the above singular time. Then,
there are a finite number of n-harmonic maps {w;, k}lr.":"l (also called bubbles) on S"
such that

mg
Jim En (@) M) = En(u(, To; M) + > En(@ix, S").
k i=1

For the proof of the energy identity, Wang and Wei [30] proved an energy identity
for a sequence of approximate n-harmonic maps by reducing multiple bubbles to a
single bubble. In order to make proofs more clear, we give a detailed procedure of
bubble-neck decomposition based on the method of Ding-Tian [8] and then prove
the energy identity.

Next, we will present some applications of the rectified n-flow to the problem
of minimizing the n-energy functional in a homotopy class [ug]. When n = 2,
Lemaire [20] and Schoen-Yau [26] established existence results of harmonic maps
by minimizing the Dirichet energy in a homotopy class under the topological con-
dition m2(N) = 0. In [24], Sacks and Uhlenbeck established many existence re-
sults of minimizing harmonic maps in their homotopy classes by introducing the
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‘Sacks-Uhlenbeck functional’. Recently, the author and Yin [18] introduced the
Sacks-Uhlenbeck flow on Riemannian surfaces to provide a new proof of the energy
identity of a minimizing sequence in a homotopy class [#g]. A similar approach on
the Yang-Mills a-flow on 4-manifolds has been obtained by the author, Tian and
Yin [16]. Expanding the idea in [18] with applications of a rectified n-flow, we
prove:

Theorem 1.4. For a homotopy class [uo], let {ur};2 | be a minimizing sequence of
E,, in the homotopy class [ug] and u the weak limit in WLn(M, N). Then, there is
a finite set ¥ of singular points in M so that as k — 00, uy converges strongly to
uin WIL’C"(M \X, N) and there are a finite number of n-harmonic maps {wi}§:1 on
S"=1 such that

l
Jim Eyu M) = En(uoo; M) + ; Ey(i, $"7").

If 7, (N) = 0, the singular set ¥ is empty and there is a minimizing map of the
n-energy functional in the homotopy class [ug].

We would like to point out that Duzaar and Kuwert [7] studied the decomposition
of a minimizing sequences of the n-energy functional in a homotopy class [u¢] with
N = S, which could be used to prove an energy identity for the minimizing se-
quence of E,. Our proof is completely different from one in [7]. By a modification
of the rectified n-harmonic flow, we follow the idea of the a-flow [18] to obtain a
new minimizing sequence {iix}; | , having the same weak limit « of the minimizing
sequence {ug )2 | in the same homotopy class.

Furthermore, in order to prove the existence of a harmonic map in a given ho-
motopy class [ug], it is a nature way to minimize the Dirichlet functional E (u; M) =
% M |Vu|? dv in the homotopy class. Indeed, there were successful results for
n = 2, which were mentioned above [20,26] and [24]. In higher dimensions, it is
very challenging to minimize the Dirichlet functional in a homotopy class. White
[31] showed that if d is the greatest integer strictly less than p, a homotopy equiv-
alence is well defined for neighboring maps after restriction to the d-skeleton of M
and there exists a minimizer of the p-energy E,(u; M) = % / » |VulPdv with pre-
scribed d-homotopy type. White [31] raised an open problem about the partial reg-
ularity of the minimum solution of the p-energy with prescribed d-homotopy type.
In particular, even for p = 2, the partial regularity theory of Schoen-Uhlenbeck [24]
(also Giaquinta-Giusti [12]) on an energy minimizing map « in W!2(M, N)) cannot
be applied since the Sobolev space W!?(M, N) cannot be approximated by smooth
maps and a minimizing map of the Dirichlet in W!-2(M, N) is not in the homotopy
class.

Let {ux}z2 | be a minimizing sequence of the p-energy E, in the homotopy
class [ug] for2 < p < nandletu € WHP?(M, N) be the weak limit of {uepe,-
Related to the above White problem, it is a very interesting problem whether the
limit map u is a weakly p-harmonic map and partially regular. Motivated by recent
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results of [13] and [17], we partially answer the question by applying a modified
n-flow and prove:

Theorem 1.5. Let p be a number with2 < p < n. Assume that N is a homoge-
nous Riemannian manifold without boundary. For a given homotopy class [ug],

let {u;}72, be a minimizing sequence of the p-energy E,(u; M) in the homotopy
class [uo] Then, there is a subsequence of {u;}:2, such that u; weakly converges
to a weak p-harmonic map u. Moreover, u belongs to C'"*(M\X, N) for a closed
singular set ¥ C M and H" " P(X) < oo, where H"™P denotes the Hausdorff
measure.

To prove Theorem 1.5, we employ a perturbation of the p-energy functional and
its gradient flow in a homotopy class. This kind of perturbation of the Dirichlet
functional was used by Uhlenbeck in [29] to reprove the Eells-Sampson result, by
Giaquinta, the author and Yin [13] for proving partial regularity of minimizers of
the relaxed functional of harmonic maps and also by the author and Yin [18] for
proving partial regularity of minimizers of the relaxed functional of bi-harmonic
maps.

The paper is organised as follows. In Section 2, we establish some basic esti-
mates and global existence of weak solutions to the rectified n-flow. In Section 3,
we prove the energy identity at a singular time and finish a proof of Theorem 1.3. In
Section 4, we prove Theorem 1.4. In Section 5, we finish a proof of Theorem 1.5.

2. Some estimates and global existence

In local coordinates, the Riemannian metric g on M can be represented by
g = gijdx' ®dx/,

with a positive definitive symmetric n x n matrix (g;;). The volume element dv of
(M; g) is defined by

dv =./|gldx with |g| = det (g;;).
Note that (N, k) is a m-dimensional compact Riemannian manifold without bound-

ary, isometrically embedded into RZ. For amap u : M — N, the gradient norm

|Vu| is given by
ou® ou“
\V4 2 _ ij
IVu(x)] E (x) 9% 0%
i,j,a

where (g'/) = (g;j)~! is the inverse matrix of (g;;). A C'%-map u from M to N is
called an n-harmonic map if it satisfies

J_a [IV u" 2 ’f\/E :|+|Vu|”2A(u)(Vu,Vu):O inM, (2.1

where A is the second fundamental form of N.
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In order to show existence of the rectified n-flow (1.3), we consider an approx-
imate n-functional

1
En (1) =/ (% Vul? + —|Vu|”) dv 22)
M n

for a constant ¢ > 0. The Euler-Lagrange equation for the functional (2.2) is

19 n—2Y\ ij d n—2 —
ﬁa_xi[(‘gﬂv”' )gf |g|§ju}+(s+|w| )A(u)(Vu,Vu)—O- (2.3)

For each ¢ > 0 and a € [0, 1], the rectified gradient flow for the functional (2.2) is

ou

ot
[(s +1Vu""2) g Vlgl

(1 —a+e+ aIVuI”_2>
1 3 9 ) 24)
-2 2 +(e+|Vu|"— )A(u)(Vu,Vu)
gl 9x; Bx]~ i|
with initial value #(0) = ug in M. Multiplying 9;u to both sides of (2.4), we have
the following energy identity:

Lemma 2.1. Assume that ¢ > 0 and a € [0, 1]. Let u(t) be a smooth solution to
the flow (2.4) in M x [0, T) with initial value u(0) = ug. Then for each s with
0<s <T,wehave

€ 2 1 n s n—2 ou 2
S \Vu() P+~ | Vuls)|" dv+ (1—a—|—s—|—a|Vu| ) S dvar
M2 n 0JM ot (2.5)

1
- / £ \Vuol® + = |Vuol" dv.
M 2 n

Moreover, we have the following local energy’s inequality for a > 0:

Lemma 2.2 (Local energy inequality). Assume that ¢ > 0 and a € (0,1]. Let
u(t) be a smooth solution to the flow (2.4) in M x [0, T'] with initial value u(0) = ug
and set e.(u) = %IVuI2 + %IVMI". For any xg with Bag(x0) C M and for any two
s, T €[0,T)withs < t,we have

T
/ ee(u)(-,t)dv—f—/ /(1—a—}—s—l—aqul"_Z)latulzdvdt
Br(x0) s JM

5/ es(bt)(',S)dv-i-C(a)g/ ee(uo) dv,
Bag(x0) M

. (2.6)
R2
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and

/ e.(u)(-, s)dv —/ es(u)(-, 7)dv
Bpr(xg) B (x0)

T
fC(a)f /(1—a+s+a|w|"2>|a,u|2dvdt @.7)
K M

_ T 12
re@( T [ew o] [ a-arerivraupavar)
R% Ju s JIm

where C(a) is a constant depending on a > 0.

