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A new type of non-topological bubbling solutions
to a competitive Chern-Simons model

ZHIJIE CHEN AND CHANG-SHOU LIN

Abstract. We study a non-Abelian Chern-Simons system in R2, including the
simple Lie algebras A and B,. In a previous work, we proved the existence
of radial non-topological solutions with prescribed asymptotic behaviors via the
degree theory. We also constructed a sequence of bubbling solutions with only
one component blowing up partially at infinity. In this paper, we construct a se-
quence of radial non-topological bubbling solutions of another type via the shoot-
ing argument. One component of these bubbling solutions locally converge to
a non-topological solution of the Chern-Simons-Higgs scalar equation, but both
components blow up partially in different regions at infinity at the same time.
This generalizes a recent work by Choe, Kim and the second author, where the
SU(3) case (i.e., Ap) was studied. Our result is new even for the SU (3) case and
also confirms the difference between the SU (3) case and the B, case.

Mathematics Subject Classification (2010): 81T13 (primary); 35J47 (sec-
ondary).

1. Introduction

In this paper, we study a non-Abelian Chern-Simons system of rank 2:

Auq et et 0 e\ (4w Nido\ . o2
<Au2) +K <e”2) - K ( 0 e”2> K <e”2> - <47rN250 in R, a.D
where N, N> are non-negative integers, 89 denotes the Dirac measure at 0, and
K = (a;j) is a2 x 2 matrix satisfying

ail, axp > 0, apn,ay < 0 and ajlazy —appaz > 0. (1.2)

Clearly (1.1) can be considered as a perturbation of the following Liouville system
with a singular source:

Auq aiy an et 4w N1dog\ . 2
(Auz) + (azl an ) \e*2 ) 7 \4n N8 in R, (1.3)
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See [1-3]. Under the assumption (1.2), then in literature, (1.3) is also said to be
competitive, as compared to the cooperative case where aj», ap; > 0.

In the last few decades, various Chern-Simons field theories [12] have been
widely studied, largely motivated by their applications to the physics of high crit-
ical temperature superconductivity. Another interesting feature of Chern-Simons
field theories is that they provide a gauge invariant mechanism of mass genera-
tion [11]. These Chern-Simons theories can be reduced to systems of nonlinear
partial differential equations, which have posed many mathematically challenging
problems to analysts. Our first motivation to analyse (1.1) comes from the rela-
tivistic non-Abelian self-dual Chern-Simons model, which was proposed by Kao
and Lee [23] and Dunne [13, 14]. Following [13,14], the relativistic non-Abelian
self-dual Chern-Simons model is defined in the (2 + 1) Minkowski space R!-2,
and the gauge group is a compact Lie group with a semi-simple Lie algebra G. The
Chern-Simons Lagrangian action density £ in 2+ 1 dimensional spacetime involves
the Higgs field ¢ and the G-valued gauge field A = (A, A, Az). In general, the
Euler-Lagrangian equation of L is too difficult to deal with. Therefore, we only
consider the energy minimizers of the Lagrangian functional, which turn out to be
the solutions of the following self-dual Chern-Simons equations:

1
D-¢=0 and Fi =-—[¢—[l¢.¢"].9]0'] (14)

where D_ = D} —iDy whilex > 0and F;_ = 0;:A_ —0_A4 + [A4, A_] with
At = Ay L+ iAy,0+ = 01 £i0p and [, -] is the Lie bracket over G. In [14], Dunne
considered a simplified form of the self-dual system (1.4), in which the fields ¢ and
A are algebraically restricted:

¢=> ¢“Ea,
a=1

where r is the rank of the gauge Lie algebra, E, is the simple root step operator,
and ¢“ are complex-valued functions. Let

ug =log|¢p?l for a=1,---,r.

Then system (1.4) can be reduced to the following system of nonlinear partial dif-
ferential equations

1 r r r
Aua—i-ﬁ (Z K, pe't —ZZ e Kpee“ K, | =4n
b=1 b=1c=1

Nq
8 a, for1<a<r, (1.5)
i=1

J

where K = (K,p) is the Cartan matrix of a semi-simple Lie algebra, { p?}?’i] are

zeros of ¢¢ (@ = 1,---,r), and § p denotes the Dirac measure concentrated at
p in R2. See [29] for the derivation of (1.5) from (1.4). For example, there are
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three types of Cartan matrices of rank 2, which correspond to the semi-simple Lie
algebras Aj, By and G, respectively:

Az(ie., SUQB)) = (_2] _21) By = (_22 _21> , G = <_23 _21> . (16

Let ((K~")4p) denote the inverse of the matrix K. Assume that

r

D (K, >0 for a=1,2,-,r (1.7)
b=1

A solution u = (uy, - - - , uy) of (1.5) is called a topological solution if
r
Uz (x) —> an(Kfl)ab as x| > 400 for a=1,---,r;
b=1

a solution u is called a non-topological solution if
Ug(x) > —oo aslx|—»> 400 for a=1,---,r.

For any configuration p? in R?, the existence of topological solutions to (1.5) was
proved by Yang [29] in 1997. However, the existence question of non-topological
solutions (and mixed-type solutions, see below) is much more difficult than the one
for topological solutions, and has remained open for a long time. Only recently,
with the help of the classification result in [24], the first existence result of non-
topological solutions to (1.5) with K = A3, B, and G, have been obtained by Ao,
Wei and the second author [1,2] by the finite-dimensional reduction method through
a perturbation from the Liouville system (1.3). However, the understanding of the
structure of non-topological solutions is still far from complete.

1.1. Main result

In this paper, we focus on the radially symmetric solutions of (1.5) when all the
vortices coincide at the origin. We only consider the rank 2 and competitive case,
namely K is a 2 x 2 matrix satisfying (1.2). Moreover, we may assume, without
loss of generality, that x = 1. Then system (1.5) coincides with (1.1). In particular,
when K = Aj, then (1.1) becomes the following SU (3) Chern-Simons system

{Aul +2(e" =262 e 1H12) — (12 =262 1T =AT N1y R%. (1.8)

Aup+2(e"2 —2¢212 4-e1T12) — (g1 — 2211 +o"1T12) =47 N> §
When K = B, then system (1.1) becomes the following I3, Chern-Simons system

{Aul F 26 — 2 — 421 4 2212 = 47 N nE.  (19)

Auy + 242 — 2e¥1 — 4e2 4 Q12 4 40211 = 477 Ny Sy
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As in [21], in order to simplify the expression of system (1.1), we consider the
transformation

ax —ap an — ax
(u1, u2) — <M1 +In—————= uy+1In —)
aiax — apas aiax — anazi

and let

(a1,a2) = (

—app(a —ax) —ax(axn — 012))
, )
ailax —apday aian — ajnazi

Clearly the assumption (1.2) implies a; > 0 and ap > 0. Then system (1.1) be-
comes

Aup + (1+a))(e"t — (1 +ap)e™ +aje1™2)
—ay(e"2 — (1 + az)e™ + are"172) = 4 N1 &y

Aus 4+ (1 4+ a2) ("2 — (1 + ar)e®2 + apet1142)
—ar(e" — (1 4 ap)e® + aje"1142) = 4 N»

in R (1.10)

For the three types of Cartan matrices (1.6), we find that

(1D, if K=A
(a1, a) = {(2,3), if K =08 (1.11)
(5.9), if K =0>.

In particular, system (1.8) is invariant under the above transformation.

Clearly, to study system (1.1), we only need to consider system (1.10). It
is more interesting to us that, when (ap, ap) take some other special values but
not (1.11), system (1.10) also arises in some other physical models, such as the
Lozano-Marqués-Moreno-Schaposnik model [25] and the Gudnason model [15,
16]. Lozano et al. [25] considered the bosonic sector of N' = 2 supersymmet-
ric Chern-Simons-Higgs theory when the gauge group is U(1) x SU(N) and has
Ny flavors of fundamental matter fields. They investigated so-called local Zy
string-type solutions when Ny = N and obtained a system of nonlinear differ-
ential equations (see [25, (19)-(22)]) which, under a suitable change of variables
and unknowns, can be transformed into (1.10) with (a;, az) = (ﬂ, W)
and k > 0. If k > 1,then aj,ap > 0 and a; + ap = 1. Gudnason [15, 16]
considered a N/ = 2 supersymmetric Yang-Mills-Chern-Simons-Higgs theory with
the general gauge group G = U(1) x G’, where G’ is a non-Abelian simple Lie
group represented by matrices. When the gauge group are U (1) x SO(2M) and
U(1)xUS,(2M), the so-called master equations are a system of nonlinear differen-
tial equations (see [15, (3.64)-(3.65)] or [17,(2.1)-(2.2)]). Letting M = 1 and using
a suitable transformation, this system coincides with (1.10) witha; = a» = B ;;f‘*
and o*, 8* > 0. If B* > a*, then a; = a > 0. See [21] for these two transforma-
tions.
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Therefore, it is worth for us to study system (1.10) with generic aj,a> > 0
rather than only (1.11). As in [21], we easily see that a solution (i1, u) of (1.10)
is a topological solution if (uy,uz) — (0,0) as |x| — —+o00; a non-topological
solution if (uy, uy) - (—o00, —o0) as |x| — +o00; a mixed-type solution if either
(ur,uz) »> (In ﬁ —o00) or (uy, up) — (—o0, In 1+1a2) as |x| - +o0.

We postpone other mathematical details about (1.10) and first state our main
result. To simplify the notations, in the sequel we denote

A=(0+a)(l+a) and B =aja. (1.12)
Then A— B = 1 4+aj; +a, > 1. Denote B(0, R) := {x € R?||x| < R}. The
main result of this paper is to prove the existence of a new type of non-topological
bubbling solutions.
Theorem 1.1 (Theorem 2.3). Assume that ai, a, > 0 satisfy
31 4+ap)( +ax) —4dajar >0 (1.13)
and N1, Ny are non-negative integers satisfying

(A—4B)(N1 +1) <2a1(1+a)(N2+1) if A—4B > 0. (1.14)

Let (a1, ap) satisfy a1 > 1,00 > 1 and

1
BA—4B)a; + — (A~ 2B)ay
ap
| . (1.15)
— AN, + AN, (4+2 +a1) (A—B),
a aj

4B — A 2a,

(@ —1) + (@ —1)— (N +1) > 0. (1.16)

14+ap

Then system (1.10) admits a sequence of radial non-topological bubbling solutions
(U1,n, U2,n) such that supg2 up , — —00 as n — 00. Furthermore, there exist two
intersection points R3 , > Ry, > 1 of u1 , and us ,, such that:

(i) It holds u1, — U in C?

i0c(B(O, Ry ) as n — oo, where U is the unique
radial solution of

{AU—i—(l +anel — (1 +a)?e?V =4xNsy inR2, a1

Ux)==2yIn|x|+0Q1) as |x| — oo
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with
4B — A 2a
Yy = (1 — 1)+ (a2 =D+ 1 (1.18)
14+ a

(ii) It holds flf’n" retladr — (, fORl’" re'2ndr — 0, f;;jn re'2ndr — 0 and

Rz, 4
/ re">ndr — ( = ()/+N1)+N2+1),
R

. Il4+a \1+a
(1.19)
00 4
/ re"'ndr - —— (o) — 1)
Rin 1 4 a
asn — oo;

(iii) There exist constants a1, > 1 and o , > 1 such that
Upn(r) = =20, Inr + O() as r — oo, for k=1,2,

and (o1 p, 002,n) — (a1, 02) as n — 00.

1.2. Motivations and remarks

In order to get a full understanding of Theorem 1.1 (such as, why we assume (1.15)),
we will shortly discuss some known results. Define a quadratic form J : R? — R
by
a(l+a ai(l+a
J(x,y) _ 2( 2)x2—|—a1a2xy—|— 1( 1)y2'
2 2

Recently, in [20,21], Huang and the second author classified all radially symmetric
solutions of (1.1). Among other things, they proved the following interesting result.