Proof. Let ¢ be a cut-off function with support in Byg(xg) and ¢ = 1 on Bg(xp)
with [Vg| < C/R. Then

d 9
E/szeg(u)dv :/M¢2<<8+|Vu|”2> Vu,Va—j> dv
2 5 du |?
:_/ @ (1—a+s+a|vu|"*>
M

—| dv
n—2 ou
+ <p<e+|Vu| )Vu#Vgo#—dv.
M ot

(2.6) follows from integrating in ¢ over [s, t] and using Young’s inequality. Simi-
larly, we have (2.7). [

We would like to point out that Lemma 2.2 does not hold for a = 0.

Lemma 2.3. Assume that ¢ > 0 and a € [0,1]. Letu : M — N be a smooth
solution to the flow equation (2.4) in M x [0, T]. There is a small constant gy > 0
such that if the inequality

sup / |Vul|"dvdt < g
BaRry (x0)

0<t<T

holds for some positive Ry, then we have

T
/ / IVu|"*2 4+ |V2u)? (e n |Vu|"—2> dvdt
0 JBgy(xo)

= C(14+ 7+ TR;?) [Ectwo) + RY].

(2.8)

where the constant C does not depend on ¢, a and u.

Proof. In a neighborhood of each point xo € M, we can choose an orthonormal
frame {e;}!'. We denote by V; the first covariant derivative with respect to ¢; and by

ij.iu the second covariant derivatives of u and so on.
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Let ¢ be a cut-off function with support in Bg,(xp) such that ¢ = 1 in
Bgy(x0), V| < CRO_1 and [¢| < 1 in Bog,(xo). Multiplying (2.4) by ¢" Au,
we have

I =;/ (1 —a+£+a|Vu|”_2> (Oyu, Au) ¢" dv
BaR, (x0)

AR RO RS TR

+ /BZRO(XO)<(8 + |Vu|n72> A@)(Vu, Vu), Au) " dv

=L+ 1.

In order to prove (2.8), I, I; are main terms and /3 can be estimated easily by

1 -2 2 2
1] < Z/ <8—|—|Vu|" )‘v u) ¢" dv
B
2Ry (X0) (2.10)
+ c/ (e + |Vu|”_2) IVul*¢" dv
Bag, (x0)

due to the fact that | A(u)(Vu, Vu)| < C|Vul|?.
To estimate the term I; of (2.9), it follows from integrating by parts and using
Young’s inequality that

I :/ <<1—a+8+a|Vu|”_2> Btu,Au>¢"dv
Bagy (x0)

d 1 -
- _= <ﬂ|Vu|2+g|Vu|") #" dv
dt Bogy (x0) 2 n

_ a/ A (|Vu|"—2) Byt - Viud" dv
Bag, (x0)

—n/ (1 —a+8+a|Vu|”_2) 8tu~Vku¢”_1Vk¢dv
Bag, (x0)

2.11
d (2.11)

1 —
<2 (ﬂwmufwm”) ¢ dv
dt Bag, (x0) 2 n

+C/ (1—a+e+a|vu|”*2)|atu|2¢"dv
Bap, (x0)

n—2
4

+ / Vul"2 |V (V)2 dv
Bag, (x0)

+c/ (1 —a+8+a|Vu|”_2>|Vu|2|V¢>|2¢"_2dv.
Bag, (x0)
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To estimate the first term I, of the right-hand side of (2.9), it follows from the
well-known Ricci identity that

V.V, ((s T |Vu|"_2)Vu> —V,V, ((8 + |Vu|”_2)Vu)
+ Ryt ((e + |Vu|”_2> w)

with the Riemannian curvature R);. Then, integrations by parts twice yield that

L= / (Vk ((8 n |W|"*2) Vku) , Au>q§" dv
Bag, (x0)
= / (Vl ((8 + |Vu|”_2> Vku> , VkV1u> ¢" dv
Bog, (x0)
- / <vk ((e + |Vu|”_2> Vku) , Vm) V6" dv
Ba R, (x0)
+ / <vl ((s + |Vu|”’2> Vku> , Vm) Vi dv
By, (x0)

+ /BZRO(XO) (Ruct (e +19u2) ) Vi) " v

2
(e n |Vu|"—2) ’vZM‘ ¢" dv

(2.12)

Bag, (x0)
n—2
/ <e+|Vu|”_2)|V|Vu||2¢”dv
2 Bap, (x0)

[ (e v ) Ve (92 + 1V67) do,
Bary (x0)

Substituting (2.10)-(2.12) into (2.9) and using Young’s inequality, we obtain

d 1 —
(++8|Vu|2 n g|Vu|"> ¢" dv
n

dt Bogy (x0)

1 2
+—/ <8+|Vu|”_2)‘v2u‘ ¢" dv
2 BaR, (x0)
sC [ vup (elvul V) ¢ do @13
Bag, (x0)
+C [ v (¢ 4 V9 do
Bag, (x0)

+c/ (1 —a+e+a|Vu|"—2)|a,u|2¢"dv.
Bag, (x0)
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The main term in the right hand of (2.13) is the term involving |Vu |"+2¢" and other
lower order terms can be treated by the Young inequality. By applying the Holder
and Sobolev inequalities, we have

T
/ / |Vu|"T2¢" dv di
0 JBap,(x0)
2 n—2
n T n2 n2 n
<| sup / [Vu|" dv / / |Vu|n=2¢n-2 dv dt
0=<t<T J By, (x0) 0 By, (x0)
2 T
szé’f /
0 JBopy(x0)

2 T 2 1
< Ceg/ f (V2| 1Vul"2g" + —1Vul ) dvdr.
0 JBop,(x0) Ry

Integrating (2.13) in ¢ over [0, T], choosing &g sufficiently small and Lemma 2.1,
we have

2
v (|Vu|"/2¢"/2>‘ dv di

T 2
/ / \Vu "2 + ‘Vzu‘ (s + |Vu|"—2) dvdt
0 JBgy(xo)

1_
§C/ (ﬂwm%fwuw) (x, 0) dv
BaR, (x0) 2 n

1 T
+C (1 + F) f [Eg (u; BZRO(XO)) + Rg] dt
0

0

r n
0

This proves the claim. O

For R > 0 and zg = (xg, f9) € M x (0, 00), we denote
Przo) = {2 = (6.0t [x = x| < Roto— R <t <1}

Lemma 2.4. Assume that ¢ > 0 and a € [0, 1]. Let u be a smooth solution to
the flow equation (2.4) with smooth initial value ug. For any B > 1, there exists

a positive constant €1 depending on B such that if for some Ry with 0 < Ry <
172

min{ey, I"T} the inequality

sup / |Vul"dv < &1,
to—4R2 <t =<ty ¥ B2ry (x0)
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holds, then we have

I 2
/0 f Va2 4 ‘Vzu‘ (e + |Vu|”’2+ﬁ) dvdt
t0—R} J Bg, (xo)

(2.14)
<CR!+C [ 1—|—R )|W|”+ﬁdudz
t0o—4R§ J Bag, (x())

where the constant C does not depend on ¢, u and a, but on f3.

Proof. The proof for the case of a = 0 is due to Hungerbuhler in [19]. However,
we must prove it for a € (0, 1].

In a neighborhood of each point xo € M, we still denote by V; the first
covariant derivative with respect to ¢; and by Vl.zju the second covariant deriva-

tives of # and so on. Let ¢ = ¢(x,t) be a cut-off function with support in
Bg,(x0) x [to — 4R}, f + 4R2] such that ¢ = 1 in BRO(xo) x [to — R, to],
Vol < C/Ro, |0:p] = 2 and || < 1 in Bg,(xo) x [to — 4Rj, o).

Multiplying (2.4) by ¢"|Vu|P 3;u and integrating by parts, we have
f (1—a+s+a|vb¢|"*2) Vil |9,u?" dv dt
Pagy (x0,10)
_ / (e + IVal"™2) Vi, [VulP Vi) )" dv s
Prgy (x0,10)
/ e+ |Vul"~ 2) Vi, B|VulP~ 1Vk(|Vu|)8tu>¢" dvdt
Pag, (x0,70)

<£+|Vu|” 2) Vi, |Vu|’38,u>vk¢ dvdi

£+ |Vul"~ 2) Aw) (Y, Vi), |Vu|f‘atu>¢ dvdt
(2.15)

(

<

o

" /PZRO (x0,%0) <

/ ( ey |Vu|”+ﬂ) ¢" (-, 10) dv
By (x0.10) ,3

€ 2+8 n+8 n—1
+/ <—|Vu| + ——|Vu| ng" o, dvdt
Pag, (x0,10) 2+8 n+ :3

+4 / (s + |Vu|”_2> \VulB 34" dv dit
2 Py, (x0,10)
2
ﬂ / <g + |Vu|"_2> IVulP =2\ Viu Vi (IVu)|?)¢" dv dt
2a Py, (x0,10)

+C / (8+|Vu|"_2) (Vi PH = (p| Vit + [V ) |9,u| dv dit
Pag (x0,70)
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Multiplying a to both sides of (2.15) yields that

a2/ (e + |Vu|”_2> \VulB|3,u)>¢" dv di
PaRy (x0.10)

<p (& + 1Vul"2) 1Vul? 2 ViV Vu) 2 dv
Pag, (x0,t0)

Ca
2+p PaRy (x0.10)

n Ca/ (e+|vu|"*2) (Vi B! (¢|Vu|2—|—|Vu||V¢|> |8, | dvd.
Prgy (x0,70)

(2.16)

(s + |Vu|"—2) IVulB+2¢"113,0| dv dt

Then using Young’s inequality and (2.16), we have
—a(n—2) <|Vu|”_3Vl(|Vu|)8,u, |Vu|5v,u>¢"dvdz
PRy (x0.10)

w2t (C10mP B VI(VuD ViuP
26 2 |Vu]?

=(n-2)

Papy (x0,t0)

>¢” dvdt

<B(n—2) (a + |Vu|"—2) \VulP=2|V,(IVul) Viul*¢" dvdt  (2.17)
Pag, (x0,70)

Ca
_|_ .
/3(2 + 18) PZRO (x0,%0)

a
+c2 (e 1Vul"=2) IVl ¢ (@I Vul + IV Dl drul1 dv dr.
B Pogy (x0,10)

(s + |Vu|”’2) IVulP+2¢"119,00| dv dr

Multiplying (2.4) by ¢"V - (|Vu|PVu) and integrating by parts, we have

Iy =;/ ((1—a+e-+alvul=2) ou, Vi (1Vulf Vi) ¢" dvdr
Pary (x0,10)

:/ <vk (<e+|W|”*2)vku) v (|Vu|ﬂv,u)>¢" dv di
Pagy (x0,t0)

+/ ((e+17u=2) A (Vat, Vi), V1 1Vl 1)) " dv e
Pygy (x0,70)

=/ <Vk <<e + |Vu|"—2> Vku> , Vi (|vu|ﬂvlu)>¢n dv di (2.18)
PR, (x0,10)

—f <V1 [(s+|Vu|"—2)A(u)(Vu,w)],|Vu|ﬂv,u>q>" dvdi
PyRy (x0,10)

—/ ((s+|vu|"*2) A)(Vu, Vi), |Vu|f‘vlu> V(") dv dt.
Pagy (x0,t0)

=:Is+ Ig+ I7.
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In (2.18), 14, Is are main terms, , I7 will be cancelled later and I is a easy term.
To estimate the term 14, it follows from integrating by parts that

I = —a(n —2) <|W|"—3v,(|vb¢|)a,u, |Vu|ﬁv,u>¢" dv di

PaRy (x0.10)

—/ <(1 —a+g+a|vu|”*2) v, (3,u0), |vu|/—“v1u>¢" dv dt
PyRy (x0,10) 2.19)

—/ <(1 —a—|—8+a|Vu|”_2) B,u,IVulﬁV1u>Vl(¢")dvdt
Pyg, (x0,%0)
=141+ 142+ 143,

Note that /4 is the exact term of the left-hand side of (2.17). In order to estimate
141, it follows from using equation (2.4) that

aldul < C (|V2u| n |Vu|2).
Combining this with (2.17) and using Young’s inequality, we estimate /4. to have

I <p(n —2) (e 1Val™=2) 1Vul=21V1( Vul) Viul " dv dr
PaRy (x0.10)

Ca
B
B2+ B) Pag, (x0,10)

1
+Co f e+ |Vu|"—2) \VulP+2¢" 2|V ? dv di
PaRy (x0.10)

e+ |W|"—2) IVulB+24"119,0| dv dt
(2.20)

1 2
+f (s+|W|"*2)|W|ﬁ (—|V2u‘ +C|Vu|4) o" dv dt.
Pag, (x0,10) 4
To estimate 14, we have

14,2=_/ <(1 —ate+ a|Vu|"_2> Vi (0), |Vu|ﬂv,u>¢" dvdi
Pag, (x0,%0)
l—ate o nip a n+p | Hn
=- ————Vul""" + ——|Vu| ¢"(,0)dv  (221)
Bag, (x0,10) 2+p n+p

1 —
+/ <ﬂ|Vu|2+ﬂ + L|Vu|"+5> 3,¢" dv dt.
PRy (x0.10) 2+8 n+p

Note that the term 143 will be cancelled.
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To estimate the term /5 of (2.18), integrating by parts twice and using the Ricci
formula yield that

15 = / (Vk <(8 + |§7”|n*2) Vk”) , Vl (|V7u|/3vlu)>¢n dv dt
PR, (x0,70)

_/ ( ’((8 [Vaul" 2) kal), Vi (|Vu|ﬂvzu)>¢"dvdt
Papy (x0,t0)

((8 + |Vu|"_2) Vku) , |Vu|’3Vlu> V" dv dt
/sz (x0.10) (2.22)

/ (vk ((s n |Vu|"_2> Vku) , |Vu|’3V1u> V6" dv dt
Prgy (x0,70)

/ RM#(<5+ |Vu|"—2) Vku) , |Vu|ﬂv,u>¢"dvdt
Pagy (x0,70)

=I5+ 1Is2+ I535+ Is4.

In (2.22), Is 1, I52, I53 are main terms to be estimated and /s 4 is easily estimated
by

[s.4] < Cf (s + |Vu|"—2) \Vu|>tP o™ dv dr. (2.23)
PRy (x0,70)
To estimate /s 1, a direct calculation gives

a=f (% (e 19u2) Vi) S (Vi) 8" vt
PRy (x0,10)

2
=/ (g-l—IVuI”_z)IVulﬂ‘VQu’ &" dv dt
PR, (x0,t0) (2.24)
+(n—=2+8) e+|Vu|"—2)|W|5|V(|W|)|2¢"dvdr

PyRy (x0,10)

+B(n—2) <e+|W|"—2)|Vu|5—2|vl(|v14|)vlu|2¢" dv dt.

Pag, (x0,10)

To estimate Is5 , we have

|I52| <

/ v, (|Vu|"*2) Vi, |vu|ﬁv,u> V" dv dt
Prgy (x0,t0)

+ 1
2

< n—2+p
2 PaRy (x0.10)

c
— (e + |vu|"—2) \VulB+2¢" 2|V |2 dv dr.

n—2+p Pagy (x0,10)

/ <e 4 |Vu|"_2) Vi BV, | V|2 Vi dv di
PR, (x0,10) (2.25)

(g + |Vu|"—2) \VulB V(I Vul) 24" dvdt
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To estimate /s 3, it follows from using equation (2.4) that
Iss = _/ ((1 —ate+ a|Vu|"—2) B, |Vu|ﬁv,u>v,¢" dvdt
Pygy (x0,70)

+/ <8+|Vu|n72>A(u)(Vu’ Vu)’ |Vu|ﬁvlu> V1(¢")dv dt (226)
Prpy (x0,70)

=Iy3— I7.