(1.20)

Theorem A ([21]). Let a1, ay > 0 and (u1, uz) # (0,0) be a radially symmetric
solution of system (1.10). Then both u; < 0 and u» < 0 in R?, and one of the
following conclusions holds.

(i) The pair (uy, uz) is a topological solution;
(i1) The pair (u1, us) is a mixed-type solution;

(iii) The pair (uy, uz) is a non-topological solution and there exist constants o1,
o > 1 such that

up(x) = 20 In|x| + O(1) as|x| - 400, for k=1,2. (1.21)
Consequently, e'1, e"2 € LY(R?). Moreover, (a1, o2) satisfies

Jar—1,ap0—1) > J(N1 + 1, N2+ 1). (1.22)
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The inequality (1.22) comes from the following Pohozaev identity (see [21]):

J—1,a,—1)—J(N1 +1, N2 + 1)

A—B [®
= T r [a2(1 +a1)e2u1 +a(1 +a2)62”2 _ 2alazeul+u2] dr.
0

(1.23)

Therefore, (1.22) is a necessary condition for the existence of radially symmetric
non-topological solutions satisfying the asymptotic condition (1.21). In view of
Theorem A, it is natural to consider the following question.

Question. Fix a1,y > 1 satisfying (1.22). Is there a radially symmetric non-
topological solution of system (1.10) subject to the prescribed asymptotic condition
(1.21)?

If welet Ny = Ny = N witha; = a3 and 4y = uy = u in (1.10), then system
(1.10) turns to be the following Chern-Simons-Higgs scalar equation

Au+e"(1 —e") =4nx N8y inR>. (1.24)

Equation (1.24) is known as the SU (2) Chern-Simons model for the Abelian case;
see [19,22]. For recent developments, we refer the reader to [3,4,6-8,27,28] and
references therein. Remark that the Pohozaev identity plays a key role in studying
non-topological solutions of (1.24). Let u be a radial non-topological solution of
(1.24) satisfying u(x) = —2a In|x| + O(1) near co. Then the Pohozaev identity
implies

1 o0
(@—1>—(N+1)?= Ef re®dr > 0,
0

which implies « > N + 2. In 2002, Chan, Fu and the second author [4] proved that
the inequality ¢ > N + 2 is also a sufficient condition for the existence of radial
non-topological solutions satisfying u(x) = —2aIn|x| + O(1) near co. How-
ever, as pointed out in [5,9], this might not hold for system (1.10). The reason
is following: there might be a sequence of solutions (u1,, 42 ,) such that only
one component blows up, but the other one does not, i.e., the so-called phenomena
of partial blowup; see Theorem C for instance. As a result, only one of the L'
norms of e2“1n and e?“2n tends to 0 as n — oo, which implies that the quantity
J(oy1—1,00—1)—J (N1 +1, Ny + 1) might not converge to 0, namely it has a gap.
Therefore, the inequality (1.22) might not be a sufficient condition for the existence
of radial non-topological solutions satisfying (1.21).

In a previous work [5], we found a sufficient condition for the above question.
As in [5], we define

Q:={(a1,a2) laj, a2 > 1, J@g —1l,op— 1) > J(N{ + 1, N2+ D}, (1.25)
and

S :={(a1, ) | @1, p > 0 and (o1, arp) satisfies (1.27)-(1.30)}, (1.26)
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where

(A—-2B)ar —arx(1 + ax)ay < ax(1 +ax)Ny + AN» +2(A — B), (1.27)
(A—-2B)a; —a1(1 +ay)ar < ai(l +a;)Ny + ANy +2(A — B), (1.28)

14+ a4 14+a

(BA—4B)a;+ (A—2B)ay > AN; +

AN,

a
| (1.29)

+<4+2 )(A—B),
az

1 1
9 A 2By > ANy %2
ai ai

|
+ <4+2 + aZ)(A—B).
ai

(BA—4B)on+ AN,

(1.30)

Theorem B ([5]). Assume that Ny, Ny are non-negative integers and ai,a, > 0

satisfy
A+ a1 +ay) > (6—2\/5) araz. (131)

Let Q2 and S be defined in (1.25)-(1.26). Then S N Q # @, and for any fixed
(a1, 2) € SN Q, system (1.10) admits a radially symmetric non-topological solu-
tion (uy, up) satisfying the prescribed asymptotic condition (1.21).

Remark that § N Q2 # @ if and only if (a1, ap) satisfies (1.31), i.e., (1.31) is a
necessary condition for Theorem B. For example, Theorem B can be applied to the
SU (3) system (1.8) and the B, system (1.9). The counterpart of Theorem B for
the SU (3) system (1.8) was firstly obtained by Choe, Kim and the second author
[9], and Theorem B is a generalization of their result to the generic system (1.10).
Applying Theorem B to the 1, case, we conclude that if

a1 > N1+ N2+ 3 }

o > 2Ny + No + 4 (1.32)

(a1,00) € SNQ = {(Otl,fm)

then (1.9) has a radial non-topological solution satisfying (1.21).

We proved Theorem B via the Leray-Schauder degree theory. To do this, we
proved a uniform boundedness result for radial solutions satisfying (1.21) whenever
(o1, ap) € § N Q. Then a natural question is whether the set S N €2 is the optimal
range of («y, orp) for the existence of radial solutions satisfying (1.21). This ques-
tion has not been settled yet (Theorem 1.1 gives a negative answer for the 3, case;
see Remark 1.3 below). However, in the same paper [5], we also proved the exis-
tence of partially bubbling solutions along some part of 9(S N €2).

Theorem C ([S]). Assume that N1, N> are non-negative integers and ay,a, > 0

satisfy
(1 +a))(+az) > 2a1as. (1.33)

Let (a1, ap) € Q2 satisfy o) # ap and

(A=2B)ay —ar(1 +az)a; = ax(1 +a)Ny + AN + 2(A — B). (1.34)
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Then system (1.10) admits a sequence of radial non-topological bubbling solutions
(U1,n, U2,n) such that supp2 up , — —00 as n — 00. Furthermore, there exists a
intersection point Ry , > 1 of uy , and uy , such that:

(i) It holds uy, — U in C120c(B(O’ R1.n)), where U is the unique radial solution

of (1.17) withy = o + 2% (ay — 1). Besides,

1+an
o0
lim re'tndr = 0; (1.35)
n—>oo Rl,n

(1) There exists (1., 2. n) € S2 such that
Ugn(r) = =20, Inr + O(1) as r - oo, for k=1,2,
and (a1,n, 02.5) = (a1, 02) as n — 0.

Theorem C proves the existence of bubbling solutions along the boundary of (1.27).
For these bubbling solutions, only the second component blows up. We call this
type of bubbling solutions of type I. Inspired by Theorem B, there might exist
another type of bubbling solutions along the boundary of (1.29) (or equivalently
(1.30)), which we call of type II. But for type II, the estimate (1.35) no longer
holds, which means that both components of bubbling solutions blow up at infinity,
namely the asymptotics of type II are more complicated.

Therefore, Theorem 1.1 gives precisely the existence of bubbling solutions of
type II. We conclude this section by some further comments about Theorem 1.1.

Remark 1.2. For the SU(3) case, we have (aj,a2) = (1, 1). Then it is easy to
check that the range of (a1, o2) given in Theorem 1.1 is exactly

201 +ap = N1 +2Nr,+6 and 1 <a; < N>+ 2. (1.36)

We remark that the counterpart of Theorem 1.1 for the SU(3) system (1.8) was
firstly proved by Choe, Kim and the second author [10] under the following as-
sumption

20 +ap = N1 +2N,+6 and 1 <a; < Ny +2, (1.37)

where the assumption «; > 1 plays a crucial role in their proof. Theorem 1.1
improves their result on two aspects. First, for the SU (3) case, Theorem 1.1 covers
the special case &y = 1 (note that (1, o) = (1, Ny +2N2 +4) € 9(SN2)) which
was not considered in [10]. Remark that the case «; = 1 is different from the case
a1 > 1. Indeed, we can see from (1.19) that, if «; > 1, then (1.35) no longer
holds, namely the bubbling solutions are of type II. However, the case a1 = 1
satisfies (1.35), namely the bubbling solutions are of type I just as in Theorem C.
This phenomenon is reasonable, because the intersection point of line (1.34) with
line (1.15), which exists provided A > 2B, is exactly

(a1, a2) = (1, alta) g

N+ 1) +1).
A—2B a—p M2t D+ )
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Thus the case «; = 1 can be seen as a critical case that connects bubbling solutions
of type I with bubbling solutions of type II. Observe that o; > 1 was assumed in
Theorem C, so our study of the case &y = 1 is also a complement of Theorem C.
Second, Theorem 1.1 generalizes their result to the generic system (1.10). Theo-
rem 1.1 indicates that, there exist bubbling solutions of type II along the boundary
of (1.29). This fact, together with Theorem C, shows that the set SN €2 is an optimal
range! in view of the degree theory.

Remark 1.3. For the SU (3) system (1.8), we still do not know whether the set
S N Q is the optimal range for the existence of non-topological solutions, but we
strongly believe so in view of Theorems B, C and 1.1; see [9,10]. However, the
generic system (1.10) is more involved than the SU (3) system (1.8). One example
is the G, case where (a1, a2) = (5,9) and so 3A — 4B = 0. Therefore, none of
Theorems B, C and 1.1 can be applied to the G, case, and understanding the non-
topological solution structure for the G, case remains open. Another example is the
B, case, where (a;, az) = (2,3) and so A — 2B = 0. Then it is easy to check that
the range of (o1, orp) given in Theorem 1.1 is exactly

a1 =N +N>+3 and ap > 1. (1.38)

From here, we conclude that the set S N Q (see (1.32)) given in Theorem B, which
is optimal in view of the degree theory, is not the optimal range for the existence of
non-topological solutions to the B system (1.9).

Remark 1.4. Theorem B can not be applied to the case A < (6 — 2+/5) B. There-
fore, Theorem 1.1 also gives the first existence result of radial non-topological so-
lutions for the case %B < A< (6-2V5)B.

Remark 1.5. Clearly, by Theorem A-(iii), assumptions «; > 1, ap > 1 are neces-
sary for Theorem 1.1. As mentioned before, y > Nj + 2 is a necessary and suf-
ficient condition for the existence of radial solutions for (1.17). Therefore, (1.18)
indicates that (1.16) is a necessary condition for Theorem 1.1. In fact, (1.16) is
also needed to guarantee that (o1, p) satisfies inequality (1.22) (see Lemma 2.2
below), which is obviously necessary by the Pohozaev identity. On the other hand,
assumptions (1.13)-(1.14) are also necessary conditions for Theorem 1.1, because
they are the necessary and sufficient condition to guarantee {(c«¢1, @2) |a; > 1, a2 >
1 and satisfy (1.15)-(1.16)} # @; see Lemma 2.1 below.

Theorem 1.1 will be proved via the shooting method in Section 2.

ACKNOWLEDGEMENTS. The authors thank the referee very much for careful read-
ing and valuable comments.

! Here we mean that the a priori estimates can not hold for any open connected set containing
S M € as a proper subset. In other words, if there is another connected range S for the existence
of solutions by the degree theory,then SN SN Q = 7.
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2. Construction via the shooting method
In this section, we will prove Theorem 1.1 by constructing bubbling solutions via
the shooting method. In the sequel, we assume that a;, ap > 0 satisfy

3(14+a)(1 +a) —4ajar > 0. 2.1

Recall the notations A, B in (1.12). Assume that N1, N, are non-negative integers
satisfying

(A—4B)(N1+1) <2a1(14+a;)(No+1) if A—4B > 0. 2.2)
Define
Y= {(a,a) |ay > 1, ap > 1, glay,az) =0, h(ay, az) > 0}, (2.3)
where
14+ a
glar,a2) :=BA—4B)a; + (A—2B)ay — AN
aj
1 1
- +a1AN2—<4+2 +a1)(A—B), 2.4)
a a
B—A 2a,
h(ay, az) = (@ — 1)+ (a2 — 1) = (N + D). (2.5)
1+a

Lemma 2.1. ¥ # 0 if and only if (2.1)-(2.2) hold.
Proof. Denote Ny = Ny + 1 for k = 1, 2. Clearly & # {4 is equivalent to

£i={@1rz0y>0 80y =0k, > 0] £,

where
- 1+a ~ 1+a -
gx,y):=BA—-4B)x + (A—-2B)y — AN| — AN,,
a az
fz( ) 4B — A n 2ay I
X,y) = X — Nj.
Y A 1 +azy :

If 3A —4B < 0,then {(x,y)[x >0,y >0, g(x,y) =0} = @. Therefore, (2.1) is
a necessary condition to guarantee ¥ # . In the following, we always assume that
(2.1) holds. Then it is trivial to see that ¥ # ¢ in the case A — 2B < 0. Consider
the remaining case A — 2B > 0. Observe that the intersection point of g(x, y) =0
with the y-axis is (0, ‘12“@#). If A— 4B < 0, a direct computation shows
that

(2.6)

~ ar(1 + az)N1 + ANZ
0, >0
A—-2B

holds automatically, which implies Y #£0.If A—4B > 0, it is easy to see that
¥ # @ if and only if (2.6) holds, which is just equivalent to (2.2). This completes
the proof. O
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In the sequel, we fix any (1, a2) € Z. We will prove the existence of bubbling
solutions near («y, oep) just as stated in Theorem 1.1.
Inspired by the blowup analysis in our previous work [5], we define

B A )+ — Dt 2.7)
= o] — oy — . .
14 1 1 I+ 2
Then h(aq, ap) > 0 gives
y > N1 +2. (2.8)
Clearly, g(a1, @) = 0 and (2.7) yield
A—-2B 2B 2a1
] = — y-D+—W+1D+ (N2+1)+1, (2.9)
A A 1+ap
a 3A—4B( 4 a A_4B(N+1)
op=————(y —
“Tra a7 T+a A 1
(2.10)
A —4B
+ (N2 +1) + 1.
By @1 > 1 we obtain
2a1(1 + ap) .
<1 1 _ 1) if A > 2B. 2.11
y=l+—z Wi+ h+——7= N2+ 1) if A> (2.11)
As in Lemma 2.1, for convenience, we always denote
y=y—1, ay =a;—1 and Ny =Ni+1, for k=1,2. (2.12)

Lemma 2.2. The inequality h(ay, o) > 0 implies J(o; — 1,0 — 1) > J(N] +
1, N, +1).

Proof. By the definition (1.20) of J, a direct computation shows

J()C, )’) = J(_x’ —)’)

2ay J 2ar +
= X, — x — = —x, x
T 4+a ” T+a 7 2.13)

2B-A. 2BL 2
o] = . )
1 R T 2
. a . = ~ ax
a) = (y + N1+ Ny — aip,

14+ a 14+ a1
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we can derive

2ap .
J(oq, J
(a1, a2) = < 1+a1a1)
=J< 1,——()/+N1)—N2>
- ap ~ ~ ~
=J — - N
( ( > T a 2)
—J (-7 N+ N
< 1% 1+ ()/+ D+ 2)
-~ a2(1—|—a1+a2) 2 o
= J(N.. N —( —N).
N1 N2+ = ‘
By y > N1 +2,weconclude J(a; — 1,00 — 1) > J(N1 + 1, Na + 1). O

Since y > Ni + 2, by [4, Theorem 2.1], there is a unique radially symmetric
solution U of the Chern-Simons-Higgs equation

AU 4+ (1 +ap)e? — (1 4+ap)?e?V =47N,8y in R? 2.14)
U(x) =—2yIn|x|+ O(l) as|x]| — oo. '
Moreover, U < — In(1 4+ a;) in R? and
o0
/ r [(1 +ape’ — (1 +a1)2 ZU] dr =2(y + Nyp),
0 (2.15)

lim [rzeU(r) +rU'(r) + 2y|] =

r—00

Let V(jx|]) = V(x) := U(x) — 2N In|x|, then V(0) := lim,_o V(r) is well
defined; see [4].

To use the shooting method, we consider an initial value problem of system
(1.10) in a radial variable. Denote

Fo(r) i= (1 + ag)e? ) — k) _ g et1O+m) - for =12,
for convenience. Clearly
|Fel < (1 +ap)e' <1+ ar whenever uj,up <0, (2.16)

and it is easy to check that

F, < —%e”k <0 if up < —In2(1 +a; +ap),

. k=1,2. (.17
3 < Fr, <0 if uy <usz_p <—In2(1+a;+ar),



78 ZHINE CHEN AND CHANG-SHOU LIN

We will study the following initial value problem

w{(r) + 1uj(r) = A+ a)Fi(r) —ai F2r) 7 >0
uy(r) + Luhy(r) = A+ @) Fa(r) —axFy(r) >0
ui(r) =2N1Inr + V() 4+ o(1) r—20
ur(r) =2N>Inr +Ine 4+ o(1) r — 0,

(2.18)

where ¢ € (0, 1). Clearly, the solution of (2.18) depends on ¢ and we denote it
by (u1¢, u2¢). Consequently, Fy(r) = Fi (r) also depends on ¢. For the sake of
convenience, when no confusion can arise, we will omit the subscript €. The main
result of this section is following, and Theorem 1.1 is a direct corollary.

Theorem 2.3. Assume (2.1)-(2.2) and fix any (a1, o) € 2. Then there exists suffi-
ciently small g9 > 0 such that for any ¢ < &g, system (2.18) has an entire solution
(U1,¢, U2,¢). Furthermore, there exist two intersection points R3 ¢ > R1 . > 1 of
u1,e and us ¢ such that:

(i) It holds uy . — U in C2

ioc(BO, Ry ¢)) and supu o — —ocoas e — 0;

R2
(ii) It holds [ re“iedr — 0, [f re®edr — 0, [ re*edr — 0 and

fRB,g w d 2 < 2a2 (~ + N ) + 2N )
re-tdr — ,
R 1+ay \14+a 4 ! ?

le

o0 4
/ retedr > —— () — 1)
Ry I+a

as e — 0y
(iii) There exists (a1,¢, 002,¢) € 2 such that

upe(r) = =2 Inr + O(1) as r > oo, for k=1,2,
and (a1, o1,¢) — (ar, az) ase — 0.

In the rest of this section, we prove Theorem 2.3, which is quite long and delicate,
and we divide it into several lemmas. The basic strategy is similar to that in [10]
where the SU (3) case was studied. Since the solution (u1¢, u2) of the initial
value problem (2.18) exists locally, the key point is to prove that (i1 ¢, u2 ) exists
globally for r € (0, +00) (i.e., does not blow up at finite ) provided that ¢ > 0
is sufficiently small. This is the most difficult part of the proof. To overcome this
difficulty, we need to carry on a delicate analysis of the asymptotic behavior of
(#1,¢,U2,¢) as ¥ — +o0o. For example, we need to understand what happens if
u1 e and uy . intersect and how many times they intersect. The main tool is the
well-known Pohozaev identity together with the blow up analysis, which makes our
argument rather technical and involved.
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Moreover, as pointed out in [5,18,21], the generic situation poses new analyt-
ical difficulties compared to the SU (3) case. For example, in [10] they used many
helpful inequalities, which hold in the SU (3) case because of (a;, az) = (1, 1) but
can not hold for general aj, a, > 0. This requires us to develop generic ideas to
avoid using this kind of inequalities. It is interesting that our general idea turns
out to be somewhat simpler. More importantly, our general idea also works for the
critical case vy = 1. This is reasonable in view of mathematics. Roughly speaking,
people usually exploit a more special method when the problem is more special.
When the problem is more general, people need to develop a more generic method,
the idea of which might be more natural and hence simpler.

In the sequel, we denote positive constants independent of ¢ (possibly different
in different places) by C, Cp, C1, - - - . Let § be a constant such that

min{l, ai, ap, B} - min{l, &1, &, y — (N1 + 2)}
100(1 + a; + ap)*

where &1 := @& = a; — 1 ifa; > 1 and @] := 1 if «; = 1. Then by (2.14)-(2.15),
we can fix a constant Ry > 1 large enough such that

0<éd< , (2.19)

oo
R3eV R0 4+ |RyU'(Ro) +2y| < 8%, and / reVOdr < 83,
Ro

Ro 2(y + N
/ r [eU - +a1)e2U] dr — 2y + M)
0 1+ a;

(2.20)

< 8.

Repeating the argument of [5, Lemma 5.2], we can prove the existence of small
&1 > 0 such that for each ¢ € (0, €1), problem (2.18) admits a solution (i1, U2 ¢)
on [0, Rg] which satisfies:

(1) Both u;, < Oand up < 0 on [0, Rol, u2,:(Ro) < u1,(Rp) < 2Iné and
R%eul,s(RO) <8

(2) Inequalities |R0M/1,5(R0)+2V| < 8% and |R0u’2’8(R0)— %(y—l—Nl)—ZNﬂ <
82;

(3) Convergence |u1, —U| — 0and up , — —oo uniformly on [0, Rg] as ¢ — 0.

Furthermore, by following the argument of [5, Lemma 5.3], for each ¢ € (0, 1),
there exists Ry = R > Rp such that

4) ur1e(R1e) =u2e(Rig),u2e <ure <2Inéon[Ro, Ry ) and

Iru (r) +2y] <6,

: forall r € [Ro, Riel. (221
C yrN)—2Ny| <5, T [Ro, Riel. (2.21)

ru/z’g(r) T a

In particular, together with (2.19), we have

ru} (r) < —2y +8 < —4 forany r € [Ro, Ri¢]. (222)
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Lemma24. Let ¢ — 0, then R — 0o and Rige”k(Rl’f) — Ofork = 1,2 and

R
fo ¢ re"2edr — 0. Furthermore,

Riett; ((Ri) = =2y +o(1),
2a;
14+ ag

Ri ety (R15) = (v + N1) +2N2 + o(1).

Proof. By property (3) above, u1(Ro) —u2(Rg) — oo ase — 0. Since (2.21) gives
|ru}((r)| < C on [Ry, R1], we easily obtain Ry — oo as ¢ — 0. Then it follows
from (2.22) and property (1) that

1
Rie"2(R) — Romi(R) o FRge”l(RO) — 0 ase = 0.
1

By (2.21) again, we know that u/z(r) > 0 for r € [Rp, R1]. Then by property (3),
we have

R Ry
/ re?dr = o(1) + / re?dr < o(1) + Rie2 RV = o(1)
0 Ro

as ¢ — 0. Moreover, €2 — 0 uniformly on [0, R;], which implies
(1 + e @20 4 By ()| < 2(A — B)e*?™ — 0 uniformly on [0, Ry].

Recall that
1
ui(r) + ;u/l(r) = [(1 +ap)?e? — (1 + al)e’”] —ai [ +aDe"™ + F].