This means that these terms /5 3, 143, 17 can be cancelled together.
For I¢, we have

2
| < 1/ (s+ |Vu|”_2> IVulf ‘Vzu‘ ¢" dv
PaR, (x0,10)
(2.27)
n c/ ¢+ |Vu|"—2) IVu*+B " dy.
Prgy (x0,10)

Substituting (2.19)-(2.27) into (2.18), we have

1 2
—/ (8+|Vu|”_2)|Vu|ﬂ)V2u‘ &" dv dt
Pag, (x0,%0)

2
+(n—2+ﬂ)

> e+ |Vu|”_2> IVulPIV(Vu))|>¢" dv dt

Pagy (x0,10)

l—a+e ) a
-l-/ (7|Vu| 4 —IVu|"+‘3> @" (-, ) dv
Ba Ry (x0) 2+5p n+p

(2.28)

1 —
< c/ (ﬂwm“ﬂ + L|Vu|"+ﬂ> " V10| dv di
PaRy (x0.10) 2+p n+p

+C> e+ |Vu|”’2) \VulP2¢" 2|V 2 dv di
B Pagy (x0,10)

+ c/ (e + |Vu|"—2) <|W|2+ﬂ + |Vu|4+’3> ¢" dv dt.
PRy (x0.10)
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On the other hand, by using the Holder and Sobolev inequalities, we have

fo
/ / |Vu|" 2B e" dv di
10—4Ro J Bag, (x0)
2 n=2
fo " nn+p)  n2 "
5/ (/ |Vu|”dv) (/ |Vu| n=2 ¢pn-2 dv) dt
t0—4R3 \J Bag, (x0) Bag, (o)
2 b n+p 2
< Cef / / v (1vu ¥ ¢?)| avar (2.29)
to—4R2 B2 (x0)

2 [t 2
< Ce] / / ((n + B)? ‘Vzu) |V |2+ g
t0—4R5 JB, "2 (x0)

+ |Vu|"+ﬂ|v¢|2¢"—l) dv dt.

Choosing ¢ (depending on B here) sufficiently small yields

fo
/ / <|Vu|”+2+'3 + (s + |Vu|"_2> |Vu|ﬂ|v2u|2) ¢"dv dt
to—4Ro J Bag,, (x0)

§C/ <1+|V¢|2+|8t¢|>|Vu|”+’3dvdt.
Pag, (x0,10)

This proves our claim. O

Since the constant £; depends on 8 in Lemma 2.4, we have to get an improved
estimate to obtain the gradient estimate in the following:

Lemma 2.5. Assume that ¢ > 0 and a € [0, 1]. Let u be a smooth solution to the

flow equation (2.4). There exists a positive constant &y < (M) such that if for
12

some Ry with 0 < Ry < min{eg, %} the inequality

sup / IVu|"dv < g9
to—4R2 <t <ty ¥ B2ry (¥0)

holds, we have
sup  |Vu|" < C(Ro),

PR, (x0,10)

where C(Rg) is a constant independent on g, a.

Proof. Let ¢ = ¢ (x, t) be a cut-off function with support in Bg (xg) X [fo — Rg, to+
R3] such that ¢ = 1in Br(xo) x [to — p% 10 + p?1, IV9| < 255, 10i0] < o
and |¢| < 1in Bgr(xo) X [to — R?, to + R?]. For this new cut-off function ¢, the
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same proof of (2.28) gives
1 2
—/ (s n |Vu|"’2) IVulf ‘Vzu‘ ¢" dv dt
2 Pr(x0,10)
n—2+
Jr_( B)
2 Pr(x0,10)

1 —
+ sup / (ﬂ|vu|2+}3 + L|Vu|"+ﬁ) ¢n(.’ S) dv
to— R2<s <ty Br(x0) 2+ n+p

(s + |Vu|"—2) \VulP |V (|Vu))[*¢" dv dt

(2.30)

l—a+e a
5c/ (7|W|2+ﬁ+—|w|"+ﬂ) " 19,0 dv dt
PR(x0,10) 2+8 n+p t
1

+C- (a + |Vu|”—2) \Vulf+2¢" 2|V | dv di
B PR (x0,10)

+ c/ (e + |Vu|"_2> (|Vu|2+ﬂ + |Vu|4+ﬁ) ¢" dvdt.
PR (x0,10)
Multiplying (2.30) by 8, we have

,82/ (s—l- |Vu|"*2) \VulPIV(|Vu)) 24" dv dt
Pr(x0,19)

+ sup / (1—a+e)(|W|2+ﬁ+a|vu|"+ﬂ)¢"(-,s)dv
Br(x0)

to—R2<s<ty

2.31)
sc [ (1P V) 672 (10 + V6P dudr
PR (x0,%0)

+CB (e + |Vu|"—2> (|Vu|2+5 + |Vu|4+ﬂ) ¢" dv dt.

Pr(x0,%0)

Using Holder’s and Sobolev’s inequalities with (2.31), we have

fo 2 p+2
/ / |Vu|(n+ﬁ)(l+”ﬂ+")dvdt
19—p* J B, (x0)
fo % n(n+p) n? ””;2
5/ (/ |Vu|ﬁ+2¢"dv> (/ |Vu| 2 ¢n2 dv) dt
19— p? Br(x0) Br(x0)
2
n
<C sup (/ |Vu|ﬂ+2qb”dv)/ /
to—R2<t<to\Y Br(x0) fo—R?J Br(xo)

fc(/ <|Vu|2+ﬂ+|Vu|n+ﬂ) ¢n—2 <|at¢|+|v¢|2> dv dt
Pr(x0,10)

n 2
v(wm%ﬂ(p"ﬂ)) dvdt (232)

142y (a)
+8 (s—l—qul”’z) (|W|2+ﬂ + |Vu|4+ﬁ) o dv dt) ,

Pr(xo0,10)

where the index y(a) = 1if0 <a < % and y(a) = % if% <ac<l.
Next, we follow [19] to process a Moser’s iteration (e.g., see [14]).
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Set R = Ry = Ro(1 +27%),p = Riy1 = Ro(1+27175), 8 = g =
0%(dy — 2n) +n —2and @ = 1 + 2/n with dy > 2n.

k 2Bk +2
di=n+ B+2=0"(do —2n) +2n, dir1=m+ B\l + -
nBp+n

)=9dk—4.

Using (2.32), we have

0
/ (1 + |Vu|d’<+1> dvdt < C2¥ (/ (1 + |w|dk) dvdt) ,
P11 Py

where we denote Py = Pg, (xo, fp) and use the fact that 1 + % <2.

Set 1
d G_k
1k=</ (1+|vu|k) dvdt) .
Py

Applying an iteration, we have

&

1 k 00 1 00 -
Ies1 < CTFI2EF [, < C1k=1 T Q20158 | < C .

Therefore, noting d, = Qk(do —2n) 4+ 2n forall k > 1, we have

1
T o
PR()
1
T a2
< (c/ (1 +|Vu|dk+1) dvdt)a o=
Pry1

- 1
< M= (Clg) @7 < C(Ry).
This implies that |Vu| is bounded in Pg,. O

Lemma 2.6. Assume that ¢ > 0 and a € [0,1]. Letu : M — N be a smooth
solution to the flow equation (2.4). There is a small constant g9 > 0 such that if the
inequality

sup / [Vul|" dvdt < g,
BaRr, (x0)

to—T'<t<ty
holds for some positive Ry, then ||u||co.« (Pr,((x0, 0))) is uniformly bounded in ¢.

Proof. Using the above Lemma 2.5 , |Vu/| is bounded by a constant C. By a similar
proof of the local energy inequality, we have

n—2 du ?
<8+ |Vul ) —| dvdt
Pr(z0) ot

<C sup Eg(u(t); Bor(x9)) < CR".

fo—R2<t<1y
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Setuzp=[ Prizg) (X 1) dz. By a variant of the Sobolev-Poincare inequality, we
have

/ |u—uZO,R|2dvdzgc[R2/ |Vu|2dvdt—|—R4/ |8,u|2dvdt]
Pr(z0) Pr(z0) Pr(z0)

< CR"t*
for all R < Ro/2. This implies that u(x, ¢) is Holder continuous near (xg, #p). [

Theorem 2.7. Let a € [0,1]. For any ug € Wl’”(M, N), there exists a local
solution u : M x [0, To] — N of the flow equation (1.3) with initial value ug for a
constant Ty satisfying

To
/ /(|Vu|”+2+|V2u|2|Vu|”_2) dv dt
0 Jum (2.33)

< CE,(wo) + C (14 ToR5?) En(uo).