By the standard continuous dependence on data in the ODE theory and R; — o0
as ¢ — 0, we conclude that [u; — U| — 0 uniformly on any compact subset
K & [0, 00). This, together with e < r_4Rge”1(R0) for r € [Rg, R1], easily
yields

R] o.¢]
lim [ r [e”l —a +a1)e2“1] dr =/ , [eU —a —|—a1)e2U] dr
e—0 0 0
2y + N
14+a
Moreover,
R,
lim r(e?2 4+ Mt2)ydr = 0.

e—0Jo
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Consequently, by integrating (2.18) over (0, R;), we obtain

Ry
Riu|(R)) =2N; — (1 + al)/ r [e”‘ ¢! —i—al)ez‘“] dr + o(1)
0
= =2y +o(l),

Ry
Riu5(Ry) = 2N, +a2/ r [e”l - +a1)e2'”] dr +o(1)
0

_ 2ay
Cl+a

(y + N1) + 2Nz + o(1)

as ¢ — 0. This completes the proof. O

For each ¢ € (0, £1), we define
R* =R} :=sup{r > Ri¢|u1e <0,u2, <0onl0,r)}.

Our final goal is to prove R} = oo provided ¢ > 0 sufficiently small. To this goal,
we define

Ry = Ry :=sup{r € (R1 ¢, R}) | ”/2,5 > 0on[Rye,7)}.

First, we recall the following Pohozaev identity (c¢f. [21, Lemma 7.2] or [5, Lemma
22D

d
- {J(ru’l(r) + 2, rub(r) +2) 4+ (1 +a; + az)r2|:aze”‘ +aje™

_ed+a) ;_ al)ez”1 _ad+a) ; %) e 4 a1a2€”1+”2]} (2.23)

= +a +a)r [az(l +ap)e® +ai(1 + ap)e™? — 2a1aze”‘+”2] ,

where J is defined in (1.20).

Lemma 2.5. There exists a small 3 € (0, £1) such that for each e € (0, €2), u1 ¢ <
Uz e ONn (Rl,e’ RZ,E)'

Proof. Assume by contradiction that there exist a sequence ¢, | O and r, €
(Ri,e,, R2.¢,) such that uy e, (ry) = uze,(ry) and uy e, < uze, on (Rye,,rn).
Clearly u/ g, ) = ul g, rn) > 0 for all n. We will omit the subscript ¢, in the
following argument for convenience. We divide the proof into seven steps.

Step 1. We claim that u,(r,) - —oco as g, | 0.

If not, we may assume, up to a subsequence, that u,(r,) > co for some constant
co < Iné. Recall up(R;) — —oo. For n large, there exist b,, d, € (Ry,r,) such
that b, < d,,, ux(d,) = co — 1, ur(b,) = co —2,up < cy — 1 on[Ry,d,] and
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upy > co — 2 on [by, d,]. Consequently, u; < up» < cop —1 < Iné on (Ry, d,] and
so (2.17) gives F, < F; < 0 on (Ry, d,], which implies

/ / 1 ua(r)
(ruz(r)) =rl(l+a)F, —aF]l<rkF < —Ere 2 on (Ry,dy].  (2.24)

This, together with Lemma 2.4, yields 0 < ru’,(r) < Rju)5(R;) < C uniformly on
[R1, d,]. Then by the mean value theorem, there exists e, € (b,, d,;) such that

1 uz(dy) — uz(by) ’
= = <
d, — by, d, — b, uz(en) =

’

R

which implies d,, — b, — oo. Consequently,

d d
n 1 n
0 < dyuy(dy) = butty (by) +/ (rub)'dr < Ryub(Ry) — 5/ re"2"dr
by

by

1. n
< C — ¢ 2 rdr — —oo0 asn — 00,
by

a contradiction.

Step 2. We claim the existence of constant C > 0 independent of ¢, such that
ug(r) +2Inr < C uniformly forr € [Ry,r,] for k =1,2. (2.25)

By Step 1, we may assume u < uz < us(r,) < Iné on (Ry, r,) for all n. Then
[(1 4+ax)ru +ayrul] = (A= B)rFy < ——A;Bre”1 and [aoruy + (1 +apru)] =
(A— B)rF> < —458re"2 on [Ry, r,], which imply

0<@ +(12)rnu/1(rn) + alrnulz(rn)

/ / A—B (™ u
< (1 +a2)R1u1(R1)—|—a1R1u2(R1)—T re‘tdr,
R
0 < agrpuy (rp) + (1 4 ap)raus(ry)
/ / A—B [ u
<aRuj(R)+ A +a)Riuy(Ry) — — re'2dr.
R
By this and Lemma 2.4, we obtain
T'n
/ r(e"! + e"2)dr < C forall n. (2.26)
Ry

Since el < "2 < ¢"2(") 5 0 on [Ry, 1], it follows that

I'n

lim r(e® 4 22 4 1ty gp — (. (2.27)

n—oo Rl
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Combining (2.27) with Lemma 2.4, we integrate the Pohozaev identity (2.23) over
(Ry,r) forany r € (Ry, r,], which yields that
A—B
2

r2(axe" + aje™?) < J(ru'1 (r) +2,ru5(r) + 2) + (A — B)r?

ax(1+ay) ar(1+az)
X |:aze”‘ taper — 2 T T T2y g gyt

2 2
= J(Riu}(R) 4+ 2, Riuy(R1) +2) +o(1) < C
holds for all » € (Ry, r,]. This proves (2.25).

Step 3. Denote (x1, y1) := 2-2y, 2+ lszll (y +N1)+2N,). Clearly the following
system

(2.28)
(I +a)x +ary = (1 +a2)x; +aiy,

has at most two distinct solutions, one is just (x1, y1), and we denote the other one,

if exists, by (x2, y2).

Fix any 0 € [2.5, 3]\ {2 — x1, 2 — x2}. Since rnu’l(rn) > 0 and (2.22)
gives Rju(R1) < —4, there exists 1, € (Ry,r,) such that r,u’(t,) = —6 and
ru/1 (r) < —6@forallr € [Ry, t,). We claim the existence of constant C independent
of &, such that

{J(x, ¥) = J(x1. y1)

us(ty,) +2Int, > C for n sufficiently large. (2.29)

Observe that r?¢*17) is decreasing for r € [Ry, t,], which implies

In In
/ re'ldr < R?e”I(Rl)/ P =0dr <

Ry Ry -

R12eM1(R1)
— 0 asn — oo.

Since [(1 4+ ax)ru| +airuy) = (A— B)rFy and |Fi| < (14aj)e"!, we can obtain
(1 + ap)tau (ty) + artyuts (tn) = (1 + a2) Ry (Ry) + a1 Rius(Ry) + o(1) (2.30)
as n — oo. This, together with Lemma 2.4, shows that
(+a)@=0) +ar(2+ lim uh(6) = (1 +a)x +ay.

Since 2 — 6 & {x1, x2},s0 J(2—6, 2+ 1lim,_, « tnu’z(tn)) — J(x1, y1) # 0. Recall
from (2.25) that t2e®i+4)) < Ct~2 — Qasn — oo for 1 < i, j < 2. Then
by (2.27) and Lemma 2.4, we easily deduce via integrating the Pohozaev identity
(2.23) over (Ry, t,) that

(A - B)t,%(azeul(’") =+ ale"tZ(tn))
=J 2+ R, (Ry), 24 Ryuty (R))) — J 2 + totd; (i), 2 + tatiy () + 0(1) (2.31)
— J(x1,y1) —-J (2 — 9, 2+ lingotnu/z(tn)) ;é 0

n—

as n — oo. This proves (2.29) since u(t,) < uz(t,).
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Step 4. For k = 1, 2, we consider the scaled functions

~ Rl,s,, n
Ug,n(r) == ugg,(tur) + 21Inty, <r<—.
th th
Then (it , U2,,) satisfies
i (1+ap) (1 + ap)t, 2e?in — efitn — gy 2efntion
1,n T r 1n_ 1 1 I'n

—aj <(l + az)t,fzezuzv" — efan — azt,fzeﬁlv””l")
iy n—i— i, =1+ a) ((1 + ap)t, 2e?i2n — elizn — gyt ~2etintiizn

—ap ((1 + al)t,jzez”]v" — et — al[;26u1,n+uz,n> .

2.32)
) (

By (2.25) and (2.29), we see that

lii2.,(1)] < C for sufficiently large n. (2.33)

Step 5. We claim that ”" — 0and uj ¢, (ty) — u1e,(R1e,) = —00 as n — 00.

Assume by contradlctlon that up to a subsequence, #,/R; < C for all n. Sim-
ilarly as (2.24), we can prove that 0 < ruz(r) < R1u2(R1) < C uniformly on
[R1, rn]. Consequently,

ur(r) — ua(R1) < Cln RL < C uniformly for 7 € [Ry, tn],
1

which implies thanks to Lemma 2.4 that

I In 2
/ re'ldr < / re'2dr < R%e“z(RlHC (t—n) -1 -0
R, Ry Ry

as n — oo. Recalling the first equation in (2.18) and | F¢| < (1 4 ax)e"*, we obtain

tn
—6 = tyuy (1) < Riu'(Ry) +/ r[(1+a)|F1| +ai|F2|]dr

R

= —2y +o0(l) asn — oo,

a contradiction with & < 3 and y > Nj + 2. This proves R;/t, — 0 asn — oo.
Consequently, we deduce from ru/l (r) < —6 on [Ry, t,] that u (t,) — ui(Ry) <
—an’—”1 — —ocoasn — oo.

Step 6. We claim that 7> — oo as n — oo.
By (2.25),(2.27) and the Pohozaev identity (2.23), it follows that

J(ruy(r) 4+ 2, ruy(r) +2) = J(Riu} (R1) + 2, Rius(R1) +2) + 0(1) < C
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uniformly for r € [Ry, r,]. Hence
|ruy ()| + |[ru5(r)| < C uniformly for r € [Ry, ). (2.34)

Then by us(r,) — u2(R1) > 0 and Step 5, we have

n
c1n:—"z/ W (r)dr = 1y (rn) — u(ta)
In

n

= uz(rp) — u2(R1) +ui1(R1) —ui(ty) —> 00
as n — oo. This proves the claim.
Step 7. We conclude the proof by obtaining a contradiction.
By us(t,) > ur(R1) = u1(Ry1), (2.33) and Step 5, we have
Ui (1) = uy(ty) — ua(ty) + ti2,n(1) < ui(ty) —ui(R1) + C — —00

as n — oo. Combining this with (2.33) and (2.34), we conclude that i , is uni-
formly bounded in Cioc((0, 00)), while &1, — —oo uniformly on any compact
subset K CC (0,00) as n — oo. Up to a subsequence, we may assume that
iy — 0 in C2_((0, 00)), where @i satisfies

loc
0"+ 1i' = —(1 + ap)e" for r € (0, 00),
00 n
e'rdr < liminf e“rdr < +o0.
0 n—oo R

Reminding that u/z(r) > 0 on (Ry, r,), we easily conclude that 2’(r) > O for any

r > 0, namely # is increasing on (0, 0c0), which contradicts to foooref‘dr < 00.
This completes the proof. O

Lemma 2.6. There exists a small e3 € (0, &2) such that for each ¢ € (0, &3), it
holds

Ry < 00,
Mé’g(Rz,E) = 0’
u1,(Rae) <uze(Rae) <1Ing, (2.35)

|u2,E(R2,8) +2In R2,8| <C
ure(r) +2Inr < C uniformly for r € [R1¢, Ra¢l, k=1,2.

R2,s

, — ooase — 0.
Rl,s

Furthermore

Proof. We divide the proof into four steps.

Step 1. We claim that Ry , < o0, u’z’s(Rg,g) =0and u; :(Rye) < u2c(Rae) <
In § for € > O sufficiently small.
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Lemma 2.5 shows u1 < up on (R, R>). By repeating Step 1 of Lemma 2.5,
we can prove
sup  ux(r) > —oo as & — 0. (2.36)
Ri<r<Ry
Sou; <uy <Ind —1on (Ry, Ry) for e > 0 small enough. Then (2.24) holds for
any r € (Ry, R2). Recalling u’2 > 0 on [R], R>), we have for any r € (R, R,) that

1" 1
—C <rub(r) — Riuh(Ry) < —5/ re2Vdr < —Ze’”(Rl)(rz —RY). (237)
Ry

Letting r 1 Ry, it follows that Ry < oo and so u’z(Rg) = 0. The proof of Lemma
2.5 also yields u1(R) < uz(R») for ¢ > 0 sufficiently small.

Step 2. We claim that (2.35) holds provided ¢ > 0 is sufficiently small.
In fact, since u; < up < Inéd on (R, Rz], (2.37) also implies f}flz r(et"t +
e"?)dr < C. This fact, together with (2.36), implies
Ry
lim [ r(e* +e®2 +e12)dr = 0. (2.38)
e—>0 JR,
The rest argument is the same as Step 2 of Lemma 2.5.

Ry

Step 3. We claim that R — ocase — 0.

Remembering ru/z(f) < R1u/2(R1) < C forr € [Ry, Ry], we have ur(r) <
uz(R;) +Cln RLI for all € [Ry, Rz]. Consequently,

R

2 Ry
—Riuy(Ry) = (ruy(r))'dr = f r[(1 4+ a2)F> — ay Fi ldr
R R
Ry Ry
> (+a) rFydr > —(1+a)? re"2 ") dr
Ry Ry
>

R Cc+2
—(1 +a)*Rie"2 RV [(R—?> - 1} .

This proves the claim because Lemma 2.4 gives R%e”Z(Rl) — 0 and Rlu/z(Rl) —
C>0ase—0.

Step 4. We prove the existence of constant C independent of ¢ such that us  (R2. )+
2In Ry > C provided ¢ > 0 is sufficiently small.

Assume by contradiction that there exist a sequence &, | O such that
uze,(R2e,) +2InRy,, — —00 as n — o0o. We will omit the subscript ¢, for
convenience. Since u3 is increasing on [R, R>], we have

r2e1 ) < p2en2) < R2e12(RD) 5 0 forany r € [Ry, Ra). (2.39)

We consider two cases separately.
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Case 1. Up to a subsequence, supg, g, 7} (r) < —2.5 for all n.
Then r23¢%1() jg decreasing on [R], R,], which implies

R
/ re'ldr < 2R%e”1(R1) — 0 asn — oo. (2.40)
R

1

Let (x1, y1) and (x2, y2) be in Step 3 of Lemma 2.5. Clearly y; > 2. Fix any
0 € (0, y‘—gz) \ {y2 — 2}. Since u}(R2) = 0 and

2a; y1—
(Y +N1)+2N4+0(1) =y —2+0() >
1+a

there exists #, € (R, R2) such that tnu/z(tn) = 6. By (2.40) we see that (2.30) holds
as n — oo, which implies

uy(Ry) =

for n large,

(1 +a) (24 lim 6 (1)) + a2 +6) = (1 +a)x +ay.

On the other hand, by (2.38) and (2.39), we can prove via the Pohozaev identity
(2.23) that (compare with (2.31))

J <2+ lim (1), 2+9) — J(x1, y1) =0.
n—oo

That is, (2 + lim,— o 1‘,,u’l (tn), 2 4+ 60) is also a solution of (2.28), which yields a
contradiction with 2 + 6 ¢ {y1, y2}. So Case 1 is impossible.

Case 2. Up to a subsequence, Sup(g, g,] ruy(r) > —2.5 forall n.

In this case, since Rlu/1 (R1) < —4 by (2.22), we can repeat the argument of
Step 3 in Lemma 2.5 to obtain the existence of ¢, € (R, R») such that (2.29) holds.
Since u; is increasing on [R1, R>], so

C <up(ty)+2Int, <ur(R))+2InRy - —o0

as n — 00, also a contradiction. So Case 2 is also impossible. This completes the
proof. O

Lemma 2.6 implies Ry < R} for each ¢ € (0, £3). Consider the following
scaled functions:

Up(r)=ug e(r):=ure(Roer)+2In Ry fork=1,2 and ¢ € (0, e3), (241)

R - .
where # <r < 1. Then (i1, o) satisfies
&

i + Lt = (1+ay) ((1 +ap) Ry 2P — e — a1R2_2eL_”+’z2)
—a ((1 + az)R2_2ez’22 —e2 — a2R2_2e’;1+5‘2> ,
W+ Lih = (1 + a) ((1 +ay) Ry 2?2 — etz — asz—zeWﬁz)

—ap <(1 +an) Ry 2P — e — ale_zeﬁlﬂ_Q) :

(2.42)
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Moreover, |i2(1)| < C uniformly for ¢ by Lemma 2.6. Now we claim that

lim (1) = —o0. (2.43)
e—0

In fact, since u; < up < uz(1) < C on [R{/R», 1], it follows from (2.42) that
|(r12§()’| < C uniformly forr € [R1/R3, 1] and k = 1, 2. Consequently,

R R
rity(r) < -, <_1> + Cr = R (R)) +Cr < =4+ Cr,
Ry '\ R,

and so i1 (r) > —41Inr+i(1)—C forany r €[R/R;, 1]. Recalling flflz reldr <C
uniformly for all ¢ € (0, £3) by Step 2 of Lemma 2.6, we have

Ry 1 B 2 _
C > / re''dr :/ re'tdr > L(R) - 1] en=C,
R (] 2 \\ &,

Ry

This proves (2.43) since Ry/R; — oo as ¢ — 0.

Again by |(rit;)'| < C on [Ry/Ry, 1] for k = 1,2, it follows that it} — —o0
uniformly on any compact subset K € (0, 1] as ¢ — 0 and it is uniformly bounded
in Cioc((0, 11).

Lemma 2.7. It holds lir% /, Ifl > retledr = 0. Consequently,
£— €

A-B 2B 2a
A T AN T T .

lin}) Ry cu} f(Roe) =2 Ns. (244)
e— ’ 2

Proof. Assume by contradiction that there exists a sequence &, | 0 such that

n—oo

R2,sn
lim / rettendr > 0. (2.45)
R

Lén

Again we will omit the subscript ¢, for convenience. We consider two cases sepa-
rately.

Case 1. Up to a subsequence, Sup(g, g, ruy(r) < —=2.5forall n.
Then (2.40) holds, a contradiction with (2.45). So Case 1 is impossible.

Case 2. Up to a subsequence, SUpg, g,] ruy(r) > =2.5 for all n.

In this case, since Rlu/1 (R1) < —4 by (2.22), we can repeat the argument
of Step 3 in Lemma 2.5. In particular, there exist a constant 6 € (2.5,3) and a
sequence 7, € (R, Rp) such that t,u} (t,) = —0,ru}(r) < —6 forr € [Ry, t,) and
uy(t,)+2Int, > C for n large. Then by the same argument used in (2.40), we have

In 1
/ re'ldr < —R%e“l(Rl) — 0 as n — oo. (2.46)
&, )
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On the other hand, since uy < u3(1) < C on [R;/R>, 1], we have

1, 2 (4 1 2
o =) 0 <c(2)
2 2

which implies #,/R, > C > 0 for all n. Reminding that #; — —oo uniformly on
[C, 1], we conclude that

Ry 1
/ re'ldr :f re'dr — 0 as n — oo.
Iy

n

Ry
Combining this with (2.46), we obtain a contradiction with (2.45) again.

Therefore, lim,;_,¢ |, 151 “re"ldr = 0. Consequently, by the same argument as
(2.30), we have

(14 a2)Rouy (R2) + a1 Rouy(Ry) = (1 4+ a2) Riu'y (Ry) + a1 Ryus(Ry) + o(1).
Then (2.44) follows directly from Lemma 2.4 and u/z(Rz) =0. ]
For each fixed ¢ € (0, ¢3), we define
R3 = R3¢ := sup {r € [Rye, RY) |u1 < up on [Rz,g,r)} .

Then R, < R3; < R*. Ifthereexists # € (R, R3) such that u} () = Oand u(r) < 0
forr € (Ry,1t), then Lemma 2.6 yields u; < u» < Iné§ on [Ry, t]. Consequently,

F>, < F; <0on|[Ry,t] and so
t

0= tu’z(t) — Rzu/z(Rz) = / r[(14+ax)Fr —ayFrldr < 0,
Ry

a contradiction. Therefore,

uy(r) <0 forany r € (Ry, R3). 247

Consider the scaled functions uy defined in (2.41) forr € (g—;, g—;). By (2.47) and
the definition of R3, we have u(r) < ur(r) < up(l) < C forallr € (%, %).

This, together with (2.42), gives |(rﬁk)/(r)| < Crforallr € (ﬁ &). Conse-

Ry’ Ry
quently, #; — —oo uniformly on any compact subset K & (%, I;—;) ase — Oand
ii> is uniformly bounded in Cioc ((% 2—;)) Since iia(1) — iy (1) — oo as & — 0,
we conclude from the definition of R3 that
R

lim — = co. (2.48)

e—0 Ry
Then, for any constant b > 1, it holds

bR, Ry b
lim re'ldr = lim re"dr + lim re"ldr = 0. (2.49)

e—>0 JR, e—>0 JR, e—=0 Jq
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2

Lemma 2.8. I holds u3 e — ws in Cj,

((0, 00)) as € — 0, where

2D*(D* — 4)rP—2
(1+a2)(D 42+ (D —2)rP)?

wr(r) =1In for r € (0, 00). (2.50)

Here D := 1241-1;1 (y + Np) + 2Ny + 2. Consequently,

R 2
/ re“dr = D. (2.51)
0 14+ap

Proof. Consider (2.38) and Lemma 2.4. By integrating the Pohozaev identity over
(R1, Ry), we obtain

J(Rout} (R2) + 2, Rouy(R2) +2) + (A — B)R3 [aze“l R2) + aye2R2)

a(1 2+ @) 2Ry _ A +62) oy | alazeul(R2)+u2<Rz>]

= J(Riu|(R1) +2, Riuy(Ry) +2) + o(1), as ¢ — 0.

Recall that R%e”'(R” =M — 0and R%e”i(RZH”-/(RZ) = Rz_ze’zi(l)”‘f'(l) -0
for1 <i, j <2ase — 0.Combining these with Lemma 2.4 and (2.44), we have

ai(A—B)R3e" R = J (Ryu (Ry) + 2, Riub(R1) +2)
— J(Ratt} (R2) +2, Rous(R2) +2) + o(1)

2a;
=J(2-2r, —(y+ VD) +2N,+2)
1

_l’_
=P 252
J(2-22=8, 2By 2y 2+(1)(' :
J— J— —_— —_— , 0
A Y A : 1+a 2
=15 D=2y =2)- 77

_a(A-B)

2 —
= 2t m) (D —4)+o0(1), as e — 0.

Hence e2() = Rje"2(R) — sios(D? —4) ase — 0,

Recalling that i is uniformly bounded in Cloc (5, £2)), up to a subsequence,

2
loc

we may assume that i1y — w7 in C; ((0, 00)). Clearly, w, satisfies
/! 1 / Q)
wz + _a)z = _(1 +a2)€ 2
d 2_4 forr€(0,00). (2.53)

wy(r) < wy(1) =1In 20 1)
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Consequently, a simple contrary argument shows fooo re“2dr < oo. Recalling 0 <
rity(r) = Rorub(Royr) < Riy(R1) = D — 2+ o(1) for all r € [£L, 1], we obtain
(note ) (1) = 0)

2y = rli_r)r(l)rw’z(r) €(0,D —2].