Proof. Since ug € W'"(M, N) can be approximated by maps in C*°(M, N), we
assume that ug is smooth without loss of generality. For ¢ > 0 and a € [0, 1],
let u, ¢ be a solution of that equation (2.4) with smooth initial value u#¢. Note that
equation (2.4) is equivalent to

ul 1 19

3t (1—ate+alVug 1"2) J/Igl 0x;

i, 0
)
X [(s—HVua,sI" )g” |g|37j“aﬂ,s:|

(2.34)
(8 + |Vua,€|n_2) AP (a,e)(Vug.e, Vg e)

(1 —a+e+alVug|"2)

8 92y
,€
= Z b?;‘ a(vua,s) 8x-8ax- + f(ua,e, Vua,s),
ik,o ()

where
b (Vitae)

e Vugl? giga 4 = )| Vitg,e|" 40 ug Bl e
(1—a+e+alVug|"2) & +[Vitge "2 '

For a fixed parameter ¢, (2.34) is a parabolic system, so there is a local smooth
solution u, . to the rectified gradient flow (2.4) with smooth initial value u¢ in
[0, T, ) for a maximal existence time T} ¢.
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For a fixed ¢ > 0, there is a constant T > 0, depending on the bound of u( and
its higher derivatives, such that T < T, forall a € [0, 1]. In order to prove the
local existence of (1.3), we need to show that there is a uniform constant 7y > 0,
depending only on E, (uo), such that T, , > Ty forall ¢ > O and a € [0, 1]. Since
T, is the maximal existence time of the smooth solution u, of the flow (2.4), it
follows from using the same in [19, proof of Theorem 1 (Section 2.5)] that there is
a constant Tp > 0, depending only on E,(ug), &9 and Rg, such that for t < Tp, we
have

f ea(”a,s)(‘a t)dv < / eg(up) dv
By (x0) Bagy (x0)

1
Ct I=a
+ — (/ es(ug) dv) < 8.
R \Ju

If T < Tp, then it follows from using Lemma 2.5 that Vu, . is bounded in M x
[0, f] by the norm ||Vug|| .7 (p) and hence f(ug4¢, Vg ¢) is bounded. By the PDE
theory, Vi, ¢ (x, t) is continuous in a € [0, 1] for any ¢ < T < T.. For anyS > 0,
there is a > O such that for any two a, ag € [0, 1] with |a — ag| < 1, we have

(2.35)

by (Vuae) o0 = b (Vuag.e)(e.1)| <.

ij a

We assume that Vug, ¢(x, t) is Holder continuous in M x [%, T], with its Holder
norm depending only on the bound of Vu,, ¢ (x, ). In fact, this is known for ag = 0
(see [19]). Noticing

B 2,
ug.e af 0ug .
£ _p*P iy _ ae
ot ij ao( uao’S) Bxiax]'
p p 2.«
o o a,e
= (bij a(vuaﬁ) - bij a()(vua(),8)> x;9x; + f(uae, Vitae),

we apply the L?-estimate to obtain that

ug.e|? 5 »
) dvdt + | VPuae|dvdr
Prpa(x,T) ot Prp2(x,T)
<C§ / |V | dvdt (2.36)
Pr(x,T)

+ C/ (1 f(ae, Vg e)|? + uqel”) dvdt.
Pr(x,T)
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By a covering argument on M and choosing § sufficiently small with C§ < %, we
have

/Mx[%f,f]

SC/ L <|f(ua,s,vua,e)|p+|ua,e|p + |V2ua,s|p) dvdt < C(f)
Mx[1T,1T]

Uy e
ot

P 1
dxdt+—/ | VPuge|dvdt
2 Jmxiit, 7 (237)

By the Sobolev imbedding theorem of parabolic version, Vu, . is also Holder con-
tinuous, depending on C (f), uniformly for all a € [0, 1] and therefore u, . is
smooth across to T > Ty for all a € [0, 1]. Therefore, for each fixed ¢ > 0, there is
a smooth solution of the flow (2.4) in [0, Tp] satisfying

fo +2 2 |?
/ / |Vua,8|n + ’V Ug,e
0 M

< CEps(uo) +C (1 n TORO_Z) En ¢ (u0).

(e + |Vua,8|"—2) dvdt
(238)

As e — 0,u,4 . converges to a map u, which is a solution of the flow equation (1.3)
satisfying (2.33) using Lemmas 2.3-2.5. O

Using the above results, we can prove Theorem 1.1.

Proof of Theorem 1.1 . By Theorem 2.7, there is a local solution to the flow equa-
tion (1.3) satisfying (2.33). Then, the solution can be extended to M x [0, T}) for a
maximal time 77 such that as ¢+ — T7, there is a singular set

X = ﬂ {x € M :limsup E, (u(x, 1); BR(XJ)> = 80}

R>0 t—T

for a constant &g > 0. For @ > 0, we have a nice local energy inequality in Lemma
2.2. Next, we use a similar argument in [27] to prove the finiteness of the singular
set Xr,. Let {x j}lj:1 be any finite subset of X7, satisfying

limsup £, (u(r,1); Br(x/)) ze0, YR >0.1<j<I.
t—T

We choose R > 0 such that Byg(x;) are disjoint. By using Lemma 2.2, we obtain

1
lgo < lem sup E, <M(.X', t); BR(xj)>

j:1 t—T

‘ T —
=y [E (utr, : Bag (7)) + C@' = Y Eutuo: M)}

—1

~

<E, (u(x,t); BR(xf')) l%"
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2
forany s € [T} — #ﬁnwo), T1). This implies that [ < 2E’é—(()”°) so the singular set

X7, is finite. Thus, we continue the above procedure at the initial time 77 to prove
existence of a solution of the flow (1.3) in [T}, T>) for a second singular time 75.
By induction, we complete the proof. U

3. Energy identity and neck-bubble decompositions

In this section, let u(x, ) be a solution of the rectified n-flow (1.3) in M x [0, T})
in Theorem 1.1. Consider now a sequence of {u(x, t;)} as t; — T; < oco. Then they
have uniformly bounded energy; i.e., E,(u(t;); M) < E,(uo; M). As t; — Ty,
u(x, t;) converges to a map uy, strongly in WIL’C”H(M\{xl, -, x'}) with finite
integer /. At each singularity x/, there is a Ry > 0 such that there is no other
singularity inside Bg,(x/). Moreover, there is a constant &y > 0 such that each
singular point x/ for j = 1, ..., is characterized by the condition

limsup E, (ul-; BR(xj)> > &g,

i—00
for any R € (0, Rg]. Then there is a ® > O such thatas t;, — T
[Vu(x, ;)|"dv — ©8,; + |Vur,|"dv, 3.1

where §8,; denotes the Dirac mass at the singularity x/.

In order to establish the energy identity of the sequence {u(x, #;)}72 |, we need
to get the neck-bubble decomposition. We recall the removable singularity theorem
of n-harmonic maps [6] and the gap theorem: there is a constant £, > 0 such that
if u is a n-harmonic map on S” satisfying f g |Vul" < &g, then u is a constant on
S". For completeness, we give a detailed proof on constructing the bubble-neck
decomposition by following the idea of Ding-Tian [8] (also [22]).

Step 1. To find a maximal (top) bubble at the level one (first re-scaling).

First note that u(x, ;) — w7, regularly in Bg,(x/) away from x/, where ur,
is a map in WhLr (M, N). Since x/ is a concentration point, we find such that as
ti —> 11,

1
max |Vu(x,t)|—o0, ri1=
X€Bpy(x/), T1—8=<t=t; MaXyeBg, (x/), T —8=<t<t; IVu(x, )]

for a small § > 0. In the neighborhood of the singularity x/, we define the rescaled
map

Ui (X, 1) == u; (x‘,- +rigk, i+ (ri,1)2t~> :
Then u; (x, t) satisfies

90

((r,-,l)"—za —a+e) +alval?)
a1 (32)
— div <|va|”—2va) + |Vil"2 AGH) (Vi Vi),
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in Bg -1y % [—1,0] and

dil* .
/ / 1_2(1—a+8)+a|V12|”_2> ‘—~ dv di
R (r e 1(0) 8t
0 3.3)
fi du |?
5/ / ((1 —a+8)+a|Vu|"_2) —‘ dvdt — 0.
ti—(ri )2 JIM ot

Therefore, there is a7 € (—1, 0) such that

J

Using Lemma 2.2, it can be shown that as i — oo,

57 |2
(1720 —a+e) +avar?) ’8—3 >0, (34)

Ro(r;, ™! ©

_n
Va1 +r2,i)| dv > 8y, + | Vur["dv. (3.5)

For simplicity, we set
ui(x) ' =u (x, t +ri%lfi> for x € BRO(xj), ;(X):=u (xj +riX, i +r£1t~i> .