In conclusion, w; is a radial solution of the Liouville equation with singular sources
o.¢]
Av+ (14 ar)e’ =4nydy in R and / re'dr < oo.
0

By a well-known classification result due to Prajapat and Tarantello [26], it holds

8A(1 + y2)2r?»
602(7') + ln(l + 612) =1In W

for some constant k > 0. By w’z(l) =0and wy(1) = a direct computa-

In 5y 2(1+ oL
D +2 Consequently, we see that (2.50)-(2.51) hold.
The above argument actually shows that u, — @y in CIOC((O, o0))ase — 0 (ie.,
not only along a subsequence). This completes the proof. O

tion gives y» = D=2 and A =

Lemma 2.9. There exists a small g4 € (0, €3) such that for each € € (0, 4), there
holds R3 ¢ < R}. Consequently, u1 ¢(R3 ) = us¢(R3¢).

Proof. Assume by contradiction that there exists a sequence ¢, | O such that
R3e, = R; . Since u1e, < uze, < 2,,(R2s,) < Indon (R, R3s,), We
see from the definition of R;‘n that R3 ,, = oo, namely (u;,, u2¢,) is an entire
solution and u1 ., < uze, < Ind on (Ryg,,00). By Theorem A, we see that
(u1,¢,, U2,¢,) 1s a non-topological solution and there exist constants By ¢, > 1 such
that.ru;wn (r.) — .—2,3;(,8" asr — 00 for k = l., 2. Clearly, B2 ¢, < Bi,¢, forall n.
Again we will omit the subscript ¢, for convenience.

By Lemma 2.8, we can fix a large constant b > 1 such that b?¢®2(?) < § and
/i boo re“2dr < §/2. By the dominated convergence theorem,

bRy b b
/ re'2dr =ﬁ re'2dr — re®?dr as n — o0o.
0

R; R—;

Recall (2.49), (2.51) and u; < ur» < ur(Ry) — —oo on (Ry,00). Then for n
sufficiently large, we have

lur(b) — wr(b)| < 8, and

bRy 2
/ re*2dr — D| < §,
R 14+a

bR)
(A — B)? r(e”l + e 4?2 4 e”‘+”2)dr < 4.
Ry
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Recalling (2.18) and (2.21), we have
bRy

bRou | (bR2) >Ryu{(R) + a; / re"2dr
R

bRy
- / r [(1 +ape +ar(14ape”™2 +a(1 +a2)62”2] dr

Ry
>—-2 s+ 2 D—3§ )
[— [— a — f—
=z Y 1 1+ a
AT B L M M- tans
= — —_— _— — a s
A Y 2 1 1+ a 2 1
and
bR,
bRyus(bRy) <Ryu5(R1)—(1+a2) re"2dr
Ry

bRy
—1—/ r [(1 + ap)?e®™ + apet + a1a28”1+”2] dr
Ry

2as
14+ ag

=

(y +N1)+2N2+3—(1+a2)(
14+ ap

D—8> +5 @234

2a;
14+ ag

(y + N1) —2N, —4 4+ 3+ ap)é

<—4-

- 22 S,
T a Q2+a)

where we have used 12;12] (y —2) > 7(1 + a; + a2)é (by (2.19)) to obtain the last
inequality. Recalling u1 < u» < uz(Rz) < Ind on [Rp, 00), we have F < F1 <0
and so (ru})' (r) =r[(1+az)F2 —axF1] < 0 on [R3, o0). Consequently, 7u) (r) <

bRyu’y,(bRy) for any r > bRy, which implies

day

-2 < —4 —
Pr = 14a

— 22 +ay)s. (2.55)
1

On the other hand, by ru),(r) < bRyu’,(bRy) < —4 forr > bR», we also have

o0 o0 o0
/ re*ldr 5/ re'2dr < (bR2)4e”2(bR2)/ r3dr
bR) bR, bR) (2 56)
= %bZe’h(b) < %bzem(b)” < =8¢ <6.

N =
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Consequently,

o0

—2B81 = szu/l (bRy) +/ (ru’l (r))/dr
bRy
> bRou ) (bRy)
o
- / r [(1 +ap)e +ar(1+ap)e"™™ +a (1 + az)e2”2] dr
bRy

> bRouy(bR2) — (24 a1)8

> A2 B L M N 20 s,
A A 1+ a
This, together with (2.55) and 8, < B, gives
A—-2B 2B 2ay 2ay
3 y—1=> 7(N1+1)+W(N2+1)+1+ Trar
However, «; > 1 and (2.9) give
A—2B 2B 2ay
2 (y—D= 7(N1 +1)+ 1+a2(N2+ D,
which yields a contradiction. This completes the proof. O
Lemma 2.10. There hold gl_r)r(l) fgf: re'ledr =0 and sh_r)r(l) f,ff; re"2edr = ﬁD
and Sh_r)% Rg’ge”kﬂs(Rif‘) = 0for k =1, 2. Consequently,
lim R3 cu} (R3.) = 4= ZBJ/ + 4—BN1 + da (N2 +1) = =2, (257)
=0 ' A A 1+a
lim R3 cu) (R3.) = — 20 (y + N1) — 2N, —4 < —4. (2.58)
e—0 ’ 1+ag

Furthermore, lirr(l) R3,8u/1 ((R3¢)=—2ifandonlyif A—2B > 0and o) = 1.
£—> ’

Proof. Given any pu € (0, 6), there exists a large constant b, > 1 such that
biem(l’ﬂ) < pand [, bo; re“?dr < /2. Then by a similar argument used in Lemma
2.9, we have for ¢ > 0 sufficiently small that

b/LRZ 2
/ re"2dr — D| < pu,

uy(b,) — wyr(b < and
lia(by) — w2(by)|l < " T a

by Ry
(A — B)Z/ r(e" 4+ e 4 242 4 Uy gp < gy
Ry

2a;
Riu5(R)) — ——(y + N1) — 2N,

< WL
14+ a #
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Consequently, by repeating the argument of (2.54)-(2.56), we can prove
R3 R3 1
/ re'ldr < / re'?dr < —biea’Z(bMH" < u,
buR> by Ry 2
and
R%eul(RS) — R%euz(&) < (buRz)zeuZ(b"Rz) — bieﬁz(bu) < biewz(bu)-i-u <2u,

namely R%e”k(&) < 24 and f1§3re"1dr < 2u and |f1§13 re'2dr — lfa2D| < 2u
for ¢ > O sufficiently small. This proves

lim R3¢ (R =,

e—>0
R3

lim “idr =0,

e0 Jg, T (2.59)
R3 2

lim re'2dr = D.

=0 JR, 1+a

Recalling u1 < uy < us(Ry) - —oo on (R, R3) as ¢ — 0, we have

R3
lim r <e2”‘ + e 4 e”‘+”2) dr = 0.
Ry

e—0

Consequently, we integrate (2.18) over (R, R3) to derive

B R3 2ay
lim R3u, (R3) = li Riu’ (R “2 =-2 D
gl_f)f(l) 3u(R3) gl_f)r(l)_ 1 ( 1)+al/[;1 re d”:| Y+ 1+
= oA B M N2 -2, by 1)
= A VT AN T g T = Y
_ Rs
lim R3u’(R3) = lim | Rju5(Ry) — (1 + az) re“zdr}
e—0 e—>0 | R,
_ 2 N+ 2Ns —2D = ——2 (N — 2N, — 4
T 1+a Y 1 2 T T 1xq 14 1 2 .
This completes the proof. O

Fix any constant ¢ € [0, §) such that
=0 if ¢y >1 and O >0 if @1 =1. (2.60)

Then by Lemma 2.10, there exists €5 € (0, &4) such that R%}Seulﬂf(Rif) < § and

R3 cu|(R3e) > =2 — 0 > R3.u,(R3,) + 1 forany ¢ € (0,¢5). Foreach & €
(0, e5), we define

R4y = R4 :=sup{r € [R3., R}) |ruf (r) > =2 — 9},
Rs=Rs. :=sup{r € (R3, R}) |uic > uze on (R3z,r)}.
Clearly, R4 ¢, R5.c > R3¢ forall ¢ € (0, ¢5).
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Lemma 2.11. There exists a small ¢ € (0, &5) such that for each ¢ € (0, g¢),
Ure < U1 < Indon (Rze, Rs;), ru’l’g(r) is strictly decreasing on (R3¢, Rs )
and R4 ¢ < Rs . Inparticular, if¢1 > 1, then R4 ¢ < Rs ¢, namely R4,8u/1’8(R4,8) =
-2, ru/lys(r) > —2o0n[R3¢, Ra) and ru/l’s(r) < —20n (R4, Rs).

Proof. We divide the proof into four steps.
Step 1. We claim that

sup wuj, — —oo as € — 0. (2.61)
[R3£~ ‘,é‘)

Suppose by contradiction that there exist a sequence &, | 0 and a constant ¢y <
In§ such that supig, = gs, )Ule = co forall n. We will omit the subscript ¢,
for convenience. The following proof is similar to Step 1 of Lemma 2.5. For n
large, there exist b,, d, € (R3, Rs) such that b,, < d, while u(d,) = co — 1 and
ui(by) =co—2andu; <co—1on[R3,d,]and u; > co —2 on [b,, d,]. Clearly,
u’l(d,l) >0and up <u; <Indandso F; < F» < 0 on (R3, d,], which implies

1
(ruy(r)) =rl(l+a)Fi —a1F2] <rFy < —Ere”'(r) on (R3,d,]. (2.62)

Then O < ru}(r) < R3u(R3) < C forany r € [R3, d,], which yields d, — b, —
oo. Consequently,

d, d,
n 1 n
0 < dyu'y(dy) = byu'y(by) —|—/ (ru/l)/dr < R3u|(R3) — E/ re'ldr

n bn

1, [
<C—§e‘0 2 rdr - —o0 asn — oo,
n

a contradiction.

Step 2. By Step 1, for ¢ > 0 sufficiently small, we have up < u; < Iné on (R3, Rs),
which implies that (2.62) holds on (R3, Rs) and so ru’1 (r) is strictly decreasing on
[R3, Rs).

Step 3. We prove that R4 . < Rs . for ¢ > 0 sufficiently small.

Assume by contradiction that there exist a sequence ¢, | 0 such that R5 o, <
R4 ¢,. Again we omit the subscript ¢, for convenience. Consequently, R5 < oo and
ruy(r) > =2—9 forr € [R3, Rs]. Since [axru|+(1+a)ru,] = (A—=B)rF, <0
on [R3, Rs5], we have

ruy(r) < 1+ [R3u1(R3)+2+19]+R3u2(R3) =:1,

uniformly for r € [R3, Rs]. Recalling (2.12) and (2.57)-(2.58), it is easy to see that
[:= lim [,

n—oo
4 B— A 2a>(A — 2B) ~ A—2B - s
as( )~ as( )N1—2 A @t
O+anA’~ “(+anA A 1+a
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We claim/ < —2 —§. Recall 3A — 4B > O withy > 1 and ¥ < § and (2.19).

Clearly / < —2 — 1‘7‘2“1 A_TB)7 < —2—4§if A > 2B. Let us consider the remaining

case 3B < A <2B.By a, > 1 and (2.10), we easily obtain

a . a 4B—-A - 4B - A -
y > 1+ 75N
1 +a; 1+a3A—4B 3A—-4B 2.63)
a 2B—-A. 2B—-A_ ’
1+a A-B A—-B
where we have used ;}f__ﬁ; > Zf__g‘. So we also get [ < —2 — lfal —AZB)7 <

-2 — 6.

Hence, for n sufficiently large, ru(r) < I, < =2 — 9 < ruj(r) for all
r € [R3, Rs], namely up — u; is strictly decreasing on [R3, Rs], which contradicts
to uz(Rs) — u1(Rs) =0.

Step 4. Let oy > 1, then ¥ = 0. We prove that R4 < Rs for ¢ > 0 sufficiently
small.

Assume by contradiction that R4 = oo for some ¢ > 0 sufficiently small. Then
Rs = o0 and so ru/l(r) > —2 for all »r > R3, which implies f;;f re'l'dr = oo. On
the other hand, Step 2 shows that (2.62) holds on (R3, 00),s0

1 [ r
o0 = —/ re*'dr < limsup[—ru) (t)]‘ <Ruj(R3)+2<C,
2 Jp, r—00 R3

a contradiction. So R4 < oo for ¢ > 0 sufficiently small. Then by repeating
the argument of Step 3, we finally conclude that R4 < Rs for ¢ > 0O sufficiently
small. 0

Lemma 2.12. For each ¢ € (0, g) it holds uy (r) + 2Inr < C uniformly for
r € [R3¢, Rs5¢) and k = 1,2. Furthermore, lir% f;;s,s re"2edr = 0 and
e— €

lim [aoruy () + (1 4 a)ruy ()]

A—B A—2B A—2B A—B (2.64)
Y —2a -

= —4ay

uniformly for allr € [R3 ¢, Rs5).
Proof. We separate the proof into three steps.
Step 1. For each ¢ € (0, g¢), we claim that

ur(r) + 2Inr < C uniformly for r € [R3, R5). (2.65)

Lemma 2.11 shows that us < u; < Iné and (ru})’ < —%re”' on [R3, Rs). Hence

1 r
—2—0 <ru|(r) < Rsu5(R3) — E/ re"ldr, forall r € (R3, Ry),
R3
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which implies
Ry Ry
/ r (e”l +e”2) dr < 2/ re''dr < C.
R3 R3
This, together with (2.61), gives

Ry

lim r [62”‘ + e 4 e”‘+”2] dr =0.
e—0 R3

Then by repeating the argument of Step 2 in Lemma 2.5, we have uy (r)+21Inr < C
for all r € [R3, R4) and k = 1,2. If R4 = Rs, we are done. If R4 < Rs, by
ruy(r) < =2 — v forr € (R4, Rs), we conclude that

ury(r)y+2Inr <uy(r)+2Inr <uj(R4) +2InRy <C

for all r € [R4, Rs). This proves (2.65).

Step 2. Recalling (2.10) and a2 = o — 1 > 0, we claim that for ¢ > 0 sufficiently
small,

3
rub(ry < =2 — 5&2 uniformly for r € [R3, Rs). (2.66)
By (2.65) we have

Rs
lim | - [e2”1 T+ g e"1+”2] dr = 0. (2.67)

e—>0 JR,
Consequently, integrating the Pohozaev identity (2.23) over [R3, r] gives

J(ruy () +2, rub,(r)+2) < J (ruy (r)+2, rus(r) +2)
a1+ 611)62,4l
2

B a1(1;—a2) Q2 4 alazeulﬂz]

= J(R3u(R3) + 2, R3u5(R3) +2) + o(1)

+ (A — B)r? |:aze’“ + a1e"?
(2.68)

uniformly for all » € [R3, Rs) as ¢ — 0. On the other hand, since [agru’1 + 1+
apruy]’ = (A — B)rF; < 0on[R3, Rs), we have for any r € [R3, Rs) that

a(ruy(r) +2) + (1 +a)ruy(r) +2)

’ , (2.69)
< ax(R3u(R3) +2) + (1 + a1)(R3uy(R3) +2) =: 1.

Recalling (2.12) and (2.57)-(2.58), we have

A—-B _ A—-2B - A—2B -
N N.

n = lim n, = —4ay y —2a>
e—0
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Using (2.63) if A < 2B, we easily see n < 0. Hence ., < 0 for ¢ > 0 sufficiently
small. Note from (1.20) that

C@(A-B) , a
e =50y S Tty

This, together with (2.68)-(2.69) and 5, < 0, easily yields

[axx + (1 +ap)yl®.

[ru (r) + 217 < [Rau (R3) + 21* + o(1)

and so ru} (r) > —R3u|(R3) — 4 + o(1) uniformly for any r € [R3, Rs) as ¢ — 0.
Substituting this inequality into (2.69) and recalling (2.57)-(2.58), we finally obtain

() < —22 Rau (R3) + Ratls(R3) + —2— 4 o(1)
28— ap SIS 323 14+ a
_ 20y(3A—4B)_ 2ay(A—4B) . _A—

4B -
_ Ny =2 Ny —2+o0(1
At+apA '~ (A+apna A N2+

= 20, — 2+ o(1) (by (2.10))
uniformly for any r € [R3, R5) as ¢ — 0. This proves (2.66).
Step 3. We prove lim o reedr = 0 and (2.64).
£— 3

By (2.66), p2tazeua(r) jg strictly decreasing for r € [R3, Rs), so Lemma 2.10
gives

Rs 1
/ re*2dr < TR%e”Z(R3) — 0 as ¢ > 0.
R; o)

Then by integrating [azruy; + (1 + ap)ru)] = (A — B)rF, over [R3,r] for any
r € [R3, Rs) and recalling |F>| < (1 + ap)e?, we easily obtain (2.64). This
completes the proof. O

Now we consider the cases «; = 1 and o] > 1 separately.

2.1. The critical case oy = 1

In this subsection, we consider the critical case «; = 1. Consequently, we see from
(2.8),(2.9) and (2.12) that

2B - 2a1(1 )
|y 2adra) g (2.70)
A_2B A_2B

A—2B >0 and y =
The following lemma provides an evidence that this critical case is different from
the generic case o] > 1.

Lemma 2.13. There exists a small ¢7 € (0, &) such that for each ¢ € (0, &7),
Ry =Rs5, = RZf = 4-00.
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Proof. Assume by contradiction that R4, < +o00 for a sequence ¢, | 0. We will
omit the subscript &, for convenience. Then R4u’1 (R4) = —2 — ¢. This, together
with (2.64) and (2.70), gives

lim Ryub(R4) + 2
n—oo

_daB-A) . 2A-2B) o A-2Bg  ab
T UtanA T Td+apa M A Mt 2.71)
1+Cl2~ aj
=- 9.
ai y+1+(11

Similarly, by Lemma 2.10 we have lim,,_, o R3u|(R3) +2 = 0 and

2ap 14as

(7 + N1) —2N; = — V.

1+ a; aj

lim R3uy(R3) +2=—
n—oo

Since we have assumed R; < o0, it follows from (2.65) and (2.66) that
R2etiR+u;(R) < CR;? — Ofor 1 < i, j <2and R3e2R9) < R2e2(R) 5 0
as n — oo. Combining these with (2.67), we can repeat the proof of Lemma 2.8 to
obtain (similar to (2.52))

ay(A — B)R3e" (Ro)
= J(R3u}(R3) 42, R3uy(R3) +2) — J (Rau'y(R4) + 2, Ryu’(R4) +2) + o(1)

1 1
:J(O, - +a2;7)—f<—z9, e, @ 19)—!—0(1)
1+ a

ai ai
_ @(A-B)

192+01 as n — 0o,
2(1 +ay) M

which yields a contradiction with ¢ > 0. O
Now we can finish the proof of Theorem 2.3 for oy = 1.

Completion of the proof of Theorem 2.3 for a1 = 1. Let ¢ € (0, &7), then Ry, =

Rs¢ = R} = 400. Since Lemma 2.11 shows that us ¢(r) < u1(r) < Iné for any

r € (R3¢, +00), we conclude that (u; ., u2 ¢) is an entire solution. By Theorem A,

there exists (1,¢, ®2,¢) € 2 such that

U e(r) = 20 Inr +01) as r - oo for k=1, 2.

Consequently, ru;c’ (1) = =20 o asr — 00. Then Lemma 2.11 and the definition
of Ry yield =2 — ¥ < =21, < R3,€u’l’g(R3’8), namely

24 ¢ > limsup 2« > liminf2a; . > — lim R3 qu} ,(R3,) = 2.
=0 e—0 e—0 ’
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Since ¥ € (0, §) can be taken a priori arbitrary small, we conclude that
limoy, =a1 =1.
E—>

This, together with (2.64), easily implies

a+ (1 +ap) limap ¢
e—>0

o A=B . A-2B  A-2B A—B
= Za a )
2 A v 2 A : 1+a : 1+a
SO
; 2y A=B. @ A-2B A-2B,
1m o =
a0t T T a A VT xa, A A2
1+a .

= y+1 (by(2.71))
2a1

— . (by (2.7)

By Step 3 in the proof of Lemma 2.12, we have f;s:.e rfdr — 0ase — 0.
Consequently, by integrating (ru’l’g)’ = (14ay)rFy —air F over (R3¢, +00), we
deduce from —2¢ , — R3,gu’1’8(R3,5) — 0 that flgzg rFidr — 0 as e — 0. Then
by (2.17) we conclude that

o0

lim re'tedr = 0. (2.72)

e—0 R3,

Observe from (2.47) and (2.66) that ”/2 () <Oforallr > R; .. Besides, Lemma
2.4 shows that supyg g, .ju2, — —00. Combining these with (2.36), we conclude
Supg2 U2, — —o0 as & — 0. This completes the proof. O

Remark 2.14. In Theorem C where bubbling solutions of type I are constructed,
we assumed «; > 1, which plays an essential role in the proof of Theorem C
(see [5]). In particular, the conclusion (a1, 002,) — (a1, @2) is a corollary of
(2.72) in the proof of Theorem C. However, for the critical case «; = 1 studied
here, the idea used in Theorem C can not be applied and we have to argue the other
way around: the conclusion (2.72) is a consequence of (o ¢, @2,¢) = (0t1, 02).

2.2. The generic case o1 > 1

In this subsection, we consider the generic case oy > 1. Then # = 0 and R4, <
Rs .. The following lemma also provides an evidence that this case is different from
the critical case a1 = 1.
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Lemma 2.15. Recalling 1 > 1in (2.9), it holds (compare to (2.72))

) Rse 4 2B—A_. 2B . 2a; -
lim re'tdr = y+—Ni+ Ny
e—0 Rie 14+ ag A A 1+ a (2 73)
4 - 1) '
- 14+ ag ’
Proof. We separate the proof into five steps.
Step 1. We claim that
EZ
lim R} eleRee) = — (2.74)
e—>0 2(1 +ay)
where E > 0 is defined by
E :=lim R3 qu} ,(R3.) +2
e—0 ’
2B A B N § -1 &7
= — = o] — .
A CTTATTT +ap ? 1

Recalling (2.64) and R4u'|(R4) = —2, it holds
, 4as(A—B) . 2ay(A—2B) - _A—2B -
F = lim Ryu)(Ry) +2 = — _ ) M.
Lim Rauz(Ra) + At+apd '~ “d+ana ! A2

Again, (2.65) and (2.66) imply R2e" (R)+uj(R0) < CRIZ — Ofor 1 < i, j <2
and

Rie ™) < R3e™) — 0 as & — 0. (2.76)

Combining these with (2.67), we can repeat the proof of Lemma 2.8 to obtain (sim-
ilarly to (2.52))

ay(A — B)R3e" (Ro)
= J(R3u\(R3) + 2, R3ub(R3) 4+ 2) — J (Raut (Ry) + 2, Raus(R4) +2) + o(1)

2ay . - -
=J<E,—1+ (V+N1)—2N2)—J(0,F)+0(1)

aj
=G
J(=27 -2 G g)—s(o0 AZ2Bs_ 22 5\ 4
= - - ) - ) - o
v 1+a A 1—|—a1y
N A—2B 2ay .
=7y, 6 —J|o, G — 7 ) +o(1) (by (2.13))
A 1+ a
az(A—B)< 2ay ~>2
= G+2 +o(1
20 +a) \1+a v M
_aA-B)

E2+01 as ¢ — 0.
2(1 +ay) M

Hence (2.74) holds.
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Step 2. For ¢ > 0 sufficiently small, we consider the scaled functions
Up(r) =g e(r) ;= uge(Raer)+2InRy, for k =1,2,

3.e
4.