Since |Viu;(x)| < 1forallx € B Ror] (0), u; sub-converges to an n-harmonic map
i1

w1, j locally in cle (R", N) asi — 00, and w1, j can be extended to an n-harmonic
map on S" (see [6]) and is nontrivial due to (3.5). We call wy; the first bubble at
the singularity x/, which satisfies

Ep(w1,;; R")= lim lim E,(i;; Bg(0))= 11m lim E, (ui;Ber.,l(xj)>. (3.6)

R—o00i—00 R—00i—00

Step 2. To find out new bubbles at the second level (second re-scaling).

Assume that for a fixed small constant ¢ > O (to be chosen later), there exist
two positive constants §o and Ro with Ror;;; < 48¢ such that for all i sufficiently
large, we have

/ [Vu()|"dV <e, (3.7)
Bo\By (x)

er 1

forall r € (==, 24),and forall R > Rp and § < Jo.
By usmg Theorem 1.1, there are finitely many isolated singularities of u at
t = T;. Then for a small Ry, it follows from and (3.6) that

lim E, <u,~; Bg, (xj)> =E, (”T1§ BRO(xj)) + En (wl,j§ R”)
11— 00

+ lim lim lim £, (ui; By \ By, (x7))

R—008—0i—00
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If (3.7) is true, it is done and we will prove that there is only single bubble w;_;

around x/ .

If the assumption (3.7) is not true, then for any two constants R and § with

Rri1 < 48,6 <o and R > Ry, there is a number r; € (er"'1 , 28) such that

lim |[Vu;|"dV > e. (3.8)

=00 J By \By, (x)

Since there is a uniformly energy bound K = nkE, (ug; M), i.e., fM |Vu;|"dv <
K, and ¢ is a fixed constant, we remark that there is no infinitely many number
of above r; € (0, 8p) with disjoint annuluses By, \ B, (x7) satisfying (3.8). If
liminf;_, s 7; > 0, it can be ruled out by choosing ¢y sufficiently small, so we
assume that lim;_, o r; = 0. Similarly, if lim sup;_, ., rf—’l < 00, it can be rule out
choosing Ry sufficiently large since #; converges regulaﬂy to w1, 00 locally in R”.
Therefore, we can assume that lim; _, oo rf—’l = 00 up to a subsequence. Since there

might be many different numbers r; € (eri" , 28) satisfying (3.8), we must classify
these numbers. For any two numbers r; and 7; in (Rg" , 28) satisfying (3.8), they

can be classified in different classes by the following properties:

lim & =400 or lim 2 =0; (3.9)

1—00 I} 1—>00 Iy

0 < liminf}:—l < limsup i—l < 00. (3.10)
i—00 Fj i—oo Ti

We say that {r;} and {7;} are in the same class if they satisfy (3.10). Otherwise, they
are in different classes if they satisfy (3.9).
It can be seen that the number of above different classes of {r;} satisfying (3.8)
must be finite. Let {r;} be any number satisfying (3.8) in the same class of {r;}.
Then there is an uniform positive integer N; such that
L liminf < limsup < . (3.11)

1 1—>00 T i—oo Ti
Otherwise, it will contradict with the fact that there is no infinitely number of above
ri € (0, 8p) with disjoint annuluses Bo,, \ By, (x) satisfying (3.8). Therefore, these
numbers 7; can be ruled out by letting o sufficiently small and Ry sufficiently large.

We say that the class of {r;} is smaller than the class of {r;} if lim;_ % =0,
so we can give an order for such equivalent classes by {r2;} < {r3;} <--- < {rr.i}
for some positive integer L > 0 depending only on the energy bound K and ¢. Then
we can separate the neck region Bs \ Bgy, | (x/) by the following finite sum:

E, (ui; Bs \ Brry (xj)>

= E, <ui; Bs \ Brry, (xj)> + E, (ui; Brry; (x7) \ By, (xj)>
o En (13 Bary () \Broy 1 () + En (w55 Brey 1 (67)\Bory 1 (7)) + -+
+ E, (Uj; BRry; (x7) \ Bsr, (xj)> + Ey (Mi§ Bsr,, (x7) \ Brr, (x-’)> :
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For a sequence {rp;} in the smallest class satisfying (3.8) with the fact that
lim; s o0 :?—’ = oo and lim; , o 72; = 0, set
N

uy,i(X) = u; (xj +r2,i)?) .
Then we note that

fim 1im Tim E, (173 Brs, (+/) \ Bory, (7))

R—008—>0i—00

= lim lim lim E, (ii2,;; Br(0) \ Bs5(0)).

R—005—0i—00

Passing to a subsequence, i1 ; converges to a w; locally in Bg(0)\ Bs(0) away from
a finite concentration set of {i7;}. As R — oo and § — 0, w is an n-harmonic
map in R” by removing singularities. If w, is non-trivial on R”, then w, is a new
bubble, which is different from the bubble w;. The above bubble connection w»
might be trivial. In this case, there is at least a concentration point p € B)\Bj
of {itp;} due to (3.8). At each concentration point p of ii2;, we can repeat the
procedure in Step 1; i.e., at each concentration point p of iy ; in Br(0) \ B;(0) ,
there are sequences x” — p and A/ — 0 such that

Uy, (xip + kfx) — w2,p,

where w» , is a n-harmonic map on R”. Note that ii2 , ~ is also a bubble for the
sequence {u; (x’/ + ri,gxf + ri,z)\ipx)}.

2
Set x; P = Xj+ ri,gxl-p. For each p € Br(0) \ Bs(0), we have
; 2
‘x] _xi’p‘ ri2
i, .
: =—xf|—>ooasz—>oo.
F; ri

Therefore, the bubble w; , at p # 0 is different from the bubble w;. We continue
the above procedure for possible new multiple bubbles at each blow-up point p
again. Since there is a uniform bound K for E, (u;; M) and each non-trivial bubble
on S" costs at least &, of the energy by the gap theorem, the above process must

stop after finite steps.
Furthermore, we note

lim lim lim E, (ui; Bsy, ; (xj) \ Brry; (xj))

R—005—>0i—00

= lim lim lim E, (ﬁz,,-; Bs(0) \ Brry; (O)) .

R—008—0i—00 Y

Since {r,;} in the smallest class satisfying (3.8) with the fact that lim;_, g—’ =0

i

and lim; oo r2; = 0, we can see that u; satisfies (3.7) on By, 5(0) \ BRr.U(O).
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Otherwise, there is a number r; € (%er,,-, 26r,,;) satisfying (3.8), r; must be be-
long to the class of {ry;} or {r2;}. In an equivalent class, it can be ruled out by R
sufficiently large or letting § sufficiently small.

%l — 0 and w; is a bubble limiting map for the sequence

Since lim;_, o s
i,

1
{ui(xi1 + rl.lx) = ﬁz,i(%x)}, then p = 0 is also a concentration point of i3 ; on

R”". Therefore the bubblle w30 must be the same bubble w;. Since the bubble w; is
produced by u; on Bgy, ;(x/), we separate it from other bubbles without repeating.

Step 3. To find out all multiple bubbles.
Let r;3 be in the second small class of numbers satisfying (3.8) with
lim; s o0 72 = 0o and lim; 0 77,3 = 0. Set

i34 (®) = i (x/ 475

Passing to a subsequence, i3 ; converges locally to a w3 away from a finite con-
centration set of {3 ;} on R"\{0}. Then we can repeat the argument of Steps 1-2.
All bubbles produced by i3 ; , except for those concentrated in 0, are different from
Steps 1-2. By induction, we can find out all bubbles in all cases of the finite differ-
ent classes. Since there is at least one nontrivial bubble on each different classes,
the total number L of equivalent classes depends only on K and &;,. By the gap
theorem of n-harmonic maps on §”, the above process must stop after finite steps.
In summary, at each class level k, the blow-up happens, there are finitely many
blow-up points and bubbles on R". At each level k and each bubble point py ;, there

are sequences JElk s Pk and rj p — 0 with lim;_, o rr;—k, = oo such that passing
e

to a subsequence, i;  ;(x) = u,-(xf’l + ri kx) converges to wg ;, where wy  is an

n-harmonic map in R", where xf’l =x/ + r,;kik’l.

In conclusion, there are finite numbers ; x, finite points x{"l, positive constants
Ry.1, 8k,; and a finite number of non-trivial n-harmonic maps wy ; on R” such that

lim E,(u;; Br,(xx))
ti—>00

L Ji

= En(ur: Bry(x)) + ) > Enlwr: R")

=D (3.12)

L J
30D tim dim gim Ey (i B \Bron (x))

=1 1=1 Ri,j—>00 8 ;—0i—00

Moreover, at each neck region Bék,z\BRk_,r{; (xf’l) in (3.12), for all i sufficiently
large, we have

/ oy Vikai"dv <. (3.13)
Bor\ By (xo'

k
forallr € (Rkiri , 28k, 1), where ¢ is a fixed constant to be chosen sufficiently small.
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Proof of Theorem 1.3. Wei-Wang [30] proved an energy identity of a sequence of
regular approximated n-harmonic maps u; in whn(M, NyNC®(M, N), whose ten-
sion fields #; are bounded in L"/"~1(M). Let u; (x) = u(x, t;) satisfy the equation
(1.3). In this case, #; := (1 4+ a|Vu;|"~2)d;u;, which is bounded in L"/"~1(M). In
fact, using Holder’s inequality, we have

2\ 7D

) -c.

n n—=2
n—1 2(n—1)
/ (|w,~|”—2 ) 5( f |wl~|") f |V |"~2
M M
lim tim 1im Ey (ii5 B \Bron (5F1)) = 0.

Under the condition (3.13), we apply [30, Theorem B] to prove
Rk‘1—>OO 5](11—)0 i—00

81/!,'

ot

81/!,'
ot

Therefore, the energy identity follows from (3.12). O

4. Minimizing the n-energy functional in homotopy classes

In this section, we will present some applications of the related n-flow to the prob-
lem of minimizing the n-energy functional in a given homotopy class and give a
proof of Theorem 1.4. Foramap u : M — N, we recall the functional

Eye(u, M) =/ en,e(u)dv, “4.1)
M

where we set e, (u) = 5|Vul?> + }IIVMI” + ,f?|vu|"+1.

Letu; € C°°(M, N) be a minimizing sequence of the n-energy in a homotopy
class [up]. Since a minimizing sequence u; does not satisfy any equation, we cannot
have a good tool to use. Following an idea of the «-harmonic map flow [18], we

introduce a modified gradient flow for the functional (4.1) in the following:

5
(1—a—f—s—{—aqul”_z—l—sIVuI"_l)a—b;
1 8
- - \V/ n—2 v n—l) ij s (42)
T [(s+| 2+ elVul™!) ¢ lgl

+ (& +19u"2 4+ e Vul"™") A (Vu, Va),

with initial value u(0) for a small constant @ > 0. Since the minimizing sequence
u; is smooth, there is a sequence ¢; with &; — 0 such that

lim Epe(ui, M) = lim Ey,(ug;, M) = inf E,(u, M). 4.3)
i—00 i—00 uelugl
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Choosing u#(0) = u; to be initial values, there is a sequence of ¢ = ¢; — 0 such
that the flow (4.2) has a unique global smooth solution ug, (x, t) on M x [0, co) with
ug, (0) = u;.

By (4.2), we have the energy identity

§ _ o\ | Qug, 2
Ep ey (16, (5), M>+/0 /M(l—a+s+a|wgk|” Sl )| S avar
= Epn e (ui, M),
for each s > 0. Since u; is a minimizing sequence, it implies that
lim | 2 |Vug, ()" dv =0, 4.5)
i—oo Jy n

s
lim / / (1 —a+e+ a|vu8,‘|n72 + glvué?jlnil) \a[l/lg,- |2 dvdt = 0. (46)
0 JM

i—00
Moreover the sequence {ug, (s)}7°, for each s > 0 is also a minimizing sequence in
the homotopic class [ug].

Lemma 4.1. Let p, R be two constants with p < R < 2p. For any xo with
By, (x0) C M and for any two s, t € [0, T), we have

/ €n,s; (ué‘[('s S))dv - / €n,s; (ué‘,')('a T) dv
By (x0)

Br(xo)

T
= C/ / <1+a|vusi|”72+gi|vu|”*l) |aluei|2dvdt
s M

(t —s) ’ n—2 n—1
+ (0 | ennudy (1 +a|Vug, "2 + & Vg, | )
(R—p)" Ju s Jm

1/2
|81, |* dv dt) .

Proof. Let ¢ be a cut-off function in Bg(xp) such that ¢ = 1 in B, and |V¢| <
C/(R — p). The required result follows from multiplying (4.2) by ¢0;u,, . O

We can repeat the same steps of Lemma 2.5 to obtain
Lemma 4.2. There exists a positive constant g < i(M) such that if for some Ry
172
with 0 < Ry < min{eg, ["T} the inequality

sup / Vg, " dv < g0
to—4R3 <t <ty Y B2ry (X0)

holds, we have
Vug; [ Lo (Br, (x0)) = C(Ro)
where C is a constant independent of ¢ and depends on Ry.

Now we complete the proof of Theorem 1.4.
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Proof of Theorem 1.4. For a minimizing sequence ; of the n-energy in the homo-
topy class, let u be the weak limit of {u,-}?il in WH(M). Set

Yo = ﬂ {XOEQ:BR()C())CM, limsup/ |Vu,-|”dx280},
Br(xo)

R>0 i—00

for a small constant &9 > 0. It is known that ¥ is a set of finite points. For the
above sequence {u, (s)}72,, we set

Yy = m {xo € Q: Br(xg) C M, limsup/ |Vu€l.(-,s)|” dx > 80} ,
BRr(xo)

R>0 i—00

which is also finite. Applying (4.5)-(4.6) to Lemma 4.1, we obtain that ¥y = X
for all s > O (see a similar argument to one in [16]). By using Lemmas 4.1-4.2,
[Vug; (x,5)] < C(R) on Pr(xp,s) for each xo € M\X with Br(xg) C M. By
this result, we know that u(x, t) is a weak solution to the flow (4.2). Since u; (x, t)
converges weakly to u(x, t) in WL2(M %[0, 1), u(-, 1) = u(-,0) = u. Then u(x, t)
is an n-harmonic map from M to N independent of ¢+ € [0, 1]. By the regularity
result on n-harmonic maps (e.g., [21]), u is a C1*-map on M.

For any xo € M\ X, there is a constant R > 0 such that Br(x9) C M\ X. Note
that u,, (7) converges strongly to u in WL (Bgr(x0)). Asi — 00, we apply Lemma
4.1 to obtain that

1 1
/ —|Vu|" < liminf/ —|Vu;|"dv < limsup/ es, (i) dv
B B B, (x0)

,o(x()) n =00 p(x()) n i—00

1
< limsup/ en.e; (Ug) (-, T)dv = / —|Vu|" dv
Br(xo)

i—00 Br(xg)

for any R with p < R. Letting R — p, we have

1 1
/ —|Vu|" = lim —|Vu;|" dv.
B

HEDRL i—00 JB,(xo) I

This implies that u; converges strongly to u in Wl’"(Bp (x0)) and hence strongly in
WM M\E).

Next, we use a similar proof of Sacks-Uhlenbeck [24] to show that ¥y =
Y5 = ¥ if my(N) = 0. Let {ug,(s)};72, be the above sequence. it is known that

ug, (s) converges to u strongly in WIL’C"H(M \ X;). Without loss of generality, we
assume that there is one singularity x! in X;. Let 7(r) be a smooth cutoff function
in R with the property that n = 1 forr > 1 and n = 0 for r < 1/2. For some
p > 0, we define a new sequence of maps v; : M — N such that v; is the same as

u; outside B, (x1), and for x € B,(x1),

|x| -
Vi (X) = exp,(y) (n <7 expu(i) oug; (x,5) |,
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where exp is the exponential map on N. Note that v; = u on B,2(x1) and v; =
ug, (s) outside B, (x1) and that u, (s) converges to u on B, (x1)\ B, /2(x1) strongly in
WL+l and thus in C# for some B > 0. Hence for sufficiently large i, v; (B (x,) \
B, /2(x1)) lies in a small neighborhood of u(x;), where exp;&) is a well defined

smooth map (if p is small). Since F(y) = eXPy(x) (17(%‘) exp;(lx) y) is a smooth
map from a neighborhood of u(x;) into itself, we have

/ IV(vi—u)I”dvz/ IV(F oug(s) — Fou)|"dv
By\By/2(x1) Bp\By/2(x1)

SC/ IV (ug; (s) —u)|"dv— 0
Bp\By/2(x1)

asi — oo. It implies that
”Ul' — M”W],n(M) —0 (47)

asi — o0.