R R .- )
where £ <r < ﬁ Then (i1, ito) satisfies
W&

iy + %f‘/l ={+ap) ((1 + al)R“_zezﬁl _ el a1R4_26L;1+L;2)
—4 ((1 + QZ)RZZezﬁz —e2 — azRZZe'ZlJrﬁZ) ,
) 2.77)

1/7/2/ + %1’7/2 = (1 + a2) ((1 + a2)R4_282112 — eﬁz — a2R4_2€ﬂ1+112

@ ((1 + al)Réfzezﬁ' — e — a1RZ2eﬁl+ﬁ2> )

By Lemma 2.11, it is easy to see that u;(r) + 2Inr < u;(R4) + 21n R4 for any

r € [R3, Rs). So for any Ilg—i <r< g—i we have
E2
ur(r) +2Inr <uy(r)+2Inr <u;(1) =In——— + o(1). (2.78)
2(1 4+ ay)

Moreover, (2.76) gives tip(1) — —oco as ¢ — 0.

Step 3. We claim that

R3 Rs
— —> 0 and — — o0 as ¢ —» 0.
Ry R4

Recall from Lemma 2.11 that —2 < rit}(r) = Rqru(R4r) < R3u(R3) < C for
r e [Ilg—i, 1]. By the mean value theorem, we have

- R4 N . [ R3 Ry
2 R
i (1) —In (Rge‘“( 3)) — 2 =)~ (R—4> <C (R—3 — 1) :
Recalling R%e“l(&) — 0 and (2.78), we conclude that % — 0ase — 0.
By (2.78) and R;zeﬁk(’) = ¢"Rar) 1 for any r € [g—i, ﬁ—i), it is easy to
deduce from (2.77) that |(rit})'(r)| < C/r forall r € [{2, ). Consequently, i)

is uniformly bounded in C 100((2—2, %)) and 1ip — —oo uniformly on any compact

subset K &€ (%’ %)' This, together with the definition of Rs, yields g—i — 00 as
e — 0.
Step 4. We claim that i — w) in Clzoc((O, o0)) as € — 0, where
2E2rE—2
wi(r) =1 for r € (0, 00), 2.79)

T At an( +rE)2?
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and E is seen in (2.75). Consequently,

© 2
/ re®tdr = E. (2.80)
0 14+ a;

By Step 3, up to a subsequence, we may assume that it; — w; in Clzoc((O, 00)),
where w; satisfies

1
of + ~o) = (1 +ane,

o for r € (0, 00). (2.81)
2Inr < )=In———,
w1(r) +2Inr < w1(1) A+ a)
Since a)/l (1) = —2 and rw/] (r) is strictly decreasing on (0, 00), it is easy to prove

that fooore“)ldr < o0. Recalling =2 < rit|(r) = Raru(R4r) < R3u|(R3) =
E —2+0(1) forall r € [R3/R4, 1], we easily obtain

2y = limroj(r) € (=2, E —2].
r—0
In conclusion, w; is a radial solution of the Liouville equation with singular sources
o0
Av+ (1 +ap)e’ =478 in R and / re’dr < o0o.
0

Since y; > —1, again by the classification result due to Prajapat and Tarantello [26],
there holds
8A(L+ 1)

a)l(r) +11’1(1 —}—611) = lnm

for some constant 2 > 0. By @} (1) = =2 and (1) = In Z(%Za.) a direct compu-
tation gives y; = ET_Z and A = 1. This proves (2.79) and (2.80). Clearly, the above

2 ((0, 00)) as € — 0 (i.e., not only along a

argument also shows that 1 — wy in Cj,

subsequence).

Step 5. We prove (2.73).
Given any u € (0, 6). By (2.79)-(2.80), there exist small constant b,, € (0, 1)
and large constant d;, > 1 such that
du 2E
/ re®'dr —
by l+a

2 2
buwy(by) +2 = §E and dyi(d,) +2 < _§E’

M
<
2

biewl(hﬂ)—{—diew'(d“)—i—
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Consequently, since i1] — w1 in C 2([bu, d.]), there exists sufficiently small ¢, > 0
such that for each ¢ € (0, ¢,,), we have
/du i 2F
re''dr —
by 14+a

1 1
bty (by) +2 > EE and dyu)(d,) +2 < _EE’

biei"(b") + dﬁei"(d") + <K,

Recalling that rﬁ’l(r) = R4ru’1 (Ry4r) is strictly decreasing on (Ilg—i, Ilg—i), we obtain

ri(r) +2 < —%E forallr e [dﬂ, R—Z) which implies that F2H3E i () decreases

R
onld,, g—i) and so

. . R
(R4r)26u|(R4r) — 2,01 < diem(du) < forany r e |:de R_i> .

Furthermore,
R
Rs - 2, - 2
/ re*ldr = Y refidr < —dﬁe”‘(dﬂ) < —L.
dp'R4 du, E E

Similarly, by rit’ (r) + 2 > %E forallr € [%’ b, ], we can prove

b, R b
' 4re“ldr = Mreﬁldr < gbzef”(b“) < EM
R ky —E* E"
4

Since f;ff,i“ rettdr = fbd: refidr, (2.73) follows immediately. This completes the
proof. O

Te

R — ooase — 0.
4,e

Lemma 2.16. Let t; € (Ra, R5¢] be such that t; < oo and
Then lim t2e"kcUe) =0 for k = 1,2 and
e—>0

lim teu/l’a(tg) = —2a; and lim tgu/z,a(ts) = 27,
e—0 e—0

where a1, oy are seen in (2.9)-(2.10).

Proof. Since R% — 00, by repeating the argument of Step 5 in Lemma 2.15, it is
easy to prove that r2¢"2(®) < r2¢#1() 5 ( and

! " 2E
re'ldr — as ¢ —> 0.
R; 14+ a;
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Recalling flfj re'2dr — 0 (see Lemma 2.12), (2.67), (2.57)-(2.58) and (2.75), we
conclude

t

lim tu/l (t) = lim |:R3u/1 (R3) — (1 +ay) re’“drj| =F—-2-2F
e—>0 e—0

R3
= —2ay,
t
lim ru5 () = lim |:R3u/2(R3) + a2/ re”'dr]
e—0 e—0 R;
2GRy 2 -2+ 22
T 14a 4 ! : 1+a;
2 3A—4B 2 A—4B - A—4B -
N . Ny —2 Ny —2
1+ aq A 1+ aq A
= —2u5.
This completes the proof. O

Lemma 2.17. There exists a small &7 € (0, e¢) such that for each ¢ € (0, €7), there
holds ru’2 (1) < =2—ao forallr € [R3, RY). Consequently,

R} 1
lim re"2edr < — lim R} e"2¢(R32) — 0, (2.82)
e—0 R3. oy e—>0 7

Proof. Recall that &y = o — 1 > 0 for k = 1, 2 and (2.66) gives that ru/z’a(r) <
—2— %&2 forr € [R3 ¢, Rs5 ). Assume by contradiction that there exist a sequence
en | Oand t, € [Rsg,, R} ) such that #,u), g () = =2 — ap and ruj (r) <
—2—ap forr € [R3,, t,). We will omit the subscript ¢, for convenience. Clearly

Rs < t, < R*. Since g—i — 00, Lemma 2.16 yields lim,_ Rge“k(RS) = 0 for
k=1,2and

lim Rsu/l (Rs) = —2—2@; and lim R5u/2(R5) = -2 —2d. (2.83)
n—00 n—>00

Since ruj(r) < —2 — &y forr € [R3, t,), we have

In ]
/ re"2dr < ~—R§e”2(R3) — 0 as n — oo. (2.84)
R; as

Recall from (2.61) that SUP[R, Rg U1 —> —O0 asn — o0. Since uy < wuj on
[R3, Rs5], we have SUP[R, 1,1 U2 —> —O0 as n —> 00.

Step 1. We claim that ”/1 < 0 on [Rs, t,] for n sufficiently large. Consequently,
Sup[RMn] upG — —oasn — Q.

Suppose that, up to a subsequence, there exists r, € [Rs, ;] such that u/l (rp) =
0 and ”/1 (r) < Oforr € [Rs,r,). Then for n sufficiently large, u; < Iné and so
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F| <0,—F, < 2¢"2 on[Rs, r,], which imply that (ru)" = r[(1+a1) F1 —a1 F2] <
2aire"? on [Rs, ry]. Consequently,

'n

0-— R5u’1 (R5) = (ru’l)’dr <2a; /
Rs Rs

'n In

re"2dr < 2ay / re*2dr — 0
R3

as n — oo, which yields a contradiction with (2.83).

Step 2. We claim that ru’] (r) < —2 — & on [Rs, t,] for n large enough. Conse-
quently,

In 1

/ re"ldr < —R2e"1RS) 5 0 as n — oo. (2.85)
Rs a1

By Step 1 and (2.83)-(2.84), we may take n large enough such that (ru})" < 2ajre"?

on [Rs, f,], Rsuj(Rs) < —2 — %5[1 and 2a; f;{s re"2dr < %6{1. Then for any

r € [Rs, t,], we have

p
ruj(r) < Rsu’(Rs) + 2a; / te"?dt < -2 —aj.
Rs

Step 3. We complete the proof.
Similarly as Steps 1-2, we may take n large enough such that (ru})" = r[(1 +
a)Fr —ayF1] < 2apré®! on [Rs, t,], so we conclude from (2.83) and (2.85) that

tn
—2—ap = tnu/z(tn) < R5u/2(R5) + 2a; / re'ldr — =2 — 20
Rs
as n — 00, a contradiction with &, > 0. This completes the proof. O
We are now in a position to complete the proof of Theorem 2.3 for oy > 1.

Completion of the proof of Theorem 2.3 for a1 > 1. For each ¢ € (0, ¢7), we take
anumber 7, € (R4, Rs ¢) such that % — oo as & — 0. Then Lemma 2.11 gives

uz ¢(ts) < uy,e(te) < Iné. Moreover, by Lemma 2.16 we have

lim ¢2e"=") = 0,

e—0

&!E)r(l) t&'ull’g(ts) = _2a19
lirr(l) tgu/z’g(tg) = 2.
£—

Combining these with (2.82), we can repeat the argument of Steps 1-2 in Lemma
2.17 to conclude the existence of ¢g € (0, &7) such that ru’] Lr) < =2 —aon
[te, R}) for any ¢ € (0, eg). Consequently,

R} 1
/ re“edr < —t2e"1%) - 0 as £ — 0. (2.86)
te aq
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Now we consider ¢ € (0, eg). Recall from Lemma 2.17 that rué’s (r) < —2—azon
[R3,¢, R}). It turns out that both u; , and uy , decrease on [z, R}), which implies
ur,e(r) <uge(ts) <Inéforanyr e (t;, RY) and k = 1, 2. By the definition of R},
we conclude that R¥ = oo, namely (u1 ¢, u2, ) is an entire solution for ¢ € (0, &g).
By Theorem A, there exists (1,¢, ®2,¢) € 2 such that

ure(r) = 20 cInr +01) as r - oo for k=1, 2.

Recall that |(}"u;(’6)/| =r|(1 +ap)Fr —apF3_;| < Cr(e"ls + e"2¢) fork = 1, 2.
By (2.82),(2.86) and R} = oo, we obtain

o0
|—2ak,€ — tgu;(,s(tg)| < C/ r(e"te +e"2¢)dr — 0 as ¢ = 0
te

for k = 1, 2. Therefore, lim (a1 ¢, ot2,¢) = (a1, @2).
e—0

Observe from (2.47) and Lemma 2.17 that u’2 L(r) <Oforallr > Ry .. Be-
sides, Lemma 2.4 shows that supyg g, ,j#2,e = —00. Combining these with (2.36),

we conclude supp2 uy o — —oo as & — 0.
This completes the proof. O
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