Since 7, (N) is trivial, v; is in the same homotopy class as ug, (s). Since ug, (s)
is a minimizing sequence of E, ., and u,, (s) converges weakly to u in W'", we
have

E,(u) < limsup E, ¢, (ug; (s)) < limsup E;, ¢, (v;) = E,(u),

i— 00 i—00

which implies that u, (s) converges to u strongly in WLn(M, N), which means that
there is no energy concentration; i.e., o = Xy = . O

5. Minimizing the p-energy functional in homotopy classes
For a small ¢ > 0, we introduce a perturbation of the p-energy functional by
E (u'M):/ £ 1Vl + < [Vul? + —— |Vu o .1)
p-eit M2 2 n+1 ' '
The Euler-Lagrange equation associated to this functional is

V. ([8 VuP? + 8|Vu|”_1]Vu>

(5.2)
n [e VP2 4 s|w|"—1] Au)(Vu, Vi) = 0.
The gradient flow for the above equation is
3
U _ div [(a + VP2 8|Vu|”_1) Vu]
dt (5.3)

+ (& + 1VulP = 4+ o] Vu" ") A@)(Vu, Va),
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with initial value u#(0) = ug in M. If the initial map u¢ is smooth, there is a global
smooth solution to (5.3) by using proofs in [19] and [11].

Without loss of generality, we assume g;; = 6;;. Then we have

Lemma 5.1. Let u be a solution of the equation (5.3). Then for all p < R with
Br(xg) C 2, we have

1 1
p”‘”f [5|Vu|2+—|w|P+
B, (x0) 2 n+1
2
n(p )/ / 8|Vu| dx dr

1
+f [—|a,u|2 + s|Vu|”—1|a,u|2] PP dx
Br\B,(xo) L2 n+1

1
= RP—"/ [f|vu|2 + —|Vul? + g|vu|"+1] dx
Br(xo) L2 n+1

1_ R
n—l— / / P71\ Vu "t dx dr
h +1 o - (X0)

0
+/ / rP1= ”<8—L;, x,V,u> dxdr.
p JB

Proof. Without loss of generality, we assume that xo = 0. Multiplying (5.3) by
x; Viu, we have

ou . -2 n—1
o xiViu —<d1v <<8+|Vu|p + &|Vu]| )Vu) x,~V,~u> dx =0.
B

Integration by parts yields that

9 1
/<—”, xiViu>dx——/ (a+|vu|1’*2+g|vu|”*1) % Viul? de
B, dat r JaB,

=_/ (8|Vu| +|Vu|l’+g|vu|"+1)

equ|”+l] dx

( S VulP2 4 | Vu|" 1)x, ,~<|Vu|2) dx
2 —
( )8|vM|2+u|W|P—L|W|"“> dx
p n+1

(—|Vu|2 —|Vu|p + %IVMI”H) do.
n
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Multiplying by 7~!=" both sides of the above identity, we have

d
Ll | (Evup + —|Vu|p+ |Vu|"+1 dx
dr B, 2

_np=2 )rl”"/ £|Vu | dx +rP1”/ £ =D) gyt gy
2p , . n+1

——rl””/ W28 e+ PP g — gt ax
. 2 P n+1
1
+rP”/ CIVul + | Vul? + —— |Vu™ ) do
9B, 2 p I’l+1

0
= rl’"/ (8 +|Vu|P~2 +8|Vu|"71) 19,ul? dw —/ rpl”<a—b;, xiViu> dx.
3B, X

Then integrating with respect to r from p to R yields the result. O

Lemma 5.2. Let u; € C*°(M, N) be a minimizing sequence in the homotopy class
[uo]. Then there are a sequence of &; — 0 and solutions u, of equation (5.3) with
initial value u; such that ug, (t) for all t € [0, 00) is also a minimizing sequence in
the same homotopy class. Moreover, there is a uniform t € [1/2, 1] such that

lim
i—»oo Jyyn+1

Vi, |n+1(.’ dv + lim / |3tu£i(.’ f)|2 dv =0.
11— 00 M
Proof. Since the minimizing sequence u; is smooth, there is a sequence &; — 0
such that |
Epe (i) < Ep(ug) + I
which implies

hm Epg (u;) = hm Ep(ug )= inf E,(v). 54

S

Then there is a unique solution ug, (x, ) to the flow (5.3) with initial value u,, (0) =
u;. Similar to Lemma 2.1, we have

T
2
Egi(usi(-,r))—{—/ / |1, |” dvdt = Eg, (ug,).
0 M

This implies that u,, (x, T) for T is a minimizing sequence of E in the homotopy
class [ug], which yields

lim
i—ooJyn —I—l

"L Ty dv +/ / |0ue,|* dvdr =0. (5.5
Then there is a uniform 7 € [1/2, 1] such that

lim/ |0y, (-, D) > dv = 0. 0

i—oo Jym
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Proof of Theorem 1.5. Let u; € C*°(M, N) be a minimizing sequence in a homo-
topy class and u its weak limit. If NV is a homogeneous manifold, we claim that u is
a weak p-harmonic map from M and N.

Let X = (X', .-+, X%) be a Killing vector on N C R as in Hélein [15] and
u = (u',---,ul) € N. Let ¢ be a cut-off function compactly supported in M.
Since u, is a solution of (5.3), we use ¢ X (1) as a testing vector to get

[ (Bitoxen. (e + 1Vl 4 e 91 Siae v == [ (@X @, )
M M
Since X is a Killing vector, it implies that Zﬁm=1 Viul! VleVkule =0,s0

/ <Vk(p X (ug), (8 + |VME|P_2 +& IVMSI"_I) Vku,;)dv

M (5.6)

= —/ (X (ug), Orug).
M

Let u be the weak limit of u,, in WP (M x [0, 1]) by passing to a subsequence if
necessary. By a compact result in [3], |Vue, |P>Vu,, converges weakly to
|Vu|?~2Vu in L?* with % + # = 1. Since u,; converges to u strongly in L?
and X is a smooth vector on N, X (u¢;) converges to X (1) strongly in L”. Letting
& go to zero in equation (5.6) and noting (5.5), we have

/ Vi (X ). 1VulP Vi) dp = 0,
M

which implies
/ (Vi@ X @), 1VulP2Viu)dp = 0
M

due to the fact that X is a Killing vector. Since N is a homogeneous space, we apply
the construction of a Killing field {X ;} by Helein [15] and choose ¢; to obtain that

D 0iXjw)
Jj

is any compactly supported vector field (along u). This implies that u is a weak
p-harmonic map. We know that u is a weak solution to the p-harmonic map flow.
It follows from (5.5) that u is a map independent of ¢+ € [0, 1]. Since ug, (x, t)
converges weakly to u(x, ) in WLZ(M x [0,1]). Hence, u(-,7) = u(-,0) is a
(weakly) p-harmonic map from M to N.

We define

1

Y= | | X0 € Q: Br(xg) C M, limsup / |Vug. |Pdx > ¢y,

) R"— !
R>0 & —0 Bgr(x0)
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for a sufficiently small constant 9. Then, H"~7(X) < 4o00. For any x¢ ¢ X with
Bg,(x0) C M\X, for each y € Bg,/2(xo) and for each p € (0, Ry/2), we have

pp_"/ ( )|Vu|de < lim p”_”/ ( )|Vu€l.|de < &, (5.7)
B,(y By(y

&;i—0

for a sufficiently small constant &g > 0. Since u is a weakly p-harmonic map
satisfying (5.7), it follows from a similar proof of stationary p-harmonic maps into

homogenous manifolds (see [28]) that u belongs to Cllo’g‘ (M\Y). ]
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